#### PROJECT:

Green Meadow Elementary School -Early Site Package 5 Tiger Drive Maynard, MA 01754 Project No.

#### ADDENDUM NO. 2 06/12/2024

Posted: 06/12/2024 at 3:20PM EDT

#### Awarding Authority/Owner:

Town of Maynard 195 Main Street Maynard, MA 01754

Reference Contract Documents (drawings and specifications) dated 05/22/2024

The attention of Bidders submitting proposals for the above subject project is called to the following addendum to the specifications and drawings. The items set forth herein, whether of omission, addition, substitution, or clarifications are all to be included in and form a part of the proposal submitted.

THE NUMBER OF THIS ADDENDUM (2) MUST BE ENTERED IN THE APPROPRIATE SPACE "B" PROVIDED AFTER THE WORD "NUMBERS" OF THE CONTRACT FORM ENTITLED "FORM FOR GENERAL BID," AND IN SPACE "B" OF THE "FORM FOR SUB-BID."

BID DOCUMENT MODIFICATIONS ARE AS FOLLOWS.

#### **Specifications:**

- Add the following new technical sections. (See attached)
  31 09 13.1 DD Phase Geotechnical Report Dated April 27, 2024
  31 09 16.1 Soil Sampling Report Green Meadow School April 2024
- Replace the following technical sections in their entirety. (See attached) 31 20 00 Earth Moving

#### **Clarifications:**

#### **GENERAL**

RFI #10 - Type: General Drawing ref: C-02.1 Section ref: 31-20-00

Other ref: N/A Question:

Does this contract include the preparation of the building site? How do we leave it, with a gravel pad and if

so, to what elevation, elevation 216? *Response: (Prime Designer)* 

Building pad to be structural fill to el. 215 (1' below FFE).

RFI #12 - Type: General

Drawing ref: N/A Section ref: 31-09-00

Other ref: N/A Question:

The geotechnical report does not show borings in all areas of the proposed building footprint. Please confirm that all the boings taken have been provided. Without additional borings, it will be difficult to estimate the removal of the existing fill, organics and rock as a lump sum.

Response: (Prime Designer)

See attached addendum 2 documents for latest geotechnical report.

#### RFI #15 - Type: General

Drawing ref: N/A

Section ref: Geothermal ground Source - 33-61-37

Other ref: N/A Question:

The plan shows the terminus of the geothermal piping to be inside the building. The plans also called out for the pipe to be installed in the "final build of the project". Will this contract be ongoing during the construction of the building? If so, will any piping within 10 ft of the building be considered plumber's work? Will the piping installed under the roadway require any type of casing?

Response: (Prime Designer)

Yes, the geothermal piping from the manifold to the building will be installed during the construction of the building. No, this piping is not considered part of the plumber's work. No casing is required under the roadway, please refer to Detail A on sheet GT-200.

#### RFI #19 - Type: General

Drawing ref: C-01.4 Section ref: N/A Other ref: N/A Question:

Please identify where the Transformer will be relocated to, so as to estimate the conduit and wiring required for this relocation.

Response: (Prime Designer)

Per addendum #1, the existing transformer will remain operational as is in its current location.

#### RFI #24 - Type: General

Drawing ref: Form For General Bid

Section ref: 00 41 13

Question:

The Form For General Bid all the lines state they are to be filled online. If you go to the Bid form tabs there are no areas to fill out this information. Please provide additional instruction to clarify.

Response: (Prime Designer)

The Form for General Bid can be filled in online and/or in the forms included in the specification, both should be included in the bid submission.

#### **CIVIL**

## RFI #22 - Type: Civil Section ref: 31 20 00

Question:

There will be a large amount of surplus material leaving the site that will require testing prior to disposal. We were not issued an environmental report nor are there unit prices. Who will be responsible for testing of this material?

Response: (Prime Designer)

See attached spec section 31 09 16.1 Soil Sampling Report Green Meadow School dated April 2024 for environmental report. Contractor will be responsible for additional testing of soils to be disposed of as necessary.

#### RFI #23 - Type: Civil

Drawing ref: 1 Section ref: 1 Other ref: 1 Question:

the documents refer to test wells done on site TB-1 and TB-2. Please provide data for these borings.

Response: (Prime Designer)

The test bore data for TB-1 and TB-2 are included in the Geothermal Test Loop Memo included in addendum #2.

## RFI #29 - Type: Civil Drawing ref: GT-100

Question:

Geothermal subs asking what shall be assumed for the water discharge/management during their work as it can be a big cost. Should bidders carry an allowance?

Response: (Prime Designer)

The geothermal contractor shall be responsible for procuring any necessary permits for the discharge of all water generated by the drilling and circuit trenching operations along with the containment and treatment of said water.

# RFI #32 - Type: Civil Drawing ref: GT-100 Section ref: 336137-3

Question:

Spec pg 336137-3 mentions test well logs for TB-1 AND TB-2 however we can't seem to find this info. Is it

available?

Response: (Prime Designer)

The test bore data for TB-1 and TB-2 are included in the Geothermal Test Loop Memo included in addendum #2.

## RFI #33 - Type: Civil Section ref: 01 51 00

Question:

Is the Town of Maynard going to supply the Temporary Facilities? Trailers for OPM/Architect? Site Contractors could be onsite for only the duration of the enabling plan. Who takes over these facilities between phases? Portable toilets etc.

Response: (Prime Designer)

Temporary Facilities requirements is the responsibility of the early site package Contractor for the duration of the early site package scope of work only.

#### **ELECTRICAL**

## RFI #21 - Type: Electrical Section ref: 31 21 01

Question:

I have been asked some questions from an electrical contractor regarding relocating/removing the existing transformer: 1. Is there a proposed location for the transformer? 2. Transformer size and nameplate picture? 3. Secondary size how far does it go inside? 4. Who will do the 15KV work? 5. What loads will need to be supported during the shutdown?

Response: (Prime Designer)

Per addendum #1, the existing transformer will remain operational as is in its current location.

#### **Other Modifications / Attachments:**

The following attachment includes additional modifications, clarifications and/or provisions not included in the items above in this Addendum.

See document at the end of document.

All other of the portions of the Contract Documents remain <u>unchanged</u>. Please be reminded to acknowledge this Addendum on the bid forms.

#### **ATTACHMENTS**

31 09 13.1 DD Phase Geotechnical Report Dated April 27, 2024
31 09 16.1 Soil Sampling Report Green Meadow School April 2024
31 20 00 Earth Moving
Addendum 02 Combined Documents.pdf
--- End of Addendum No. 2 ---

#### ADDENDUM NO. 2

to the Contract Documents Bid Set dated May 22, 2024

GREEN MEADOW ELEMETARY SCHOOL PROJECT EARLY SITE BID PACKAGE Maynard, Massachusetts

> Mount Vernon Group Architects, Inc. 264 Exchange Street Suite G4 Chicopee, MA 01013

> > Addendum Date: June 12, 2024

#### TO ALL BIDDERS AND SUB-BIDDERS

This Addendum modifies, amends, and supplements designated parts of the Contract Documents for – Green Meadow Elementary School Early Site Bid Package, Maynard, Massachusetts bid set dated May 22, 2024, Addendum No. 01 dated June 07, 2024, and is hereby made a part thereof by reference and shall be as binding as though inserted in its entirety in the locations designated hereunder. It shall be the responsibility of each General Bidder to notify all subcontractors and suppliers he/she proposes to use for the various parts of the works, of any changes or modifications contained in this Addendum. No claims for additional compensation because of the lack of knowledge of the contents of this Addendum will be considered.

THE NUMBER OF THIS ADDENDUM MUST BE INSERTED IN PARAGRAPH B. OF THE "FORM FOR GENERAL BID"

THIS ADDENDUM CONSISTS OF PAGES NUMBERED:

AD2-1 through AD2-2

**NEW SPECIFICATIONS:** 

31 09 13.1\_DD Phase Geotechnical Report Dated April 27, 2024 31 09 16.1\_Soil Sampling Report Green Meadow School April 2024 33 61 38 Geothermal Test Loop Memo

**NEW DRAWINGS:** 

#### **GENERAL**

#### CHANGES TO THE BID SET PROJECT MANUAL

#### **TABLE OF CONTENTS**

ITEM 01: Added Specification Section 31 09 13.1 DD Phase Geotechnical Report dated April 27, 2024

ITEM 02: Added Specification Section 31 09 16.1 Soil Sampling Report Green Madow School dated April 2024

ITEM 03: Addes Specification Section 33 61 38 Geothermal Test Loop Memo

#### **SECTION 31 20 001 – EARTH MOVING**

ITEM 01: Delete Section in its entirety and replace with attached 31 20 00 EARTH MOVING\_ADD2.

#### **CHANGES TO THE BID SET DRAWINGS**

#### **DRAWING C-00 – OVERALL PLAN**

ITEM 01: Added Revision triangle to Addendum #1 changes.

#### **DRAWING C-01.2 - DEMO PLAN**

ITEM 01: Added Revision triangle to Addendum #1 changes.

#### DRAWING C-01.3 - DEMO PLAN

ITEM 01: Added Revision triangle to Addendum #1 changes.

#### **DRAWING C-02.1 – SITE PREPARATION PLAN**

ITEM 01: Added Revision triangle to Addendum #1 changes.

#### DRAWING C-02.2 - SITE PREPARATION PLAN

ITEM 01: Added Revision triangle to Addendum #1 changes.

ITEM 02: Adjusted Wall length.

#### **DRAWING C-02.3 – SITE PREPARATION PLAN**

ITEM 01: Added Revision triangle to Addendum #1 changes.

#### **DRAWING C-03.1 - DETAILS**

ITEM 01: Added Revision triangle to Addendum #1 changes.

**END OF ADDENDUM NO. 2** 



April 27, 2024

Mr. Chris LeBlanc, MCPPO Mount Vernon Group Architects, Inc. 200 Harvard Mill Square Suite 140 Wakefield, MA 01880 Tel: (413) 377-2866

Tel: (413) 377-2866 Mobile: (413) 530-0817

E-mail: cleblanc@mvgarchitects.com

Re: **DD Phase Geotechnical Report** 

**Proposed Green Meadow Elementary School** 

Maynard, Massachusetts LGCI Project No. 2201

Dear Mr. LeBlanc:

Lahlaf Geotechnical Consulting, Inc. (LGCI) has completed our Design Development (DD) phase geotechnical study for the proposed Green Meadow Elementary School at the existing Green Meadow Elementary School site in Maynard, Massachusetts. We are submitting our geotechnical report electronically.

The soil samples from our explorations are currently stored at LGCI for further analysis, if requested. Unless notified otherwise, we will dispose of the soil samples after three (3) months.

Thank you for choosing LGCI as your geotechnical engineer.

Very truly yours,

Lahlaf Geotechnical Consulting, Inc.

Abdelmadjid M. Lahlaf, Ph.D., P.E.

Principal Engineer



## DD PHASE GEOTECHNICAL REPORT PROPOSED GREEN MEADOW ELEMENTARY SCHOOL MAYNARD, MASSACHUSETTS

LGCI Project No. 2201 April 27, 2024

Prepared for:

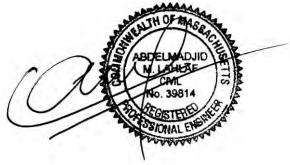
MOUNT VERNON GROUP ARCHITECTS, INC.

200 Harvard Mill Square Suite 140 Wakefield, MA 01880 Tel: (413) 377-2866

## DD PHASE GEOTECHNICAL REPORT PROPOSED GREEN MEADOW ELEMENTARY SCHOOL MAYNARD, MASSACHUSETTS

LGCI Project No. 2201 April 27, 2024

#### Prepared for:


## MOUNT VERNON GROUP ARCHITECTS, INC.

200 Harvard Mill Square Suite 140 Wakefield, MA 01880 Tel: (413) 377-2866

#### Prepared by:

## LAHLAF GEOTECHNICAL CONSULTING, INC.

100 Chelmsford Road, Suite 2 Billerica, Massachusetts 01862 Phone: (978) 330-5912 Fax: (978) 330-5056



Abdelmadjid M. Lahlaf, Ph.D., P.E. Principal Engineer

## TABLE OF CONTENTS

| 1.  | PROJECT INFORMATION                                                                    | 2  |
|-----|----------------------------------------------------------------------------------------|----|
| 1.1 | Project Authorization                                                                  | 2  |
| 1.2 |                                                                                        |    |
| 1.3 |                                                                                        |    |
| 1.4 |                                                                                        |    |
| 1.5 |                                                                                        |    |
| 1.6 |                                                                                        |    |
|     |                                                                                        |    |
| 2.  | SITE AND SUBSURFACE CONDITIONS                                                         | 5  |
| 2.1 |                                                                                        |    |
| 2.2 |                                                                                        |    |
|     | 2.2.1 General                                                                          |    |
|     | 2.2.2 LGCI's Soil Borings                                                              |    |
|     | 2.2.3 LGCI's Test Pits                                                                 |    |
| 2   | 2.2.4 Exploration Logs and Locations                                                   |    |
| 2.3 |                                                                                        |    |
| 2.4 |                                                                                        |    |
| 2.5 |                                                                                        |    |
| 2.6 | LABORATORY TEST DATA                                                                   | 9  |
| 3.  | EVALUATION AND RECOMMENDATIONS                                                         | 11 |
| 3.1 | General                                                                                | 11 |
|     | 3.1.1 Asphalt, Surficial Organic Soil, Subsoil, Buried Organic Soil, and Existing Fill |    |
|     | 3.1.2 Shallow Bedrock                                                                  |    |
|     | 3.1.3 Shallow Footings and Slabs-on-Grade                                              |    |
|     | 3.1.4 Reuse of Onsite Materials                                                        |    |
|     | FOUNDATION RECOMMENDATIONS                                                             |    |
|     | 3.2.1 General                                                                          |    |
| 3   | 3.2.2 Footing Design                                                                   |    |
|     | 3.2.3 Settlement Estimates                                                             |    |
| 3.3 |                                                                                        |    |
| 3   | 3.3.1 Slab-on-Grade                                                                    |    |
| 3   | 3.3.2 Under-slab Drains and Waterproofing                                              |    |
| 3.4 | 1 0 0                                                                                  |    |
| 3.5 | LATERAL PRESSURES FOR WALL DESIGN                                                      | 16 |
| 3   | 3.5.1 Lateral Earth Pressures                                                          | 16 |
| 3   | 3.5.2 Seismic Pressures                                                                |    |
| 3   | 3.5.3 Perimeter Drains                                                                 | 17 |
| 3.6 | PARKING LOTS, DRIVEWAYS, SIDEWALKS, AND EXTERIOR SLABS                                 | 18 |
| 3   | 3.6.1 General                                                                          | 18 |
| 3   | 3.6.2 Sidewalks                                                                        | 18 |
| 3   | 3.6.3 Pavement Sections                                                                | 18 |
| 3.7 | Underground Utilities                                                                  | 19 |
| 4.  | CONSTRUCTION CONSIDERATIONS                                                            | 20 |
| 4.1 | SUBGRADE PREPARATION                                                                   | 20 |
| 4.2 | SUBGRADE PROTECTION                                                                    | 21 |
| 4.3 | FILL MATERIALS                                                                         | 22 |
|     | 4.3.1 Structural Fill                                                                  |    |
| 4   | 4.3.2 Ordinary Fill                                                                    |    |
| 4.4 | ·                                                                                      |    |
| 4.5 |                                                                                        |    |
| 4   | 4.5.1 Rock Removal                                                                     |    |
| 4   | 4.5.2 Ground Vibration Monitoring                                                      | 25 |

| υ. | REFERENCES                              | 40 |
|----|-----------------------------------------|----|
| 6  | REFERENCES                              | 28 |
| 5. | REPORT LIMITATIONS                      | 27 |
|    | TEMPORARY EXCAVATIONS                   |    |
|    | GROUNDWATER CONTROL PROCEDURES          |    |
| 4  | 1.5.4 Pre-Construction Condition Survey | 25 |
| 4. | 1.5.3 Public Notification               |    |

## List of Tables and Figures

| Table 1 | Summary of LGCI's Borings   |
|---------|-----------------------------|
| Table 2 | Summary of LGCI's Test Pits |

Figure 1 Site Location Map
Figure 2 Surficial Geologic Map
Figure 3 Exploration Location Plan

## **List of Appendices**

| Appendix A | LGCI's Boring Logs   |
|------------|----------------------|
| Appendix B | LGCI's Test Pit Logs |

**Appendix C** Results of Double Ring Infiltrometer Tests

**Appendix D** Laboratory Test Results

#### 1. PROJECT INFORMATION

#### 1.1 Project Authorization

LGCI performed services for this project in two phases as follows:

- Preliminary Phase LGCI previously performed preliminary subsurface explorations at the site and prepared and submitted a preliminary geotechnical report in February 2022 in general accordance with the scope described in our proposal No. 21115-Rev. 1 dated December 22, 2021. Our services were authorized by Mr. Chris LeBlanc of Mount Vernon Group Architects, Inc. (MVG) by signing our proposal on December 22, 2021.
- Design Development (DD) Phase LGCI performed additional DD Phase subsurface explorations at the site and prepared and submitted this DD Phase geotechnical report in general accordance with our proposal No. 22140-Rev. 1 dated March 9, 2023. Our services were authorized by Mr. Chris LeBlanc of Mount Vernon Group Architects, Inc. (MVG) by signing our proposal on March 30, 2023.

### 1.2 Purpose and Scope of Services

The purpose of our preliminary and DD phase studies was to perform subsurface explorations at the site for the proposed Green Meadow Elementary School and to provide preliminary foundation and construction recommendations. LGCI performed the following services:

- Coordinated our exploration locations with MVG and with the Green Meadow Elementary School facilities staff, marked the exploration locations at the site, and contacted Dig Safe Systems, Inc. (Dig Safe) and the Town of Maynard for utility clearance. LGCI also applied for and obtained a trench permit from the Town of Maynard.
- Engaged a drilling subcontractor to advance twenty-nine (29) soil borings at the site, including nine (9) soil borings as part of our preliminary phase services and twenty (20) soil borings as part of our DD phase services.
- Engaged an excavation subcontractor to excavate twenty-two (22) test pits at the site as part of our DD phase services.
- Provided an LGCI geotechnical field representative, full time, at the site to coordinate and observe the explorations, describe the soil samples, and prepare field logs.
- Submitted sixteen (16) soil samples for laboratory testing, including four (4) soil samples during the preliminary phase and twelve (12) soil samples during the DD phase.
- Prepared this geotechnical report containing the results of our preliminary phase and DD phase subsurface explorations and our foundation design and construction recommendations.



Upon completion of our preliminary phase services, LGCI submitted a preliminary geotechnical report dated February 24, 2022. This DD phase geotechnical report includes the results of our preliminary phase services and supersedes the aforementioned report.

Our scope includes attending meetings, reviewing drawings, and performing field services during construction. These services will be performed separately and are not included in this report. Recommendations for unsupported slopes, stormwater management, erosion control, pavement design, slope stability analyses, site specific liquefaction analyses, pile analysis and design, and detailed cost or quantity estimates are not included in our scope of work.

LGCI did not perform environmental services for this project. LGCI did not perform an assessment to evaluate the presence or absence of hazardous or toxic materials above or below the ground surface at or around the site. Any statement about the color, odor, or the presence of suspicious materials included in our exploration logs or report were made by LGCI for information only and to support our geotechnical services. No environmental recommendations and/or opinions are included in this report.

#### 1.3 Reviewed Documents

LGCI reviewed the following documents:

- Drawing L.2 titled: "Site Plan, Green Meadow Elementary School Addition and Renovation, Maynard, MA," (1987 Site Plan) prepared by DiNisco Kretsch & Associates, Inc., dated February 5, 1987, and provided to LGCI by MVG via e-mail on December 20, 2021.
- Drawing EX-1 titled: "Site Survey Plan, Schematic Design, Maynard Public Schools, Green Meadow Elementary School," (Survey Plan) prepared by Samiotes Construction, Inc., dated September 2, 2022, and provided to LGCI via e-mail on February 1, 2024.
- Drawings C-01.1, 2, C-01.3, C-01.4 titled: "Demo Plan, Town of Maynard, Green Meadow Elementary School Project, 5 Tiger Drive, Maynard, MA 01754," (Demo Plan) prepared by MVG and provided to LGCI by Brennan Consulting, Inc. via e-mail on April 24, 2024.
- Drawing C-01.5 titled: "Details, Town of Maynard, Green Meadow Elementary School Project, 5 Tiger Drive, Maynard, MA 01754," (Details) prepared by MVG and provided to LGCI by Brennan Consulting, Inc. via e-mail on April 24, 2024.

#### 1.4 Site Location and Description

Our understanding of the site is based on our field observations, our conversations with MVG, and on the drawings listed in Section 1.3.



The site of the proposed construction is at the site of the existing Green Meadow Elementary School located at 5 Tiger Drive in Maynard, Massachusetts as shown in Figure 1. The site is bordered by Tiger Drive on the eastern side, by Great Road on the northern side, and by wooded land on the western and southern sides. The site is occupied by the existing Green Meadow Elementary School building and associated parking lots, driveways, landscaped areas, and athletic fields. The athletic fields include a baseball field north of the existing school and a practice field on the southern side of the existing school within a clearing in the wooded area. The existing school building has an irregular fan shape. Based on the 1987 Site Plan, additions were made to the original Green Meadow Elementary School and the existing building was also renovated. The 1987 Site Plan indicates that the finished floor elevation (FFE) of the existing building is El. 214 feet.

Based on the Survey Plan, the grades at the site rise from approximately El. 196 feet on the eastern side of the site to a relatively level area between El. 212 and El. 215 feet (in the existing practice field) before rising to about El. 251 feet at a hill near the northwestern corner of the site. The grades around the existing school generally rise from about El. 208 feet on the eastern side of the existing building to about El. 225 feet near the western side of the existing building. The grades within the parking lots, driveways, and landscaped areas located east of the existing school rise from approximately El. 196 feet to El. 208 feet in a westerly direction. The Survey Plan indicates that the FFE of the existing building's ground floor is El. 213.3 feet. This FFE is slightly lower than that shown in the 1987 Site Plan.

A dirt path loops around the existing building and ranges in elevation between El. 212 feet and El. 223 feet.

Based on the 1987 Site Plan and the Survey Plan, there appears to have been cuts near the southwestern corner of the existing building to achieve the existing grades in the existing practice field in the tree clearing.

#### 1.5 Project Description

Our understanding of the proposed construction is based on our field observations, our discussions with MVG, and on the Demo Plan and Details listed in Section 1.3.

We understand that the proposed construction will consist of a somewhat L-shaped building that will have a footprint of about 59,000 square feet. The majority of the proposed building footprint will be located in the generally level area in the existing practice field. Nearly one third of the proposed building footprint (on the northern side of the proposed building) will be located in the wooded hill near the western side of the existing building.

The existing grades within most of the proposed building footprint (on the southern side of the proposed building footprint in the general area of the tree clearing) will range between about El. 207 feet and El. 216 feet; thus, requiring net fills ranging between 0 and 8 feet. The thickest fill will be on the eastern side of the proposed building footprint. The existing grades within the northern portion of the proposed building (located in the wooded hill) range between about El.



208 feet and El. 232 feet; thus, requiring net fills of up 5 feet and cuts of up to 16 feet to achieve the proposed FFE of El. 216 feet.

Based on the Demo Plan, an access road will loop around the proposed building and will have grades that will range between El. 210 feet and El. 219 feet. The existing grades within the proposed access drive range up to El. 236 feet; thus, requiring net cuts of up to 17 feet to achieve the proposed grades. Retaining walls will be constructed on both sides of the western portion of the proposed access drive to reduce the extent of the cuts in the overburden and to conceal the rock cuts. Based on the Details, the proposed retaining walls will consist of Redi-Block MSE walls with fences or guardrails on the tops of the walls. Details about the proposed retaining wall geometry, including length, total height, exposed heights, and length of reinforcing are not available at the time of this report.

We understand that the existing building will be demolished after the new building is completed to allow for the construction of proposed athletic fields and paved parking lots. Information about the layout and grading of the proposed athletic fields and paved areas was not available to us at the time of this report.

A thermal well field will be provided in the wooded area on the western side of the proposed building. Work related to the thermal wells was not the focus of this report and is beyond our scope of services for this project.

#### 1.6 Elevation Datum

The 1987 Site Plan does not include a reference to a datum. We understand that the elevations shown in the Survey Plan are referenced to the North American Vertical Datum of 1988 (NAVD 1988).



#### 2. SITE AND SUBSURFACE CONDITIONS

#### 2.1 Surficial Geology

LGCI reviewed a surficial geologic map titled: "Surficial Materials Map of the Maynard Quadrangle, Massachusetts," (Surficial Geological Map) prepared by Stone, J.R. and Stone, B.D. for U.S. Geological Survey, 2018, Scientific Investigation Map 3402, Quadrangle 97 – Maynard.

The Surficial Geological Map indicates that the natural soils on the western side of the site mainly consist of thin till. The thin till is described as non-sorted, non-stratified matrix of sand, some silt, and little clay containing scattered pebbles, cobbles, and boulder clasts. The thin till is generally less than 10 to 15 feet thick.

The Surficial Geological Map also indicates that the natural soils on the eastern side of the site consist of coarse deposits, including gravel deposits, sand and gravel deposits, and sand deposits. The gravel deposits are composed mainly of gravel, cobbles, and boulders. The sand and gravel layers generally range from 25 to 50 percent gravel particles and from 50 to 75 percent sand particles. The sand deposits are composed mainly of very coarse to fine sand. Coarser layers may contain up to 25 percent gravel, and finer layers may contain fine sand, silt, and clay.

The Surficial Geological Map also indicates that bedrock outcrops or shallow bedrock may be present on the western side of the site.

The Surficial Geologic Map of the site is shown in Figure 2.

### 2.2 LGCI's Explorations

#### 2.2.1 General

LGCI coordinated our exploration locations with MVG and with the Green Meadow Elementary School staff and marked the exploration locations in the field. LGCI notified Dig Safe and the Town of Maynard for utility clearance prior to starting our explorations at the site. An LGCI geotechnical field representative observed and logged the explorations in the field.

Unless notified otherwise, we will dispose of the soil samples obtained during our explorations after three (3) months.

### 2.2.2 LGCI's Soil Borings

As part of our preliminary phase services, LGCI engaged Northern Drilling Service, Inc. (NDS) of Northborough, Massachusetts to advance nine (9) borings (B-1, B-2, B-4, & B-6 to B-11) at the site between January 28 and February 1, 2022. Borings B-3 and B-5 were not performed. The borings were advanced with a track-mounted B-53 ATV drill rig using drive



and wash boring techniques with a 4-inch casing. The borings extended to depths ranging between 13 and 21 feet beneath the ground surface. Upon completion, the boreholes were backfilled with the soil cuttings and gravel.

As part of our DD phase services, LGCI engaged Soil X Corp. (Soil X) to advance twenty (20) borings (B-101 to B-T-120) at the site between February 19 and 27, 2024. The borings were advanced using a Diedrich D-70 Turbo drill rig using a hollow stem auger with 3-inch casing. The borings extended to depths ranging between 11.2 and 21 feet beneath the ground surface. Upon completion, the boreholes were backfilled with the soil cuttings and gravel. Two (2) groundwater observation wells were installed in borings B-104-OW and B-114-OW (one each).

NDS and Soil X performed Standard Penetration Tests (SPT) during drilling and obtained split spoon samples in the borings with an automatic hammer at typical depth intervals of 2-feet or 5-feet as noted on the boring logs in general accordance with ASTM D-1586.

An LGCI geotechnical field representative observed and logged the borings in the field.

#### 2.2.3 LGCI's Test Pits

As part of our DD phase services, LGCI observed twenty-two (22) test pits (TP-1 to TP-12, TP-14 to TP-19, TP-21 to TP-23, and TP-26). The test pits were excavated by Saunders Construction between February 6 and 12, 2024. Our excavation subcontractor also cleared trees in the wooded area to provide access to the borings in the wooded hill on February 5 and 6, 2024. The test pits were excavated using a Takeuchi TB-290 excavator and extended to depths ranging between 7 feet and 12 feet beneath the ground surface. Upon completion, the test pits were backfilled with the excavated material in 12-inch to 18-inch lifts and tamped with the excavator bucket.

#### 2.2.4 Exploration Logs and Locations

The exploration locations are shown in Figure 3. Appendix A and Appendix B contain LGCI's boring logs and test pit logs, respectively. Table 1 shows a summary of LGCI's borings, and Table 2 shows a summary of LGCI's test pits.

#### 2.3 Subsurface Conditions

The subsurface description in this report is based on a limited number of explorations and is intended to highlight the major soil strata encountered during our explorations. The subsurface conditions are known only at the actual exploration locations. Variations may occur and should be expected between exploration locations. The boring logs represent conditions that we observed at the time of our explorations and were edited, as appropriate, based on the results of the laboratory test data and inspection of the soil samples in the laboratory. The strata boundaries



shown in our exploration logs are based on our interpretations and the actual transitions may be gradual. Graphic soil symbols are for illustration only.

The soil strata encountered in the explorations were as follows, starting at the ground surface.

<u>Topsoil</u> – A layer of surficial organic topsoil was encountered in all borings except in borings B-117 and B-T-120, and in all test pits. The surficial organic topsoil extended to depths ranging between 0.2 and 2.0 feet beneath the ground surface.

<u>Asphalt</u> – A layer of asphalt was encountered in borings B-118 and B-119. The asphalt extended to a depth of 0.3 feet.

<u>Subsoil</u> – A layer of subsoil was encountered beneath the surficial organic topsoil or asphalt in all borings except in borings B-1, B-4, B-8, B-9, B-11, B-104-OW, B-105, B-107, B-118, and B-119. The subsoil was also encountered beneath the topsoil in test pits TP-1, TP-2, TP-7, TP-8, TP-10, TP-11, TP-14 to TP-17, TP-19, TP-23, and TP-26. The subsoil generally extended to depths ranging between 1 and 4 feet beneath the ground surface. In boring B-117, the subsoil extended to a depth of 8 feet beneath the ground surface. The samples in the subsoil were described as silty sand and poorly graded sand. One (1) sample was described as a silt. The fines content in the subsoil ranged between 0 and 45 percent and the gravel content ranged between 0 and 35 percent. When described as silt, the sand content ranged between 40 and 45 percent. The subsoil contained traces of organic soil and roots. The fines in a few samples were described as slightly plastic.

The standard penetration test (SPT) N-values in the subsoil ranged between 2 blows per foot (bpf) and 84 bpf, with most values lower than 21 bpf, indicating mostly very loose to medium dense soil. The high SPT N-values may be caused by frozen soil or obstructions such as cobbles and boulders in the subsoil.

<u>Fill</u> – A layer of fill was encountered beneath the surficial organic topsoil in borings B-1, B-4, B-8, B-9, B-11, B-103 to B-105, B-117, and B-119 and in test pits TP-3 to TP-6, TP-12, TP-18B, and TP-21 to TP-23. The fill extended to depths ranging between 1.5 and 6.9 feet beneath the ground surface. The samples in the fill were mostly described as silty sand or poorly graded sand. One (1) sample was described as well graded gravel. One (1) sample was described as well graded sand. The fines content in the fill ranged between 5 and 45 percent and the gravel content ranged between 0 and 45 percent. When described as gravel, the sand content in the fill ranged between 20 and 25 percent. The fill contained traces of organic soil, wood, and roots.

The SPT N-values in the fill ranged between 5 bpf and refusal, with most values lower than 38 bpf indicating loose to dense material. The high SPT N-values may be caused by frozen soil or by obstructions such as cobbles and boulders in the fill.

<u>Buried Organic Soil</u> – A layer of buried organic soil was encountered beneath the fill layer in boring B-9 and test pits TP-21 and TP-22. The buried organic soil extended to depths ranging



between 3.5 feet and 9 feet beneath the ground surface. The samples in this layer were described as silty sand. The fines content in the buried organic soil ranged between 25 and 35 percent.

The SPT N-value in the buried organic soil was 9 bpf, indicating loose soil.

Sand and Gravel – A layer of sand and gravel was encountered beneath the subsoil, fill, or buried organic soil in all borings and test pits. The sand and gravel layer extended to depths ranging between 3 feet and 21 feet beneath the ground surface. The samples in this layer were mostly described as silty sand, poorly graded sand, or well graded gravel. Three (3) samples were described as silty gravel. The fines content in this layer ranged between 0 and 35 percent, and the gravel content ranged between 0 and 45 percent. When described as gravel, the sand content ranged between 15 and 45 percent. The sand and gravel contained traces of weathered rock. One (1) sample from this layer contained traces of roots.

The SPT N-values within the sand and gravel layer ranged between 3 bpf and refusal, with most values ranging higher than 10 bpf, indicating mostly medium dense to very dense soil. The high SPT N-values may be caused by obstructions such as cobbles and boulders in this layer.

A layer of silt was encountered within the sand and gravel layer in borings B-2 and B-105 at a depth of 14 feet beneath the ground surface. The silt extended to a depth of 19 feet beneath the ground surface. The sand content in the silt layer ranged between 10 and 15 percent. The silt was described as slightly plastic.

<u>Rock</u> –Borings B-1, B-7, B-8, B-11, and B-108 to B-114-OW, and B-118 were advanced into and terminated in rock. Rock was encountered in these borings at depths ranging between 5 and 17.5 feet beneath the ground surface.

Also, refusal on possible large boulders or on apparent rock was encountered at the bottom of test pits TP-1, TP-5, TP-9, TP-10, and TP-16 to TP-18B at depths ranging between 7 and 10.1 feet beneath the ground surface, and at the bottom of borings B-101 to B-103, B-116, and B-118 at depths ranging between 11.2 and 18.5 feet beneath the ground surface.

Rock cores were obtained in borings B-105, and B-108 to B-114-OW. The rock generally consisted of extremely weathered to fresh, slightly to moderately fractured, hard to very hard, grey, white, orange, and light blue Granite. The rock recoveries ranged between 76.7 and 100 percent and the rock quality designation (RQD) values ranged between 41.6 and 97.5 percent.

#### 2.4 Groundwater

Groundwater was encountered in all borings except in borings B-101, B-103, B-105, B-106, B-113, B-115, B-117, B-119, and B-T-120 at depths ranging between 5 and 18.5 feet beneath the ground surface. Groundwater was also observed in test pits TP-9, TP-10, TP-12 to TP-15, and TP-21 at depths ranging between 2 and 18.5 feet beneath the ground surface.



The groundwater measured in groundwater observation wells B-104-OW and B-114-OW are shown in the table below.

|          | G.S. El. |           | G.W.        | G.W. El. |
|----------|----------|-----------|-------------|----------|
|          | (ft.)    | Date      | Depth (ft.) | (ft.)    |
| B-104-OW | 214      | 2/19/2024 | 18.5        | 195.5    |
|          |          | 4/27/2024 | 17.2        | 196.8    |
| B-114-OW | 232      | 2/21/2024 | 5.0         | 227.0    |
|          |          | 4/27/2024 | 17.6        | 214.4    |

The groundwater levels reported in our borings and test pit logs are based on observations made during drilling or shortly after the completion of the explorations. Please note that water was introduced into the boreholes to maintain a stable borehole and the groundwater levels noted on the boring logs may not represent the actual groundwater level, as additional time may be required for the groundwater levels to stabilize. The groundwater levels presented in this report only represent the conditions encountered at the time and location of the explorations. Seasonal fluctuation should be anticipated.

#### 2.5 Double Ring Infiltrometer Tests

LGCI performed two (2) double ring infiltrometer tests in test pits TP-23 and TP-26 (one each). The excavation subcontractor excavated to the test depths of 4.0 and 3.5 feet beneath the ground surface at TP-23 and TP-26, respectively. After the double ring infiltrometer tests were completed, the tests pits were continued to depths of 12 and 11 feet beneath the ground surface, respectively.

The results, shown in Appendix C, indicated estimated permeability values of  $8.3 \times 10^{-3}$  cm/sec. at TP-23 and  $8.9 \times 10^{-3}$  cm/sec. at TP-26.

#### 2.6 Laboratory Test Data

LGCI submitted sixteen (16) soil samples collected from the borings for grain-size analysis. The results of the grain-size analyses are provided in the test data sheets included in Appendix D and are summarized in the table below.

Grain-Size Analysis Test Results

| Boring No. | Sample No.   | Stratum | Sample<br>Depth<br>(ft.) | Percent<br>Gravel | Percent<br>Sand | Percent<br>Fines |
|------------|--------------|---------|--------------------------|-------------------|-----------------|------------------|
| B-1        | S2           | Fill    | 2 - 4                    | 23.0              | 53.0            | 24.0             |
| B-6        | S2           | Sand    | 2 - 4                    | 0.1               | 93.8            | 6.1              |
| B-7        | S2 – Top 13" | Subsoil | 2 - 4                    | 3.4               | 62.5            | 34.1             |
| B-11       | S2           | Fill    | 2 - 4                    | 22.8              | 68.0            | 9.2              |



DD Phase Geotechnical Report Proposed Green Meadow Elementary School Maynard, Massachusetts LGCI Project No. 2201

| B-104 | S2            | Fill          | 2 - 4     | 13.0 | 44.6 | 42.4 |
|-------|---------------|---------------|-----------|------|------|------|
| B-105 | S1 – Bot. 11" | Fill          | 1.1 - 2   | 49.8 | 39.6 | 10.6 |
| B-109 | S2            | Fill          | 2 - 4     | 3.8  | 58.7 | 37.5 |
| B-109 | S3            | Sand & Gravel | 4 - 6     | 57.3 | 31.4 | 11.3 |
| B-110 | S2            | Fill          | 2 - 4     | 0.0  | 43.5 | 56.5 |
| B-110 | S3            | Sand & Gravel | 4 - 6     | 25.5 | 68.1 | 6.4  |
| B-112 | S2-Bot. 16"   | Sand & Gravel | 2.5 - 4   | 14.7 | 54.0 | 31.3 |
| B-116 | S2            | Sand & Gravel | 2 - 4     | 13.6 | 45.8 | 15.3 |
| TP-17 | G1            | Subsoil       | 0.3 - 4.7 | 0.1  | 55.2 | 44.7 |
| TP-17 | G2            | Sand & Gravel | 4.7 - 9   | 15.1 | 64.0 | 20.9 |
| TP-23 | Infiltrometer |               | 4         | 0.1  | 90.1 | 9.8  |
|       | Test Depth    |               |           |      |      |      |
| TP-26 | Infiltrometer |               | 3.5       | 28.5 | 64.3 | 7.2  |
|       | Test Depth    |               |           |      |      |      |



#### 3. EVALUATION AND RECOMMENDATIONS

#### 3.1 General

Based on our understanding of the proposed construction, our observation of our explorations, and the results of our laboratory testing, there are a few issues that we would like to highlight for consideration and discussion.

#### 3.1.1 Asphalt, Surficial Organic Soil, Subsoil, Buried Organic Soil, and Existing Fill

- Asphalt, surficial organic soil, subsoil, buried organic soil, and existing fill were observed
  in the borings and test pits. These materials are not suitable to support shallow
  foundations.
- The asphalt and the surficial organic soil should be entirely removed from within the proposed construction area.
- The subsoil and the buried organic soil are compressible and should be entirely removed from within the proposed building footprint and should be replaced with Structural Fill.
- The fill contained traces of organic soil, wood, and roots. Existing fill that was not placed with strict moisture, density, and gradation control, and buried organic soil present risk of unpredictable settlement that may result in poor performance of floor slabs and foundations. Due to the risk of excessive settlement, the existing fill should be entirely removed from within the footprint of the proposed building footprint and should be replaced with Structural Fill.
- Based on our borings, we anticipate that the removal will extend to depths of up to about 9 feet. The removal may extend to greater depths at locations not explored by LGCI.
- The removal of the existing fill should extend beyond the limits of the proposed building a minimum distance equal to 5 feet or the distance between the bottom of the proposed footings and the bottom of the fill or buried organic soil, whichever is greater.
- The existing fill and subsoil should be removed to a depth of 18 inches beneath the bottom of the proposed pavement and the bottom of the proposed athletic field subbase layer, and the exposed surface should be improved as described in Section 4.1.

#### 3.1.2 Shallow Bedrock

Apparent rock was encountered at elevations higher than the proposed FFE in many borings and test pits.



Based on the depths to top of apparent bedrock and rock that was confirmed with rock cores, we anticipate that rock removal will be required to reach the bottom of the proposed building foundations and for utilities. We anticipate that most of the rock removal will be in the wooded hill on the northern side of the proposed building. Rock removal will also likely be needed to achieve the proposed grades after the existing building is demolished. The contractor should review the boring and test pit logs and Tables 1 and 2 to assess the need for and extent of rock removal for structures and utilities. We anticipate the rock removal will be achieved by means of rock blasting. Our recommendations for rock blasting and for subgrade preparation in rock are presented in Section 4.5.

The contract documents should include a requirement for a pre-blast condition survey and also vibration monitoring during blasting and earthwork operations as shown in Section 4.5.

#### 3.1.3 Shallow Footings and Slabs-on-Grade

Based on the results of the explorations, the subsurface conditions are suitable to support shallow spread and continuous footings bearing on Structural Fill placed directly on top of the natural sand and gravel or rock after removing the asphalt, the surficial organic soil, the subsoil, the buried organic soil, and the existing fill. Our recommendations for footing design are presented in Section 3.2.2. Our estimates for preliminary settlement are presented in Section 3.2.3. Our concrete slab considerations are presented in Section 3.3. Section 4.1 provides recommendations for preparation of subgrades. Our recommendations for rock removal are provided in Section 4.5.

We anticipate that the major considerations during construction will be associated with the removal of the unsuitable soils, i.e., the surficial organic soil, the subsoil, the buried organic soil and the existing fill, rock blasting, and groundwater control during excavations.

#### 3.1.4 Reuse of Onsite Materials

The existing fill and the natural soil are generally silty and not suitable for reuse as Structural Fill and Ordinary Fill without being amended. Silty soils are very susceptible to disturbance when exposed to moisture. Care should be exercised during construction to maintain a dry working subgrade and to provide working mats, e.g., crushed stone or concrete mud mats, to reduce the potential for disturbance of the foundation subgrade and to improve working conditions.

The contractor may consider mobilizing a rock crusher to the site. Existing cobbles and boulders and blasted rock can be processed by blending them with the existing fill and the natural sand and gravel and crushing them to produce a well graded material.

Additional recommendations about reuse of onsite materials are presented in Section 4.4.



#### 3.2 Foundation Recommendations

#### 3.2.1 General

Based on the results of the borings and test pits, the subsurface conditions appear suitable for support of new structures with grade-supported floor slabs and shallow foundations. Recommendations for footing design and settlement are presented below.

#### 3.2.2 Footing Design

- We recommend entirely removing the asphalt, the surficial organic soil, the subsoil, the buried organic soil, and the existing fill from within the proposed building footprint as described in Section 3.1.1.
- We recommend supporting the proposed building on spread footings bearing on Structural Fill placed directly on the natural sand and gravel or rock.
- We recommend designing the proposed footings using a net allowable bearing pressure of 5 kips per square foot (ksf) for footings bearing directly on a minimum of 12 inches of Structural Fill placed directly on top of the natural sand and gravel or rock.
- Footing subgrades should be prepared in accordance with the recommendations in Section 4.1.
- Foundations should be designed in accordance with The Commonwealth of Massachusetts State Building Code 780 CMR, Ninth Edition (MSBC 9<sup>th</sup> Edition).
- Exterior footings and footings in unheated areas should be placed at a minimum depth of 4 feet below the final exterior grade to provide adequate frost protection. Interior footings in heated areas may be designed and constructed at a minimum depth of 2 feet below finished floor grades.
- Wall footings should be designed and constructed with continuous, longitudinal steel reinforcement for greater bending strength to span across small areas of loose or soft soils that may go undetected during construction.
- A representative of LGCI should be engaged to observe that the subgrade has been prepared in accordance with our recommendations.

#### 3.2.3 Settlement Estimates

Based on our experience with similar soils and designs using a net allowable bearing pressure of 5 ksf, we anticipate that the total settlement will be approximately 1 inch, and that the differential settlement of the footings will be 3/4 inch or less over a distance of 25 feet. We



believe that total and differential settlements of this magnitude are tolerable for a similar structure. However, the tolerance of the proposed structure to the predicted total and differential settlements should be assessed by the structural engineer.

#### 3.3 Concrete Slab Considerations

#### 3.3.1 Slab-on-Grade

- The proposed floor slab should be constructed as a slab-on-grade bearing on Structural Fill placed directly on top of the natural sand and gravel. We recommend a minimum of 12 inches of Structural Fill beneath the proposed slab-on-grade. The subgrade of the slab should be prepared as described in Section 4.1.
- To reduce the potential for dampness in the proposed floor slabs, the project architect may consider placing a vapor barrier beneath the floor slabs. The vapor barrier should be protected from puncture during the placement of the proposed slab reinforcement.
- For the design of the floor slabs bearing on the materials described above, we recommend using a modulus of subgrade reaction,  $k_{s1}$ , of 100 tons per cubic foot (tcf). Please note that the values of  $k_{s1}$  are for a 1 x 1 square foot area. These values should be adjusted for larger areas using the following expression:

Modulus of Subgrade Re action 
$$(k_s) = k_{s1} * \left(\frac{B+1}{2B}\right)^2$$

where:

 $k_s$  = Coefficient of vertical subgrade reaction for loaded area;

 $k_{s1}$  = Coefficient of vertical subgrade reaction for a 1 x 1 square foot area; and

B = Width of area loaded, in feet.

Please note that cracking of slabs-on-grade can occur as a result of heaving or compression of the underlying soil, but also as a result of concrete curing stresses. To reduce the potential for cracking, the precautions listed below should be closely followed during the construction of all slabs-on-grade:

- Construction joints should be provided between the floor slab and the walls and columns in accordance with the American Concrete Institute (ACI) requirements, or other applicable code.
- In order for the movement of exterior slabs not to be transmitted to foundations or superstructures, exterior slabs, such as approach slabs and sidewalks, should be isolated from the superstructure.



• The backfill in interior utility trenches should be properly compacted.

#### 3.3.2 Under-slab Drains and Waterproofing

Based on an FFE of El. 216 feet, we believe that an under-slab drainage system is not required on the southern side of the proposed building where fill is required to achieve the proposed FFE. An under-slab drainage system will be required on the northern side of the proposed building in cut areas and should be installed in accordance with the recommendations below.

- We recommend that the under-slab drainage system consist of 1) a minimum of 12 inches of <sup>3</sup>/<sub>4</sub>-inch crushed stone placed below the slab, and 2) 6-inch-diameter slotted PVC pipes installed with their inverts at least 15 inches below the bottom of the slab.
- The slotted pipes should be installed in trenches placed at 10 to 15 feet apart. The trenches should be at least 18 inches wide and should extend 9 inches below the bottom of the 12 inches of crushed stone layer to allow placing crushed stone around the PVC pipe.
- The slotted PVC pipes should connect to a 6-inch solid PVC header pipe that collects and channels the collected water out of the building.
- The slots on the PVC pipes should be placed facing downward to allow for entry of water at the bottom of the pipe.
- A non-woven geotextile fabric should be installed between the crushed stone and the underlying soil or weathered rock for separation.
- Clean-outs should be included at the end of the perforated pipes, at changes in directions, and at about 100-foot intervals.
- We recommend channeling the water from the under-slab drainage system to flow by gravity to a discharge area or to an infiltration system. If gravity flow is not possible, the groundwater collected from the under-slab drainage system should be collected in a sump-pump pit and pumped out of the building.
- We recommend that a backup generator and spare pump be provided with the system to
  use in the event of a power outage or pump failure. The owner should apply for a
  discharge permit and should perform analytical tests as required by the permits.

If the proposed building includes an elevator pit or other structure that extends beneath the FFE, such elevator pit or other structure should be designed to be waterproof.



#### 3.4 Seismic Design

In accordance with Section 1613 of MSBC 9<sup>th</sup> Edition, the seismic criteria for the site are as follows:

| • | Site Class:                                                 | D      |
|---|-------------------------------------------------------------|--------|
| • | Spectral Response Acceleration at short period (Ss):        | 0.206g |
| • | Spectral Response Acceleration at 1 sec. (S <sub>1</sub> ): | 0.069g |
| • | Site Coefficient Fa (Table 1613.5.3(1)):                    | 1.6    |
| • | Site Coefficient Fv (Table 1613.5.3(2):                     | 2.4    |
| • | Adjusted spectral response S <sub>MS</sub> :                | 0.330g |
| • | Adjusted spectral response S <sub>M1</sub> :                | 0.166g |

Based on the SPT data from the borings, the site soils are not susceptible to liquefaction during a seismic event.

#### 3.5 Lateral Pressures for Wall Design

#### 3.5.1 Lateral Earth Pressures

Lateral earth pressures for the design of retaining walls (walls of below-grade spaces of the proposed building) and site retaining walls are provided below.

| Coefficient of Active Earth Pressure, K <sub>A</sub> :  | 0.31    |  |
|---------------------------------------------------------|---------|--|
| Coefficient of At-Rest Earth Pressure, K₀:              | 0.47    |  |
| Coefficient of Passive Earth Pressure, K <sub>p</sub> : | 3.3     |  |
| Total Unit Weight γ:                                    | 125 pcf |  |

<u>Note</u>: The values in the table are based on a friction angle for the backfill of 32 degrees and neglecting friction between the backfill and the wall. The design active and passive coefficients are based on horizontal surfaces (non-sloping backfill) on both the active and passive sides, and on a vertical wall face.

- Exterior walls of below-ground spaces and other retaining walls braced at the top to restrain movement/rotation should be designed using the "at-rest" pressure coefficient.
- Site retaining walls should be designed using the active earth pressure coefficient described above.
- Passive earth pressures should only be used at the toe of the wall where special measures or provisions are taken to prevent the disturbance or future removal of the soil on the passive side of the wall, or in areas where the wall design includes a key. In any case, the passive pressures should be neglected in the top 4 feet.
- Where a permanent vertical uniform load will be applied to the active side immediately adjacent to the wall, a horizontal surcharge load equal to half of the uniform vertical load



should be applied over the height of the wall. At a minimum, a temporary construction surcharge of 100 psf should be applied uniformly over the height of the wall.

• We recommend using an ultimate friction factor of 0.5 between the natural sand and gravel and the bottom of the wall. Below-grade walls should be designed for minimum factors of safety of 1.5 for sliding and 2.0 for overturning.

#### 3.5.2 Seismic Pressures

In accordance with the Massachusetts State Building Code,  $9^{th}$  Edition (MSBC  $9^{th}$  Edition), Section 1610, a lateral earthquake force equal to  $0.100*(S_s)*(F_a)*\gamma*H^2$  should be included in the design of the walls (for horizontal backfill), where  $S_s$  is the maximum considered earthquake spectral response acceleration (defined in Section 3.4),  $F_a$  is the site coefficient (defined in Section 3.4),  $\gamma$  is the total unit weight of the soil backfill, and H is the height of the wall.

The earthquake force should be distributed as an inverted triangle over the height of the wall. In accordance with MSBC 9<sup>th</sup> Edition, Section 1610.2, a load factor of 1.43 should be applied to the earthquake force for wall strength design.

Temporary surcharges should not be included when designing for earthquake loads. Surcharge loads applied for extended periods of time should be included in the total static lateral soil pressure, and their earthquake lateral force should be computed and added to the force determined above.

#### 3.5.3 Perimeter Drains

- We recommend that free-draining material be placed within 3 feet of the exterior of walls of below-ground spaces, if any.
- To reduce the potential for dampness in below-ground spaces, proposed below-ground walls should be damp-proofed.
- We recommend that drains be provided behind the exterior of walls of below-ground spaces, and behind the walls of the elevator pit and other below ground spaces. The drains should consist of 4-inch perforated PVC pipes installed with the slots facing down. Perimeter drains should be installed at the bottom of the wall in 18 inches of crushed stone wrapped in a geotextile for separation and filtration.
- We recommend providing weep holes at the bottom of site retaining walls to promote drainage where possible. Alternatively, a pipe should be placed at the base of the wall to collect the water. The pipe should be encased within 18 inches of crushed stone wrapped in a geotextile fabric.



• Groundwater collected by the wall drains should be discharged in a lower area if gravity flow is possible. In any case, the groundwater collected by the wall drains should be discharged in accordance with municipal, state, and other applicable standards.

#### 3.6 Parking Lots, Driveways, Sidewalks, and Exterior Slabs

#### 3.6.1 General

The subsurface conditions encountered at the site are generally suitable to support the proposed driveways, parking lots, sidewalks, and exterior slabs after preparation of the subgrade as described in Section 4.1.

- We recommend entirely removing the existing asphalt and the surficial organic soil from within the footprint of the proposed driveways, parking lots, sidewalks, and exterior slabs.
- The existing fill and the subsoil should be improved in accordance with the recommendations in Section 4.1.
- Cobbles and boulders should be removed to at least 18 inches below the bottom of the pavement.

#### 3.6.2 Sidewalks

- Sidewalks should be placed on a minimum of 12 inches of Structural Fill with less than 5 percent fines.
- To reduce the potential for heave caused by surface water penetrating under the sidewalk, the joints between sidewalk concrete sections should be sealed with a waterproof compound. The sidewalks should be sloped away from the building or other vertical surfaces to promote flow of water. To the extent possible, roof leaders should not discharge onto sidewalk surfaces.
- After the proposed grading in the proposed sidewalk and roadway areas is completed, the proposed grading plan should be submitted to LGCI to assess whether drains should be installed under sidewalks and roadways.

#### 3.6.3 Pavement Sections

A typical, minimum, standard-duty pavement section that could be used for parking areas is as follows:

- 1.5" Asphalt "Top Course"
- 2.0" Asphalt "Base Course"



8" Processed Gravel for Sub-Base (MassDOT M1.03.1)

A typical, minimum, heavy-duty pavement section that could be used for areas of heavy truck traffic is as follows:

```
2.0" Asphalt "Top Course"2.5" Asphalt "Base Course"12" Processed Gravel for Sub-Base (MassDOT M1.03.1)
```

The pavement sections shown above represent minimum thicknesses representative of typical local construction practices for similar use. Periodic maintenance should be anticipated.

Pavement material types and construction procedures should conform to specifications of the "Standard Specifications for Highways and Bridges," prepared by the Commonwealth of Massachusetts Department of Transportation dated 2023.

Areas to receive relatively highly concentrated, sustained loads such as dumpsters, loading areas, and storage bins are typically installed over a rigid pavement section to distribute concentrated loads and reduce the possibility of high stress concentrations on the subgrade. Typical rigid pavement sections consist of 6 inches of concrete placed over a minimum of 12 inches of subbase material.

#### 3.7 Underground Utilities

Boulders at the bottom of utility trenches should be removed to at least 12 inches below the pipe invert and the resulting excavation should be backfilled with suitable backfill. Utilities should be placed on suitable bedding material in accordance with the manufacturer's recommendations. "Cushion" material should be placed, by hand, above the utility pipe in maximum 6-inch lifts. The lift should be compacted by hand to avoid damage to the utility. Where the bedding/cushion material consists of crushed stone, it should be wrapped in a geotextile fabric.

Compaction of fill in utility trenches should be in accordance with our recommendations in Section 4.3. To reduce the potential for damage to utilities, placement and compaction of fill immediately above the utilities should be performed in accordance with the manufacturer's recommendations.



#### 4. CONSTRUCTION CONSIDERATIONS

#### 4.1 Subgrade Preparation

- Surficial organic soil, subsoil, asphalt, buried organic soil, existing fill, abandoned utilities, buried foundations, and other below-ground structures should be entirely removed from within the footprint of the proposed building and site structures before the start of foundation work.
- Abandoned/buried foundations should be removed at least 3 feet beneath the bottom of the subbase layer of the proposed paved areas, and 3 feet beneath the topsoil in athletic fields.
- Tree stumps, root balls, and roots larger than ½ inch in diameter should be removed and the cavities filled with suitable material and compacted per Section 4.3 of this report.
- Due to the silty nature of the natural sand and gravel, we recommend placing a minimum of 12 inches of Structural Fill or crushed stone below the bottom of the footings to provide a working pad.
- Cobbles and boulders should be removed at least 6 inches from beneath footings, 24 inches beneath the bottom of slabs and paved areas, and 24 inches beneath the base material for the turf in athletic fields. The resulting excavations should be backfilled with compacted Structural Fill under the building, and with Ordinary Fill under the subbase of paved areas and under the base material in athletic fields.
- The base material of athletic fields should conform to the gradation and placement requirements of the landscape architect or the manufacturer/installer of synthetic turf.
- The base of the footing excavations in granular soil should be compacted with a dynamic vibratory compactor weighing at least 200 pounds and imparting a minimum of 4 kips of force to the subgrade.
- The subgrade of the proposed slabs in the natural soil should be compacted with a dynamic vibratory compactor imparting a minimum of 20 kips of force to the subgrade.
- The surficial organic soil and asphalt should be removed from within the proposed paved areas.
- After the surficial organic soil and asphalt are removed from within the proposed paved areas, the existing fill and subsoil should be improved by compacting the exposed surface of the existing fill and subsoil with at least six (6) passes of a vibratory roller compactor imparting a dynamic effort of at least 40 kips. Where soft zones of soil or organic soil are observed, the soft soil or organic soil should be removed, and the grade should be restored using Ordinary Fill to the bottom of the proposed subbase layer. If pumping of the existing



fill is observed, the compactor should be switched to static mode. Where the fill contains or overlies organic soil, the organic soil should be removed at least 18 inches beneath the bottom of the subbase layer.

- Fill placed within the footprint of the proposed building should meet the gradation and compaction requirements of Structural Fill, shown in Section 4.3.1.
- Fill placed under the subbase of paved areas should meet the gradation and compaction requirements of Ordinary Fill, shown in Section 4.3.2.
- Fill placed in the top 12 inches beneath sidewalks should consist of Structural Fill with less than 5 percent fines.
- Loose or soft soils identified during the compaction of the footing or floor slab subgrades should be excavated to a suitable bearing stratum, as determined by the representative of LGCI. Grades should be restored by backfilling with Structural Fill or crushed stone.
- When crushed stone is required in the drawings or is used for the convenience of the contractor, it should be wrapped in a geotextile fabric for separation except where introduction of the geotextile fabric promotes sliding. A geotextile fabric should not be placed between the bottoms of the footings and the crushed stone.
- An LGCI representative should observe the exposed subgrades prior to fill and concrete placement to verify that the exposed bearing materials are suitable for the design soil bearing pressure. If soft or loose pockets are encountered in the footing excavations, the soft or loose materials should be removed and the bottom of the footing should be placed at a lower elevation on firm soil, or the resulting excavation should be backfilled with Structural Fill, or crushed stone wrapped in a filter fabric.

#### 4.2 Subgrade Protection

The onsite fill and natural soil are frost-susceptible. If construction takes place during freezing weather, special measures should be taken to prevent the subgrade from freezing. Such measures should include the use of heat blankets or excavating the final 6 inches of soil just before pouring the concrete. Footings should be backfilled as soon as possible after footing construction. Soil used as backfill should be free of frozen material, as should the ground on which it is placed. Filling operations should be halted during freezing weather.

Materials with high fines contents are typically difficult to handle when wet, as they are sensitive to moisture content variations. Subgrade support capacities may deteriorate when such soils become wet and/or disturbed. The contractor should keep exposed subgrades properly drained and free of ponded water. Subgrades should be protected from machine and foot traffic to reduce disturbance.



#### 4.3 Fill Materials

Structural Fill and Ordinary Fill should consist of inert, hard, durable sand and gravel free from organic matter, clay, surface coatings, and deleterious materials, and should conform to the gradation requirements shown below.

#### 4.3.1 Structural Fill

The Structural Fill should have a plasticity index of less than 6 and should meet the gradation requirements shown below. Structural Fill should be compacted in maximum 9-inch loose lifts to at least 95 percent of the Modified Proctor maximum dry density (ASTM D1557), with moisture contents within ±2 percentage points of the optimum moisture content.

| Sieve Size Percent | Passing by Weight |
|--------------------|-------------------|
| 3 inches           | 100               |
| 1 ½ inch           | 80-100            |
| ½ inch             | 50-100            |
| No. 4              | 30-85             |
| No. 20             | 15-60             |
| No. 60             | 5-35              |
| No. 200*           | 0-10              |

<sup>\*</sup> 0-5 for the top 12 inches under sidewalks, exterior slabs, pads, and walkways

#### 4.3.2 Ordinary Fill

Ordinary Fill should have a plasticity index of less than 6 and should meet the gradation requirements shown below. Ordinary Fill should be compacted in maximum 9-inch loose lifts to at least 95 percent of the Modified Proctor maximum dry density (ASTM D1557), with moisture contents within ±2 percentage points of the optimum moisture content.

| Sieve Size Percent | Passing by Weight |
|--------------------|-------------------|
| 6 inches           | 100               |
| 1 inch             | 50-100            |
| No. 4              | 20-100            |
| No. 20             | 10-70             |
| No. 60             | 5-45              |
| No. 200            | 0-20              |

#### 4.4 Reuse of Onsite Materials

Based on our field observations and the results of the grain-size analyses, the existing fill and natural and gravel are not suitable for reuse as Structural Fill. Some of the existing fill free of organic soil and natural sand and gravel may be reused as Ordinary Fill.



Should the contractor encounter materials suitable for reuse during earthwork operations, the contractor should avoid mixing the reusable soils with fine-grained and/or organic soils. The soils to be reused should be excavated and stockpiled separately for compliance testing.

Soils with 20 percent or greater fines contents are generally very sensitive to moisture content variations and are susceptible to frost. Such soils are very difficult to compact at moisture contents that are much higher or much lower than the optimum moisture content determined from the laboratory compaction test. Therefore, strict moisture control should be implemented during the compaction of onsite soils with fines contents of 20 percent or greater. The contractor should be prepared to remove and replace such soils if pumping occurs.

Materials to be used as fill should first be tested for compliance with the applicable gradation specifications.

The contractor may mobilize a rock crusher to the site. Boulders and blasted rock can be processed with the existing fill and natural sand and gravel by crushing to produce well graded granular fill that is lower in fines if blended with a sufficient proportion of rock. Processed material obtained by crushing blasted rock, boulders, and soil should meet the gradation requirements of Ordinary Fill and Structural Fill. Material produced by the crushing operation should be well graded so as to reduce the potential for formation of honeycombs during its placement and compaction. The site contractor should be prepared to produce batches of material processed using different blending ratios at the start of the earthwork operations. LGCI will review the results of grain-size analyses performed on the processed material and provide an opinion about the blending ratio to maintain throughout construction.

### 4.5 Rock Blasting Considerations

#### 4.5.1 Rock Removal

Deep rock cuts will be required to achieve the proposed FFE of the proposed building on the northern side of the proposed building footprint and to achieve the proposed grades of the proposed access road and paved areas.

Minor rock cuts (less than 1 foot) over short distances may be achieved using hoe-rams or using other non-blasting techniques. For the majority of the cuts, we anticipate that rock blasting will be required.

• Rock should be cut to at least 12 inches beneath footings and to a minimum of 24 inches beneath the bottom of the proposed slabs. To facilitate rock excavation and backfilling, we recommend that the blasting extend to an elevation corresponding to 12 inches beneath the bottom of the deepest footings under the entire building footprint, i.e., at a minimum to El. 211 feet.



- The rock should be cut laterally at least 1 foot beyond each side of the footing. For retaining wall footings, the rock should be cut laterally at least 3 feet from the outside face of the wall to allow for placement of the formwork. Where utilities are installed around the perimeter of the proposed building, the rock should be cut at least 3 feet from the nearest utility.
- The rock surface should be cut as level as possible. The surface of rock should not be steeper than 12H:1V.
- Structural Fill should not be placed directly on rock surfaces that are fractured. The fractures should be covered with a geotextile fabric for separation before placing Structural Fill on the fractured rock.
- Rock should be cut at least 18 inches beneath the bottom of paved areas and the ground surface of athletic fields.
- Under utility pipes, manholes, and catch basins, rock should be cut a minimum of 12 inches beneath the pipe or structure.
- Laterally, rock should be cut a minimum of 12 inches outside utility structures and a minimum of 18 inches on each side of utility pipes.
- To reduce overblasting and the potential for heaved rock, drill holes for blasting should not extend more than 2 feet beneath the minimum depths shown above.
- To reduce the potential for damage to the existing building during blasting operations, rock blasting should be controlled to reduce vibrations and airblast overpressure to below thresholds established in the Earth Moving Specifications.
- Pre-splitting or controlled blasting may be desirable to reduce the amount of over-blast near the existing building.
- To reduce the potential for blasted rock intended for crushing mixing with organic soil, we recommend that the topsoil, roots, tree stumps, and vegetation be removed before blasting. The remainder of the overburden soils and excavatable weathered rock should not be removed before blasting.
- To help obtain information about the top of the rock for rock quantity estimating purposes, we recommend that the Earth Moving Specifications include a requirement for the contractor to perform rock probes at the site in a grid pattern before the start of blasting. The probes should be spaced at 50 feet or less. The results of the probes should include, at a minimum, the ground surface elevation and the elevation of the top of the rock. The probes should extend at least 10 feet beyond the perceived top of rock to make sure that the perceived top of rock is not a boulder.



#### 4.5.2 Ground Vibration Monitoring

Rock blasting operations will generate ground vibrations that may result in minor cracks and cosmetic damage to nearby structures. To protect the adjacent structures from potential damage, construction blasting should be carefully controlled and monitored. We recommend monitoring vibrations at the ground surface and at nearby structures before and during the rock blasting operations.

We recommend a peak particle velocity (PPV) of 2 inches per second (ips) for concrete foundations and 1 ips for masonry foundations.

#### 4.5.3 Public Notification

The human perception threshold to vibration is very low, i.e., people are far more sensitive to vibrations than are the structures they occupy. Various studies have indicated that the sound effects are noticeable at PPV values of 0.02 ips and complaints and claims of damage are likely at PPV values of 0.2 to 0.3 ips. These vibration intensities are well below the intensities that would cause structural damage to buildings. For these reasons, we recommend that the owner implement a proactive program of public notification and education of neighbors on the physical characteristics of blasting effects before the start of blasting.

#### 4.5.4 Pre-Construction Condition Survey

We recommend that the Owner perform a pre-construction condition survey of structures located within 250 feet of the nearest blasting operation to document the existing conditions of the structures. The Owner may also consider using crack monitoring gauges to monitor large cracks identified during the pre-construction surveys.

The pre-construction survey performed by the Owner should not be a substitute to the pre-blast survey performed by the blasting contractor.

#### 4.6 Groundwater Control Procedures

Based on the groundwater levels measured in our explorations, we anticipate that groundwater control procedures will be needed during the removal of the existing fill and during excavations for deep utilities. We also anticipate that significant quantities of groundwater will be present at the bottom of the rock excavation. Accordingly, we recommend that a groundwater control plan be designed and implemented that disposes of the groundwater by gravity. We anticipate that filtered sump pumps installed in a series of sump pump pits located at least 3 feet below the bottom of planned excavations may be sufficient to handle groundwater and surface runoff that may enter the excavation during wet weather. The contractor should be prepared to use multiple sump pumps to maintain a dry excavation during the removal of the existing fill.



DD Phase Geotechnical Report Proposed Green Meadow Elementary School Maynard, Massachusetts LGCI Project No. 2201

The contractor should be permitted to employ whatever commonly accepted means and practices are necessary to maintain the groundwater level below the bottom of the excavation and to maintain a dry excavation during wet weather. Groundwater levels should be maintained at a minimum of 1 foot below the bottom of the excavations during construction. The placement of reinforcing steel or concrete in standing water should not be permitted.

To reduce the potential for sinkholes developing over sump pump pits after the sump pumps are removed, the crushed stone placed in the sump pump pits should be wrapped in a geotextile fabric. Alternatively, the crushed stone should be entirely removed after the sump pump is no longer in use, and the sump pump pit should be restored with suitable backfill.

Proper permits should be obtained from authorities having jurisdiction over the work. At a minimum, the water collected from excavations should be filtered for fines in sedimentation basins before being discharged. The sedimentation basins could be constructed of hay bales wrapped in a geotextile fabric.

The contractor should grade the areas uphill of the proposed construction to direct surface runoff away from the construction area and should be prepared to installed swales as needed to divert the surface runoff.

#### 4.7 Temporary Excavations

All excavations to receive human traffic should be constructed in accordance with OSHA guidelines.

The site soils should generally be considered Type "C" and should have a maximum allowable slope of 1.5 Horizontal to 1 Vertical (1.5H:1V) for excavations less than 20 feet deep. Deeper excavations, if needed, should have shoring designed by a professional engineer.

The contractor is solely responsible for designing and constructing stable, temporary excavations and should shore, slope, or bench the sides of the excavations as required to maintain the stability of the excavation sides and bottom.



DD Phase Geotechnical Report Proposed Green Meadow Elementary School Maynard, Massachusetts LGCI Project No. 2201

#### 5. REPORT LIMITATIONS

Our analyses and recommendations are based on project information provided to us at the time of this report. If changes to the type, size, and location of the proposed structures or to the site grading are made, the recommendations contained in this report shall not be considered valid unless the changes are reviewed, and the conclusions and recommendations modified in writing by LGCI. LGCI cannot accept responsibility for designs based on our recommendations unless we are engaged to review the final plans and specifications to determine whether any changes in the project affect the validity of our recommendations, and whether our recommendations have been properly implemented in the design.

It is not part of our scope to perform a more detailed site history; therefore, we have not explored for or researched the locations of buried utilities or other structures in the area of the proposed construction. Our scope did not include environmental services or services related to moisture, mold, or other biological contaminants in or around the site.

The recommendations in this report are based in part on the data obtained from the subsurface explorations. The nature and extent of variations between explorations may not become evident until construction. If variations from anticipated conditions are encountered, it may be necessary to revise the recommendations in this report. We cannot accept responsibility for designs based on recommendations in this report unless we are engaged to 1) make site visits during construction to check that the subsurface conditions exposed during construction are in general conformance with our design assumptions and 2) ascertain that, in general, the work is being performed in compliance with the contract documents.

Our report has been prepared in accordance with generally accepted engineering practices and in accordance with the terms and conditions set forth in our agreement. No other warranty, expressed or implied, is made. This report has been prepared for the exclusive use of Mount Vernon Group Architects, Inc. for the specific application to the proposed Green Meadow Elementary School in Maynard, Massachusetts as conceived at this time.



27

DD Phase Geotechnical Report Proposed Green Meadow Elementary School Maynard, Massachusetts LGCI Project No. 2201

#### 6. REFERENCES

In addition to the references included in the text of the report, we used the following references:

The Commonwealth of Massachusetts (2017), "The Massachusetts State Building Code, Ninth (9<sup>th</sup>) Edition."

The Department of Labor, Occupational Safety and Health Administration (1989), "Occupational Safety and Health Standards - Excavations; Final Rule," 20 CFR Part 1926, Subpart P.

USGS Maynard MA topographic map from http://mapserver.mytopo.com.



Table 1 - Summary of LGCI's Borings
Proposed Green Meadow Elementary School
Maynard, Massachusetts
LGCI Project No. 2201

| Boring No. <sup>7</sup> | Elevation (ft.) <sup>1</sup> | Groundwater <sup>2</sup><br>Depth / El.<br>(ft.) | Bottom of<br>Topsoil/<br><b>Asphalt</b><br>Depth / El.<br>(ft.) | Bottom of<br>Subsoil<br>Depth / El.<br>(ft.) | Bottom of<br>Fill<br>Depth / El.<br>(ft.) | Bottom of<br>Buried<br>Organic Soil<br>Depth / El.<br>(ft.) | Bottom of<br>Sand and<br>Gravel<br>Depth / El.<br>(ft.) | Depth to Top<br>of<br>Rock/ <b>Inferred</b><br><b>Rock</b><br>Depth / El.<br>(ft.) | Bottom of<br>Boring<br>Depth / El.<br>(ft.) |  |
|-------------------------|------------------------------|--------------------------------------------------|-----------------------------------------------------------------|----------------------------------------------|-------------------------------------------|-------------------------------------------------------------|---------------------------------------------------------|------------------------------------------------------------------------------------|---------------------------------------------|--|
|                         |                              |                                                  |                                                                 | 2022 E                                       | Explorations                              |                                                             |                                                         |                                                                                    |                                             |  |
| B-1                     | 206                          | 5.5 / 201                                        | 1.0 / 205                                                       | - / -                                        | 4.0 / 202                                 | - / -                                                       | 17.5 / 189                                              | 17.5 / 189                                                                         | 19.0 <sup>4</sup> / 187                     |  |
| B-2                     | 203                          | 6.5 / 197                                        | 1.0 / 202                                                       | 4.0 / 199                                    | - / -                                     | - / -                                                       | 21.0 <sup>3</sup> / 182                                 | - / -                                                                              | 21.0 / 182                                  |  |
| B-4                     | 203                          | 7.5 / 196                                        | 0.8 / 202                                                       | - / -                                        | 4.0 / 199                                 | - / -                                                       | 21.0 <sup>3</sup> / 182                                 | - / -                                                                              | 21.0 / 182                                  |  |
| B-6                     | 202                          | 8.5 / 194                                        | 0.5 / 202                                                       | 2.0 / 200                                    | - / -                                     | - / -                                                       | 21.0 <sup>3</sup> / 181                                 | - / -                                                                              | 21.0 / 181                                  |  |
| B-7                     | 214                          | 9.5 / 205                                        | 1.0 / 213                                                       | 4.0 / 210                                    | - / -                                     | - / -                                                       | 12.0 / 202                                              | 12.0 / 202                                                                         | 14.0 4/ 200                                 |  |
| B-8                     | 214                          | 10.5 / 204                                       | 1.3 / 213                                                       | - / -                                        | 4.0 / 210                                 | - / -                                                       | 11.0 / 203                                              | 11.0 / 203                                                                         | 13.0 4/ 201                                 |  |
| B-9                     | 214                          | 11.5 / 203                                       | 1.0 / 213                                                       | - / -                                        | 6.6 / 207                                 | 9.0 / 205                                                   | 21.0 <sup>3</sup> / 193                                 | - / -                                                                              | 21.0 / 193                                  |  |
| B-10                    | 214                          | 12.5 / 202                                       | 0.6 / 213                                                       | 4.0 / 210                                    | - / -                                     | - / -                                                       | 21.0 <sup>3</sup> / 193                                 | - / -                                                                              | 21.0 / 193                                  |  |
| B-11                    | 213                          | 13.5 / 200                                       | 0.5 / 213                                                       | - / -                                        | 6.0 / 207                                 | - / -                                                       | 14.3 / 199                                              | 14.3 / 199                                                                         | 18.0 <sup>4</sup> / 195                     |  |
|                         |                              |                                                  |                                                                 | 2024 [                                       | Explorations                              |                                                             |                                                         |                                                                                    |                                             |  |
| B-101                   | 213                          | - / -                                            | 0.5 / 213                                                       | 2.0 / 211                                    | - / -                                     | - / -                                                       | 17.5 <sup>3</sup> / 196                                 | <b>17.5</b> / 196                                                                  | 17.5 <sup>5</sup> / 196                     |  |
| B-102                   | 209                          | 17.5 / 192                                       | 0.2 / 209                                                       | 2.0 / 207                                    | - / -                                     | - / -                                                       | 18.5 <sup>3</sup> / 191                                 | <b>18.5</b> / 191                                                                  | 18.5 <sup>5</sup> / 191                     |  |
| B-103                   | 214                          | - / -                                            | 0.5 / 214                                                       | 4.0 / 210                                    | 2.0 / 212                                 | - / -                                                       | 16.5 <sup>3</sup> / 198                                 | <b>16.5</b> / 198                                                                  | 16.5 <sup>5</sup> / 198                     |  |
| B-104-OW                | 214                          | 18.5 / 196                                       | 0.3 / 214                                                       | - / -                                        | 4.0 / 210                                 | - / -                                                       | 19.2 <sup>3</sup> / 195                                 | <b>19.2</b> / 195                                                                  | 19.1 <sup>5, 9</sup> , 195                  |  |
| B-105                   | 213                          | - / -                                            | 0.7 / 212                                                       | - / -                                        | 2.0 / 211                                 | - / -                                                       | 12.5 / 201                                              | <b>12.5</b> 8/ 201                                                                 | 14.7 / 198                                  |  |
| B-106                   | 213                          | - / -                                            | 0.7 / 212                                                       | 2.0 / 211                                    | - / -                                     | - / -                                                       | 12.5 <sup>3</sup> / 201                                 | - / -                                                                              | 12.5 / 201                                  |  |
| B-107                   | 213                          | 14.7 / 198                                       | 0.3 / 213                                                       | - / -                                        | - / -                                     | - / -                                                       | 15.2 <sup>3</sup> / 198                                 | - / -                                                                              | 15.2 / 198                                  |  |
| B-108                   | 214                          | 13.0 / 201                                       | 0.4 / 214                                                       | 2.0 / 212                                    | - / -                                     | - / -                                                       | 14.7 / 199                                              | 9.0 8/ 205                                                                         | 14.7 <sup>4</sup> / 199                     |  |
| B-109                   | 222                          | 8.4 / 214                                        | 0.5 / 222                                                       | 4.0 / 218                                    | - / -                                     | - / -                                                       | 6.5 / 216                                               | 6.5 / 216                                                                          | 16.5 <sup>4</sup> / 206                     |  |
| B-110                   | 223                          | 15.0 / 208                                       | 0.3 / 223                                                       | 4.0 / 219                                    | - / -                                     | - / -                                                       | 10.0 / 213                                              | 10.0 / 213                                                                         | 15.0 <sup>4</sup> / 208                     |  |
| B-111                   | 224                          | 12.5 / 212                                       | 0.5 / 224                                                       | 2.0 / 222                                    | - / -                                     | - / -                                                       | 9.0 / 215                                               | 9.0 / 215                                                                          | 14.0 4/ 210                                 |  |
| B-112                   | 230                          | 12.1 / 218                                       | 0.2 / 230                                                       | 2.5 / 228                                    | - / -                                     | - / -                                                       | 5.5 / 225                                               | 5.5 / 225                                                                          | 16.0 <sup>4</sup> / 214                     |  |
| B-113                   | 217                          | - / -                                            | 0.3 / 217                                                       | 2.0 / 215                                    | - / -                                     | - / -                                                       | 6.0 / 211                                               | 6.0 / 211                                                                          | 16.0 4/ 201                                 |  |
| B-114-OW                | 232                          | 5.0 / 227                                        | 0.4 / 232                                                       | 3.0 / 229                                    | - / -                                     | - / -                                                       | 3.0 / 229                                               | 5.0 <sup>8</sup> / 227                                                             | 20.0 4,9, 212                               |  |
| B-115                   | 216                          | - / -                                            | 0.4 / 216                                                       | 4.0 / 212                                    | - / -                                     | - / -                                                       | 12.0 <sup>3</sup> / 204                                 | - / -                                                                              | 12.0 / 204                                  |  |
| B-116                   | 213                          | 10.0 / 203                                       | 0.4 / 213                                                       | 2.0 / 211                                    | - / -                                     | - / -                                                       | 11.2 <sup>3</sup> / 202                                 | <b>11.2</b> / 202                                                                  | 11.2 5/ 202                                 |  |
| B-117                   | 211                          | - / -                                            | - / -                                                           | 8.0 / 203                                    | 6.9 / 204                                 | - / -                                                       | 12.0 <sup>3</sup> / 199                                 | - / -                                                                              | 12.0 / 199                                  |  |
| B-118                   | 207                          | 11.5 / 196                                       | <b>0.3</b> / 207                                                | - / -                                        | - / -                                     | - / -                                                       | 12.0 <sup>3</sup> / 195                                 | <b>12.0</b> / 195                                                                  | 12.0 <sup>5</sup> / 195                     |  |
| B-119                   | 209                          | - / -                                            | <b>0.3</b> / 209                                                | - / -                                        | 2.0 / 207                                 | - / -                                                       | 12.0 <sup>3</sup> / 197                                 | - / -                                                                              | 12.0 / 197                                  |  |
| B-T-120                 | 210                          | - / -                                            | - / -                                                           | 2.0 / 208                                    | - / -                                     | - / -                                                       | 12.0 <sup>3</sup> / 198                                 | - / -                                                                              | 12.0 / 198                                  |  |

<sup>1.</sup> The ground surface elevation was interpolated from Drawing EX-1 titled: "Site Survey Plan, Schematic Design, Maynard Public Schools, Green Meadow Elementary School," prepared by Samiotes Consultants, Inc., dated September 2, 2022 and provided to LGCI by Brennan via e-mail on February 1, 2024.

<sup>2.</sup> Groundwater was measured during drilling, at the end of drilling, or based on sample moisture, whichever is shallower.

<sup>3.</sup> Boring terminated in the sand and gravel layer.

<sup>4.</sup> Boring terminated in rock.

<sup>5.</sup> Borings terminal on refusal on possible boulder or rock.

<sup>6.</sup> Boring terminated in silt layer.

<sup>7.</sup> Borings B-3 and B-5 were not performed.

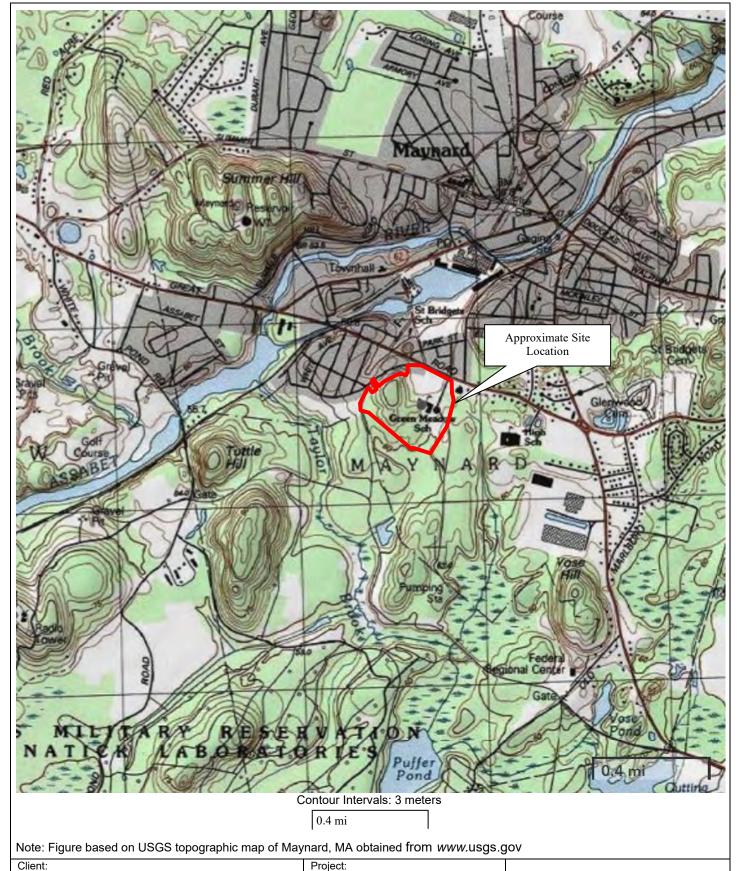
<sup>8.</sup> Boulder (or possible rock) encountered at depths of 12.5 feet, 6 feet, and 3 feet beneath the ground surface in borings B-105, B-108, and B-114, respectively.

<sup>9.</sup> Groundwater observational well installed in boring.

<sup>10. &</sup>quot;-" means layer was not encountered.

Table 2 - Summary of LGCI's Test Pits
Proposed Green Meadow Elementary School
Maynard, Massachusetts
LGCI Project No. 2201

| Test Pit No.       | Ground-<br>Surface<br>Elevation<br>(ft.) | Groundwater <sup>3</sup> Depth /Elevation (ft.) | Bottom of<br>Topsoil<br>Depth<br>/Elevation<br>(ft.) | Bottom of<br>Subsoil<br>Depth<br>/Elevation<br>(ft.) | Bottom of<br>Fill<br>Depth<br>/Elevation<br>(ft.) | Bottom of<br>Buried<br>Organics<br>Depth<br>/Elevation<br>(ft.) | Bottom of<br>Sand and<br>Gravel Depth<br>/Elevation<br>(ft.) | Bottom of<br>Test Pit Depth<br>/Elevation<br>(ft.) |  |
|--------------------|------------------------------------------|-------------------------------------------------|------------------------------------------------------|------------------------------------------------------|---------------------------------------------------|-----------------------------------------------------------------|--------------------------------------------------------------|----------------------------------------------------|--|
| TP-1               | 228                                      | - / -                                           | 0.5 / 228                                            | 2.0 / 226                                            | - / -                                             | - / -                                                           | 7.5 <sup>4</sup> / 221                                       | 7.5 <sup>6</sup> / 221                             |  |
| TP-2               | 214                                      | - / -                                           | 0.7 / 213                                            | 1.9 / 212                                            | - / -                                             | - / -                                                           | 10.0 4/ 204                                                  | 10.0 / 204                                         |  |
| TP-3               | 214                                      | - / -                                           | 0.5 / 214                                            | - / -                                                | 2.5 / 212                                         | - / -                                                           | 12.0 4/ 202                                                  | 12.0 / 202                                         |  |
| TP-4               | 214                                      | - / -                                           | 0.3 / 214                                            | - / -                                                | 4.0 / 210                                         | - / -                                                           | 12.0 4/ 202                                                  | 12.0 / 202                                         |  |
| TP-5               | 213                                      | - / -                                           | 0.5 / 213                                            | - / -                                                | 1.5 / 212                                         | - / -                                                           | 10.1 4/ 203                                                  | 10.1 <sup>6</sup> / 203                            |  |
| TP-6               | 213                                      | - / -                                           | 0.6 / 212                                            | - / -                                                | 2.0 / 211                                         | - / -                                                           | 12.0 4/ 201                                                  | 12.0 / 201                                         |  |
| TP-7               | 234                                      | - / -                                           | 0.5 / 234                                            | 1.5 / 233                                            | - / -                                             | - / -                                                           | 7.5 4/ 227                                                   | 7.5 / 227                                          |  |
| TP-8               | 227                                      | - / -                                           | 0.6 / 226                                            | 3.5 / 224                                            | - / -                                             | - / -                                                           | 10.0 4/ 217                                                  | 10.0 / 217                                         |  |
| TP-9               | 219                                      | 7.0 / 212                                       | 0.5 / 219                                            | - / -                                                | - / -                                             | - / -                                                           | 7.0 4/ 212                                                   | 7.0 <sup>6</sup> / 212                             |  |
| TP-10              | 221                                      | 8.5 / 213                                       | 1.0 / 220                                            | 2.7 / 218                                            | - / -                                             | - / -                                                           | 8.5 4/ 213                                                   | 8.5 <sup>6</sup> / 213                             |  |
| TP-11              | 204                                      | - / -                                           | 1.0 / 203                                            | 3.0 / 201                                            | - / -                                             | - / -                                                           | 10.8 4/ 193                                                  | 10.8 <sup>7</sup> / 193                            |  |
| TP-12              | 203                                      | 12.0 / 191                                      | 0.3 / 203                                            | - / -                                                | 1.5 / 202                                         | - / -                                                           | 12.0 4/ 191                                                  | 12.0 / 191                                         |  |
| TP-14              | 218                                      | 8.0 / 210                                       | 0.5 / 218                                            | 1.0 / 217                                            | - / -                                             | - / -                                                           | 12.0 4/ 206                                                  | 12.0 / 206                                         |  |
| TP-15              | 213                                      | 2.0 / 211                                       | 0.5 / 213                                            | 2.5 / 211                                            | - / -                                             | - / -                                                           | 12.0 4/ 201                                                  | 12.0 / 201                                         |  |
| TP-16              | 212                                      | - / -                                           | 0.5 / 212                                            | 2.0 / 210                                            | - / -                                             | - / -                                                           | 8.5 4/ 204                                                   | 8.5 <sup>6</sup> / 204                             |  |
| TP-17              | 213                                      | - / -                                           | 0.3 / 213                                            | 4.7 / 208                                            | - / -                                             | - / -                                                           | 9.0 4/ 204                                                   | 9.0 <sup>6</sup> / 204                             |  |
| TP-18B             | 213                                      | - / -                                           | 0.5 / 213                                            | - / -                                                | 3.0 / 210                                         | - / -                                                           | 10.0 4/ 203                                                  | 10.0 <sup>6</sup> / 203                            |  |
| TP-19              | 209                                      | - / -                                           | 1.0 / 208                                            | 2.3 / 207                                            | - / -                                             | - / -                                                           | 12.0 4/ 197                                                  | 12.0 / 197                                         |  |
| TP-21              | 202                                      | 2.5 / 200                                       | 0.8 / 201                                            | - / -                                                | 3.0 / 199                                         | 3.5 / 199                                                       | 12.0 <sup>4</sup> / 190                                      | 12.0 / 190                                         |  |
| TP-22              | 202                                      | - / -                                           | 2.0 / 200                                            | - / -                                                | 3.0 / 199                                         | 3.5 / 199                                                       | 12.0 <sup>4</sup> / 190                                      | 12.0 / 190                                         |  |
| TP-23 <sup>5</sup> | 200                                      | - / -                                           | 0.8 / 199                                            | 3.0 / 197                                            | 1.5 / 199                                         | - / -                                                           | 12.0 <sup>4</sup> / 188                                      | 12.0 / 188                                         |  |
| TP-26 <sup>5</sup> | 206                                      | - / -                                           | 0.5 / 206                                            | 2.3 / 204                                            | - / -                                             | - / -                                                           | 11.0 4/ 195                                                  | 11.0 / 195                                         |  |


<sup>1.</sup> The ground surface elevation was interpolated from Drawing EX-1 titled: "Site Survey Plan, Schematic Design, Maynard Public Schools, Green Meadow Elementary School," prepared by Samiotes Consultants, Inc., dated September 2, 2022 and provided to LGCI by Brennan via e-mail on February 1, 2024.

- 5. Infiltrometer test was performed in test pit.
- 6. Test pit was terminated due to excavator refusal on possible boulder or rock.
- 7. Test pit was terminated due to excavation walls caving in.

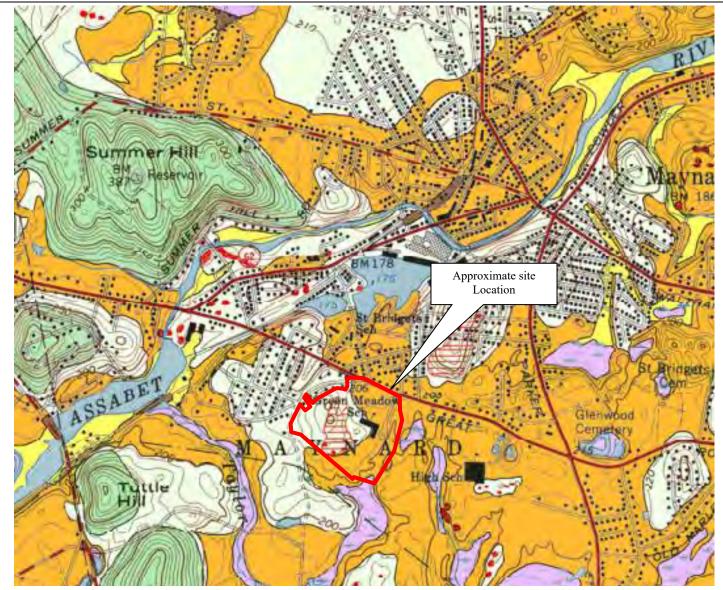
<sup>2. &</sup>quot;-" means layer was not encountered.

<sup>3.</sup> Groundwater was measured during excavation, or at the end of excavation, whichever is shallower.

<sup>4.</sup> Test pit terminated in the sand and gravel layer.



Mount Vernon Group Architects, Inc.


Project:
Proposed Green Meadow School

Project Location:
Maynard, MA

Figure 1 – Site Location Map

LGCI Project No.:
Date:
April 2024

Lahlaf Geotechnical Consulting, Inc.





Thin till—Nonsorted, nonstratified matrix of sand, some silt, and little clay containing scattered pebble, cobble, and boulder clasts; large surface boulders are common; unit was mapped where till is generally less than 10 to 15 ft thick including areas of shallow bedrock. Predominantly consists of upper till of the last glaciation; loose to moderately compact, generally sandy, commonly stony. Two facies are present in some places: a looser, coarser grained ablation facies, melted out from supraglacial position; and an underlying more compact, finer grained lodgement facies deposited subglacially. In general, both ablation and lodgement facies of upper till derived from fine-grained bedrock are finer grained, more compact, less stony and have fewer surface boulders than upper till derived from coarse-grained crystalline rocks. Across Massachusetts, fine-grained bedrock sources include the red Mesozoic sedimentary rocks of the Connecticut Valley lowland, marble in the western river valleys, and fine-grained schists in upland areas

Coarse deposits consist of gravel deposits, sand and gravel deposits, and sand deposits, not differentiated in this report. Gravel deposits are composed of at least 50 percent gravel-size clasts; cobbles and boulders predominate; minor amounts of sand occur within gravel beds, and sand comprises a few separate layers. Gravel layers generally are poorly sorted, and bedding commonly is distorted and faulted due to postdepositional collapse related to melting of ice. Sand and gravel deposits occur as mixtures of gravel and sand within individual layers and as layers of sand alternating with layers of gravel. Sand and gravel layers generally range between 25 and 50 percent gravel particles and between 50 and 75 percent sand particles. Layers are well sorted to poorly sorted; bedding may be distorted and faulted due to postdepositional collapse. Sand deposits are composed mainly of very coarse to fine sand, commonly in well-sorted layers. Coarser layers may contain up to 25 percent gravel particles, generally granules and pebbles; finer layers may contain some very fine sand, sill, and clay



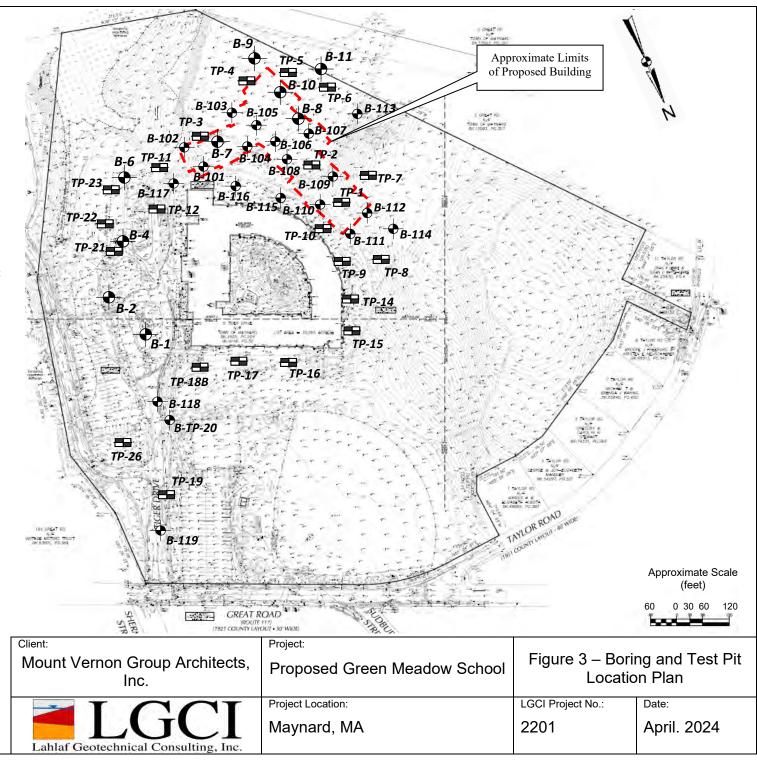
Bedrock outcrops and areas of abundant outcrop or shallow bedrock—Solid color shows extent of individual bedrock outcrops; horizontal-line pattern indicates areas of shallow bedrock or areas where small outcrops are too numerous to map individually; in areas of shallow bedrock, surficial materials are less than 5 to 10 ft thick. These units were not mapped consistently among all quadrangles; see note at beginning of appendix 1 fo information on bedrock outcrop mapping by quadrangle.

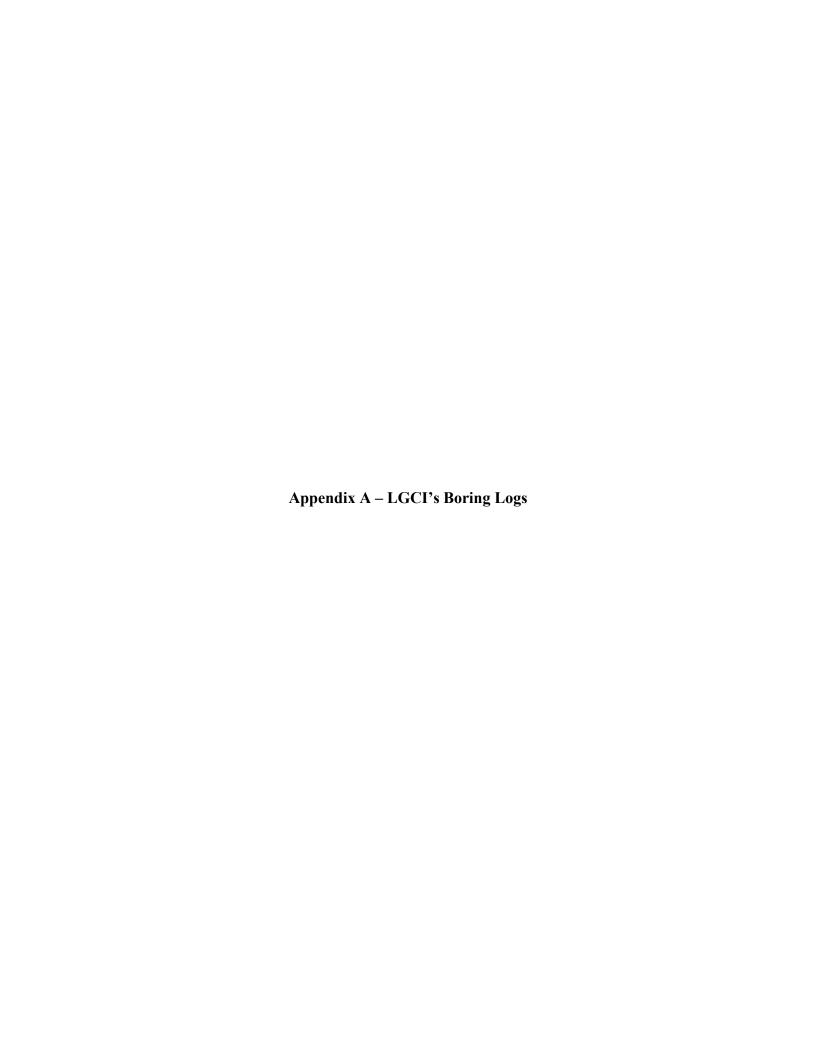
thick. These units were not mapped consistently among all quadrangles; see note at beginning of appendix 1 for information on bedrock outcrop mapping by quadrangle.

Note: Figure based on map titled: "Surficial Materials Map of the Maynard Quadrangle, Massachusetts," prepared by Stone, Byron D., and Stone, Janet R., for U.S. Geological Survey, Scientific Investigations Map 3402, Quadrangle 97 – Maynard.

| Mount Vernon Group Architects, Inc.  | Project: Proposed Green Meadow School | Figure 2 – Sur<br>Ma   | ficial Geologic<br>ap |
|--------------------------------------|---------------------------------------|------------------------|-----------------------|
| Lahlaf Geotechnical Consulting, Inc. | Project Location:  Maynard, MA        | LGCI Project No.: 2201 | Date: April 2024      |

#### Legend


Approximate location of boring advanced by Northern Drill Service, Inc. (NDS) of Northborough, MA between January 28 and February 1, 2022, and observed by Lahlaf Geotechnical Consulting, Inc. (LGCI). Borings B-3 and B-5 were not performed.


Approximate location of boring advanced by Soil X of Leominster, MA between February19 and 27, 2024, and observed by LGCI.

Approximate location of test pit advanced by Saunders Construction of Wakefield, MA between February 6 and 9, 2024, and observed by LGCI.

#### Notes

- 1. Figure based on Drawing EX-1 titled: "Site Survey Plan, Schematic Design, Maynard Public Schools, Green Meadow Elementary School," prepared by Samiotes Consultants Inc., dated September 2, 2022 and provided to LGCI by Brennan via e-mail on February 1, 2024.
- 2. Approximate limits of proposed construction alternatives are based on renderings provided to LGCI by Mount Vernon Group Architects, Inc. (MVG) via e-mail on November 7, 2022.





#### **BORING LOG**

PAGE 1 OF 1

CLIENT: Mount Vernon Group Architects, Inc.

LGCI PROJECT NUMBER: 2201

PROJECT LOCATION: Maynard, MA

DATE STARTED: 2/1/22 DATE COMPLETED: 2/1/22

BORING LOCATION: Near northern edge of proposed addition

COORDINATES: NA

DRILLING SUBCONTRACTOR: Northern Drill Service, Inc.

DRILLING FOREMAN: Tim Tucker

DRILLING METHOD: Drive and wash with 4-inch casing

DRILLING METHOD: Drive and wash with 4-inch casing

DRILL RIG TYPE/MODEL: Mobile B-53 ATV Rig

HAMMER TYPE: Automatic

 SURFACE El.:
 206 ft. (see note 1)
 TOTAL DEPTH:
 19 ft.

 WEATHER:
 20's / Cloudy

GROUNDWATER LEVELS:

DURING DRILLING: 9.0 ft. / El. 197.0 ft. Based on sample moisture

**T** AT END OF DRILLING: 5.5 ft. / El. 200.5 ft.

TOTHER: \_-

 SPLIT SPOON DIA: \_ 1.375 in. I.D., 2 in. O.D.

 CORE BARREL SIZE: \_NA
 NA
 CHECKED BY: \_NP

**HAMMER WEIGHT:** 140 lb. **HAMMER DROP:** 30 in.

| Depth<br>(ft.) | El.<br>(ft.)     | Sample<br>Interval (ft.) | Sample<br>Number | Blow Counts<br>(N Value) | Pen./Rec.<br>(in.) | Remark | Stra     |     | Depth<br>El.(ft.) | Material Description                                                                                                                                                                                                   |
|----------------|------------------|--------------------------|------------------|--------------------------|--------------------|--------|----------|-----|-------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                | 205.0            |                          | S1               | 17-40-46-25<br>(86)      | 24/22              | 1      | Topsoil  |     | 1.0<br>205.0      | REMARK 1: Soil was frozen between depths of 0' and 2'. S1 - Top 12": Topsoil Bot. 10": Silty SAND with Gravel (SM), fine to medium, 15-20% fines, 35-40% coarse subangular gravel, trace of organic soil, brown, moist |
|                |                  | 2-                       | S2               | 12-11-10-10<br>(21)      | 24/9               |        | Fill     |     | 4.0               | S2 - Silty SAND with Gravel (SM), fine to medium, trace coarse, 20-25% fines, 20-25% fine to coarse subrounded to subangular gravel, trace of organic soil, brown, moist                                               |
| 5              | 200.0            | 4-                       | S3               | 4-4-4-7<br>(8)           | 24/9               |        |          | .0. | 202.0             | S3 - Poorly Graded SAND with Silt (SP-SM), fine to medium, 5-10% fines, light brown, moist                                                                                                                             |
|                |                  | 6-                       | ,                |                          |                    |        |          | .0. |                   |                                                                                                                                                                                                                        |
| 10             | <br><br>195.0    | 9-                       | S4               | 12-9-22-25<br>(31)       | 24/22              |        | Sand and |     | ⊻                 | S4 - Silty SAND (SM), fine to medium, 15-20% fines, ~10% fine subrounded gravel, brown with orange mottles, wet                                                                                                        |
|                | <br>             | 11-                      | •                |                          |                    | 2      | Gravel   |     |                   | REMARK 2: Drill rig chattering at depth of 12' on possible cobble.                                                                                                                                                     |
| 15             | <br><br>190.0    | 14-                      | S5               | 9-13-28-48<br>(41)       | 24/14              | _      |          |     |                   | S5 - Similar to S4, ~20% fines                                                                                                                                                                                         |
| - +            |                  |                          |                  |                          |                    | 3      | Rock     |     | 17.5<br>188.5     | REMARK 3: Drill rig chattering at depth of 17.5' on possible rock.  REMARK 4: Roller bit advanced between depths of 17.5 to 19' to confirm presence of rock.                                                           |
| 20             |                  |                          |                  |                          |                    |        |          |     | 19.0              | Bottom of borehole at 19.0 feet. Backfilled borehole with drill cuttings.                                                                                                                                              |
| + +            | <u>185.0</u><br> |                          |                  |                          |                    |        |          |     |                   |                                                                                                                                                                                                                        |
| 25             |                  |                          |                  |                          |                    |        |          |     |                   |                                                                                                                                                                                                                        |

#### **GENERAL NOTES:**

#### **BORING LOG**

PAGE 1 OF 1

PROJECT NAME: Proposed Green Meadow Elementary School CLIENT: Mount Vernon Group Architects, Inc. LGCI PROJECT NUMBER: 2201 PROJECT LOCATION: Maynard, MA **DATE STARTED**: 2/1/22 DATE COMPLETED: 2/1/22 DRILLING SUBCONTRACTOR: Northern Drill Service, Inc. **BORING LOCATION:** Near eastern edge of proposed addition **DRILLING FOREMAN:** Tim Tucker COORDINATES: NA **DRILLING METHOD:** Drive and wash with 4-inch casing SURFACE El.: 203 ft. (see note 1) \_\_\_\_\_ TOTAL DEPTH: 21 ft. DRILL RIG TYPE/MODEL: Mobile B-53 ATV Rig WEATHER: 20's / Cloudy HAMMER TYPE: Automatic **GROUNDWATER LEVELS:** HAMMER WEIGHT: 140 lb. HAMMER DROP: 30 in.  $\overline{igspace}$  **DURING DRILLING:** 9.0 ft. / El. 194.0 ft. Based on sample moisture SPLIT SPOON DIA.: 1.375 in. I.D., 2 in. O.D. **T** AT END OF DRILLING: 7.8 ft. / El. 195.2 ft. CORE BARREL SIZE: NA ▼ OTHER: \_-\_ LOGGED BY: HO CHECKED BY: NP

| Depth<br>(ft.) | El.<br>(ft.) | Sample<br>Interval (ft.) | Sample<br>Number | Blow Counts<br>(N Value) | Pen./Rec.<br>(in.) | Remark | Strata             |                           | Depth<br>El.(ft.)     | Material Description                                                                                                                                                                              |
|----------------|--------------|--------------------------|------------------|--------------------------|--------------------|--------|--------------------|---------------------------|-----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                |              | 0                        | V s₁             | 13-39-45-17<br>(84)      | 24/24              | 1      | Topsoil            | 7 - 71 - 7-<br>74 - 17 7- | 1.0                   | REMARK 1: Soil was frozen between depths of 0' and 2.5'. S1 - Top 12": Topsoil                                                                                                                    |
|                | 200.0        | 2-                       | \$2              | 12-13-8-7<br>(21)        | 24/15              | -      | Subsoil            |                           | 4.0                   | Bot. 12": Silty SAND with Gravel (SM), fine to medium, 15-20% fines, 20-25% coarse subangular gravel, trace of organic soil, light brown, moist S2 - Similar to S1, 15-20% fine subangular gravel |
| 5              |              | 4-                       | S3               | 7-7-7-7<br>(14)          | 24/15              |        | D.                 | .00                       | 199.0                 | S3 - Poorly Graded SAND with Silt (SP-SM), fine to medium, 5-10% fines, light brown, moist                                                                                                        |
|                | - –<br>195.0 | 6-                       | / \              |                          |                    | -      | Sand and           |                           | <b>¥</b><br>∑         |                                                                                                                                                                                                   |
| 10             |              | 11-                      | S4               | 6-10-12-13<br>(22)       | 24/14              | -      | 0                  |                           |                       | 34 - Similar to 33, wet                                                                                                                                                                           |
| -              | 190.0<br>    | 14-                      |                  |                          |                    |        | 0                  |                           | 14.0                  |                                                                                                                                                                                                   |
| 15             |              | 16-                      | S5               | 4-3-6-7<br>(9)           | 24/18              |        |                    |                           | 189.0                 | S5 - Silt (ML), slightly plastic, 10-15% fine sand, brown, wet                                                                                                                                    |
|                | 185.0        |                          |                  |                          |                    |        | Silt               |                           |                       |                                                                                                                                                                                                   |
| 20             | <br>         | 19-                      | S6               | 14-20-31-26<br>(51)      | 24/8               |        | Sand and<br>Gravel | .0.                       | 19.0<br>184.0<br>21.0 | S6 - Well Graded GRAVEL with Silt and Sand (GW-GM), fine to coarse, angular, 5-10% fines, 15-20% fine to medium sand, brown, moist                                                                |
|                | 180.0        |                          |                  |                          |                    |        |                    |                           |                       | Bottom of borehole at 21.0 feet. Backfilled borehole with drill cuttings.                                                                                                                         |

#### **GENERAL NOTES:**

#### **BORING LOG**

PAGE 1 OF 1

PROJECT NAME: Proposed Green Meadow Elementary School CLIENT: Mount Vernon Group Architects, Inc. **LGCI PROJECT NUMBER: 2201** PROJECT LOCATION: Maynard, MA **DATE STARTED:** 1/31/22 DATE COMPLETED: 2/1/22 DRILLING SUBCONTRACTOR: Northern Drill Service, Inc. **BORING LOCATION:** Near eastern edge of proposed addition **DRILLING FOREMAN:** Tim Tucker COORDINATES: NA **DRILLING METHOD:** Drive and wash with 4-inch casing SURFACE El.: 203 ft. (see note 1) TOTAL DEPTH: 21 ft. DRILL RIG TYPE/MODEL: Mobile B-53 ATV Rig WEATHER: 20's / Sunny HAMMER TYPE: Automatic **GROUNDWATER LEVELS: HAMMER WEIGHT:** 140 lb. HAMMER DROP: 30 in.  $\overline{igspace}$  **DURING DRILLING:** 9.0 ft. / El. 194.0 ft. Based on sample moisture **SPLIT SPOON DIA.:** <u>1.375 in. I.D., 2 in</u>. O.D. **T** AT END OF DRILLING: 10.0 ft. / El. 193.0 ft. CORE BARREL SIZE: NA ▼ OTHER: \_-LOGGED BY: HO CHECKED BY: NP

| El. (ft.) | Sample<br>Interval (ft.) | Sample<br>Number | Blow Counts<br>(N Value) | Pen./Rec.<br>(in.) | Remark | Strata          | Deptl<br>El.(ft. | Material Description                                                                                                                                          |
|-----------|--------------------------|------------------|--------------------------|--------------------|--------|-----------------|------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|
| + -       | 0                        | S1               | 15-70-30<br>(100)        | 18/18              | 1      | Topsoil N. 1/2  | 0.8              | REMARK 1: Soil was frozen between depths of 0' and 1'. S1 - Top 9": Topsoil Bot. 9": Silty SAND with Gravel (SM), fine to medium, 15-20% fines, 15-20%        |
| 200.0     | 1                        | S2               | 8-9-27-24<br>(36)        | 24/8               |        | Fill            | 4.0              | fine to coarse subrounded gravel, trace of organic soil, light brown, moist S2 - Similar to S1 Bot. 9", 20-25% fines, 40-45% fine to coarse subangular gravel |
| 5 -       | 6-                       | S3               | 5-4-4-10<br>(8)          | 24/12              |        |                 | 0                | S3 - Poorly Graded SAND with Silt (SP-SM), fine to medium, 5-10% fines, brown, moist                                                                          |
| 195.0     |                          |                  |                          |                    |        | 0               | 0                |                                                                                                                                                               |
| 0 -       | 9-<br>9.3-               | ≥< \$4           | 100/4"                   | 4/2                |        | .0              | 4                | S4 - Silty SAND with Gravel (SM), fine to coarse, ~15% fines, 40-45% fine to coarse subangular gravel, trace of weathered rock, brown, wet                    |
| 190.0     |                          |                  |                          |                    | 2      | Sand and Gravel | 0                | REMARK 2: Drill rig chattering between depths of 11' and 12' on possible cobbles or boulder.                                                                  |
| 5         | 14-                      | S5               | 35-23-25-17<br>(48)      | 24/10              |        | .0              | 0                | S5 - Well Graded GRAVEL with Silt and Sand (GW-GM), fine to coarse, angular, 10-15% fines, 15-20% fine to coarse sand, trace of weathered rock, brown, wet    |
| 185.0     |                          |                  |                          |                    | 3      | .0              | 0000             | REMARK 3: Drill rig chattering between depths of 17' to 17.5' on possible cobbles or boulder.                                                                 |
| 20 -      | 19-                      | S6               | 12-33-39-41<br>(72)      | 24/12              |        | . 0             | 0                | S6 - Similar to S5, 25-30% fine to coarse sand                                                                                                                |
| 180.0     |                          |                  |                          |                    |        |                 |                  | Bottom of borehole at 21.0 feet. Backfilled borehole with drill cuttings.                                                                                     |
| 25        |                          |                  |                          |                    |        |                 |                  |                                                                                                                                                               |

#### **GENERAL NOTES:**

#### **BORING LOG**

PAGE 1 OF 1

**PROJECT NAME:** Proposed Green Meadow Elementary School CLIENT: Mount Vernon Group Architects, Inc. LGCI PROJECT NUMBER: 2201 PROJECT LOCATION: Maynard, MA DATE COMPLETED: 1/31/22 DATE STARTED: 1/31/22 DRILLING SUBCONTRACTOR: Northern Drill Service, Inc. **BORING LOCATION:** Near SE corner of proposed addition **DRILLING FOREMAN:** Tim Tucker COORDINATES: NA **DRILLING METHOD:** Drive and wash with 4-inch casing SURFACE El.: 202 ft. (see note 1) TOTAL DEPTH: 21 ft. DRILL RIG TYPE/MODEL: Mobile B-53 ATV Rig WEATHER: 20's / Sunny HAMMER TYPE: Automatic **GROUNDWATER LEVELS:** HAMMER WEIGHT: 140 lb. HAMMER DROP: 30 in.  $\overline{igspace}$  **DURING DRILLING:** 4.0 ft. / El. 198.0 ft. Based on sample moisture SPLIT SPOON DIA.: 1.375 in. I.D., 2 in. O.D. **T** AT END OF DRILLING: 8.9 ft. / El. 193.1 ft. CORE BARREL SIZE: NA ▼ OTHER: \_\_ LOGGED BY: HO CHECKED BY: NP

| Depth (ff.) | il.<br>t.) | Sample<br>Interval (ft.) | Sample<br>Number | Blow Counts<br>(N Value) | Pen./Rec.<br>(in.) | Remark | Strata   |                 | Depth<br>El.(ft.) | Material Description                                                                                                                                                                       |
|-------------|------------|--------------------------|------------------|--------------------------|--------------------|--------|----------|-----------------|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|             | 0.0        | 2+                       | S1               | 22-24-11-8<br>(35)       | 24/24              | 1      | Subsoil  |                 | 2.0               | REMARK 1: Soil was frozen between depths of 0' and 1'. S1 - Top 6": Topsoil  Bot. 18": Silty SAND (SM), mostly fine, ~20% fines, trace of roots, trace of organic soil, dark brown, moist  |
|             |            | 4                        | S2               | 6-6-5-5<br>(11)          | 24/17              |        |          | 0 C             | 200.0             | S2 - Poorly Graded SAND with Silt (SP-SM), fine, 5-10% fines, trace gravel, tan, moist                                                                                                     |
| 5           |            |                          | S3               | 4-6-7-8<br>(13)          | 24/9               |        |          | 0.<br>0 c       | -                 | S3 - Similar to S2, wet                                                                                                                                                                    |
| 195         | 5.0        | 6-                       | <b>S4</b>        | 9-8-8-8<br>(16)          | 24/14              |        | 0        | 0.              |                   | S4 - Similar to S2, wet                                                                                                                                                                    |
| 10          |            | 8-                       | S5               | 4-4-5-7<br>(9)           | 24/9               |        |          | 0°              | ¥                 | S5 - Similar to S2, wet                                                                                                                                                                    |
| 190         | 0.0        | 10                       | \ S6             | 2-4-3-6<br>(7)           | 24/14              |        | Sand and | 0000            |                   | S6 - Similar to S2, wet                                                                                                                                                                    |
|             |            | 12                       | S7               | 10-27-39-32<br>(66)      | 24/20              |        |          | 0.0             |                   | S7 - Top 10": Similar to S2, wet<br>Bot 10": Silty SAND with Gravel (SM), mostly fine, 15-20% fines, 30-35% fine to<br>coarse subangular gravel, trace of weathered rock, light brown, wet |
| 15          |            | 14                       | S8               | 15-21-26-20<br>(47)      | 24/8               |        |          | 0.<br>0.<br>0.  |                   | S8 - Well Graded GRAVEL with Silt and Sand (GW-GM), fine to coarse, subrounded to subangular, 10-15% fines, 15-20% fine to coarse sand, trace of weathered rock, brown, wet                |
| 185         | 5.0        | 16-                      |                  |                          |                    | 2      |          | 0°              |                   | REMARK 2: Drill rig chattering between depths of 17' to 18' on possible cobbles or boulder.                                                                                                |
| 20          | -          | 19-                      | S9               | 13-10-7-27<br>(17)       | 24/5               |        |          | 0.<br>0.0<br>0. | 21.0              | S9 - Similar to S8, subangular, 5-10% fines                                                                                                                                                |
| 180         | 0.0        | 21                       | <b>Y</b>         |                          |                    |        | h.       |                 | 21.0              | Bottom of borehole at 21.0 feet. Backfilled borehole with drill cuttings and 3 bags of gravel.                                                                                             |
| 25          |            |                          |                  |                          |                    |        |          |                 |                   |                                                                                                                                                                                            |

#### **GENERAL NOTES:**

### **BORING LOG**

PAGE 1 OF 1

| CLIENT: Mount Vernon Group Architects, Inc. LGCI PROJECT NUMBER: 2201 | PROJECT NAME: Proposed Green Meadow Elementary School PROJECT LOCATION: Maynard, MA |
|-----------------------------------------------------------------------|-------------------------------------------------------------------------------------|
| DATE STARTED: _1/28/22                                                | DRILLING SUBCONTRACTOR: Northern Drill Service, Inc.                                |
| BORING LOCATION: Near NE corner of proposed building                  | DRILLING FOREMAN: _Tim Tucker                                                       |
| COORDINATES: NA                                                       | DRILLING METHOD: Drive and wash with 4-inch casing                                  |
| SURFACE EI.: 214 ft. (see note 1) TOTAL DEPTH: 14 ft.                 | DRILL RIG TYPE/MODEL: Mobile B-53 ATV Rig                                           |
| WEATHER: 20's / Cloudy                                                | HAMMER TYPE: Automatic                                                              |
| GROUNDWATER LEVELS:                                                   | HAMMER WEIGHT: 140 lb. HAMMER DROP: 30 in.                                          |
| □ DURING DRILLING: Not Encountered                                    | SPLIT SPOON DIA.: 1.375 in. I.D., 2 in. O.D.                                        |
| <b>T</b> AT END OF DRILLING: 12.5 ft. / El. 201.5 ft.                 | CORE BARREL SIZE: NA                                                                |
| Ţ other:                                                              | LOGGED BY: HO CHECKED BY: NP                                                        |

| Depth<br>(ft.) | El.<br>(ft.) | Sample<br>Interval (ft.) | Sample<br>Number | Blow Counts<br>(N Value) | Pen./Rec.<br>(in.) | Remark | Strata    |                 | epth<br>I.(ft.) | Material Description                                                                                                                                                                                                                                                                                                                                |
|----------------|--------------|--------------------------|------------------|--------------------------|--------------------|--------|-----------|-----------------|-----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                |              | 0                        | S1               | 13-12-5-6<br>(17)        | 24/24              |        | Topsoil : | \(\frac{1}{2}\) | .0              | S1 - Top 12": Topsoil  Bot. 12": Silty SAND (SM), fine, 15-20% slightly plastic fines, trace of organic                                                                                                                                                                                                                                             |
|                | 210.0        | 2+                       | S2               | 7-7-10-9<br>(17)         | 24/18              |        | Subsoil   |                 | .0              | Bot. 12": Silty SAND (SM), fine, 15-20% slightly plastic fines, trace of organic soil, trace of roots, light brown, moist S2 - Top 13": Silty SAND (SM), fine to medium, 30-35% fines, 0-5% fine subangular gravel, trace of organic soil, light brown, moist Bot. 5": Silty SAND (SM), fine to medium, 20-25% slightly plastic fines, brown, moist |
| 5              |              |                          | S3               | 7-12-17-34<br>(29)       | 24/12              |        |           | 0°              | 10.0            | S3 - Silty SAND (SM), fine to medium, 15-20% fines, brown, moist                                                                                                                                                                                                                                                                                    |
| <br>           |              | 6+                       | S4               | 46-48-37-31<br>(85)      | 24/16              |        |           | 0,00            |                 | S4 - Well Graded GRAVEL with Silt and Sand (GW-GM), fine to coarse, subrounded, 5-10% fines, 15-20% fine to medium sand, trace of weathered rock, brown, moist                                                                                                                                                                                      |
|                | 205.0        | 8 <del>-</del><br>9 -    | / \ S5           | 28-28-32-23<br>(60)      | 24/10              | -      | Gravel    | 0.              |                 | S5 - Silty GRAVEL with Sand (GM), fine to coarse, subrounded, ~15% fines, 40-45% fine to coarse sand, trace of weathered rock, light brown, moist                                                                                                                                                                                                   |
|                |              | 11-                      | <b>, ,</b>       |                          |                    | 1      | Rock _/   | 2               |                 | REMARK 1: Roller bit advanced between depths of 12' to 14' to confirm presence of rock.                                                                                                                                                                                                                                                             |
| 15             |              |                          |                  |                          |                    |        |           | 1               | 4.0             | Bottom of borehole at 14.0 feet. Backfilled borehole with drill cuttings and 2 bags of gravel.                                                                                                                                                                                                                                                      |
|                |              |                          |                  |                          |                    |        |           |                 |                 |                                                                                                                                                                                                                                                                                                                                                     |
| 20             | 195.0        |                          |                  |                          |                    |        |           |                 |                 |                                                                                                                                                                                                                                                                                                                                                     |
|                |              |                          |                  |                          |                    |        |           |                 |                 |                                                                                                                                                                                                                                                                                                                                                     |
| <br><br>25     | 190.0        |                          |                  |                          |                    |        |           |                 |                 |                                                                                                                                                                                                                                                                                                                                                     |

#### **GENERAL NOTES:**

#### **BORING LOG**

PAGE 1 OF 1

**PROJECT NAME:** Proposed Green Meadow Elementary School CLIENT: Mount Vernon Group Architects, Inc. LGCI PROJECT NUMBER: 2201 PROJECT LOCATION: Maynard, MA DATE STARTED: 1/31/22 DATE COMPLETED: 1/31/22 DRILLING SUBCONTRACTOR: Northern Drill Service, Inc. **BORING LOCATION:** Near NW corner of proposed building **DRILLING FOREMAN:** Tim Tucker COORDINATES: NA DRILLING METHOD: Drive and wash with 4-inch casing SURFACE El.: 214 ft. (see note 1) TOTAL DEPTH: 13 ft. DRILL RIG TYPE/MODEL: Mobile B-53 ATV Rig WEATHER: 20's / Sunny **HAMMER TYPE:** Automatic **GROUNDWATER LEVELS:** HAMMER WEIGHT: 140 lb. HAMMER DROP: 30 in. □ DURING DRILLING: Not Encountered SPLIT SPOON DIA.: 1.375 in. I.D., 2 in. O.D. T AT END OF DRILLING: Not Encountered CORE BARREL SIZE: NA ▼ OTHER: \_-LOGGED BY: HO CHECKED BY: NP

| Depth (ft.) | Sample<br>Interval (ft.) | Sample<br>Number | Blow Counts<br>(N Value) | Pen./Rec.<br>(in.) | Remark | Strata   |      | Depth<br>El.(ft.) | Material Description                                                                                                                                                                                                                 |
|-------------|--------------------------|------------------|--------------------------|--------------------|--------|----------|------|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| -           | 0                        | S1               | 19-15-75-25<br>(90)      | 24/24              | 1      | Topcoil  | 711x | 1.3               | REMARK 1: Soil was frozen between depths of 0' and 2'. S1 - Top 16": Topsoil  Bot. 8": Silty SAND with Gravel (SM), fine to medium, 15-20% fines, 15-20%                                                                             |
| 210.0       | 2-                       | S2               | 17-17-11-15<br>(28)      | 24/15              | 2      | Fill     |      | 4.0 210.0         | fine to coarse subangular gravel, trace of organic soil, brown, moist S2 - Similar to S1 Bot. 8", 15-20% fine angular gravel, trace roots  REMARK 2: Drill rig chattering between depths of 3' to 4' on possible cobbles or boulder. |
| 5           | 5-                       | S3               | 78-100                   | 12/6               | _      | 0        | 0,00 | 210.0             | S3 - Well Graded GRAVEL with Silt and Sand (GW-GM), fine to coarse, subangular, ~10% fines, 15-20% fine to coarse sand, trace of weathered rock, light brown, moist                                                                  |
|             | 8-                       | S4               | 68-62-42-68<br>(104)     | 24/18              |        | Sand and | 000  |                   | S4 - Top 12": Similar to S3, 40-45% fine to coarse sand<br>Bot. 6": Poorly Graded SAND with Silt (SP-SM), fine to medium, 10-15% fines,<br>trace fine subrounded gravel, light brown, moist                                          |
| 205.0       | 9-                       | S5               | 61-100/5"<br>(100/5")    | 11/7               | 3      |          | 0°   |                   | REMARK 3: Drill rig chattering at depth of 8.5' on possible cobbles or boulder.  S5 - Well Graded GRAVEL with Silt and Sand (GW-GM), fine to coarse subangular, ~10% fines, ~30% fine to coarse sand, trace of weathered rock,       |
|             | 9.9-                     |                  |                          |                    | 4 5    | Rock _   | 000  | 11.0<br>203.0     | light brown, moist  REMARK 4: Drill rig chattering at depth of 11' on rock.  REMARK 5: Roller bit advanced between depths of 11' to 13' to confirm presence of rock.                                                                 |
| 200.0       |                          |                  |                          |                    |        |          |      | 13.0              | Bottom of borehole at 13.0 feet. Backfilled borehole with drill cuttings.                                                                                                                                                            |
|             |                          |                  |                          |                    |        |          |      |                   |                                                                                                                                                                                                                                      |
| 195.0       |                          |                  |                          |                    |        |          |      |                   |                                                                                                                                                                                                                                      |
| 20          | <u> </u>                 |                  |                          |                    |        |          |      |                   |                                                                                                                                                                                                                                      |
| + + -       |                          |                  |                          |                    |        |          |      |                   |                                                                                                                                                                                                                                      |
| 190.0       |                          |                  |                          |                    |        |          |      |                   |                                                                                                                                                                                                                                      |
| 190.0       | 1                        |                  |                          |                    |        |          |      |                   |                                                                                                                                                                                                                                      |

#### **GENERAL NOTES:**

#### **BORING LOG**

PAGE 1 OF 1

PROJECT NAME: Proposed Green Meadow Elementary School **CLIENT:** Mount Vernon Group Architects, Inc. **LGCI PROJECT NUMBER: 2201** PROJECT LOCATION: Maynard, MA **DATE STARTED:** 1/28/22 DATE COMPLETED: 1/28/22 DRILLING SUBCONTRACTOR: Northern Drill Service, Inc. BORING LOCATION: Near SE corner of proposed building **DRILLING FOREMAN:** Tim Tucker COORDINATES: NA **DRILLING METHOD:** Drive and wash with 4-inch casing SURFACE El.: 214 ft. (see note 1) TOTAL DEPTH: 21 ft. DRILL RIG TYPE/MODEL: Mobile B-53 ATV Rig WEATHER: 20's / Cloudy **HAMMER TYPE:** Automatic **GROUNDWATER LEVELS:** HAMMER WEIGHT: 140 lb. HAMMER DROP: 30 in.  $\overline{igspace}$  **DURING DRILLING:** 9.0 ft. / El. 205.0 ft. Based on sample moisture SPLIT SPOON DIA.: 1.375 in. I.D., 2 in. O.D. **T** AT END OF DRILLING: 12.5 ft. / El. 201.5 ft. CORE BARREL SIZE: NA ▼ OTHER: \_-LOGGED BY: HO CHECKED BY: NP

|    | El.<br>ft.)         | Sample<br>Interval (ft.) | Sample<br>Number | Blow Counts<br>(N Value) | Pen./Rec.<br>(in.) | Remark | Strata            | Depth<br>El.(ft.) | Material Description                                                                                                                                                                                                                                                        |
|----|---------------------|--------------------------|------------------|--------------------------|--------------------|--------|-------------------|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|    | _                   | 0                        | S1               | 14-19-21-14<br>(40)      | 24/18              |        | Topsoil (1/1)     | 1.0               | S1 - Top 12": Topsoil  Bot. 6": Poorly Graded SAND with Silt (SP-SM), fine to medium, 10-15% fines, trace of organic soil, trace of roots, light brown, moist                                                                                                               |
|    | 10.0                | 2-                       | S2               | 10-8-7-3<br>(15)         | 24/6               |        | Fill              |                   | S2 - Poorly Graded SAND with Silt and Gravel (SP-SM), fine to medium, 10-15% fines, 25-30% fine subrounded gravel, light brown, moist                                                                                                                                       |
| 5  | _                   | 4-                       | S3               | 6-6-5-5<br>(11)          | 24/0               |        |                   |                   | S3 - No recovery                                                                                                                                                                                                                                                            |
|    |                     | 6-<br>8-                 | S4               | 4-4-5-13<br>(9)          | 24/9               |        | Buried<br>Organic | 6.6 207.4         | S4 - Top 7": Well Graded GRAVEL with Silt and Sand (GW-GM), fine to coarse, subrounded, 5-10% fines, 20-25% fine to medium sand, trace of organic soil, light brown, moist  Bot. 2": Silty SAND (SM), fine, 30-35% fines, trace of organic soil, organic odor, black, moist |
| 10 | 05.0                | 9-<br>11-                | S5               | 18-15-13-17<br>(28)      | 24/7               |        |                   |                   |                                                                                                                                                                                                                                                                             |
|    | -<br>00.0<br>-<br>- | 14-                      | S6               | 4-6-8-8<br>(14)          | 24/9               | S      | Sand and Gravel   |                   | S6 - Poorly Graded SAND with Silt (SP-SM), fine, 10-15% fines, trace of weathered rock, light brown, wet                                                                                                                                                                    |
| 20 | 95.0<br>_           | 19-                      | S7               | 7-8-6-6<br>(14)          | 24/7               | -      |                   |                   | S7 - Silty GRAVEL with Sand (GM), fine to coarse, subangular, 15-20% fines, 30-35% fine to medium sand, trace of weathered rock, light brown, wet                                                                                                                           |
|    | 90.0                | 21-                      |                  |                          |                    |        |                   |                   | Bottom of borehole at 21.0 feet. Backfilled borehole with drill cuttings and 2.5 bags of gravel.                                                                                                                                                                            |

#### **GENERAL NOTES:**

#### **BORING LOG**

**B-10** PAGE 1 OF 1

PROJECT NAME: Proposed Green Meadow Elementary School **CLIENT:** Mount Vernon Group Architects, Inc. **LGCI PROJECT NUMBER: 2201** PROJECT LOCATION: Maynard, MA **DATE STARTED**: 1/28/22 DATE COMPLETED: 1/28/22 DRILLING SUBCONTRACTOR: Northern Drill Service, Inc. **BORING LOCATION:** Near center of proposed building **DRILLING FOREMAN:** Tim Tucker COORDINATES: NA **DRILLING METHOD:** Drive and wash with 4-inch casing SURFACE El.: 214 ft. (see note 1) TOTAL DEPTH: 21 ft. DRILL RIG TYPE/MODEL: Mobile B-53 ATV Rig WEATHER: 20's / Cloudy **HAMMER TYPE:** Automatic **GROUNDWATER LEVELS: HAMMER WEIGHT:** 140 lb. HAMMER DROP: 30 in.  $\overline{igspace}$  **DURING DRILLING:** 6.0 ft. / El. 208.0 ft. Based on sample moisture SPLIT SPOON DIA.: 1.375 in. I.D., 2 in. O.D. **T** AT END OF DRILLING: 12.0 ft. / El. 202.0 ft. CORE BARREL SIZE: NA ▼ OTHER: -LOGGED BY: HO CHECKED BY: NP

| Depth<br>(ft.) | El.<br>(ft.)  | Sample<br>Interval (ft.) | San<br>Nun | nple<br>nber | Blow Counts<br>(N Value) | Pen./Rec.<br>(in.) | Remark | Stra               | ta       | Depth<br>El.(ft.) | Material Description                                                                                                                                |
|----------------|---------------|--------------------------|------------|--------------|--------------------------|--------------------|--------|--------------------|----------|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|
|                |               | 0                        | \ /        |              |                          |                    |        | Topsoil            | 71 1 1/1 | 0.6               | S1 - Top 7": Topsoil                                                                                                                                |
|                |               |                          | X          | S1           | 14-33-26-9<br>(59)       | 24/22              |        |                    |          | 213.4             | Bot. 15": Silty SAND (SM), fine to coarse, 15-20% slightly plastic fines, trace of organic soil, light brown, moist                                 |
|                | <br><br>210.0 | 2-                       | M          | S2           | 5-2-3-3<br>(5)           | 24/14              |        | Subsoil            |          | 4.0               | S2 - Silty SAND (SM), fine, 15-20% slightly plastic fines, trace of organic soil, light brown, moist                                                |
| 5              |               | 4-                       |            | S3           | 1-2-1-2<br>(3)           | 24/16              |        |                    | .00      | 210.0             | S3 - Silty SAND (SM), mostly fine, ~20% slightly plastic fines, trace of roots, light brown, moist                                                  |
|                |               | 6-<br>8-                 |            | S4           | 13-11-9-14<br>(20)       | 24/13              |        |                    | .0.      | <del>*</del>      | S4 - Silty GRAVEL with Sand (GM), fine to coarse, subrounded, 15-20% fines, 20-25% fine to medium sand, trace of weathered rock, light brown, moist |
| 10             | 205.0         | 9-                       | M          | S5           | 7-10-13-12<br>(23)       | 24/10              |        |                    |          |                   | S5 - Silty SAND with Gravel (SM), fine to coarse, 15-20% fines, 40-45% fine to coarse subrounded gravel, brown, wet                                 |
|                | <br><br>200.0 | 14-                      |            |              |                          |                    | 1      | Sand and<br>Gravel |          |                   | REMARK 1: Drill rig chattering at depth of 13' on possible cobbles or boulder.                                                                      |
| 15             |               | 16-                      |            | S6           | 6-5-5-7<br>(10)          | 24/8               |        |                    |          |                   | S6 - Silty SAND (SM), fine to medium, 15-20% fines, 5-10% fine subrounded gravel, brown, wet                                                        |
| - +<br>- +     | 195.0         | 19-                      |            |              |                          |                    |        |                    | .00      |                   | S7. Silty SAND with Croyal (SM) fine to madium, 45 200/ fines, 25 200/ fine                                                                         |
| 20             |               | 21-                      |            | S7           | 10-12-31-49<br>(43)      | 24/12              |        |                    | .0.      | 1                 | S7 - Silty SAND with Gravel (SM), fine to medium, 15-20% fines, 25-30% fine subrounded gravel, trace of weathered rock, brown, wet                  |
| <br> -<br>     |               | 21                       |            |              |                          |                    |        |                    |          |                   | Bottom of borehole at 21.0 feet. Backfilled borehole with drill cuttings and 4 bags of gravel.                                                      |
| - †            |               |                          |            |              |                          |                    |        |                    |          |                   |                                                                                                                                                     |
| - +            | 190.0         |                          |            |              |                          |                    |        |                    |          |                   |                                                                                                                                                     |
| 25             |               |                          |            |              |                          |                    |        |                    |          |                   |                                                                                                                                                     |

#### **GENERAL NOTES:**

#### **BORING LOG**

B-11

PAGE 1 OF 1

PROJECT NAME: Proposed Green Meadow Elementary School CLIENT: Mount Vernon Group Architects, Inc. LGCI PROJECT NUMBER: 2201 PROJECT LOCATION: Maynard, MA DATE STARTED: 1/28/22 DATE COMPLETED: 1/28/22 DRILLING SUBCONTRACTOR: Northern Drill Service, Inc. **BORING LOCATION:** Near SW corner of proposed building **DRILLING FOREMAN:** Tim Tucker COORDINATES: NA DRILLING METHOD: Drive and wash with 4-inch casing SURFACE El.: 213 ft. (see note 1) TOTAL DEPTH: 18 ft. DRILL RIG TYPE/MODEL: Mobile B-53 ATV Rig WEATHER: 20's / Cloudy HAMMER TYPE: Automatic **GROUNDWATER LEVELS:** HAMMER WEIGHT: 140 lb. HAMMER DROP: 30 in. ✓ **DURING DRILLING:** Not Encountered SPLIT SPOON DIA.: 1.375 in. I.D., 2 in. O.D. **T** AT END OF DRILLING: 15.7 ft. / El. 197.3 ft. CORE BARREL SIZE: NA V OTHER: -LOGGED BY: HO CHECKED BY: NP

| Depth<br>(ft.) | El.<br>(ft.)     | Sample<br>Interval (ft.) | Sample<br>Number | Blow Counts<br>(N Value) | Pen./Rec.<br>(in.) | Remark | Stra               |                | Depth<br>El.(ft.) | Material Description                                                                                                                                                                                                                                                                          |
|----------------|------------------|--------------------------|------------------|--------------------------|--------------------|--------|--------------------|----------------|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                |                  | 0                        | / /              |                          |                    |        | Topsoil            | 7 <u>1 N</u> 7 | 0.5               | S1 - Top 6": Topsoil                                                                                                                                                                                                                                                                          |
| -              |                  |                          | S1               | 31-70-29-32<br>(99)      | 24/16              |        |                    |                | 212.5             | Bot. 10": Silty SAND with Gravel (SM), fine to medium, 15-20% fines, 20-25% coarse subrounded gravel, light brown, moist                                                                                                                                                                      |
|                | 210.0            | 2-                       | S2               | 23-32-21-23<br>(53)      | 24/20              |        | Fill               |                |                   | S2 - Well Graded SAND with Silt and Gravel (SW-SM), fine to coarse, 5-10% fines, 20-25% fine to coarse subrounded to angular gravel, orange to brown, moist                                                                                                                                   |
| 5              | <br>             | 6-                       | S3               | 7-24-14-14<br>(38)       | 24/9               |        |                    |                | 6.0               | S3 - Top 5": Silty SAND (SM), fine, trace medium, ~15% fines, 5-10% fine subrounded gravel, trace of roots, light brown, moist Bot. 4": Poorly Graded SAND with Silt and Gravel (SP-SM), fine to medium, 10-15% fines, ~20% fine to coarse subangular gravel, brown, moist (appears reworked) |
|                | <br>205.0        | 8-                       | S4               | 16-10-9-9<br>(19)        | 24/13              |        |                    | .000           | 207.0             | S4 - Top 6": Well Graded GRAVEL with Silt and Sand (GW-GM), fine to coarse, subangular, 5-10% fines, 15-20% fine to medium sand, brown, moist Bot. 7": Poorly Graded SAND (SP), fine to medium, 0-5% fines, 5-10% fine subrounded gravel, brown, moist                                        |
| 10             |                  | 9-                       | S5               | 6-8-5-4<br>(13)          | 24/6               |        | Sand and<br>Gravel | 0000           |                   | S5 - Similar to S4 Bot. 7", 10-15% coarse subrounded gravel                                                                                                                                                                                                                                   |
|                | 200.0            | 11-                      |                  |                          |                    |        |                    |                |                   |                                                                                                                                                                                                                                                                                               |
| 15             |                  | 14.3                     | ≥< \$6           | 62/3"                    | 3/0                | 1 2    |                    | 9              | 14.3              | REMARK 1: Split spoon refusal encountered at depth of 14.3' on rock, tip of split spoon broke into two pieces.  \S6 - No recovery                                                                                                                                                             |
|                | <br><br>195.0    |                          |                  |                          |                    |        | Rock               |                | 18.0              | REMARK 2: Roller bit advanced between depths of 14.3' to 18' to confirm presence of rock.                                                                                                                                                                                                     |
| 20             |                  |                          |                  |                          |                    | •      |                    |                | 18.0              | Bottom of borehole at 18.0 feet. Backfilled borehole with drill cuttings and 0.5 bag of gravel.                                                                                                                                                                                               |
|                |                  |                          |                  |                          |                    |        |                    |                |                   |                                                                                                                                                                                                                                                                                               |
| 25             | <u>190.0</u><br> |                          |                  |                          |                    |        |                    |                |                   |                                                                                                                                                                                                                                                                                               |

#### **GENERAL NOTES:**



### **BORING LOG**

B-101

PAGE 1 OF 1

| CLIENT: Mount Vernon Group Architects, Inc.                           | ROJECT NAME: Proposed Green Meadow Elementary School |  |  |  |
|-----------------------------------------------------------------------|------------------------------------------------------|--|--|--|
| LGCI PROJECT NUMBER: 2201 PR                                          | ROJECT LOCATION: Maynard, MA                         |  |  |  |
| DATE STARTED:         2/19/24         DATE COMPLETED:         2/19/24 | DRILLING SUBCONTRACTOR: Soil X, Corp.                |  |  |  |
| BORING LOCATION: Near NE corner of eastern wing of proposed building  | DRILLING FOREMAN: Edwin Fajardo                      |  |  |  |
| COORDINATES: NA                                                       | DRILLING METHOD: Hollow Stem Auger (4-1/4" I.D.)     |  |  |  |
| SURFACE El.: 213 ft. (see note 1) TOTAL DEPTH: 17.5 ft.               | DRILL RIG TYPE/MODEL: Diedrich D-70 turbo            |  |  |  |
| WEATHER: 30's / Sunny                                                 | HAMMER TYPE: Automatic                               |  |  |  |
| GROUNDWATER LEVELS:                                                   | HAMMER WEIGHT: 140 lb. HAMMER DROP: 30 in.           |  |  |  |
| □ DURING DRILLING: Not Encountered                                    | SPLIT SPOON DIA.: 1.375 in. I.D., 2 in. O.D.         |  |  |  |
| $oldsymbol{oldsymbol{arPsi}}$ at end of drilling:                     | CORE BARREL SIZE: NA                                 |  |  |  |
| $ar{m{arY}}$ other:                                                   | LOGGED BY: MBH CHECKED BY: SG                        |  |  |  |
|                                                                       |                                                      |  |  |  |

| Depth<br>(ft.) | El.<br>(ft.) | Sample<br>Interval (ft.) | Sample<br>Number | Blow Counts<br>(N Value) | Pen./Rec.<br>(in.) | Remark | Strata          | Depth<br>El.(ft.) | Material Description                                                                                                                                    |
|----------------|--------------|--------------------------|------------------|--------------------------|--------------------|--------|-----------------|-------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|
|                |              | 0                        | Λ /              |                          |                    |        | Topsoil All A   | 0.5               | S1 - Top 6": Topsoil                                                                                                                                    |
| -              | -            | _                        | S1               | 1-1-1-2<br>(2)           | 24/15              |        | Subsoil         | 212.5             | Bot. 9": Silty SAND (SM), fine to medium, 20-25% fines, 0-5% fine to coarse subangular gravel, trace of roots, trace of organic soil, orange            |
| -              | 210.0        | 2-                       | S2               | 9-5-12-11<br>(17)        | 24/10              |        | .00             | 211.0             | S2 - Silty SAND (SM), fine to medium with trace coarse, 15-20% fines, 10-15% fine to coarse subangular gravel, orange to brown, moist                   |
| 5              |              | 4-                       | S3               | 9-11-19-23<br>(30)       | 24/19              |        | .0.             |                   | S3 - Silty SAND with Gravel (SM), fine to medium with trace coarse, 15-20% fines, 15-20% fine to coarse subrounded gravel, light brown to orange, moist |
|                | 205.0        | 6-                       | S4               | 22-24-29-28<br>(53)      | 24/2               |        | .00             |                   | S4 - Well Graded GRAVEL with Sand (GW), fine to coarse, subangular, 10-15% fines, 25-30% fine to coarse sand, trace of roots, grey, moist               |
| 10             |              | 10-                      |                  |                          |                    |        | Sand and Gravel |                   |                                                                                                                                                         |
|                |              | 12-                      | S5               | 4-4-4-5<br>(8)           | 24/12              |        | Glaver          |                   | S5 - Well Graded SAND (SW), fine to coarse, 0-5% fines, 0-5% fine subangular gravel, light brown, moist                                                 |
|                | 200.0        | 14-                      | S6               | 27-20-11-11<br>(31)      | 24/11              |        | .0.             |                   | S6 - Well Graded SAND with Silt and Gravel (SW-SM), fine to coarse, ~10% fines, 35-40% fine to coarse subangular gravel, orange to brown, moist         |
| _15_           |              | 17                       |                  |                          |                    |        | .00             |                   |                                                                                                                                                         |
|                |              |                          |                  |                          |                    |        | .00             |                   |                                                                                                                                                         |
| -              | 195.0        |                          |                  |                          |                    | 1      | 100             | 17.3              | REMARK 1: HSA refusal at depth of 17.5' on possible rock or boulder.  Bottom of borehole at 17.5 feet. Backfilled borehole with drill cuttings.         |
| 20             | -            |                          |                  |                          |                    |        |                 |                   |                                                                                                                                                         |
| -              | _            |                          |                  |                          |                    |        |                 |                   |                                                                                                                                                         |
| -              | -            |                          |                  |                          |                    |        |                 |                   |                                                                                                                                                         |
| -              | 190.0        |                          |                  |                          |                    |        |                 |                   |                                                                                                                                                         |
| 25             | _            |                          |                  |                          |                    |        |                 |                   |                                                                                                                                                         |

#### **GENERAL NOTES:**

#### **BORING LOG**

B-102

PAGE 1 OF 1

PROJECT NAME: Proposed Green Meadow Elementary School CLIENT: Mount Vernon Group Architects, Inc. LGCI PROJECT NUMBER: 2201 PROJECT LOCATION: Maynard, MA DATE STARTED: 2/19/24 DATE COMPLETED: 2/19/24 DRILLING SUBCONTRACTOR: Soil X, Corp. **BORING LOCATION:** Near SE corner of eastern wing of proposed building DRILLING FOREMAN: Edwin Fajardo COORDINATES: NA DRILLING METHOD: Hollow Stem Auger (4-1/4" I.D.) SURFACE El.: 209 ft. (see note 1) TOTAL DEPTH: 18.5 ft. DRILL RIG TYPE/MODEL: Diedrich D-70 turbo WEATHER: 30's / Sunny **HAMMER TYPE:** Automatic **GROUNDWATER LEVELS: HAMMER WEIGHT:** 140 lb. **HAMMER DROP:** 30 in. ✓ **DURING DRILLING:** Not Encountered **SPLIT SPOON DIA.:** <u>1.375 in. I.D., 2 in. O.D.</u> **AT END OF DRILLING:** 17.5 ft. / El. 191.5 ft. CORE BARREL SIZE: NA ▼ OTHER: \_-\_ LOGGED BY: MBH CHECKED BY: SG

| Depth<br>(ft.) | El.<br>(ft.)     | Sample<br>Interval (ft.) | Sample<br>Number | Blow Counts<br>(N Value) | Pen./Rec.<br>(in.) | Remark | Strata          | Depth<br>El.(ft.) | Material Description                                                                                                                                                                      |
|----------------|------------------|--------------------------|------------------|--------------------------|--------------------|--------|-----------------|-------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                |                  | 0                        | S1               | 1-1-2-4<br>(3)           | 24/15              |        | Topsoil Subsoil | 2.0               | S1 - Top 2": Topsoil  Bot. 13": Silty SAND (SM), fine to medium, 15-20% fines, 0-5% fine to coarse subangular gravel, trace of roots, trace of organic soil, trace of wood, orange, moist |
| -              | 205.0            | 2-                       | S2               | 7-7-14-12<br>(21)        | 24/10              |        |                 | 207.0             | S2 - Well Graded SAND with Silt and Gravel (SW-SM), fine to coarse, 10-15% fines, 20-25% fine to coarse subangular gravel, light brown to orange, moist                                   |
| 5              |                  | 4-                       | S3               | 11-10-10-8<br>(20)       | 24/10              |        | .00             |                   | S3 - Well Graded SAND with Silt and Gravel (SW-SM), fine to coarse, 10-15% fines, 15-20% fine to coarse subangular gravel, light brown to orange, moist                                   |
|                |                  | 6-                       | S4               | 9-8-8-8<br>(16)          | 24/7               |        | .0.             |                   | S4 - Well Graded SAND with Silt and Gravel (SW-SM), fine to coarse, 10-15% fines, 35-40% fine to coarse subangular gravel, trace of roots, light brown to orange, moist                   |
| 10             | 200.0            | 8-                       | / <b>V</b>       |                          |                    |        |                 |                   |                                                                                                                                                                                           |
|                |                  | 10-                      | S5               | 4-4-5-4<br>(9)           | 24/17              |        | Sand and Gravel |                   | S5 - Well Graded SAND (SW), fine to coarse, ~5% fines, ~10% fine to coarse subangular gravel, light brown, moist                                                                          |
|                | 105.0            | 12 -                     | <b>V</b>         |                          |                    |        |                 |                   |                                                                                                                                                                                           |
| 15             | <u>195.0</u><br> | 15-                      | S6               | 22-61-38-23<br>(99)      | 24/18              | _      |                 |                   | S6 - Silty SAND with Gravel (SM), fine to coarse, 20-25% fines, 15-20% fine to coarse subangular gravel, trace of weathered rock, light brown to orange, moist                            |
|                |                  | 17-                      | / \              |                          |                    | 1      |                 | <b>¥</b>          | DEMARK 4 1104 are free less desette et 40 files are resulting and resulting                                                                                                               |
| 20             | 190.0            |                          |                  |                          |                    |        |                 |                   | REMARK 1: HSA refusal at depth of 18.5' on possible rock or boulder.  Bottom of borehole at 18.5 feet. Backfilled borehole with drill cuttings.                                           |
|                | <br>             |                          |                  |                          |                    |        |                 |                   |                                                                                                                                                                                           |
|                | 185.0            |                          |                  |                          |                    |        |                 |                   |                                                                                                                                                                                           |

#### **GENERAL NOTES:**

### **BORING LOG**

B-103

PAGE 1 OF 1

| CLIENT: Mount Vernon Group Architects, Inc.                           | ROJECT NAME: Proposed Green Meadow Elementary School |  |  |  |
|-----------------------------------------------------------------------|------------------------------------------------------|--|--|--|
| LGCI PROJECT NUMBER: 2201 PR                                          | OJECT LOCATION: Maynard, MA                          |  |  |  |
| DATE STARTED:         2/20/24         DATE COMPLETED:         2/20/24 | DRILLING SUBCONTRACTOR: Soil X, Corp.                |  |  |  |
| BORING LOCATION: Near SW corner of eastern wing of proposed building  | DRILLING FOREMAN: Edwin Fajardo                      |  |  |  |
| COORDINATES: NA                                                       | DRILLING METHOD: Hollow Stem Auger (4-1/4" I.D.)     |  |  |  |
| SURFACE El.: 214 ft. (see note 1) TOTAL DEPTH: 16.6 ft.               | DRILL RIG TYPE/MODEL: Diedrich D-70 turbo            |  |  |  |
| WEATHER: 30's / Sunny                                                 | HAMMER TYPE: Automatic                               |  |  |  |
| GROUNDWATER LEVELS:                                                   | HAMMER WEIGHT: 140 lb. HAMMER DROP: 30 in.           |  |  |  |
| □ DURING DRILLING: Not Encountered                                    | <b>SPLIT SPOON DIA.:</b> 1.375 in. I.D., 2 in. O.D.  |  |  |  |
| ▼ AT END OF DRILLING:                                                 | CORE BARREL SIZE: NA                                 |  |  |  |
| $ar{m{y}}$ other:                                                     | LOGGED BY: MBH CHECKED BY: SG                        |  |  |  |

| Depth<br>(ft.) | El.<br>(ft.) | Sample<br>Interval (ft.) | Sample<br>Number | Blow Counts<br>(N Value) | Pen./Rec. | Remark<br>tS | rata   | Depth<br>El.(ft.) | Material Description                                                                                                                              |
|----------------|--------------|--------------------------|------------------|--------------------------|-----------|--------------|--------|-------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|
|                |              | 0                        | M                | 2070                     |           | Topso        | 1 77 7 | 0.5<br>213.5      | S1 - Top 6": Topsoil                                                                                                                              |
| -              |              | 2                        | S1               | 3-6-7-8<br>(13)          | 24/13     | Fill         |        | 2.0               | Bot. 7": Silty SAND (SM), fine to medium with trace coarse, 20-25% fines, 0-5% fine subangular gravel, brown to orange, moist                     |
|                | 210.0        | 2-                       | S2               | 17-12-9-10<br>(21)       | 24/16     | Subsoi       |        | 212.0             | S2 - Silty SAND (SM), fine to medium with trace coarse, 20-25% fines, 0-5% fine subangular gravel, orange, moist                                  |
| 5              |              | 6-                       | S3               | 11-14-44-19<br>(58)      | 24/10     |              | 000    | 210.0             | S3 - Well Graded GRAVEL with Sand (GW), fine to coarse, subangular, 0-5% fines, 35-40% fine to coarse sand, light brown to brown, moist           |
|                | <br>         | 8-                       | S4               | 14-14-15-14<br>(29)      | 24/15     |              |        |                   | S4 - Well Graded SAND with Silt and Gravel (SW-SM), fine to coarse, 10-15% fines, 20-25% fine to coarse subangular gravel, brown to orange, moist |
| 10             | 205.0        | 10-                      | . /              |                          |           | Sand ar      | , O C  |                   | S5 - Well Graded SAND with Silt and Gravel (SW-SM), fine to coarse, 10-15%                                                                        |
|                | <br>         | 12-                      | S5               | 10-11-11-10<br>(22)      | 24/3      | Grave        |        |                   | fines, 35-40% fine to coarse subangular gravel, brown to orange, moist                                                                            |
|                | 200.0        |                          |                  |                          |           |              |        |                   |                                                                                                                                                   |
| 15             |              | 15-                      | S6               | 28-42-60/2"<br>(102/8")  | 14/11     |              | 000    |                   | S6 - Silty SAND with Silt (SM), fine to coarse, ~15% fines, 10-15% fine to coarse subangular gravel, brown to grey, moist                         |
| L _            |              | 16.2 -<br>16.6 =         | S7               | 100/1"                   | 1/0       | 1            | ) .    | 16.6              | REMARK 1: Auger and split spoon refusal at depth of 16.5' on possible large boulder or rock.                                                      |
|                |              |                          |                  |                          |           |              |        |                   | S7 - No Recovery  Bottom of borehole at 16.6 feet. Borehole backfilled with drill cuttings.                                                       |
|                | 195.0        |                          |                  |                          |           |              |        |                   | bottom of boreflole at 16.6 feet. boreflole backfilled with drill cuttings.                                                                       |
| 20             |              |                          |                  |                          |           |              |        |                   |                                                                                                                                                   |
|                | <u> </u>     |                          |                  |                          |           |              |        |                   |                                                                                                                                                   |
|                | _            |                          |                  |                          |           |              |        |                   |                                                                                                                                                   |
| -              | -            |                          |                  |                          |           |              |        |                   |                                                                                                                                                   |
| <b> </b> -     | -            |                          |                  |                          |           |              |        |                   |                                                                                                                                                   |
| -              | 190.0        |                          |                  |                          |           |              |        |                   |                                                                                                                                                   |
| 25             |              |                          |                  |                          |           |              |        |                   |                                                                                                                                                   |

#### **GENERAL NOTES:**

#### **BORING LOG**

**B-104-OW** 

PAGE 1 OF 1

PROJECT NAME: Proposed Green Meadow Elementary School CLIENT: Mount Vernon Group Architects, Inc. LGCI PROJECT NUMBER: 2201 PROJECT LOCATION: Maynard, MA DATE STARTED: 2/19/24 DATE COMPLETED: 2/20/24 DRILLING SUBCONTRACTOR: Soil X, Corp. **BORING LOCATION:** Near NW corner of eastern wing of proposed building DRILLING FOREMAN: Edwin Fajardo COORDINATES: NA **DRILLING METHOD:** Hollow Stem Auger (4-1/4" I.D.) SURFACE El.: 214 ft. (see note 1) TOTAL DEPTH: 19.2 ft. DRILL RIG TYPE/MODEL: Diedrich D-70 turbo WEATHER: 30's / Sunny HAMMER TYPE: Automatic **GROUNDWATER LEVELS:** HAMMER WEIGHT: 140 lb. **HAMMER DROP:** 30 in. ☑ **DURING DRILLING:** 19.0 ft. / El. 195.0 ft. Based on sample moisture SPLIT SPOON DIA.: 1.375 in. I.D., 2 in. O.D. **AT END OF DRILLING:** 18.5 ft. / El. 195.5 ft. CORE BARREL SIZE: NA ▼ OTHER: \_-LOGGED BY: MBH CHECKED BY: SG

| Depth (ft.)  |                  | Sample<br>Number | Blow Counts<br>(N Value) | Pen./Rec.<br>(in.) | Remark | Strata          | Depth<br>El.(ft.) | Material Description                                                                                                                                                       |
|--------------|------------------|------------------|--------------------------|--------------------|--------|-----------------|-------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| - +          | - 0              | S1               | 4-5-6-11<br>(11)         | 24/18              |        | Topsoil         | 0.3<br>213.7      | S1 - Top 4": Topsoil  Bot. 14": Silty SAND (SM), fine to medium with trace coarse, 15-20% fines, 0-5% fine subangular gravel, trace of roots, trace of wood, orange, moist |
| 210.         | 2                | S2               | 6-7-10-15<br>(17)        | 24/15              |        | Fill            | 4.0               | S2 - Silty SAND (SM), fine to medium with trace coarse, 40-45% fines, 10-15% fine subrounded gravel, trace of weathered rock, orange, moist                                |
| 5            | 4                | S3               | 12-10-12-13<br>(22)      | 24/24              |        | .00             | 210.0             | S3 - Silty SAND (SM), fine to medium, ~20% fines, 0-5% fines subangular gravel, brown, moist                                                                               |
| + +          | 6                | S4               | 18-62-36-34<br>(98)      | 24/16              |        | .0.             |                   | S4 - Well Graded SAND with Silt and Gravel (SW-SM), fine to coarse, 10-15% fines, 40-45% fine to coarse subangular gravel, brown to grey, moist                            |
| 205.         |                  |                  |                          |                    |        |                 | <u> </u><br>      |                                                                                                                                                                            |
|              | - 10<br>- 12     | S5               | 16-25-21-34<br>(46)      | 24/12              |        | Sand and Gravel |                   | S5 - Well Graded SAND with Silt and Gravel (SW-SM), fine to coarse, ~10% fines, 15-20% fine to coarse subangular gravel, brown to light brown, moist                       |
|              | -                |                  |                          |                    |        | .00             |                   |                                                                                                                                                                            |
| 15           | - 15<br>-        | S6               | 73-52-32-51<br>(84)      | 24/13              |        | .0.             |                   | S6 - Well Graded SAND with Silt and Gravel (SW-SM), fine to coarse, ~10% fines, 30-35% fine to coarse subangular gravel, brown to light brown, moist                       |
| <br> -<br> - | -<br>-<br>-<br>- | /\               | (04)                     |                    |        |                 |                   |                                                                                                                                                                            |
| 20           | 19.2             | <b>≥</b> S7      | 100/2"                   | 2/2                | 1      | , 0 0           | 19.2 ¥<br>19.2 ¥  |                                                                                                                                                                            |
|              |                  |                  |                          |                    |        |                 |                   | Bottom of borehole at 19.2 feet. Groundwater observation well installed to depth of 19.2 ft.                                                                               |
| 190.         | .0               |                  |                          |                    |        |                 |                   |                                                                                                                                                                            |
| 25           |                  |                  |                          |                    |        |                 |                   |                                                                                                                                                                            |

#### **GENERAL NOTES:**

### **BORING LOG**

B-105

PAGE 1 OF 1

| CLIENT: Mount Vernon Group Architects, Inc.                           | PROJECT NAME: Proposed Green Meadow Elementary School |  |  |  |
|-----------------------------------------------------------------------|-------------------------------------------------------|--|--|--|
| LGCI PROJECT NUMBER: 2201 P                                           | ROJECT LOCATION: _Maynard, MA                         |  |  |  |
| DATE STARTED:         2/26/24         DATE COMPLETED:         2/26/24 | DRILLING SUBCONTRACTOR: Soil X, Corp.                 |  |  |  |
| BORING LOCATION: Within western wing of proposed building             | DRILLING FOREMAN: Edwin Fajardo                       |  |  |  |
| COORDINATES: NA                                                       | DRILLING METHOD: Hollow Stem Auger (4-1/4" I.D.)      |  |  |  |
| SURFACE El.: 213 ft. (see note 1) TOTAL DEPTH: 14.7 ft.               | DRILL RIG TYPE/MODEL: Diedrich D-70 turbo             |  |  |  |
| WEATHER: 40's / Cloudy                                                | HAMMER TYPE: Automatic                                |  |  |  |
| GROUNDWATER LEVELS:                                                   | HAMMER WEIGHT: 140 lb. HAMMER DROP: 30 in.            |  |  |  |
| □ DURING DRILLING: Not Encountered                                    | SPLIT SPOON DIA.: 1.375 in. I.D., 2 in. O.D.          |  |  |  |
| lacksquare at end of drilling:                                        | CORE BARREL SIZE: NA                                  |  |  |  |
| Ţ other:                                                              | LOGGED BY: MBH CHECKED BY: SG                         |  |  |  |

| Depth<br>(ft.) | El.<br>(ft.) | Sample<br>Interval (ft.) | Sample<br>Number | Blow Counts<br>(N Value) | Pen./Rec.<br>(in.) | Remark         | trata | Depth<br>El.(ft.)   | Material Description                                                                                                                                                                                      |
|----------------|--------------|--------------------------|------------------|--------------------------|--------------------|----------------|-------|---------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                |              | 1.7-                     | S1               | 5-33-63-52/2"<br>(96)    | 20/19              | Tops           | ///   | 0.7<br>212.3<br>2.0 | S1 - Top 8": Topsoil  Bot. 11": Poorly Graded GRAVEL with Silt and Sand (GP-GM), mostly fine with coarse, subangular, ~10% fines, ~40% fine to coarse sand, brown to grey, moist (appears to be reworked) |
|                | 210.0        |                          | S2               | 30-75/2"<br>(75/2")      | 8/8                |                | .00   | 211.0               | S2 - Well Graded SAND with Silt and Gravel (SW-SM), fine to coarse, 5-10% fines, 20-25% fine to coarse gravel, light brown with orange stripes, moist                                                     |
| 5              | -            | 4-                       | S3               | 29-33-68-39<br>(101)     | 24/12              |                | .00   |                     | S3 - Poorly Graded GRAVEL with Silt and Sand (GP-GM), mostly coarse, subangular to angular, 0-5% fines, 20-25% fine to coarse sand, trace of weathered rock, brown, moist                                 |
| -              |              | 7-                       | S4               | 42-63                    | 12/11              | Sand :<br>Grav |       |                     | S4 - Well Graded SAND with Silt and Gravel (SW-SM), fine to coarse, 5-10% fines, 15-20% fine to coarse subangular gravel, grey brown, moist                                                               |
|                | 205.0        | _                        |                  |                          |                    |                | .00   |                     |                                                                                                                                                                                                           |
|                |              | 10-                      | S5               | 34-51-30-26<br>(81)      | 24/14              |                |       |                     | S5 - Well Graded SAND with Silt and Gravel (SW-SM), fine to coarse, 10-15% fines, 25-30% fine to coarse subangular gravel, grey to brown, moist                                                           |
|                | 200.0        | 12.5 -                   | C1               |                          | 18/7.5             | Boule          | er    | 12.5<br>200.5       | C1 - min/ft: 2.5, .9 Pen.: 18" Rec.: 7.5" Boulder, hard, GRANITE, medium grained, grey to white                                                                                                           |
| 1,5            | T -          | 14-<br>14.7-             | S6               | 11-100/2"<br>(100/2")    | 8/2                | Sil            |       | 199.0               | REMARK 1: Advanced roller bit from 14 ft. to 16 ft.                                                                                                                                                       |
| 15             | † -          | 14.7                     |                  | (100/2)                  | •                  |                |       | \                   | S6 - Sandy SILT with Gravel (ML), slightly plastic, 30-35% fine to coarse sand,<br>15-20% fine to coarse subangular gravel, grey brown, wet                                                               |
|                | - +          | -                        |                  |                          |                    |                |       |                     | Bottom of borehole at 14.7 feet. Backfilled borehole with drill cuttings.                                                                                                                                 |
| ļ -            | ↓ -          |                          |                  |                          |                    |                |       |                     |                                                                                                                                                                                                           |
| L              | 195.0        |                          |                  |                          |                    |                |       |                     |                                                                                                                                                                                                           |
|                |              |                          |                  |                          |                    |                |       |                     |                                                                                                                                                                                                           |
|                | † -          | 1                        |                  |                          |                    |                |       |                     |                                                                                                                                                                                                           |
| 20             | + -          | 1                        |                  |                          |                    |                |       |                     |                                                                                                                                                                                                           |
| -              | -            | -                        |                  |                          |                    |                |       |                     |                                                                                                                                                                                                           |
| -              | <u> </u>     | -                        |                  |                          |                    |                |       |                     |                                                                                                                                                                                                           |
|                | 190.0        |                          |                  |                          |                    |                |       |                     |                                                                                                                                                                                                           |
|                |              |                          |                  |                          |                    |                |       |                     |                                                                                                                                                                                                           |
| 25             | † -          | 1                        |                  |                          |                    |                |       |                     |                                                                                                                                                                                                           |

#### **GENERAL NOTES:**



### **BORING LOG**

B-106

PAGE 1 OF 1

| CLIENT: Mount Vernon Group Architects, Inc.                           | PROJECT NAME: Proposed Green Meadow Elementary School |  |  |  |
|-----------------------------------------------------------------------|-------------------------------------------------------|--|--|--|
| LGCI PROJECT NUMBER: 2201                                             | PROJECT LOCATION: Maynard, MA                         |  |  |  |
| DATE STARTED:         2/26/24         DATE COMPLETED:         2/27/24 | DRILLING SUBCONTRACTOR: Soil X, Corp.                 |  |  |  |
| BORING LOCATION: Near center of western wing of proposed building     | DRILLING FOREMAN: _Edwin Fajardo                      |  |  |  |
| COORDINATES: NA                                                       | DRILLING METHOD: Hollow Stem Auger (4-1/4" I.D.)      |  |  |  |
| SURFACE EI.: 213 ft. (see note 1) TOTAL DEPTH: 12.5 ft.               | DRILL RIG TYPE/MODEL: Diedrich D-70 turbo             |  |  |  |
| WEATHER: 40's / Sunny                                                 | HAMMER TYPE: Automatic                                |  |  |  |
| GROUNDWATER LEVELS:                                                   | HAMMER WEIGHT: 140 lb. HAMMER DROP: 30 in.            |  |  |  |
| □ DURING DRILLING: Not Encountered                                    | SPLIT SPOON DIA.: 1.375 in. I.D., 2 in. O.D.          |  |  |  |
| ▼ AT END OF DRILLING:                                                 | CORE BARREL SIZE: NA                                  |  |  |  |
| Ţ other:                                                              | LOGGED BY: MBH CHECKED BY: SG                         |  |  |  |
| ۲ (۴)                                                                 |                                                       |  |  |  |

| Depth<br>(ft.) | El.<br>(ft.)        | Sample<br>Interval (fl | Sample<br>Number | Blow Counts<br>(N Value) | Pen./Rec.<br>(in.) | Remark | Strata                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Depth<br>El.(ft.) | Material Description                                                                                                                    |
|----------------|---------------------|------------------------|------------------|--------------------------|--------------------|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------|
|                |                     | 0                      | \/               | 5.7.0.7                  |                    | Т      | Γopsoil \(\lambda \lambda \lamb | 0.7               | S1 - Top 8": Topsoil                                                                                                                    |
|                |                     |                        | X S1             | 5-7-8-7<br>(15)          | 24/16              | S      | Subsoil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2.0 211.0         | Bot. 8": Silty SAND (SM), fine to medium, 20-25% fines, 10-15% fine to coarse subangular gravel, trace of weathered rock, orange, moist |
|                | 210.0               | 2 <del>-</del>         | S2               | 13-15-14-23<br>(29)      | 24/14              |        | .00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                   | S2 - Silty SAND (SM), fine to coarse, 15-20% fines, 5-10% fine subangular gravel, brown, moist                                          |
| 5              |                     | 6+                     | S3               | 23-18-21-53<br>(39)      | 24/10              |        | .0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                   | S3 - Silty SAND (SM), fine to coarse, 15-20% fines, 5-10% fine subangular gravel, brown to orange, moist                                |
| 10             | - –<br>205.0<br>- – |                        |                  |                          |                    |        | and and O (Gravel O )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                   |                                                                                                                                         |
|                | <br>                | 10-                    | S4               | 38-51-50/4"<br>(101/10") | 16/16              |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                   | S4 - Well Graded SAND with Silt and Gravel (SW-SM), fine to coarse, 10-15% fines, 25-30% fine to coarse subangular gravel, grey, moist  |
| - +            | 200.0               |                        |                  |                          |                    |        | . ^ °                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 12.5              | Bottom of borehole at 12.5 feet. Backfilled borehole with drill cuttings.                                                               |
| - +            |                     |                        |                  |                          |                    |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                   |                                                                                                                                         |
| 15             |                     |                        |                  |                          |                    |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                   |                                                                                                                                         |
|                |                     |                        |                  |                          |                    |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                   |                                                                                                                                         |
| - +            | 195.0               |                        |                  |                          |                    |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                   |                                                                                                                                         |
| 20             |                     |                        |                  |                          |                    |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                   |                                                                                                                                         |
|                |                     |                        |                  |                          |                    |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                   |                                                                                                                                         |
| -<br>- +       | 190.0               |                        |                  |                          |                    |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                   |                                                                                                                                         |
| 25             |                     |                        |                  |                          |                    |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                   |                                                                                                                                         |

#### **GENERAL NOTES:**

#### **BORING LOG**

B-107

PAGE 1 OF 1

PROJECT NAME: Proposed Green Meadow Elementary School CLIENT: Mount Vernon Group Architects, Inc. LGCI PROJECT NUMBER: 2201 PROJECT LOCATION: Maynard, MA DATE COMPLETED: 2/26/24 DATE STARTED: 2/26/24 DRILLING SUBCONTRACTOR: Soil X, Corp. BORING LOCATION: Near center of western wing of proposed building DRILLING FOREMAN: Edwin Fajardo COORDINATES: NA **DRILLING METHOD:** Hollow Stem Auger (4-1/4" I.D.) SURFACE El.: 213 ft. (see note 1) TOTAL DEPTH: 15.2 ft. DRILL RIG TYPE/MODEL: Diedrich D-70 turbo WEATHER: 40's / Cloudy **HAMMER TYPE:** Automatic **GROUNDWATER LEVELS: HAMMER WEIGHT:** 140 lb. **HAMMER DROP:** 30 in. ☑ **DURING DRILLING:** 15.0 ft. / El. 198.0 ft. Based on sample moisture **SPLIT SPOON DIA.:** <u>1.375 in. I.D., 2 in</u>. O.D. **T** AT END OF DRILLING: 14.7 ft. / El. 198.3 ft. CORE BARREL SIZE: NA ¥ other: \_-LOGGED BY: MBH CHECKED BY: SG

|             |                          |                  |                          |                    |        |          |                   | 100012 211 <u></u>                                                                                                                                                   |
|-------------|--------------------------|------------------|--------------------------|--------------------|--------|----------|-------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Depth (ft.) | Sample<br>Interval (ft.) | Sample<br>Number | Blow Counts<br>(N Value) | Pen./Rec.<br>(in.) | Remark | Strata   | Depth<br>El.(ft.) | Material Description                                                                                                                                                 |
|             | 0                        | \ /              |                          |                    |        | Topsoil  | 212.7             | S1 - Top 4": Topsoil                                                                                                                                                 |
|             | 2.                       | S1               | 3-6-11-11<br>(17)        | 24/20              |        | . 0.     | 212.7             | Bot. 16": Poorly Graded SAND with Silt (SP-SM), fine to medium with trace coarse, ~10% fines, 0-5% fine to coarse subangular gravel, light brown, moist              |
| 210.0       |                          | S2               | 9-16-16-17<br>(32)       | 24/18              |        | . 0.     |                   | S2 - Poorly Graded SAND with Silt (SP-SM), fine to medium with trace coarse, ~10% fines, 5-10% fine to coarse subangular gravel, light brown, moist                  |
| 5           | 4-                       | S3               | 12-12-23-36<br>(35)      | 24/21              |        | . 0 .    |                   | S3 - Poorly Graded SAND with Silt (SP-SM), fine to medium with trace coarse, 10-15% fines, 5-10% fine to coarse gravel, light brown, moist                           |
|             | 7.5                      | S4               | 58-47-79<br>(126)        | 18/15              |        | Sand and |                   | S4 - Well Graded SAND with Silt and Gravel (SW-SM), fine to coarse, 5-10% fines, 35-40% fine to coarse angular gravel, trace of weathered rock, brown to grey, moist |
|             | 10-                      | S5               | 38-100/2"<br>(100/2")    | 8/8                |        | Gravel   |                   | S5 - Well Graded SAND with Silt and Gravel (SW-SM), fine to coarse, 5-10% fines, 35-40% fine to coarse angular gravel, trace of weathered rock, brown to             |
| 200.0       | 0                        |                  |                          |                    |        |          |                   | grey, moist                                                                                                                                                          |
| 15          | 1515                     | ≥ \ S6           | 105/2"                   | 2/2                |        |          | 15.2              | S6 - Silty SAND with Gravel (SM), fine to coarse, 25-30% fines, 15-20% fine to                                                                                       |
|             |                          |                  |                          |                    |        |          | `                 | coarse subangular gravel, trace of weathered rock, brown, wet                                                                                                        |
|             |                          |                  |                          |                    |        |          |                   | Bottom of borehole at 15.2 feet. Backfilled borehole with drill cuttings.                                                                                            |
| <b> </b>    | 1                        |                  |                          |                    |        |          |                   |                                                                                                                                                                      |
| 195.0       | <u>)</u>                 |                  |                          |                    |        |          |                   |                                                                                                                                                                      |
|             |                          |                  |                          |                    |        |          |                   |                                                                                                                                                                      |
| <b> </b>    | 1                        |                  |                          |                    |        |          |                   |                                                                                                                                                                      |
| 20          | 4                        |                  |                          |                    |        |          |                   |                                                                                                                                                                      |
|             |                          |                  |                          |                    |        |          |                   |                                                                                                                                                                      |
|             |                          |                  |                          |                    |        |          |                   |                                                                                                                                                                      |
| <b> </b>    | 1                        |                  |                          |                    |        |          |                   |                                                                                                                                                                      |
| 190.0       | )                        |                  |                          |                    |        |          |                   |                                                                                                                                                                      |
| L           |                          |                  |                          |                    |        |          |                   |                                                                                                                                                                      |
| 25          |                          |                  |                          |                    |        |          |                   |                                                                                                                                                                      |

#### **GENERAL NOTES:**

#### **BORING LOG**

B-108

PAGE 1 OF 1

PROJECT NAME: Proposed Green Meadow Elementary School CLIENT: Mount Vernon Group Architects, Inc. **LGCI PROJECT NUMBER: 2201** PROJECT LOCATION: Maynard, MA DATE COMPLETED: 2/27/24 DATE STARTED: 2/27/24 DRILLING SUBCONTRACTOR: Soil X, Corp. BORING LOCATION: Near center of western wing of proposed building DRILLING FOREMAN: Edwin Fajardo COORDINATES: NA DRILLING METHOD: Hollow Stem Auger (4-1/4" I.D.) SURFACE El.: 214 ft. (see note 1) \_\_\_\_\_ TOTAL DEPTH: \_14.7 ft. DRILL RIG TYPE/MODEL: Diedrich D-70 turbo WEATHER: 40's / Sunny **HAMMER TYPE:** Automatic **GROUNDWATER LEVELS:** HAMMER WEIGHT: 140 lb. **HAMMER DROP:** 30 in. DURING DRILLING: 14.5 ft. / El. 199.5 ft. Based on sample moisture SPLIT SPOON DIA.: 1.375 in. I.D., 2 in. O.D. **T** AT END OF DRILLING: 13.0 ft. / El. 201.0 ft. CORE BARREL SIZE: NA ▼ OTHER: \_-LOGGED BY: MBH CHECKED BY: SG

| Depth (ft.)    | Sample<br>Interval (ft.) | Sample<br>Number | Blow Counts<br>(N Value) | Pen./Rec.<br>(in.) | Remark        | Strata  | Depth<br>El.(ft.)            | Material Description                                                                                                                                                                                                                                                                                                                  |
|----------------|--------------------------|------------------|--------------------------|--------------------|---------------|---------|------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| -              |                          | S1               | 1-2-1-2<br>(3)           | 24/18              | Top<br>Sub    |         | 2.0                          | S1 - Top 5": Topsoil  Bot. 13": Silty SAND (SM), fine to medium, 20-25% fines, 0-5% fine subangular gravel, trace of roots, orange, moist                                                                                                                                                                                             |
| 210.0          | 2-                       | S2               | 5-6-7-7<br>(13)          | 24/17              | Sand          | and o   | 212.0                        | S2 - Silty SAND (SM), fine to medium, 15-20% fines, light brown, moist                                                                                                                                                                                                                                                                |
| 5              | 4-                       | S3               | 6-8-30-70/3"<br>(38)     | 21/21              | Gra           | vel . O |                              | S3 - Sandy SILT (ML), slightly plastic, 35-40% fine to coarse sand, ~20% fine to coarse subangular gravel, brown, moist                                                                                                                                                                                                               |
| - + -<br>- + - | 5.8                      |                  |                          |                    | 1 Bou         | lder    | 208.0                        | REMARK 1: Advanced roller bit from 6.0 ft. to 9.0 ft.                                                                                                                                                                                                                                                                                 |
| 10             | 9-3-                     | ≥≤( S4           | 100/3"                   | 3/3                | 2 Sand<br>Gra | and     | 9.0<br>205.0<br>9.2<br>204.8 | S4 - Well Graded SAND with Silt and Gravel (SW-SM), fine to coarse, 5-10% fines, 15-20% fine to coarse subangular gravel, light brown, moist REMARK 2: Split spoon refusal at 9.2 feet. Drillers advanced roller bit to 10.5 /ft., and then started rock core.                                                                        |
| 200.0          |                          | C1               |                          | 48/37              | Bou           | lder    | ¥                            | C1 - min/ft: 4.4, 3.3, 3.7, 1.8 RQD: 41.6%<br>Hard, slightly to moderately weathered, moderately fractured, grey to orange, coarse grained, GRANITE                                                                                                                                                                                   |
| 15             | 14: <del>5</del> =       | <u>\$5</u>       | 100/2"                   | 2/2                | 3 Sand<br>Gra | and     | 14.5 ∇<br>199.5 Λ<br>14.7    | S5 - Silty SAND with Gravel (SM), fine to coarse, 20-25% fines, ~15% fine to coarse subangular gravel, trace of weathered rock, light brown to grey, wet REMARK 3: Split spoon refusal on possible boulders or rocks, boring terminated at depth of 14.7'.  Bottom of borehole at 14.7 feet. Backfilled borehole with drill cuttings. |
| 195.0          |                          |                  |                          |                    |               |         |                              |                                                                                                                                                                                                                                                                                                                                       |
| -              |                          |                  |                          |                    |               |         |                              |                                                                                                                                                                                                                                                                                                                                       |
| 190.0          |                          |                  |                          |                    |               |         |                              |                                                                                                                                                                                                                                                                                                                                       |

#### **GENERAL NOTES:**

#### **BORING LOG**

B-109

PAGE 1 OF 1

PROJECT NAME: Proposed Green Meadow Elementary School CLIENT: Mount Vernon Group Architects, Inc. LGCI PROJECT NUMBER: 2201 PROJECT LOCATION: Maynard, MA DATE STARTED: 2/23/24 DATE COMPLETED: 2/23/24 DRILLING SUBCONTRACTOR: Soil X, Corp. BORING LOCATION: Within western wing of proposed building DRILLING FOREMAN: Edwin Fajardo COORDINATES: NA DRILLING METHOD: HSA (4-1/4" I.D.) then 3-inch casing SURFACE El.: 222 ft. (see note 1) TOTAL DEPTH: 16.5 ft. DRILL RIG TYPE/MODEL: Diedrich D-70 turbo WEATHER: 30's / Rainy **HAMMER TYPE:** Automatic **GROUNDWATER LEVELS:** HAMMER WEIGHT: 140 lb. HAMMER DROP: 30 in. abla during drilling: \_-\_ SPLIT SPOON DIA.: 1.375 in. I.D., 2 in. O.D. **T** AT END OF DRILLING: 8.4 ft. / El. 213.6 ft. CORE BARREL SIZE: NA ▼ OTHER: -LOGGED BY: MBH CHECKED BY: SG

| Depth<br>(ft.) | El.<br>(ft.) | Sample<br>Interval (ft.) | Sample<br>Number | Blow Counts<br>(N Value) | Pen./Rec.<br>(in.) | Remark |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Depth<br>El.(ft.) | Material Description                                                                                                                                     |
|----------------|--------------|--------------------------|------------------|--------------------------|--------------------|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|
|                |              | 0.5                      | <b>™</b> G1      |                          | 6/6                | 1      | Topsoil \( \lambda \lamb | 0.5               | G1 - Topsoil                                                                                                                                             |
| L              | L _          | 0.5                      | Ν /              |                          |                    | 7'     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 221.5             | REMARK 1: Topsoil removed during tree clearing, estimated .5' of topsoil.                                                                                |
| -              | 220.0        |                          | S1               | 1-1-1-1<br>(2)           | 24/14              |        | Subsoil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                   | S1 - Poorly Graded SAND with Silt (SP-SM), fine to medium, ~10% fines, 0-5% fine subangular gravel, trace of organic soil, trace of roots, orange, moist |
| -              |              | 2.5                      | S2               | 1-2-2-2<br>(4)           | 24/17              |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4.0               | S2 - Poorly Graded SAND with Silt (SP-SM), mostly fine with trace medium to coarse, 5-10% fines, trace of roots, light brown, moist                      |
| F -            | + -          |                          | / \              | ( . ,                    |                    |        | 000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 218.0             |                                                                                                                                                          |
| 5              | -            | 4.5                      | S3               | 7-23-22-82/2"<br>(45)    | 20/19              |        | Sand and Gravel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                   | S3 - Well Graded GRAVEL with Silt and Sand (GW-GM), fine to coarse, subangular, 10-15% fines, 30-35% fine to coarse sand, brown to dark grey, moist      |
|                | 215.0        | 6.2                      |                  |                          |                    | 2      | 000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 6.5               | REMARK 2: HSA Refusal on possible rock at a depth of 6.5 feet. Driller advanced 3-inch casing to perform a rock core.                                    |
|                |              |                          |                  |                          |                    |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1                 | C1 - min/ft: 5.1, 3.9, 4.2, 4.8, 4.9 RQD: 76.7%                                                                                                          |
|                | _            |                          |                  |                          |                    |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Ţ                 | Hard to Very Hard, slightly weathered, slightly fractured, orange to grey, medium grained, GRANITE                                                       |
|                | <u> </u>     |                          | C1               |                          | 60/52              |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                   |                                                                                                                                                          |
| 10             |              |                          |                  |                          |                    |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                   |                                                                                                                                                          |
| 10             |              |                          |                  |                          |                    |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                   |                                                                                                                                                          |
|                |              |                          |                  |                          |                    |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                   |                                                                                                                                                          |
| Γ -            | _            | 11.5                     |                  |                          |                    |        | Rock                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | J                 |                                                                                                                                                          |
| - ↓            | 210.0        | 11.5                     |                  |                          |                    |        | ROCK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\{ \}$           | C2 - min/ft: 4.1, 4.5, 4.2, 3.6, 3.7 RQD: 59.2%                                                                                                          |
|                |              |                          |                  |                          |                    |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | )                 | Hard to Very Hard, slightly weathered, slightly fractured, orange to grey, medium grained, GRANITE                                                       |
| <b>-</b>       |              |                          |                  |                          |                    |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                   |                                                                                                                                                          |
|                |              |                          | 00               |                          | 00/40              |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                   |                                                                                                                                                          |
|                | T -          |                          | C2               |                          | 60/46              |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1                 |                                                                                                                                                          |
| 15             | Ļ _          |                          |                  |                          |                    |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                   |                                                                                                                                                          |
|                |              |                          |                  |                          |                    |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                   |                                                                                                                                                          |
| -              |              |                          |                  |                          |                    |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 16.5              |                                                                                                                                                          |
|                | 205.0        | 16.5                     |                  | -                        |                    | 1      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 10.3              | Bottom of borehole at 16.5 feet. Backfilled borehole with drill cuttings.                                                                                |
|                |              |                          |                  |                          |                    |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                   | · ·                                                                                                                                                      |
| L -            | Ļ -          |                          |                  |                          |                    |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                   |                                                                                                                                                          |
|                |              |                          |                  |                          |                    |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                   |                                                                                                                                                          |
| <b>-</b>       | + -          |                          |                  |                          |                    |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                   |                                                                                                                                                          |
| 20             |              |                          |                  |                          |                    |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                   |                                                                                                                                                          |
|                | Γ -          |                          |                  |                          |                    |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                   |                                                                                                                                                          |
| L -            | Ļ _          |                          |                  |                          |                    |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                   |                                                                                                                                                          |
|                | 200.0        |                          |                  |                          |                    |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                   |                                                                                                                                                          |
| -              | 200.0        |                          |                  |                          |                    |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                   |                                                                                                                                                          |
|                |              |                          |                  |                          |                    |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                   |                                                                                                                                                          |
|                | Τ -          |                          |                  |                          |                    |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                   |                                                                                                                                                          |
| L -            | Ļ -          |                          |                  |                          |                    |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                   |                                                                                                                                                          |
| 25             |              |                          |                  |                          |                    |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                   |                                                                                                                                                          |
| 20             | 1            |                          | 1                |                          | 1                  | 1      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1                 |                                                                                                                                                          |

#### **GENERAL NOTES:**

#### **BORING LOG**

B-110

PAGE 1 OF 1

PROJECT NAME: Proposed Green Meadow Elementary School CLIENT: Mount Vernon Group Architects, Inc. LGCI PROJECT NUMBER: 2201 PROJECT LOCATION: Maynard, MA DATE STARTED: 2/22/24 DATE COMPLETED: 2/22/24 DRILLING SUBCONTRACTOR: Soil X, Corp. BORING LOCATION: Within western wing of proposed building DRILLING FOREMAN: Edwin Fajardo COORDINATES: NA DRILLING METHOD: HSA (4-1/4" I.D.) then 3-inch casing SURFACE El.: 223 ft. (see note 1) \_\_\_\_\_ TOTAL DEPTH: \_15 ft. DRILL RIG TYPE/MODEL: Diedrich D-70 turbo WEATHER: 30's / Sunny **HAMMER TYPE:** Automatic **GROUNDWATER LEVELS:** HAMMER WEIGHT: 140 lb. HAMMER DROP: 30 in. ✓ **DURING DRILLING:** Not Encountered SPLIT SPOON DIA.: 1.375 in. I.D., 2 in. O.D. **T** AT END OF DRILLING: 15.0 ft. / El. 208.0 ft. CORE BARREL SIZE: NA V OTHER: -LOGGED BY: MBH CHECKED BY: SG

| Depth<br>(ft.) | El.<br>(ft.) | Sample<br>Interval (ft.) | Sample<br>Number | Blow Counts<br>(N Value) | Pen./Rec.<br>(in.) | Remark | Strata    | Depth<br>El.(ft. | Material Description                                                                                                                                                                                          |
|----------------|--------------|--------------------------|------------------|--------------------------|--------------------|--------|-----------|------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                |              | 0                        | \ /              |                          |                    | T      | Topsoil A |                  | S1 - Top 4": Topsoil                                                                                                                                                                                          |
| + +            |              | 2                        | S1               | 1-1-1-2<br>(2)           | 24/14              |        |           | 222.7            | Bot. 10": Silty SAND with Silt (SM), fine to medium, 15-20% fines, 0-5% fine subangular gravel, trace of organic soil, trace of roots, orange, moist                                                          |
|                | 220.0        | 2-                       | S2               | 2-2-5-16<br>(7)          | 24/16              | S      | Subsoil   | 4.0              | S2 - Sandy SILT (ML), nonplastic, 40-45% fine sand, trace of roots, orange brown, moist                                                                                                                       |
| 5              | · -          | 4-                       | S3               | 22-19-14-12<br>(33)      | 24/15              |        |           | 219.0            | S3 - Well Graded SAND with Silt and Gravel (SW-SM), fine to coarse, 5-10% fines, 25% fine subangular gravel, brown, moist                                                                                     |
|                | 215.0        | 6-<br>8-                 | S4               | 14-16-16-18<br>(32)      | 24/17              | Sa     | . 0       | 0                | S4 - Well Graded SAND with Silt and Gravel (SW-SM), fine to coarse, ~10% fines, 15-20% fine to coarse subangular gravel, brown, moist                                                                         |
| 10             |              | 10-                      |                  |                          |                    | 1_     | h         | ° 10.0           |                                                                                                                                                                                                               |
|                | 210.0        |                          | C1               |                          | 60/60              | ]      | Rock      | 213.0            | ground surface and rock coring advanced.  C1 - min/ft: 4.9, 4.4, 4.2, 4.9, 6.2 RQD: 65.8%  Hard to very hard, moderately to slightly weathered, moderately fractured, orange to grey, medium grained, GRANITE |
| 20             | 205.0        | 15-                      |                  |                          |                    |        |           | 15.0             | Bottom of borehole at 15.0 feet. Backfilled borehole with drill cuttings.                                                                                                                                     |

#### **GENERAL NOTES:**

#### **BORING LOG**

**B-111** PAGE 1 OF 1

CLIENT: Mount Vernon Group Architects, Inc.

PROJECT NAME: Proposed Green Meadow Elementary School
PROJECT LOCATION: Maynard, MA

DATE STARTED: 2/22/24

DATE COMPLETED: 2/22/24

DATE COMPLETED: 2/22/24

DATE STARTED: 2/22/24 DATE COMPLETED: 2/22/24

BORING LOCATION: Near NE corner of western wing of proposed building

COORDINATES: NA

SUPERACE Et a 2/24 ft (coordet a) TOTAL DEPTH: 144 ft

SURFACE EI.: 224 ft. (see note 1) TOTAL DEPTH: 14 ft.

WEATHER: 30's / Sunny
GROUNDWATER LEVELS:

□ DURING DRILLING: Not Encountered

**AT END OF DRILLING:** 12.5 ft. / El. 211.5 ft.

▼ OTHER: \_-

DRILLING SUBCONTRACTOR: Soil X, Corp.

DRILLING FOREMAN: Edwin Fajardo

DRILLING METHOD: HSA (4-1/4" I.D.) then 3-inch casing

DRILL RIG TYPE/MODEL: Diedrich D-70 turbo

HAMMER TYPE: Automatic

**HAMMER WEIGHT:** 140 lb. **HAMMER DROP:** 30 in.

**SPLIT SPOON DIA.:** <u>1.375 in. I.D., 2 in. O.D.</u> **CORE BARREL SIZE:** <u>2 in. I.D., 2.875 in. O.D.</u>

LOGGED BY: MBH CHECKED BY: SG

| Depth<br>(ft.) | El.<br>(ft.) | Sample<br>Interval (ft.) | Sample<br>Number | Blow Counts<br>(N Value) | Pen./Rec.<br>(in.) | Remark | Strat              |                             | Depth<br>El.(ft.) | Material Description                                                                                                                                                                                                                                                                                                                                                                                          |
|----------------|--------------|--------------------------|------------------|--------------------------|--------------------|--------|--------------------|-----------------------------|-------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                |              | 0                        | \ /              |                          |                    |        | Topsoil            | 7, 18. 1                    | 0.5               | S1 - Top 6": Topsoil                                                                                                                                                                                                                                                                                                                                                                                          |
| -              |              | 2 -                      | S1               | 2-3-3-2<br>(6)           | 24/17              |        | Subsoil            |                             | 223.5             | Bot. 11": Silty SAND (SM), fine to medium, 20-25% fines, 0-5% fine subangular gravel, trace of roots, orange brown, moist                                                                                                                                                                                                                                                                                     |
|                | 220.0        |                          | S2               | 7-17-35-21<br>(52)       | 24/17              |        |                    | , 0 c                       | 222.0             | S2 - Silty SAND with Gravel (SM), fine to coarse, 15-20% fines, 15-20% fine to coarse subangular gravel, brown, moist                                                                                                                                                                                                                                                                                         |
| 5              |              | 4-                       | S3               | 19-19-20-16<br>(39)      | 24/20              |        | Sand and<br>Gravel | . V.                        |                   | S3 - Silty SAND (SM), fine to medium with trace coarse, 15-20% fines, 5-10% fine subangular gravel, grey to orange, moist                                                                                                                                                                                                                                                                                     |
| -              |              | 7.5                      | S4               | 9-21-108<br>(129)        | 18/15              |        |                    | · 0.                        |                   | S4 - Silty SAND (SM), fine to medium with trace coarse, 15-20% fines, ~10% fine to coarse subrounded gravel, trace of roots, grey to orange, moist                                                                                                                                                                                                                                                            |
| -              | 215.0        | 9-                       |                  | _                        |                    | 1      |                    | 000                         | 9.0               | REMARK 1: HSA refusal at depth of 9' on possible rock, advanced 3-inch                                                                                                                                                                                                                                                                                                                                        |
| 10             |              | 10-                      | C1               | -                        | 12/12              | 2      |                    | $\mathcal{L}_{\mathcal{L}}$ | 1                 | C1 - min/ft: 11.9 RQD: 45.8%                                                                                                                                                                                                                                                                                                                                                                                  |
|                | 210.0        |                          | C2               |                          | 48/47.5            |        | Rock               |                             | ¥                 | Hard, slightly weathered, moderately fractured, grey to tan, coarse grained, GRANITE  REMARK 2: Core barrel jamming and terminated C1 at depth of 10'.  C2 - min/ft: 5.6, 7.0, 3.9, 4.1 RQD: 73.9%  Top 26": Hard, slightly weathered, moderately to slightly fractured, grey to tan, coarse grained, GRANITE  Bot. 22": Hard, slightly weathered, slightly fractured, grey to white, medium grained, GRANITE |
| 15             |              | 14-                      |                  |                          |                    | 3      |                    |                             | 14.0              | REMARK 3: Core barrel jamming and terminated C2 at depth of 14'.  Bottom of borehole at 14.0 feet. Backfilled borehole with drill cuttings and 1 bag of sand.                                                                                                                                                                                                                                                 |
| -              |              |                          |                  |                          |                    |        |                    |                             |                   |                                                                                                                                                                                                                                                                                                                                                                                                               |
| -              | 205.0        |                          |                  |                          |                    |        |                    |                             |                   |                                                                                                                                                                                                                                                                                                                                                                                                               |
| Γ -            |              |                          |                  |                          |                    |        |                    |                             |                   |                                                                                                                                                                                                                                                                                                                                                                                                               |
| 20             | ļ _          |                          |                  |                          |                    |        |                    |                             |                   |                                                                                                                                                                                                                                                                                                                                                                                                               |
| 1              |              |                          |                  |                          |                    |        |                    |                             |                   |                                                                                                                                                                                                                                                                                                                                                                                                               |
| <b>-</b>       | -            |                          |                  |                          |                    |        |                    |                             |                   |                                                                                                                                                                                                                                                                                                                                                                                                               |
|                | -            |                          |                  |                          |                    |        |                    |                             |                   |                                                                                                                                                                                                                                                                                                                                                                                                               |
| -              | 200.0        |                          |                  |                          |                    |        |                    |                             |                   |                                                                                                                                                                                                                                                                                                                                                                                                               |
| -              | 200.0        |                          |                  |                          |                    |        |                    |                             |                   |                                                                                                                                                                                                                                                                                                                                                                                                               |
| 25             |              |                          |                  |                          |                    |        |                    |                             |                   |                                                                                                                                                                                                                                                                                                                                                                                                               |

#### **GENERAL NOTES:**

#### **BORING LOG**

B-112

PAGE 1 OF 1

PROJECT NAME: Proposed Green Meadow Elementary School CLIENT: Mount Vernon Group Architects, Inc. LGCI PROJECT NUMBER: 2201 PROJECT LOCATION: Maynard, MA DATE COMPLETED: 2/21/24 DATE STARTED: 2/21/24 DRILLING SUBCONTRACTOR: Soil X, Corp. BORING LOCATION: Near NW corner of western wing of proposed building **DRILLING FOREMAN:** Edwin Fajardo COORDINATES: NA DRILLING METHOD: Drive and wash with 4-inch casing SURFACE El.: 230 ft. (see note 1) TOTAL DEPTH: 16 ft. DRILL RIG TYPE/MODEL: Diedrich D-70 turbo WEATHER: 30's / Sunny HAMMER TYPE: Automatic **GROUNDWATER LEVELS: HAMMER WEIGHT:** 140 lb. **HAMMER DROP:** 30 in. □ DURING DRILLING: Not Encountered SPLIT SPOON DIA.: 1.375 in. I.D., 2 in. O.D. **T** AT END OF DRILLING: 12.1 ft. / El. 217.9 ft. CORE BARREL SIZE: 2 in. I.D., 2.875 in. O.D.  $oldsymbol{\varPsi}$  other:  $\_$ LOGGED BY: MBH CHECKED BY: SG

| Depth<br>(ft.) | EI.<br>(ft.) | Sample<br>Interval (ft.) | Sample<br>Number | Blow Counts<br>(N Value) | Pen./Rec.<br>(in.) | Remark | Strata          | Depth<br>El.(ft.) | Material Description                                                                                                                                                                                                                                                            |
|----------------|--------------|--------------------------|------------------|--------------------------|--------------------|--------|-----------------|-------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                |              | 0                        | \ /              |                          |                    |        | Topsoil A       | 229.8             | S1 - Top 2": Topsoil                                                                                                                                                                                                                                                            |
| -              | † -          | 2                        | S1               | 1-1-15-11<br>(16)        | 24/4               |        | Subsoil         |                   | Bot. 2": Silty SAND with Gravel (SM), fine to medium, 20-25% fines, 15-20% fine to coarse angular gravel, trace of organic soil, trace of roots, orange to brown, moist                                                                                                         |
| -              |              | 2-                       | S2               | 8-6-12-19<br>(18)        | 24/19              |        | , O°            | 2.5<br>227.5      | S2 - Top 6": Silty SAND (SM), fine to medium, 15-20% fines, 5-10% fine to coarse angular gravel, trace of organic soil, trace of roots, orange to brown, moist                                                                                                                  |
| <br>5          | 225.0        | 4.8                      | S3               | 21-100/3"<br>(100/3")    | 9/9                |        | Sand and Gravel |                   | Bot. 13": Silty SAND with Gravel (SM), fine to coarse, 30-35% fines, ~15% fine subangular gravel, trace of roots, moist S3 - Well Graded SAND with Silt and Gravel (SW-SM), fine to coarse, ~10% fines, 25-30% fine to coarse subangular gravel, trace of weatherd rock, brown, |
|                |              |                          |                  |                          |                    |        | 20              | 5.5<br>224.5      | moist gravel, trace or recurrence to the moist                                                                                                                                                                                                                                  |
|                |              | 6-                       | C1               |                          | 60/56              |        |                 |                   | C1 - min/ft: 3.3, 5.4, 4.5, 5.1, 6.1 Pen.: 60" Rec.: 56" RQD: 52.5% Hard to very hard, slightly to moderately weathered, moderately fractured, grey orange, medium grained, GRANITE                                                                                             |
| 10             | 220.0        |                          |                  |                          |                    |        |                 |                   |                                                                                                                                                                                                                                                                                 |
|                |              | 11-                      |                  |                          |                    |        | Rock            | ▼                 | C2 - min/ft: 5.0, 3.9, 5.2, 6.6, 9.4 Pen.: 60" Rec.: 50.5" RQD: 51.6% Hard to very hard, slightly weathered, slightly fractured, orange to grey, medium grained, GRANITE                                                                                                        |
|                | 215.0        |                          | C2               |                          | 60/50.5            |        |                 | 16.0              |                                                                                                                                                                                                                                                                                 |
| -              | <u> </u>     | 16-                      |                  |                          |                    |        |                 | 10.0              | Bottom of borehole at 16.0 feet. Backfilled borehole with drill cuttings.                                                                                                                                                                                                       |
| -              |              |                          |                  |                          |                    |        |                 |                   |                                                                                                                                                                                                                                                                                 |
| <b>†</b> -     | † -          |                          |                  |                          |                    |        |                 |                   |                                                                                                                                                                                                                                                                                 |
| 20             | 210.0        |                          |                  |                          |                    |        |                 |                   |                                                                                                                                                                                                                                                                                 |
| -              | <u> </u>     |                          |                  |                          |                    |        |                 |                   |                                                                                                                                                                                                                                                                                 |
| -              | -            |                          |                  |                          |                    |        |                 |                   |                                                                                                                                                                                                                                                                                 |
| -              | -            |                          |                  |                          |                    |        |                 |                   |                                                                                                                                                                                                                                                                                 |
|                |              |                          |                  |                          |                    |        |                 |                   |                                                                                                                                                                                                                                                                                 |
| 25             | 205.0        |                          |                  |                          |                    |        |                 |                   |                                                                                                                                                                                                                                                                                 |

#### **GENERAL NOTES:**

### **BORING LOG**

B-113

PAGE 1 OF 1

| CLIENT: Mount Vernon Group Architects, Inc.                           | PROJECT NAME: Proposed Green Meadow Elementary School |
|-----------------------------------------------------------------------|-------------------------------------------------------|
| LGCI PROJECT NUMBER: 2201                                             | PROJECT LOCATION: Maynard, MA                         |
| DATE STARTED:         2/23/24         DATE COMPLETED:         2/23/24 | DRILLING SUBCONTRACTOR: Soil X, Corp.                 |
| BORING LOCATION: Within proposed roadway                              | DRILLING FOREMAN: Edwin Fajardo                       |
| COORDINATES: NA                                                       | DRILLING METHOD: HSA (4-1/4" I.D.) then 3-inch casing |
| SURFACE El.: 217 ft. (see note 1) TOTAL DEPTH: 16 ft.                 | DRILL RIG TYPE/MODEL: Diedrich D-70 turbo             |
| WEATHER: 30's / Rainy                                                 | HAMMER TYPE: Automatic                                |
| GROUNDWATER LEVELS:                                                   | HAMMER WEIGHT: 140 lb. HAMMER DROP: 30 in.            |
| □ DURING DRILLING: Not Encountered                                    | SPLIT SPOON DIA.: 1.375 in. I.D., 2 in. O.D.          |
| lacksquare at end of drilling:                                        | CORE BARREL SIZE: NA                                  |
| Ţ other:                                                              | LOGGED BY: MBH CHECKED BY: SG                         |

| Depth (ft.) (ft.) Sample Numl (ft.)       |                     | Pen./Rec. | 4               | Depth<br>El.(ft.) | Material Description                                                                                                                                                                                                                                                                    |
|-------------------------------------------|---------------------|-----------|-----------------|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 215.0                                     | 1 1-1-1-1 (2)       | 24/12     | Subsoil Subsoil | 2.0               | S1 - Top 4": Topsoil  Bot. 8": Silty SAND (SM), fine to medium, 15-20% fines, trace of organic soil, trace of roots, trace of wood, orange, moist                                                                                                                                       |
|                                           | 2 2-4-8-15 (12)     | 24/20     | 0               | 215.0             | S2 - Poorly Graded SAND with Silt and Gravel (SP-SM), fine to medium with trace coarse, 10-15% fines, ~15% fine to coarse subangular gravel, light brown, moist                                                                                                                         |
| 5 5.5                                     | 3 13-14-87<br>(101) | 18/8      | Sand and Gravel | 2.                | S3 - Well Graded SAND with Silt and Gravel (SW-SM), fine to coarse, 10-15% fines, 25-30% fine to coarse subangular gravel, brown to light brown, moist                                                                                                                                  |
| 210.0                                     | 1                   | 60/60     |                 | 6.0 211.0         | REMARK 1: HSA refusal at depth of 6' on possible rock, advanced 3-inch casing to perform a rock core.  C1 - min/ft: 3.5, 2.9, 2.8, 2.6, 2.0 Pen.: 60" Rec.: 58.5" RQD: 97.5% Hard, fresh to slightly weathered, sound to slightly fractured, grey to dark grey, medium grained, GRANITE |
| 15 _                                      | 2                   | 60/58.5   | Rock            |                   | C2 - min/ft: 3.0, 2.4, 2.4, 2.1, 2.7 Pen.: 60" Rec.: 58.4" RQD: 72.5% Hard, fresh to slightly weathered, sound to slightly fractured, grey to dark grey, medium grained, GRANITE                                                                                                        |
| 200.0<br>200.0<br>20<br>20<br>195.0<br>25 |                     |           |                 | 16.0              | Bottom of borehole at 16.0 feet. Backfilled borehole with drill cuttings.                                                                                                                                                                                                               |

#### **GENERAL NOTES:**

### **BORING LOG**

**B-114-OW** 

PAGE 1 OF 1

| CLIENT: Mount Vernon Group Architects, Inc.                           | PROJECT NAME: Proposed Green Meadow Elementary School |
|-----------------------------------------------------------------------|-------------------------------------------------------|
| LGCI PROJECT NUMBER: 2201                                             | PROJECT LOCATION: Maynard, MA                         |
| DATE STARTED:         2/20/24         DATE COMPLETED:         2/21/24 | DRILLING SUBCONTRACTOR: Soil X, Corp.                 |
| BORING LOCATION: Within proposed roadway                              | DRILLING FOREMAN: _Edwin Fajardo                      |
| COORDINATES: NA                                                       | DRILLING METHOD: _Drive and wash with 4-inch casing   |
| SURFACE El.: 232 ft. (see note 1) TOTAL DEPTH: 20 ft.                 | DRILL RIG TYPE/MODEL: Diedrich D-70 turbo             |
| WEATHER: 30's / Sunny                                                 | HAMMER TYPE: Automatic                                |
| GROUNDWATER LEVELS:                                                   | HAMMER WEIGHT: 140 lb. HAMMER DROP: 30 in.            |
| □ DURING DRILLING: Not Encountered                                    | SPLIT SPOON DIA.:                                     |
| ▼ <b>AT END OF DRILLING</b> : 5.0 ft. / El. 227.0 ft.                 | CORE BARREL SIZE: 2 in. I.D., 2.875 in. O.D.          |
| $ar{m{arphi}}$ other: $ar{m{\cdot}}$                                  | LOGGED BY: MBH CHECKED BY: SG                         |

| Depth (ft.) | Sample<br>Interval (ft.) | Sample<br>Number | Blow Counts<br>(N Value) | Pen./Rec. (in.) | Str               |       | Depth<br>El.(ft.) | Material Description                                                                                                                                                                                                                                                                                                   |
|-------------|--------------------------|------------------|--------------------------|-----------------|-------------------|-------|-------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 230.0       | 0                        | S1               | 1-2-3-5<br>(5)           | 24/12           | Topsoil           |       | 0.4 231.6         | S1 - Top 5": Topsoil  Bot. 7": Silty SAND (SM), fine to coarse,15-20%% fines, 15-20% fine to coarse subangular gravel, trace of oranic soil, trace of roots, trace of wood, orange to brown, moist                                                                                                                     |
|             | 2 2.8                    | S2               | 58-100/4"<br>(100/4")    | 10/9            | Sand an<br>Gravel | • • • | 230.0             | S2 - Well Graded SAND with Silt and Gravel (SW-SM), fine to coarse, 5-10% fines, 25-30% fine to coarse subangular gravel, grey, moist REMARK 1: Split spoon refusal at 2.8 ft. Drillers advanced roller bit to 5.0 ft., installed 3-inch casing, and started rock core.                                                |
| 5           | 5                        |                  |                          |                 | Boulder           |       | 5.0 ▼<br>227.0    | C1 - min/ft: 4.9, 6.4, 4.3<br>Pen.: 36" Rec.:29" RQD: 53.1%                                                                                                                                                                                                                                                            |
| 225.0       | 8                        | C1               |                          | 36/29           |                   |       |                   | Soft, moderately weathered, moderately fractured, grey, fine grained, GRANITE                                                                                                                                                                                                                                          |
| 10          | 10                       | C2               |                          | 24/22           |                   |       |                   | C2 - min/ft: 5.3, 4.4 Pen.: 24" Rec.: 22" RQD: 52.3% Hard, slightly weathered, slightly to moderately fractured, grey to light blue, coarse grained, GRANITE                                                                                                                                                           |
| 220.0       |                          | СЗ               |                          | 60/56           | Rock              |       |                   | C3 - min/ft: 4.5, 8.0, 4.5, 4.1, 4.3 Pen.: 60" Rec.: 56" RQD: 45.8% Top 26": Hard, moderately weathered, moderately to extremely fractured, vertical breaks, medium grained, grey to light blue, GRANITE Bot. 30": Hard, slightly weathered to fresh, slightly fractured, medium grained, grey to light brown, GRANITE |
| 215.0       | 15                       | C4               |                          | 60/58.5         |                   |       |                   | C4 - min/ft: 5.1, 3.2, 3.6, 3.2, 3.9 Pen.: 60" Rec.: 58.5" RQD: 85.8% Hard to very hard, fresh to slightly weathered, sound to slightly fractured, grey to light blue, medium grained, GRANITE                                                                                                                         |
| 210.0       | 20                       |                  |                          |                 |                   |       | 20.0              | Bottom of borehole at 20.0 feet. Groundwater observation well installed to depth of 20 ft.                                                                                                                                                                                                                             |

#### **GENERAL NOTES:**



 $oldsymbol{\varPsi}$  other:  $\_$ 

#### **BORING LOG**

**B-115** PAGE 1 OF 1

CHECKED BY: SG

PROJECT NAME: Proposed Green Meadow Elementary School CLIENT: Mount Vernon Group Architects, Inc. LGCI PROJECT NUMBER: 2201 PROJECT LOCATION: Maynard, MA DATE STARTED: 2/22/24 DATE COMPLETED: 2/22/24 DRILLING SUBCONTRACTOR: Soil X, Corp. **BORING LOCATION:** Within proposed roadway DRILLING FOREMAN: Edwin Fajardo COORDINATES: NA DRILLING METHOD: Hollow Stem Auger (4-1/4" I.D.) SURFACE El.: 216 ft. (see note 1) TOTAL DEPTH: 12 ft. DRILL RIG TYPE/MODEL: Diedrich D-70 turbo WEATHER: 30's / Sunny **HAMMER TYPE:** Automatic **GROUNDWATER LEVELS: HAMMER WEIGHT:** 140 lb. **HAMMER DROP:** 30 in. ✓ **DURING DRILLING:** Not Encountered **SPLIT SPOON DIA.:** <u>1.375 in. I.D., 2 in. O.D.</u> T AT END OF DRILLING: \_-CORE BARREL SIZE: NA

LOGGED BY: MBH

| Depth<br>(ft.) | El.<br>(ft.) | Sample<br>Interval (ft.) | Sample<br>Number | Blow Counts<br>(N Value) | Pen./Rec.<br>(in.) | Remark |                 | Depth<br>El.(ft.) | Material Description                                                                                                                   |
|----------------|--------------|--------------------------|------------------|--------------------------|--------------------|--------|-----------------|-------------------|----------------------------------------------------------------------------------------------------------------------------------------|
| -              | 215.0        | 0                        | S1               | 1-2-2-1<br>(4)           | 24/18              |        | Topsoil M. A.   | 0.4<br>215.6      | S1 - Top 5": Topsoil  Bot. 13": Silty SAND (SM), fine to medium, 20-25% fines, trace of roots, orange, moist                           |
| -              |              | 2-                       | S2               | 2-2-2-5<br>(4)           | 24/21              |        | Subsoil         | 4.0               | S2 - Silty SAND (SM), fine to medium, 20-25% fines, trace of roots, orange, moist                                                      |
| 5              | 210.0        | 4-                       | S3               | 6-8-10-13<br>(18)        | 24/18              |        | .00             | 212.0             | S3 - Silty SAND (SM), fine to medium, 20-25% fines, light brown to grey, moist                                                         |
|                |              | 6-                       | S4               | 12-11-17-38<br>(28)      | 24/24              |        |                 |                   | S4 - Silty SAND with Gravel (SM), fine to medium, 15-20% fines, 20-25% fine to coarse subangular gravel, grey to brown, moist          |
|                |              | 8-<br>8.4-               | S5               | 100/5"                   | 5/0                |        | Sand and Gravel |                   | S5 - No Recovery                                                                                                                       |
| 10             | 205.0        | 10-                      | S6               | 34-45-26-21<br>(71)      | 24/18              |        | .00             |                   | S6 - Silty SAND with Gravel (SM), fine to coarse, 30-35% fines, 15-20% fine to coarse subangular gravel, light brown, to orange, moist |
| -              |              | 12-                      | /_\              |                          |                    |        | 00              | 12.0              | Bottom of borehole at 12.0 feet. Backfilled borehole with drill cuttings.                                                              |
| 15             |              |                          |                  |                          |                    |        |                 |                   |                                                                                                                                        |
|                | 200.0        |                          |                  |                          |                    |        |                 |                   |                                                                                                                                        |
| -              |              |                          |                  |                          |                    |        |                 |                   |                                                                                                                                        |
| 20             | 195.0        |                          |                  |                          |                    |        |                 |                   |                                                                                                                                        |
| -              |              |                          |                  |                          |                    |        |                 |                   |                                                                                                                                        |
|                | -<br>        |                          |                  |                          |                    |        |                 |                   |                                                                                                                                        |

#### **GENERAL NOTES:**

### **BORING LOG**

B-116

PAGE 1 OF 1

| CLIENT: Mount Vernon Group Architects, Inc.                                             | ROJECT NAME: Proposed Green Meadow Elementary School       |
|-----------------------------------------------------------------------------------------|------------------------------------------------------------|
| LGCI PROJECT NUMBER: 2201 PI                                                            | ROJECT LOCATION: Maynard, MA                               |
| DATE STARTED:         2/19/24         DATE COMPLETED:         2/19/24                   | DRILLING SUBCONTRACTOR: Soil X, Corp.                      |
| BORING LOCATION: Within proposed roadway                                                | DRILLING FOREMAN: Edwin Fajardo                            |
| COORDINATES: NA                                                                         | DRILLING METHOD: Hollow Stem Auger (4-1/4" I.D.)           |
| SURFACE El.:         213 ft. (see note 1)         TOTAL DEPTH:         11.2 ft.         | DRILL RIG TYPE/MODEL: Diedrich D-70 turbo                  |
| WEATHER: 30's / Sunny                                                                   | HAMMER TYPE: Automatic                                     |
| GROUNDWATER LEVELS:                                                                     | HAMMER WEIGHT: 140 lb. HAMMER DROP: 30 in.                 |
| $\overline{igspace}$ DURING DRILLING: 10.0 ft. / El. 203.0 ft. Based on sample moisture | <b>SPLIT SPOON DIA.:</b> <u>1.375 in. I.D., 2 in. O.D.</u> |
| <b>X</b> AT END OF DRILLING: 10.5 ft. / El. 202.5 ft.                                   | CORE BARREL SIZE: NA                                       |
| $oldsymbol{ar{Y}}$ other:                                                               | LOGGED BY: MBH CHECKED BY: SG                              |
|                                                                                         |                                                            |

| Depth<br>(ft.) | El.<br>(ft.) | Sample<br>Interval (ft.) | Sample<br>Number | Blow Counts<br>(N Value) | Pen./Rec.<br>(in.) | Remark | Strata          |            | Depth<br>El.(ft.) | Material Description                                                                                                                                                                                                 |
|----------------|--------------|--------------------------|------------------|--------------------------|--------------------|--------|-----------------|------------|-------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                |              | 0                        | \ /              |                          |                    |        | Topsoil N       |            | 0.4               | S1 - Top 5": Topsoil                                                                                                                                                                                                 |
| -              |              | _                        | S1               | 4-6-8-10<br>(14)         | 24/19              |        | Subsoil         | 2          | 2.0               | Bot. 14": Silty SAND (SM), fine to coarse, 15-20% fines, 0-5% fine subangular gravel, orange, moist                                                                                                                  |
|                | 210.0        | 2-                       | S2               | 27-28-25-38<br>(53)      | 24/20              |        | h               | 20         | 211.0             | S2 - Silty SAND (SM), fine to coarse, 15% fines, 10-15% fine subangular gravel, brown to orange, moist                                                                                                               |
| 5              |              | 4-                       | S3               | 20-34-29-31<br>(63)      | 24/19              |        |                 | 7.<br>0. C |                   | S3 - Silty SAND with Gravel (SM), fine to coarse, 25-30% fines, ~20% fine to coarse gravel, brown, moist                                                                                                             |
| -              |              | 6.8                      | S4               | 52-101/3"<br>(101/3")    | 9/9                |        | Sand and Gravel | 0          |                   | S4 - Well Graded GRAVEL with Sand (GW), fine to coarse, subangular, 0-5% fines, 25-30% fine to coarse sand, trace of fractured rock, grey, moist                                                                     |
| -              | 205.0        |                          |                  |                          |                    |        | 0               | 4          |                   |                                                                                                                                                                                                                      |
| 10             | -<br>-       | 10-                      | M                | 16-17-84/2"              |                    |        | h               | ) C        | Ţ<br>▼            | S5 - Silty SAND with Gravel (SM), fine to coarse, 20-25% fines, 15-20% fine to coarse subangular gravel, trace of weathered rock, light brown to brown, wet                                                          |
| -              |              | 11.2                     | S5               | (101/8")                 | 14/9               | 1      | (° C            | 7°         | 11.2              | coarse subangular gravel, trace of weathered rock, light brown to brown, wet<br>REMARK 1: HSA refusal at depth of 11.2' on possible rock.  Bottom of borehole at 11.2 feet. Backfilled borehole with drill cuttings. |
| -              | 200.0        |                          |                  |                          |                    |        |                 |            |                   |                                                                                                                                                                                                                      |
| 15             |              |                          |                  |                          |                    |        |                 |            |                   |                                                                                                                                                                                                                      |
|                | -<br>-<br>-  |                          |                  |                          |                    |        |                 |            |                   |                                                                                                                                                                                                                      |
| -              | 195.0        |                          |                  |                          |                    |        |                 |            |                   |                                                                                                                                                                                                                      |
| -              |              |                          |                  |                          |                    |        |                 |            |                   |                                                                                                                                                                                                                      |
| 20             | -            |                          |                  |                          |                    |        |                 |            |                   |                                                                                                                                                                                                                      |
| -              | † -<br>  -   |                          |                  |                          |                    |        |                 |            |                   |                                                                                                                                                                                                                      |
| -              | 190.0        |                          |                  |                          |                    |        |                 |            |                   |                                                                                                                                                                                                                      |
| 25             | † -          |                          |                  |                          |                    |        |                 |            |                   |                                                                                                                                                                                                                      |

#### **GENERAL NOTES:**



### **BORING LOG**

B-117

PAGE 1 OF 1

| CLIENT: Mount Vernon Group Architects, Inc.                   | PROJECT NAME: Proposed Green Meadow Elementary School      |  |  |  |
|---------------------------------------------------------------|------------------------------------------------------------|--|--|--|
| LGCI PROJECT NUMBER: 2201                                     | PROJECT LOCATION: Maynard, MA                              |  |  |  |
| <b>DATE STARTED</b> : 2/19/24 <b>DATE COMPLETED</b> : 2/19/24 | DRILLING SUBCONTRACTOR: Soil X, Corp.                      |  |  |  |
| BORING LOCATION: Within proposed roadway                      | DRILLING FOREMAN: Edwin Fajardo                            |  |  |  |
| COORDINATES: NA                                               | DRILLING METHOD: Hollow Stem Auger (4-1/4" I.D.)           |  |  |  |
| SURFACE El.: 211 ft. (see note 1) TOTAL DEPTH: 12 ft.         | DRILL RIG TYPE/MODEL: Diedrich D-70 turbo                  |  |  |  |
| WEATHER: 30's / Sunny                                         | HAMMER TYPE: Automatic                                     |  |  |  |
| GROUNDWATER LEVELS:                                           | HAMMER WEIGHT: 140 lb. HAMMER DROP: 30 in.                 |  |  |  |
| □ DURING DRILLING: Not Encountered                            | <b>SPLIT SPOON DIA.:</b> <u>1.375 in. I.D., 2 in. O.D.</u> |  |  |  |
| ▼ AT END OF DRILLING: Not Encountered                         | CORE BARREL SIZE: NA                                       |  |  |  |
| $\Psi$ other: $\_$                                            | LOGGED BY: MBH CHECKED BY: SG                              |  |  |  |
|                                                               |                                                            |  |  |  |

|              | El.<br>(ft.) | Sample<br>Interval (ft.) |            | nple<br>nber | Blow Counts<br>(N Value) | Pen./Rec. | Stra               | ta    | Depth<br>El.(ft.) | Material Description                                                                                                                                                                                                                                             |
|--------------|--------------|--------------------------|------------|--------------|--------------------------|-----------|--------------------|-------|-------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2            | 210.0        | 0                        | $\bigvee$  | S1           | 27-12-12-43<br>(24)      | 24/12     |                    |       |                   | S1 - Well Graded SAND with Silt and Gravel (SW-SM), fine to coarse, ~10% fines, 15-20% fine to coarse subrounded gravel, trace of organic soil, trace of roots, brown, moist                                                                                     |
| <br> -<br> - |              | 2-                       | M          | S2           | 25-21-27-28<br>(48)      | 24/17     | Fill               |       |                   | S2 - Poorly Graded SAND with Silt (SP-SM), fine to medium, 10-15% fines, 5-10% fine to coarse subrounded gravel, trace of roots, trace of organic soil, brown, moist                                                                                             |
| 5            | 205.0        | 4-                       | M          | S3           | 14-13-11-14<br>(24)      | 24/24     |                    |       |                   | S3 - Silty SAND (SM), fine to medium, 15-20% fines, 0-5% fine to coarse gravel, trace of roots, organic odor, dark brown, moist                                                                                                                                  |
| - +          | _            | 6-                       | M          | S4           | 11-10-9-10<br>(19)       | 24/19     | Subsoil            |       | 6.9<br>204.1      | S4 - Top 11": Silty SAND (SM), fine to medium, 15-20% fines, ~5% fine to coarse gravel, trace of roots, organic odor, dark brown, moist  Bot. 8": Silty SAND with Gravel (SM), fine to medium, ~15% fines, 5-10% fine to coarse subangular gravel, orange, moist |
| 10           |              | 8-                       |            | S5           | 5-8-9-9<br>(17)          | 24/15     | C                  | 000   | 8.0<br>203.0      | S5 - Silty SAND with Gravel (SM), fine to coarse, 15-20% fines, ~15% fine to coarse subangular gravel, trace of roots, light brown to orange, moist                                                                                                              |
| 10           | 200.0        | 10-                      | $\bigvee$  | S6           | 11-10-11-12<br>(21)      | 24/8      | Sand and<br>Gravel |       |                   | S6 - Silty SAND with Gravel (SM), fine to coarse, 15-20% fines, 30-35% fine to coarse subangular gravel, light brown to orange, moist                                                                                                                            |
| † †          | 1            | 12-                      | <u>/ \</u> |              |                          |           |                    | · V ° | 12.0              | Bottom of borehole at 12.0 feet. Backfilled borehole with drill cuttings.                                                                                                                                                                                        |
| - +          | -            |                          |            |              |                          |           |                    |       |                   |                                                                                                                                                                                                                                                                  |
| - 4          | 4            |                          |            |              |                          |           |                    |       |                   |                                                                                                                                                                                                                                                                  |
| 15           |              |                          |            |              |                          |           |                    |       |                   |                                                                                                                                                                                                                                                                  |
|              | 105 0        |                          |            |              |                          |           |                    |       |                   |                                                                                                                                                                                                                                                                  |
| - 💾          | 195.0        |                          |            |              |                          |           |                    |       |                   |                                                                                                                                                                                                                                                                  |
| - 4          | 4            |                          |            |              |                          |           |                    |       |                   |                                                                                                                                                                                                                                                                  |
|              |              |                          |            |              |                          |           |                    |       |                   |                                                                                                                                                                                                                                                                  |
|              | ٦            |                          |            |              |                          |           |                    |       |                   |                                                                                                                                                                                                                                                                  |
| - +          | -            |                          |            |              |                          |           |                    |       |                   |                                                                                                                                                                                                                                                                  |
| 20           |              |                          |            |              |                          |           |                    |       |                   |                                                                                                                                                                                                                                                                  |
| 1            | 190.0        |                          |            |              |                          |           |                    |       |                   |                                                                                                                                                                                                                                                                  |
|              |              |                          |            |              |                          |           |                    |       |                   |                                                                                                                                                                                                                                                                  |
| - +          | -            |                          |            |              |                          |           |                    |       |                   |                                                                                                                                                                                                                                                                  |
| - 1          | 4            |                          |            |              |                          |           |                    |       |                   |                                                                                                                                                                                                                                                                  |
|              |              |                          |            |              |                          |           |                    |       |                   |                                                                                                                                                                                                                                                                  |
| - †          | 1            |                          |            |              |                          |           |                    |       |                   |                                                                                                                                                                                                                                                                  |
| 25           |              |                          |            |              |                          | 1         | 1                  |       | 1                 |                                                                                                                                                                                                                                                                  |

#### **GENERAL NOTES:**

### **BORING LOG**

B-118

PAGE 1 OF 1

| CLIENT: Mount Vernon Group Architects, Inc.           | PROJECT NAME: Proposed Green Meadow Elementary School |  |  |
|-------------------------------------------------------|-------------------------------------------------------|--|--|
| LGCI PROJECT NUMBER: 2201                             | PROJECT LOCATION: Maynard, MA                         |  |  |
| <b>DATE STARTED:</b> 2/27/24                          | DRILLING SUBCONTRACTOR: Soil X, Corp.                 |  |  |
| BORING LOCATION: Northeast of existing school         | DRILLING FOREMAN: Edwin Fajardo                       |  |  |
| COORDINATES: NA                                       | DRILLING METHOD: Hollow Stem Auger (4-1/4" I.D.)      |  |  |
| SURFACE El.: 207 ft. (see note 1) TOTAL DEPTH: 12 ft. | DRILL RIG TYPE/MODEL: Diedrich D-70 turbo             |  |  |
| WEATHER: 40's / Sunny                                 | HAMMER TYPE: Automatic                                |  |  |
| GROUNDWATER LEVELS:                                   | HAMMER WEIGHT: 140 lb. HAMMER DROP: 30 in.            |  |  |
| abla during drilling:                                 | SPLIT SPOON DIA.: 1.375 in. I.D., 2 in. O.D.          |  |  |
| ▼ AT END OF DRILLING: 11.5 ft. / El. 195.5 ft.        | CORE BARREL SIZE: NA                                  |  |  |
| $\Psi$ other: $\_{\cdot}$                             | LOGGED BY: MBH CHECKED BY: SG                         |  |  |
|                                                       |                                                       |  |  |

| Depth<br>(ft.) | El.<br>(ft.) | Sample BI Number (f.t. |    | Blow Counts<br>(N Value) | Pen./Rec.<br>(in.) | Remark | Strata             | Dept<br>El.(ft  | Material Description                                                                                                                                                                                                                                                                                     |
|----------------|--------------|------------------------|----|--------------------------|--------------------|--------|--------------------|-----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                |              | 0.3-                   | П  |                          | 3/3                |        | Asphalt            | 0.3             | Top 3": Asphalt S1 - Well Graded SAND with Silt and Gravel (SW-SM), fine to coarse, ~10%                                                                                                                                                                                                                 |
| -              | 205.0        |                        | S1 | 12-16-16-11<br>(32)      | 24/19              |        | Po                 | 00              | fines, 15-20% fine to coarse subangular gravel, light brown with orange stripes, moist                                                                                                                                                                                                                   |
|                | -<br>-<br>   | 2.3-                   | S2 | 9-11-11-10<br>(22)       | 24/16              |        | , (                |                 | S2 - Well Graded SAND with Silt and Gravel (SW-SM), fine to coarse, ~10% fines, 15-20% fine to coarse subangular gravel, light brown with orange stripes, moist                                                                                                                                          |
| 5              | -<br>-<br>   | 4.3-                   | S3 | 9-13-21-12<br>(34)       | 24/17              |        | Sand and Gravel    | 0.              | S3 - Top 13": Well Graded SAND with Silt and Gravel (SW-SM), fine to coarse, ~10% fines, 15-20% fine to coarse subangular gravel, light brown with orange stripes, moist Bot. 4": Silty SAND with Gravel (SM), fine to coarse, 30-35% fines, 20-25% fine to coarse subangular gravel, olive brown, moist |
|                | 200.0        | 8.3                    | S4 | 12-20-17-37<br>(37)      | 24/14              |        |                    | 0.<br>0.        | S4 - Well Graded SAND with Silt and Gravel (SW-SM), fine to coarse, 5-10% fines, 15-20% fine to coarse subangular gravel, brown to orange, moist                                                                                                                                                         |
| 10             | -<br>-<br>   | 10-                    | \  |                          |                    |        | 0                  | 0.]             | S5 - Well Graded GRAVEL (GW), fine to coarse, subangular, 0-5% fines, 0-5%                                                                                                                                                                                                                               |
| -              | 195.0        |                        | S5 | 29-30-11-29<br>(41)      | 24/4               |        | Sand and<br>Gravel | 0°<br>0<br>12.0 | mostly coarse sand, trace of weathered rock, grey, moist  ▼                                                                                                                                                                                                                                              |
| -              | 100.0        | 12-                    |    |                          |                    | 11-    | Į                  | 12.0            | REMARK 1: Split spoon bent on possible boulders at depth of 12 after sampling.                                                                                                                                                                                                                           |
|                |              |                        |    |                          |                    |        |                    |                 | Bottom of borehole at 12.0 feet. Backfilled borehole with drill cuttings.                                                                                                                                                                                                                                |
| 15             |              |                        |    |                          |                    |        |                    |                 |                                                                                                                                                                                                                                                                                                          |
| -              | ļ _          |                        |    |                          |                    |        |                    |                 |                                                                                                                                                                                                                                                                                                          |
|                | 190.0        |                        |    |                          |                    |        |                    |                 |                                                                                                                                                                                                                                                                                                          |
| -              |              |                        |    |                          |                    |        |                    |                 |                                                                                                                                                                                                                                                                                                          |
| -              |              |                        |    |                          |                    |        |                    |                 |                                                                                                                                                                                                                                                                                                          |
| 20             |              |                        |    |                          |                    |        |                    |                 |                                                                                                                                                                                                                                                                                                          |
| -              | -            |                        |    |                          |                    |        |                    |                 |                                                                                                                                                                                                                                                                                                          |
| -              | 185.0        |                        |    |                          |                    |        |                    |                 |                                                                                                                                                                                                                                                                                                          |
| -              | † -          |                        |    |                          |                    |        |                    |                 |                                                                                                                                                                                                                                                                                                          |
| 25             | † -          |                        |    |                          |                    |        |                    |                 |                                                                                                                                                                                                                                                                                                          |

#### **GENERAL NOTES:**



 $ar{oldsymbol{arVert}}$  other:  $oldsymbol{arVert}$ 

### **BORING LOG**

**B-119** PAGE 1 OF 1

CHECKED BY: SG

PROJECT NAME: Proposed Green Meadow Elementary School **CLIENT:** Mount Vernon Group Architects, Inc. LGCI PROJECT NUMBER: 2201 PROJECT LOCATION: Maynard, MA DATE STARTED: 2/27/24 DATE COMPLETED: 2/27/24 **DRILLING SUBCONTRACTOR:** Soil X, Corp. BORING LOCATION: Near existing driveway entrance from Great Road DRILLING FOREMAN: Edwin Fajardo COORDINATES: NA DRILLING METHOD: Hollow Stem Auger (4-1/4" I.D.) SURFACE El.: 209 ft. (see note 1) TOTAL DEPTH: 12 ft. DRILL RIG TYPE/MODEL: Diedrich D-70 turbo WEATHER: 40's / Sunny **HAMMER TYPE:** Automatic **GROUNDWATER LEVELS: HAMMER WEIGHT:** 140 lb. **HAMMER DROP:** 30 in. □ DURING DRILLING: NE **SPLIT SPOON DIA.:** <u>1.375 in. I.D., 2 in. O.D.</u> T AT END OF DRILLING: \_-CORE BARREL SIZE: NA

LOGGED BY: MBH

| Depth (ft.) |     | Interva   | Sample<br>lumber | Blow Counts<br>(N Value) | Pen./Rec. | Ren              | ata  | Depth<br>El.(ft.) | Material Description                                                                                                                                  |
|-------------|-----|-----------|------------------|--------------------------|-----------|------------------|------|-------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|
|             |     | 0.3       | S1               | 24-16-15-10<br>(31)      | 24/6      | Asphal<br>Fill   |      | 2.0<br>207.0      | Top 3": Asphalt S1 - Well Graded SAND with Silt and Gravel (SW-SM), fine to coarse, ~10% fines, 25-30% fine to coarse subangular gravel, brown, moist |
|             | 5.0 | 2.3       | S2               | 9-6-9-11<br>(15)         | 24/19     |                  |      |                   | S2 - Sandy SILT (ML), nonplastic, 30-35% fine to medium sand, grey and orange, moist                                                                  |
| 5           |     | 1.3       | S3               | 9-46-11-10<br>(57)       | 24/14     |                  | .0.  |                   | S3 - Well Graded SAND with Silt and Gravel (SW-SM), fine to coarse, 5-10% fines, 15-20% fine to coarse subangular gravel, brown, moist                |
|             | +   | 5.3       | S4               | 5-5-6-8<br>(11)          | 24/16     | Sand ar<br>Grave | . 0. |                   | S4 - Well Graded SAND with Silt and Gravel (SW-SM), fine to coarse, 5-10% fines, 15-20% fine to coarse subangular gravel, brown, moist                |
| 10          | 0.0 | 10        | S5               | 9-14-7-8<br>(21)         | 24/12     |                  | .00  |                   | S5 - Well Graded SAND with Silt (SW-SM), fine to coarse, 10-15% fines, 5-10% fine to coarse subangular gravel, brown, moist                           |
|             | -   | $\rangle$ | S6               | 8-24-45-46<br>(69)       | 24/12     |                  | .00  | 12.0              | S6 - Well Graded SAND with Silt and Gravel (SW-SM), fine to coarse, 5-10% fines, 15-20% fine to coarse subangular gravel, brown, moist                |
| 195         |     | 12        |                  |                          |           |                  |      |                   | Bottom of borehole at 12.0 feet. Backfilled borehole with drill cuttings and cold patch asphalt to restore the roadway.                               |
| 15          | _   |           |                  |                          |           |                  |      |                   |                                                                                                                                                       |
| + +         | -   |           |                  |                          |           |                  |      |                   |                                                                                                                                                       |
| 190         | 0.0 |           |                  |                          |           |                  |      |                   |                                                                                                                                                       |
| 20          |     |           |                  |                          |           |                  |      |                   |                                                                                                                                                       |
|             |     |           |                  |                          |           |                  |      |                   |                                                                                                                                                       |
| 185         | 5.0 |           |                  |                          |           |                  |      |                   |                                                                                                                                                       |

#### **GENERAL NOTES:**



# GROUNDWATER OBSERVATION WELL INSTALLATION REPORT

Boring No.: **B-104-OW** 

| LGCI Project Number:    | o. Green Meadow Elementary So<br>2201                          | , ,                                                        |                                      |
|-------------------------|----------------------------------------------------------------|------------------------------------------------------------|--------------------------------------|
| Client: Mount Vernon (  |                                                                |                                                            |                                      |
| Drilling Subcontractor: | •                                                              | Date Started: 2/19/24                                      |                                      |
| =                       |                                                                | Date Started. 2/19/24  Date Completed: 2/20/24             | <b>-</b> (                           |
| Drilling Foreman:       | Edwin Fajardo<br>MBH                                           |                                                            |                                      |
| LGCI Engineer:          |                                                                |                                                            | of eastern wing of proposed building |
|                         | ion: 214 feet (see note 1)  19 feet (based on sample moisture) | Total Depth of Boring: 19.:<br>Drill Rig Type: Diedrich D- |                                      |
| Groundwater Depth:      | 18.5 feet at the end of drilling                               | Drilling Method: Hollow St                                 | _                                    |
|                         | 16.5 feet at the end of drilling                               | Dilling Method. Hollow St                                  | em Auger (4-1/4 1.D.)                |
|                         |                                                                |                                                            |                                      |
|                         | Riser Stickup ~0.0                                             | d' above ground surface                                    |                                      |
| GENERAL SOIL            | THOMESO OF CURI                                                | TA OF OF AL                                                | 0.9 foot                             |
| CONDITIONS              | THICKNESS OF SURF                                              |                                                            | 0.8 foot                             |
| (not to scale)          | TYPE OF SURFACE S                                              | DEAL                                                       | Concrete                             |
| Topsoil                 | TYPE OF SURFACE O                                              | CASING                                                     | Roadway Box                          |
| 0.3 feet                | ID OF SURFACE CAS                                              | ING                                                        | 6 inch                               |
|                         | <b>DEPTH TO BOTTOM</b>                                         | OF CASING                                                  | 0.8 foot                             |
| Fill                    | $\neg \sqcap \Gamma$                                           |                                                            |                                      |
| 4.0 feet                | ID OF RISER PIPE                                               |                                                            | 2 inch                               |
|                         | TYPE OF RISER PIPE                                             |                                                            | Schedule 40 PVC                      |
|                         | TYPE OF BACKFILL A                                             | ROUND RISER PIPE                                           | Filter Sand                          |
|                         | DEPTH TO TOP OF S                                              | EAL                                                        | 11 feet                              |
|                         | TYPE OF SEAL                                                   |                                                            | Bentonite Chips                      |
|                         | <b>ДЕРТН ТО ВОТТОМ</b>                                         | OF SEAL                                                    | 12 feet                              |
|                         |                                                                |                                                            |                                      |
|                         | DEPTH TO TOP OF P                                              | ERVIOUS SECTION                                            | 13.5 feet                            |
| Sand and Gravel         | TYPE OF PERVIOUS                                               | SECTION                                                    | Schedule 40 PVC                      |
|                         | DESCRIBE OPENING                                               |                                                            | 0.01 inch slots                      |
|                         | ID OF PERVIOUS SEC                                             |                                                            | 2 inch                               |
|                         | TYPE OF BACKFILL A                                             | ROUND PERVIOUS SECTION                                     | Filter sand                          |
|                         |                                                                |                                                            |                                      |
|                         | DEPTH TO BOTTOM                                                | OF PERVIOUS SECTION                                        | 18.5 feet                            |
|                         | DEPTH TO BOTTOM                                                | OF SAND COLUMN                                             | 19 feet                              |
|                         | TYPE OF BACKFILL B                                             | SELOW PERVIOUS SECTION                                     | Filter sand                          |
|                         | DIAMETER OF BORE                                               | HOLE                                                       | 6 inch                               |
| 19.2 feet               | DEPTH TO BOTTOM                                                | OF BOREHOLE                                                | 19.2 feet                            |



# GROUNDWATER OBSERVATION WELL INSTALLATION REPORT

Boring No. : **B-114-OW** 

| Project Name: Prop       | . Green Meadow Elementa         | ry School, Maynard, MA                  |                        |
|--------------------------|---------------------------------|-----------------------------------------|------------------------|
| LGCI Project Number:     | 2201                            |                                         |                        |
| Client: Mount Vernon G   | roup Architects, Inc.           |                                         |                        |
| Drilling Subcontractor:  | Soil X, Corp.                   | Date Started: 2/20/24                   |                        |
| Drilling Foreman:        | Edwin Fajardo                   | Date Completed: 2/21/24                 | -                      |
| LGCI Engineer:           | MBH                             | Location: Within proposed               | d roadway              |
| Ground Surface Elevation | on: 232 feet (see note 1)       | Total Depth of Boring: 20               | feet                   |
| Groundwater Depth:       | Not encountered                 | Drill Rig Type: Diedrich D-             | <del>-</del>           |
|                          | 5.0 feet at the end of drilling | Drilling Method: Hollow St              | em Auger (4-1/4" I.D.) |
|                          |                                 |                                         |                        |
|                          | D: 0::1                         |                                         |                        |
|                          | Riser Stickup                   | ~3.0' above ground surface              |                        |
| GENERAL SOIL             |                                 |                                         |                        |
| CONDITIONS               |                                 | SURFACE SEAL                            | 1 foot                 |
| (not to scale)           | TYPE OF SURF                    | ACE SEAL                                | Concrete               |
| Topsoil                  | TYPE OF SURF                    | ACE CASING                              | Riser Pipe             |
| 0.3 feet                 | ID OF SURFACE                   |                                         | 4 inch                 |
| 0.0 1001                 |                                 | TOM OF CASING                           | 2.5 feet               |
|                          |                                 | 100000000000000000000000000000000000000 | 2.0 1000               |
|                          | ID OF RISER PI                  | PE                                      | 2 inch                 |
| Subsoil                  | TYPE OF RISEF                   |                                         | Schedule 40 PVC        |
| 2.0 feet                 |                                 |                                         |                        |
|                          | TYPE OF BACK                    | FILL AROUND RISER PIPE                  | Filter Sand            |
|                          |                                 |                                         |                        |
|                          | <b>ДЕРТН ТО ТОР</b>             | OF SEAL                                 | 1 foot                 |
| Sand and Gravel          | TYPE OF SEAL                    |                                         | Bentonite Chips        |
| 2.8 feet                 | <b>ДЕРТН ТО ВОТ</b>             | TOM OF SEAL                             | 3 feet                 |
|                          |                                 |                                         |                        |
|                          | DEPTH TO TOP                    | OF PERVIOUS SECTION                     | 4 feet                 |
|                          |                                 |                                         |                        |
| Boulder                  | TYPE OF PERV                    |                                         | Schedule 40 PVC        |
| 5.0 feet                 | DESCRIBE OPE                    |                                         | 0.01 inch slots        |
|                          | ID OF PERVIOU                   | IS SECTION                              | 2 inch                 |
|                          | TVDE OF DAOK                    | ELL ADOUND DEDVIOUS SECTION             | Filter cond            |
| Rock                     | TYPE OF BACK                    | FILL AROUND PERVIOUS SECTION            | Filter sand            |
| NOCK                     | DEPTH TO ROT                    | TOM OF PERVIOUS SECTION                 | 19 feet                |
|                          | DEFIII TO BOT                   | TOWN OF TERVIOUS SECTION                | 10 1001                |
|                          | <b>ДЕРТН ТО ВОТ</b>             | TOM OF SAND COLUMN                      | 19 feet                |
|                          |                                 |                                         |                        |
|                          | TYPE OF BACK                    | FILL BELOW PERVIOUS SECTION             | Filter sand            |
|                          | DIAMETER OF I                   |                                         | 6 inch                 |
| 20 feet                  | <b>ДЕРТН ТО ВОТ</b>             | TOM OF BOREHOLE                         | 20 feet                |



### **TEST PIT LOG**

IP-

PAGE 1 OF 1

| CLIE          | ENT: _      | Mount Ver            | no             | n Group Arch                                                          | itects,           | Inc.                          | PROJECT NAME: Proposed Green Meadow Elementary School               |
|---------------|-------------|----------------------|----------------|-----------------------------------------------------------------------|-------------------|-------------------------------|---------------------------------------------------------------------|
| LGC           | I PRO       | JECT NUM             | 1BI            | ER: 2201                                                              |                   |                               | PROJECT LOCATION: Maynard, MA                                       |
| DAT           | E STA       | ARTED: 2             | /6/:           | 24                                                                    | DAT               | E COMPLETED: 2/6/24           | EXCAVATION SUBCONTRACTOR: Saunders Construction                     |
| TES           | T PIT       | LOCATION             | <b>l</b> :   . | Within weste                                                          | rn wing           | g of proposed building        | EXCAVATION FOREMAN: Paul Meniates                                   |
|               |             | ATES: NA             |                |                                                                       |                   |                               | EXCAVATOR TYPE/MODEL: Takeuchi TB-290                               |
|               |             | -                    |                | (see note 1)                                                          |                   | <b>TOTAL DEPTH</b> : 7.5 ft.  | WEATHER:                                                            |
|               |             | WATER LE             |                |                                                                       |                   |                               | TEST PIT DIMENSIONS: 10.0'x4.0'                                     |
|               |             |                      |                | ATION: NE                                                             |                   |                               | LOGGED BY: MBH CHECKED BY: JKW                                      |
|               | - AT E      | END OF EX            | C              | AVATION:                                                              |                   |                               |                                                                     |
| Depth<br>(ft) | EI.<br>(ft) | Excavation<br>Effort | Remark         | Strata                                                                | Depth<br>El.(ft.) |                               | Material Description                                                |
|               |             | E                    |                | Topsoil \( \frac{\frac{\lambda \lambda \lambda}{\lambda}}{\lambda} \) | EI.(IL.)          | 0 ft 0.5 ft.: Topsoil         |                                                                     |
| - +           | 227.5       |                      |                | Topson                                                                | 0.5               | ·                             | ND (SP), fine to medium, 5-10% fines, trace of roots, moist         |
| - 4           |             |                      |                |                                                                       |                   | 0.0 It. 2 It I cony craded or | (or ), fine to mediant, or 10% intest, trace of 100to, moist        |
| _             | _           | E                    |                | Subsoil                                                               |                   |                               |                                                                     |
|               |             |                      |                |                                                                       | 2.0               |                               |                                                                     |
| 2.5           |             |                      |                | .0.                                                                   | 226.0             |                               | D (SW), fine to coarse, 5-10% fines, 0-5% fine to coarse subrounded |
| 2.0           |             | E                    |                |                                                                       |                   | gravel, 15-20% copples and bo | oulders up to 3' in diameter, light brown, moist                    |
| - +           | 225.0       |                      | $\  \ $        | . 0 (                                                                 |                   |                               |                                                                     |
| - +           |             | М                    |                | 000                                                                   | -                 |                               |                                                                     |
| -             |             |                      |                | .00                                                                   |                   |                               |                                                                     |
|               |             |                      |                | . O.                                                                  |                   |                               |                                                                     |
| 5.0           |             |                      |                | Sand and Gravel                                                       |                   |                               |                                                                     |
|               | 222.5       | D                    |                | Gravel 60°                                                            | l                 |                               |                                                                     |
| - +           | 222.5       |                      |                | 000                                                                   | -                 |                               |                                                                     |
| - +           |             |                      | $\  \ $        | 600                                                                   |                   |                               |                                                                     |
| - 4           |             |                      |                |                                                                       |                   |                               |                                                                     |
| _             |             | V                    |                | .00                                                                   | Ī                 |                               |                                                                     |
| 7.5           |             |                      | 1              | 00                                                                    | 7.5               | REMARK 1: Excavator refusal   | at depth of 7.5'.                                                   |
|               |             |                      |                |                                                                       |                   |                               | ackfilled test pit with excavated material and tamped in 12" lifts. |
|               |             |                      |                |                                                                       |                   |                               |                                                                     |
|               |             |                      |                |                                                                       |                   |                               |                                                                     |
|               |             |                      |                |                                                                       |                   |                               |                                                                     |
|               |             |                      |                |                                                                       |                   |                               |                                                                     |
|               |             |                      |                |                                                                       |                   |                               |                                                                     |
|               |             |                      |                |                                                                       |                   |                               |                                                                     |
|               |             |                      |                |                                                                       |                   |                               |                                                                     |
|               |             |                      |                |                                                                       |                   |                               |                                                                     |
|               |             |                      |                |                                                                       |                   |                               |                                                                     |
|               |             |                      |                |                                                                       |                   |                               |                                                                     |
|               |             |                      |                |                                                                       |                   |                               |                                                                     |
|               |             |                      |                |                                                                       |                   |                               |                                                                     |

#### GENERAL COMMENTS: E = Easy, M - Moderate, D = Difficult, V = Very Difficult

<sup>1.</sup> The ground surface elevation was interpolated to the nearest foot from Drawing EX-1 titled: "Site Survey Plan, Schematic Design, Maynard Public Schools, Green Meadow Elementary School," prepared by Samiotes Consultants, Inc., dated September 2, 2022 and provided to LGCI by Brennan via e-mail on February 1, 2024.

### **TEST PIT LOG**

PAGE 1 OF 1

|                          | _                                                                           | Mount Ver                                                                |                      |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | tects,            |                                                                   | PROJECT NAME: Proposed Green Meadow Elementary School PROJECT LOCATION: Maynard, MA                                                                                                                  |
|--------------------------|-----------------------------------------------------------------------------|--------------------------------------------------------------------------|----------------------|-----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| TES<br>COC<br>SUF<br>GRC | T PIT<br>DRDIN<br>RFACE<br>DUND<br>DUF<br>DUF                               | ARTED: 2<br>LOCATION<br>IATES: N/<br>E EL.: 214<br>WATER LE<br>RING EXCA | N:<br>A<br>ft.<br>VE | Within (see nELS:     | ote 1)<br>NE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | rn wing           | g of proposed building  TOTAL DEPTH: _10 ft.                      | EXCAVATION SUBCONTRACTOR: Saunders Construction  EXCAVATION FOREMAN: Paul Meniates  EXCAVATOR TYPE/MODEL: Takeuchi TB-290  WEATHER:  TEST PIT DIMENSIONS: 10.0'x4.0'  LOGGED BY: MBH CHECKED BY: JKW |
| Depth<br>(ft)            | El.<br>(ft)                                                                 | Excavation<br>Effort                                                     | Remark               | Stra                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Depth<br>El.(ft.) |                                                                   | Material Description                                                                                                                                                                                 |
|                          |                                                                             | E                                                                        |                      | Topsoil               | $\overline{1}$ $\overline{7}$ $\overline{1}$ | 0.7               | 0 ft 0.7 ft.: Topsoil                                             |                                                                                                                                                                                                      |
|                          | <br>212.5                                                                   | E                                                                        |                      | Subsoil               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.9               | 0.7 ft 1.9 ft.: Poorly Graded                                     | SAND (SP-SM), fine to medium, 10-15% fines, trace of roots, orange, moist                                                                                                                            |
| <br>2.5                  | <br>                                                                        | \ <u>Е</u><br>М                                                          |                      |                       | .00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 212.1             | 1.9 ft 5 ft.: Poorly Graded S/<br>in diameter, light brown, moist | AND (SP), fine to medium, 5-10% fines, 15% cobbles and boulders up to 3'                                                                                                                             |
| 5.0                      |                                                                             | D D                                                                      |                      |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                   |                                                                   |                                                                                                                                                                                                      |
| 7.5                      |                                                                             | V                                                                        |                      | Sand<br>and<br>Gravel |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                   | 5 ft 10 ft.: Well Graded SAN to coarse subangular gravel, 3       | ID with Silt and Gravel (SW-SM), fine to coarse, 10-15% fines, 15-20% fine 15% cobbles and boulders                                                                                                  |
| 10.0                     |                                                                             |                                                                          |                      |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10.0              | Bottom of test pit at 10.0 feet.                                  | Backfilled test pit with excavated material and tamped in 12" lifts.                                                                                                                                 |
| GE                       | GENERAL COMMENTS: E = Easy, M - Moderate, D = Difficult, V = Very Difficult |                                                                          |                      |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                   |                                                                   |                                                                                                                                                                                                      |

### **TEST PIT LOG**

PAGE 1 OF 1

| CLIENT: Mount Vernon Group Architects, Inc.  LGCI PROJECT NUMBER: 2201                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | PROJECT NAME: Proposed Green Meadow Elementary School PROJECT LOCATION: Maynard, MA                                                                                                                  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| DATE STARTED: 2/6/24 DATE COMPLETED: 2/6/24 TEST PIT LOCATION: Within proposed roadway  COORDINATES: NA SURFACE EL.: 214 ft. (see note 1) TOTAL DEPTH: 12 ft.  GROUNDWATER LEVELS:  V DURING EXCAVATION: NE  AT END OF EXCAVATION: -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | EXCAVATION SUBCONTRACTOR: Saunders Construction  EXCAVATION FOREMAN: Paul Meniates  EXCAVATOR TYPE/MODEL: Takeuchi TB-290  WEATHER:  TEST PIT DIMENSIONS: 11.0'x6.0'  LOGGED BY: MBH CHECKED BY: JKW |
| El. Excavation (ft) Effort Effort Depth El.(ft.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Material Description                                                                                                                                                                                 |
| M Topsoil 0 ft 0.5 ft.: Topsoil  212.5 M Fill  Topsoil 0 ft 0.5 ft.: Topsoil  213.5 0.5 ft 2.5 ft.: Silty SAND wi subrounded gravel, trace of r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | th Gravel (SM), fine to coarse, 15-20% fines, 20-25% fine to coarse roots, trace of organic soil, dark brown, moist                                                                                  |
| 210.0<br>———————————————————————————————————                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | SAND (SP), fine to medium, 5-10% fines, light brown to orange, moist                                                                                                                                 |
| Sand and Gravel  Solution  Solution  Solution  Solution  To be considered and solution  To be | ND (SW), fine to coarse, 5-10% fines, 15% cobbles and boulders up to 1.5',                                                                                                                           |
| 10.0 V 202.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | t. Backfilled test pit with excavated material and tamped in 12" lifts.                                                                                                                              |

#### GENERAL COMMENTS: E = Easy, M - Moderate, D = Difficult, V = Very Difficult

<sup>1.</sup> The ground surface elevation was interpolated to the nearest foot from Drawing EX-1 titled: "Site Survey Plan, Schematic Design, Maynard Public Schools, Green Meadow Elementary School," prepared by Samiotes Consultants, Inc., dated September 2, 2022 and provided to LGCI by Brennan via e-mail on February 1, 2024.

# **TEST PIT LOG**

TP-4

PAGE 1 OF 1

|               |             | Mount Ver            |             |            |                      | Inc.                                                          | PROJECT NAME: Proposed Green Meadow Elementary School PROJECT LOCATION: Maynard, MA      |
|---------------|-------------|----------------------|-------------|------------|----------------------|---------------------------------------------------------------|------------------------------------------------------------------------------------------|
| DAT           | E STA       | ARTED: 2             | /6/2        | 24         | DAT                  | TE COMPLETED: 2/6/24                                          | EXCAVATION SUBCONTRACTOR: Saunders Construction                                          |
| TES           | T PIT       | LOCATION             | <b>l</b> :  | Within pro | oposed ro            | adway                                                         | EXCAVATION FOREMAN: Paul Meniates                                                        |
| COC           | ORDIN       | IATES: NA            | ٨           |            |                      |                                                               | EXCAVATOR TYPE/MODEL: Takeuchi TB-290                                                    |
| SUF           | RFACE       | <b>EL</b> .: 214     | ft.         | (see note  | e 1)                 | TOTAL DEPTH: 12 ft.                                           | WEATHER:                                                                                 |
| GRO           | DUND        | WATER LE             | VE          | :LS:       |                      |                                                               | TEST PIT DIMENSIONS: 12.0'x14.0'                                                         |
| Ž             | Z DUF       | RING EXCA            | VA          | ATION: N   | 1E                   |                                                               | LOGGED BY: MBH CHECKED BY: JKW                                                           |
| Ž             | Z AT I      | END OF EX            | CA          | AVATION:   | <u>-</u>             |                                                               |                                                                                          |
|               |             |                      |             |            |                      |                                                               |                                                                                          |
| Depth<br>(ft) | EI.<br>(ft) | Excavation<br>Effort | Remark      | Strata     | Depth<br>El.(ft.)    |                                                               | Material Description                                                                     |
|               |             | E                    | П           | Topsoil :  | 1 <sub>N</sub> 1 0.3 | 0 ft 0.3 ft.: Topsoil                                         |                                                                                          |
|               | 212.5       | E                    |             | Fill       | 213.7                | 0.3 ft 4 ft.: Well Graded SAI gravel, trace of roots, orange, | ND with Gravel (SW), fine to coarse, 5-10% fines, ~20% fine to coarse moist              |
|               | 210.0       |                      | 1 1         | 0          | 210.0                | 4 ft 12 ft.: Poorly Graded S/                                 | AND (SP), fine to medium, 5-10% fines, 10% cobbles, light brown, moist                   |
| 5.0           | 207.5       | . E                  |             | Sand       |                      |                                                               |                                                                                          |
|               | 205.0       |                      | -           | Gravel     | 0°                   |                                                               |                                                                                          |
| 10.0          | <br>        | D                    |             |            | 0.0                  |                                                               |                                                                                          |
|               | -           | 1                    |             | 0          | , 0                  |                                                               |                                                                                          |
|               | 202.5       | -                    |             | 0          | 0 d                  |                                                               |                                                                                          |
|               |             |                      | $\bigsqcup$ | °          | ○°   <sub>12.0</sub> |                                                               |                                                                                          |
|               |             |                      |             |            |                      | Bottom of test pit at 12.0 feet.                              | . Backfilled test pit with excavated material and tamped in 12" lifts.                   |
| GE            |             | L COMME              |             |            | -                    | I - Moderate, D = Difficult, V = V                            | Very Difficult  t from Drawing EX-1 titled: "Site Survey Plan, Schematic Design, Maynard |

<sup>1.</sup> The ground surface elevation was interpolated to the nearest foot from Drawing EX-1 titled: "Site Survey Plan, Schematic Design, Maynard Public Schools, Green Meadow Elementary School," prepared by Samiotes Consultants, Inc., dated September 2, 2022 and provided to LGCI by Brennan via e-mail on February 1, 2024.

| -        | T       |         | -        | T      |
|----------|---------|---------|----------|--------|
|          |         | U       |          |        |
| Lahlaf G | cotechn | ical Co | nsulting | , Inc. |

### **TEST PIT LOG**

PAGE 1 OF 1

|                                                    | _                                      | Mount Ver                                                               |                 |                             |                                         | tects, I          |                                                                     | PROJECT NAME: Proposed Green Meadow Elementary School PROJECT LOCATION: Maynard, MA                                                                                                       |  |
|----------------------------------------------------|----------------------------------------|-------------------------------------------------------------------------|-----------------|-----------------------------|-----------------------------------------|-------------------|---------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| TEST<br>COO<br>SUR<br>GRO                          | T PIT<br>PRDIN<br>FACE<br>PUND\<br>DUF | ARTED: 2/<br>LOCATION<br>ATES: NA<br>EL.: 213<br>WATER LE'<br>RING EXCA | l:<br>ft.<br>VE | Within . (see n ELS: ATION: | propos<br>ote 1)                        | sed roa           |                                                                     | EXCAVATION SUBCONTRACTOR: Saunders Construction  EXCAVATION FOREMAN: Paul Meniates  EXCAVATOR TYPE/MODEL: Takeuchi TB-290  WEATHER:  TEST PIT DIMENSIONS:  LOGGED BY: MBH CHECKED BY: JKW |  |
| Depth<br>(ft)                                      | El.<br>(ft)                            | Excavation<br>Effort                                                    | Remark          | Stra                        |                                         | Depth<br>El.(ft.) |                                                                     | Material Description                                                                                                                                                                      |  |
|                                                    | 040.5                                  | E                                                                       | Ė               | Topsoil                     | $\overline{z_{f,N}}$ . $\overline{z_f}$ |                   | 0 ft 0.5 ft.: Topsoil                                               |                                                                                                                                                                                           |  |
| -                                                  | 212.5                                  | E<br>M                                                                  |                 | Fill                        | 1. \./ .                                | 0.5<br>212.5      | 0.5 ft 1.5 ft.: Silty SAND (SM) organic soil, trace of roots, brown | ), fine to medium, 15-20% fines, 0-5% fine to coarse gravel, trace of wn, moist                                                                                                           |  |
| -                                                  |                                        | M                                                                       |                 |                             | .0.                                     |                   | 1.5 ft 5.3 ft.: Well Graded SA to coarse gravel, orange, moist      | ND with Silt and Gravel (SW-SM), fine to coarse, ~10% fines, 20-25% fine                                                                                                                  |  |
| 2.5                                                | 210.0                                  | IVI                                                                     |                 |                             | .00                                     |                   |                                                                     |                                                                                                                                                                                           |  |
| -                                                  |                                        | E                                                                       | -               |                             | .00                                     |                   |                                                                     |                                                                                                                                                                                           |  |
| - +                                                |                                        | М                                                                       |                 |                             | . O . C                                 | l                 |                                                                     |                                                                                                                                                                                           |  |
| 5.0                                                | 207.5                                  | D                                                                       |                 |                             | 000                                     | l                 |                                                                     |                                                                                                                                                                                           |  |
| - <del> </del><br>- <del> </del><br>- <del> </del> | <u>207.5</u><br>- –<br>- –             | D                                                                       |                 | Sand<br>and<br>Gravel       |                                         |                   |                                                                     | SAND with Silt (SP-SM), fine to medium with trace coarse, ~15% fines, t brown with orange stripes, moist                                                                                  |  |
| 7.5                                                | - –<br>205.0<br>- –                    | V                                                                       |                 |                             |                                         |                   |                                                                     |                                                                                                                                                                                           |  |
| 10.0                                               | <br>                                   | ·                                                                       | 1               |                             |                                         | 10.1              | DEMARK 1: Everyeter refusel                                         | at depth of 10.1' an passible large boulders as reals                                                                                                                                     |  |
|                                                    |                                        |                                                                         |                 |                             |                                         |                   |                                                                     | at depth of 10.1' on possible large boulders or rock.  Backfilled test pit with excavated material and tamped in 12" lifts.                                                               |  |
|                                                    |                                        |                                                                         |                 |                             |                                         |                   | 22.13.1. 5. tost pit dt 10.1 100t. t                                |                                                                                                                                                                                           |  |
| GEI                                                | NERA                                   | L COMMEN                                                                | чT              | 'S:                         | E = Ea                                  | asv. M            | - Moderate. D = Difficult. V = Ve                                   | ery Difficult                                                                                                                                                                             |  |

# **TEST PIT LOG**

PAGE 1 OF 1

|               | _           | Mount Ver            |         |                       |                             | itects,           | Inc.                                                          | PROJECT NAME: Proposed Green Meadow Elementary School PROJECT LOCATION: Maynard, MA         |
|---------------|-------------|----------------------|---------|-----------------------|-----------------------------|-------------------|---------------------------------------------------------------|---------------------------------------------------------------------------------------------|
|               |             | ARTED: 2             |         |                       | .01                         | DAT               | TE COMPLETED: 2/7/24                                          | EXCAVATION SUBCONTRACTOR: Saunders Construction                                             |
|               |             | LOCATION             |         |                       | nronos                      | _                 |                                                               | EXCAVATION FOREMAN: Paul Meniates                                                           |
|               |             | ATES: NA             |         |                       | ргоро                       | <u> </u>          | aaway                                                         | EXCAVATOR TYPE/MODEL: _Takeuchi TB-290                                                      |
|               |             |                      |         |                       | -4- 4\                      |                   | TOTAL DEPTH 40.6                                              |                                                                                             |
|               |             | <u></u>              |         |                       | ote 1)                      |                   | TOTAL DEPTH: 12 ft.                                           | _ WEATHER:                                                                                  |
|               |             | WATER LE             |         |                       |                             |                   |                                                               | TEST PIT DIMENSIONS: 12.0'x4.0'                                                             |
|               |             | RING EXCA            |         |                       |                             |                   |                                                               | LOGGED BY: MBH CHECKED BY: JKW                                                              |
| Ţ             | ATI         | END OF EX            | C       | AVATIO                | N: -                        |                   |                                                               |                                                                                             |
|               |             |                      |         |                       |                             |                   |                                                               | -                                                                                           |
| Depth<br>(ft) | EI.<br>(ft) | Excavation<br>Effort | Remark  | Stra                  |                             | Depth<br>El.(ft.) |                                                               | Material Description                                                                        |
|               | 212.5       | E                    |         | Topsoil               | 17 . 71 17. 71. 71. 71. 71. | 0.6               | 0 ft 0.6 ft.: Topsoil                                         |                                                                                             |
|               | <br>        | E                    |         | Fill                  |                             | 212.4             | 0.6 ft 2 ft.: Silty SAND (SM) of wood, trace of roots, dark b | , fine to medium, 15-20% fines, 0-5% fine gravel, trace of organic soil, trace prown, moist |
|               |             |                      | 1       |                       |                             | 2.0<br>211.0      | 0.6. 47.6. D. 1.0. 1.10                                       | AND (OD) 5 1 1 0 50/ 5 15 14 1 14 14 14 14 14 14 14 14 14 14 14 1                           |
| 2.5           | 210.0       | E                    |         |                       |                             |                   | 2 ft 4.7 ft.: Poorly Graded S                                 | AND (SP), fine to medium, 0-5% fines, light brown with orange stripes, moist                |
|               | <br>        | M                    |         |                       | .0.                         | <u> </u><br>      |                                                               |                                                                                             |
| 5.0           |             | M                    |         |                       | .00                         |                   | 4.7 ft 12 ft.: Well Graded SA fine to coarse gravel, 5% cob   | AND with Silt and Gravel (SW-SM), fine to coarse, 10-15% fines, 15-20% bles, orange, moist  |
| <br>          | 207.5       | D                    |         |                       |                             |                   |                                                               |                                                                                             |
| 7.5           | 205.0       |                      |         | Sand<br>and<br>Gravel | .0.                         |                   |                                                               |                                                                                             |
| <br>          | <br>        |                      |         |                       |                             |                   |                                                               |                                                                                             |
| 10.0          | 202.5       | V                    |         |                       | 000                         |                   |                                                               |                                                                                             |
|               |             |                      |         |                       | .00                         |                   |                                                               |                                                                                             |
|               |             |                      | ╀       |                       | 20                          | 12.0              | Rottom of test pit at 12 0 foot                               | Backfilled test pit with excavated material and tamped in 12" lifts.                        |
|               |             |                      |         |                       |                             |                   | Bottom or test pit at 12.0 leet.                              | . Daumineu test pit with excavateu material and tampeu in 12 lints.                         |
|               |             |                      |         |                       |                             |                   |                                                               |                                                                                             |
| GE            | NERA        | L COMMEI             | I<br>NT | 'S:                   | E = Ea                      | ⊥<br>asy, M       | - Moderate, D = Difficult, V = \                              | Very Difficult                                                                              |

<sup>1.</sup> The ground surface elevation was interpolated to the nearest foot from Drawing EX-1 titled: "Site Survey Plan, Schematic Design, Maynard Public Schools, Green Meadow Elementary School," prepared by Samiotes Consultants, Inc., dated September 2, 2022 and provided to LGCI by Brennan via e-mail on February 1, 2024.

### **TEST PIT LOG**

IP-/

|  |  | PAGE 1 OF 1 |
|--|--|-------------|
|  |  |             |

| CLIENT: Mount Vernon Group Architects, Inc.                         | PROJECT NAME: Proposed Green Meadow Elementary School |  |  |
|---------------------------------------------------------------------|-------------------------------------------------------|--|--|
| LGCI PROJECT NUMBER: 2201                                           | PROJECT LOCATION: Maynard, MA                         |  |  |
| DATE STARTED:         2/6/24         DATE COMPLETED:         2/6/24 | EXCAVATION SUBCONTRACTOR: Saunders Construction       |  |  |
| TEST PIT LOCATION: Within proposed roadway                          | EXCAVATION FOREMAN: Paul Meniates                     |  |  |
| COORDINATES: NA                                                     | EXCAVATOR TYPE/MODEL: Takeuchi TB-290                 |  |  |
| SURFACE EL.: 234 ft. (see note 1) TOTAL DEPTH: 7.5 ft.              | WEATHER:                                              |  |  |
| GROUNDWATER LEVELS:                                                 | TEST PIT DIMENSIONS: 10.0'x4.0'                       |  |  |
| abla during excavation: <u>NE</u>                                   | LOGGED BY: MBH CHECKED BY: JKW                        |  |  |
| T AT END OF EXCAVATION:                                             | _                                                     |  |  |
|                                                                     |                                                       |  |  |

|            | LIND 01 LX           |        | AVATION:                                                                                |                   |                                                                                                                                                                                                           |
|------------|----------------------|--------|-----------------------------------------------------------------------------------------|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Depth (ft) | Excavation<br>Effort | Remark | Strata                                                                                  | Depth<br>El.(ft.) | Material Description                                                                                                                                                                                      |
|            | Е                    |        | Topsoil \( \frac{\frac{\lambda^{1} \lambda_{1}}{\lambda} \frac{\lambda^{1}}{\lambda} \) | 0.5               | 0 ft 0.5 ft.: Topsoil                                                                                                                                                                                     |
| 232.5      | E                    |        | Subsoil                                                                                 | 233.5             | 0.5 ft 1.5 ft.: Poorly Graded SAND (SP), fine to medium, 0-5% fines, orange, moist                                                                                                                        |
|            | E                    |        | · 0 ·                                                                                   | 232.5             | 1.5 ft 7.5 ft.: Poorly Graded SAND with Silt and Gravel (SP-SM), fine to medium, ~10% fines, ~15% fine to coarse subangular gravel, 25-30% cobbles and boulders up to 4.8' in diamter, light brown, moist |
| 2.5        | M                    |        | (· O °                                                                                  |                   |                                                                                                                                                                                                           |
| 230.0      | D/V                  |        | Sand and Gravel                                                                         |                   |                                                                                                                                                                                                           |
| 227.5      | V                    |        |                                                                                         |                   |                                                                                                                                                                                                           |
|            |                      |        |                                                                                         |                   | Bottom of test pit at 7.5 feet. Backfilled test pit with excavated material and tamped in 12" lifts.                                                                                                      |

### GENERAL COMMENTS: E = Easy, M - Moderate, D = Difficult, V = Very Difficult

<sup>1.</sup> The ground surface elevation was interpolated to the nearest foot from Drawing EX-1 titled: "Site Survey Plan, Schematic Design, Maynard Public Schools, Green Meadow Elementary School," prepared by Samiotes Consultants, Inc., dated September 2, 2022 and provided to LGCI by Brennan via e-mail on February 1, 2024.

# **TEST PIT LOG**

PAGE 1 OF 1

| LGCI PI     |                         |                 |             | on Group<br>ER: 22   |                    | iecis,            | inc.                                                          | PROJECT LOCATION: Maynard, MA                                                                 |                                         |                               |                                       |                   |
|-------------|-------------------------|-----------------|-------------|----------------------|--------------------|-------------------|---------------------------------------------------------------|-----------------------------------------------------------------------------------------------|-----------------------------------------|-------------------------------|---------------------------------------|-------------------|
| DATE S      |                         |                 |             |                      |                    | DAT               | TE COMPLETED: 2/6/24                                          | EXCAVATION SUBCONTRACTOR: Saunders Construction                                               |                                         |                               |                                       |                   |
| TEST P      |                         |                 |             |                      | nrono              |                   |                                                               | EXCAVATION SUBCONTRACTOR:                                                                     |                                         |                               |                                       |                   |
| COORD       |                         |                 |             | VVILIIIII            | ргороз             | seu io            | auway                                                         | EXCAVATION FOREMAN. Fault Me                                                                  |                                         |                               |                                       |                   |
| SURFA       |                         |                 |             | (see r               | note 1)            |                   | TOTAL DEPTH: 12 ft.                                           | WEATHER:                                                                                      | 1B-230                                  |                               |                                       |                   |
| GROUN       |                         |                 |             |                      | 010 1)             |                   |                                                               | TEST PIT DIMENSIONS: 9.0'x3.5'                                                                |                                         |                               |                                       |                   |
|             |                         |                 |             | ATION:               | NE                 |                   |                                                               | LOGGED BY: MBH                                                                                | CHECKED BY: JKW                         |                               |                                       |                   |
|             |                         |                 |             | AVATIO               |                    |                   |                                                               |                                                                                               |                                         |                               |                                       |                   |
| <del></del> | EI. Excavation E Strata |                 |             | Material Description |                    |                   |                                                               |                                                                                               |                                         |                               |                                       |                   |
|             |                         | _               | 2           |                      | 711.71             | Depth<br>El.(ft.) | 0 ft 0.6 ft.: Topsoil                                         |                                                                                               |                                         |                               |                                       |                   |
| . ‡         |                         | E               |             | Topsoil              | 1, 1,              | 0.6               | *                                                             |                                                                                               |                                         |                               |                                       |                   |
| 225         | -<br>-<br>5.0<br>-<br>- | E               |             | Subsoil              |                    | Subsoil           | Subsoil                                                       |                                                                                               | 226.4                                   | 0.6 ft 3.5 ft.: Poorly Graded | SAND (SP), fine to medium, 5-10% fine | es, orange, moist |
| - +         | +                       |                 | -           |                      | , 0 0              | 3.5<br>223.5      | 3.5 ft = 10 ft : Well Graded SA                               | ND with Silt and Gravel (SW-SM), fine                                                         | to coarse 10-15% fines 10-15%           |                               |                                       |                   |
| 222         | 5                       | E               |             |                      | .00                |                   |                                                               | bbbles and boulders, light brown, moist                                                       | to obtained, to to willined, to to will |                               |                                       |                   |
| 5.0         | -<br>-<br>-             | М               |             |                      |                    |                   |                                                               |                                                                                               |                                         |                               |                                       |                   |
| 7.5         | -                       | D               |             | Sand and Gravel      |                    |                   |                                                               |                                                                                               |                                         |                               |                                       |                   |
|             | -                       | V               |             |                      |                    |                   | 10 ft 12 ft.: Silty SAND with<br>15% cobbles and boulders, br | Gravel (SM), fine to coarse, 15-20% fin<br>own, moist                                         | es, 20-25% fine subrounded gravel,      |                               |                                       |                   |
| 215         | 0.0                     |                 | Ħ           |                      | ° 0 C              | 12.0              | Bottom of test pit at 12.0 feet.                              | Backfilled test pit with excavated mater                                                      | rial and tamped in 12" lifts.           |                               |                                       |                   |
|             |                         |                 |             |                      |                    |                   |                                                               |                                                                                               |                                         |                               |                                       |                   |
| GENE        | ا. The ر<br>Publi       | ground<br>c Sch | d sı<br>ool | urface e<br>ls, Gree | elevatio<br>en Mea | n was<br>dow E    |                                                               | Very Difficult t from Drawing EX-1 titled: "Site Survey Samiotes Consultants, Inc., dated Sep |                                         |                               |                                       |                   |

### **TEST PIT LOG**

PAGE 1 OF 1

|                          |                                 |                                       |                 | on Group Arch<br>ER: 2201                                                 | itects,           |                                                                | PROJECT NAME: Proposed Green Meadow Elementary School PROJECT LOCATION: Maynard, MA                                                                                                                  |
|--------------------------|---------------------------------|---------------------------------------|-----------------|---------------------------------------------------------------------------|-------------------|----------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| TES<br>COC<br>SUF<br>GRC | T PIT<br>DRDIN<br>RFACE<br>DUND | ATES: <u>NA</u> EEL.: 219<br>WATER LE | l:<br>ft.<br>VE | Within propo                                                              | osed roa          | adway  TOTAL DEPTH: 7 ft.                                      | EXCAVATION SUBCONTRACTOR: Saunders Construction  EXCAVATION FOREMAN: Paul Meniates  EXCAVATOR TYPE/MODEL: Takeuchi TB-290  WEATHER:  TEST PIT DIMENSIONS: 14.0'x4.0'  LOGGED BY: MBH CHECKED BY: JKW |
| Depth<br>(ft)            | EI.<br>(ft)                     | Excavation<br>Effort                  | Remark          | Strata                                                                    | Depth<br>El.(ft.) |                                                                | Material Description                                                                                                                                                                                 |
|                          |                                 | Е                                     |                 | Topsoil \( \frac{\frac{\lambda^{1} \lambda_{\range}}{\ldots}}{\ldots} \). |                   | 0 ft 0.5 ft.: Topsoil                                          |                                                                                                                                                                                                      |
| · -                      | <br><br>_217.5                  | E<br>M                                |                 |                                                                           | 218.5             | 0.5 ft 2.5 ft.: Well Graded SA fine to coarse subrounded grav  | AND with Silt and Gravel (SW-SM), fine to coarse, 10-15% fines, 15-20% vel, orange, moist                                                                                                            |
| 2.5                      | <br>                            | D<br>D                                |                 |                                                                           |                   | 2.5 ft 5.5 ft.: Poorly Graded \$ 0-5% fine to coarse subrounde | SAND with Silt (SP-SM), fine to medium with trace coarse, 10-15% fines, and gravel, light brown, moist                                                                                               |
| 5.0                      |                                 | M                                     |                 | Sand and Gravel                                                           |                   |                                                                |                                                                                                                                                                                                      |
| <br>                     |                                 | M<br>V                                | 1               |                                                                           |                   | 5.5 ft 7 ft.: Silty SAND with G<br>30% cobbles and boulders up |                                                                                                                                                                                                      |
|                          |                                 |                                       |                 |                                                                           |                   |                                                                | Sackfilled test pit with excavated material and tamped in 12" lifts.                                                                                                                                 |

#### GENERAL COMMENTS: E = Easy, M - Moderate, D = Difficult, V = Very Difficult

LGCI by Brennan via e-mail on February 1, 2024.

# **TEST PIT LOG**

TP-10

|      |   |    | • |
|------|---|----|---|
| PAGE | 1 | OF | 1 |

| CLIENT: Mount Vernon Group Architects, Inc.  LGCI PROJECT NUMBER: 2201                                                                                                                                                                               | PROJECT NAME: Proposed Green Meadow Elementary School PROJECT LOCATION: Maynard, MA                                                                                   |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| DATE STARTED: 2/7/24 DATE COMPLETED: 2/7/24  TEST PIT LOCATION: Within proposed roadway  COORDINATES: NA  SURFACE EL.: 221 ft. (see note 1) TOTAL DEPTH: 8.5  GROUNDWATER LEVELS:  DURING EXCAVATION: 8.5 ft. / El. 212.5 ft.  AT END OF EXCAVATION: | EXCAVATION SUBCONTRACTOR: Saunders Construction  EXCAVATION FOREMAN: Paul Meniates  EXCAVATOR TYPE/MODEL: Takeuchi TB-290                                             |  |  |
| EI. (ft) Excavation Effort Strata  Strata  Depth EI.(ft.)                                                                                                                                                                                            | Material Description                                                                                                                                                  |  |  |
| E Topsoil 220.0 Oft 1 ft.: Topsoil                                                                                                                                                                                                                   |                                                                                                                                                                       |  |  |
| 220.0 1 ft 2.7 ft.: Poorly Grade  Subsoil                                                                                                                                                                                                            | ed SAND (SP), fine to medium, 0-5% fines, orange, moist                                                                                                               |  |  |
|                                                                                                                                                                                                                                                      | ded SAND with Silt (SP-SM), fine to medium with trace coarse, 10-15% fines,<br>I, light brown, moist                                                                  |  |  |
| 5.0 - M  Sand and Gravel  215.0                                                                                                                                                                                                                      |                                                                                                                                                                       |  |  |
| 7.5 D  7.5 ft 8.5 ft.: Well Grade                                                                                                                                                                                                                    | ed SAND withSilt and Gravel (SW-SM), fine to coarse, 10-15% fines, 20-25% I gravel, 25% cobbles and boulders up to 2.5' in diameter, light brown, moist               |  |  |
|                                                                                                                                                                                                                                                      |                                                                                                                                                                       |  |  |
| ILLIVIATOR 1. EXCAVATOR FEI                                                                                                                                                                                                                          | fusal on possible boulder or rock.  vet. Backfilled test pit with excavated material and tamped in 12" lifts.                                                         |  |  |
| GENERAL COMMENTS: E = Easy, M - Moderate, D = Difficult, N  1. The ground surface elevation was interpolated to the nearest Public Schools, Green Meadow Elementary School," prepare                                                                 | / = Very Difficult foot from Drawing EX-1 titled: "Site Survey Plan, Schematic Design, Maynard by Samiotes Consultants, Inc., dated September 2, 2022 and provided to |  |  |

### **TEST PIT LOG**

TP-1

PAGE 1 OF 1

|               |                            | JECT NUM             |         |                       |                                           | iecis,            |                                                                | PROJECT LOCATION: _Maynard, MA                                                                                                                                                                               |
|---------------|----------------------------|----------------------|---------|-----------------------|-------------------------------------------|-------------------|----------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|               |                            | ARTED: 2/            |         |                       |                                           | DAT               | E COMPLETED: 2/9/24                                            | EXCAVATION SUBCONTRACTOR: Saunders Construction                                                                                                                                                              |
|               |                            | LOCATION             |         |                       |                                           | •                 |                                                                | EXCAVATION FOREMAN: Paul Meniates                                                                                                                                                                            |
|               |                            | ATES: NA             |         |                       | P P -                                     |                   |                                                                | EXCAVATOR TYPE/MODEL: Takeuchi TB-290                                                                                                                                                                        |
|               |                            | <b>EL</b> .: 204     |         | (see n                | ote 1)                                    |                   | TOTAL DEPTH: 10.8 ft.                                          | WEATHER:                                                                                                                                                                                                     |
|               |                            | NATER LE             |         |                       | 1010 1)                                   |                   |                                                                | TEST PIT DIMENSIONS: 11.0'x5.0'                                                                                                                                                                              |
|               |                            | RING EXCA            |         |                       | NE                                        |                   |                                                                | LOGGED BY: MBH CHECKED BY: JKW                                                                                                                                                                               |
|               |                            | END OF EX            |         |                       |                                           |                   |                                                                | CHECKED B1NVV                                                                                                                                                                                                |
|               | - AI L                     | IND OF EX            |         | AVAIIO                | ·N                                        |                   |                                                                |                                                                                                                                                                                                              |
| Depth<br>(ft) | EI.<br>(ft)                | Excavation<br>Effort | Remark  | Stra                  |                                           | Depth<br>El.(ft.) |                                                                | Material Description                                                                                                                                                                                         |
|               |                            |                      | П       |                       | $\overline{J_{IJ}}$ . $\overline{J_{IJ}}$ | Li.(it.)          | 0 ft 1 ft.: Topsoil (top 6" froze                              | en)                                                                                                                                                                                                          |
|               |                            | D                    |         | Topsoil               | '/ ' <sup>/</sup> /'                      | 1.0               |                                                                |                                                                                                                                                                                                              |
| 2.5           | 202.5                      | E                    |         | Subsoil               |                                           | 203.0             | 1 ft 3 ft.: Poorly Graded SAN subrounded gravel, orange, mo    | D with Silt and Gravel (SP-SM), fine to medium, 10-15% fines, 0-5% fine bist                                                                                                                                 |
| - +           | - +                        |                      | 1       |                       | . <del></del>                             | 3.0<br>201.0      | 3 ft - 10 8 ft : Fast Face: Poor                               | y Graded SAND with Gravel (SP), medium to coarse with trace fine, 0-5%                                                                                                                                       |
| 5.0           | 200.0                      | M                    |         |                       |                                           |                   | fines, 15-20% fine to coarse su<br>West Face: Well Graded SANI | abrouned gravel, orange to red with light brown stripes, moist D with Silt and Gravel (SW-SM), fine to coarse, 5-10% fines, 20-25% fine to 6 cobbles and boulders up to 1.5' in diameter, light brown, moist |
| <br><br>7.5   | 197.5<br><br><br><br>195.0 | D                    |         | Sand<br>and<br>Gravel |                                           |                   |                                                                |                                                                                                                                                                                                              |
|               |                            |                      |         |                       | 000                                       |                   |                                                                |                                                                                                                                                                                                              |
| 10.0          |                            |                      |         |                       | . 0 °                                     |                   |                                                                |                                                                                                                                                                                                              |
|               | - 1                        |                      |         |                       | 00                                        |                   |                                                                |                                                                                                                                                                                                              |
| - +           |                            |                      | 1       |                       | .00                                       | 10.8              | DEMARK 1. Township at and to at a                              | it due to its walls coving in                                                                                                                                                                                |
|               |                            |                      | Ħ       |                       | 1010                                      |                   | REMARK 1: Terminated test p                                    | it due to its walls caving in.  Backfilled test pit with excavated material and tamped in 12" lifts.                                                                                                         |
|               |                            |                      |         |                       |                                           |                   | Dottom or test pit at 10.0 leet.                               | Baominiou test pit with excavateu material and tampeu in 12 lints.                                                                                                                                           |
|               |                            |                      |         |                       |                                           |                   |                                                                |                                                                                                                                                                                                              |
|               |                            |                      |         |                       |                                           |                   |                                                                |                                                                                                                                                                                                              |
|               |                            |                      |         |                       |                                           |                   |                                                                |                                                                                                                                                                                                              |
|               |                            |                      |         |                       |                                           |                   |                                                                |                                                                                                                                                                                                              |
|               |                            |                      |         |                       |                                           |                   |                                                                |                                                                                                                                                                                                              |
|               |                            |                      |         |                       |                                           |                   |                                                                |                                                                                                                                                                                                              |
|               |                            |                      |         |                       |                                           |                   |                                                                |                                                                                                                                                                                                              |
|               |                            |                      |         |                       |                                           |                   |                                                                |                                                                                                                                                                                                              |
|               |                            |                      |         |                       |                                           |                   |                                                                |                                                                                                                                                                                                              |
|               |                            |                      | <u></u> |                       |                                           |                   |                                                                |                                                                                                                                                                                                              |

#### GENERAL COMMENTS: E = Easy, M - Moderate, D = Difficult, V = Very Difficult

# **TEST PIT LOG**

IP-12

PAGE 1 OF 1

| CLIENT: Mount Vernon Group Architects, Inc.  LGCI PROJECT NUMBER: 2201                                                                                                                                                                                   | PROJECT NAME: Proposed Green Meadow Elementary School PROJECT LOCATION: Maynard, MA                                                                                                                  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| DATE STARTED: 2/9/24 DATE COMPLETED: 2/9/24  TEST PIT LOCATION: Within proposed roadway  COORDINATES: NA  SURFACE EL.: 203 ft. (see note 1) TOTAL DEPTH: 12 ft.  GROUNDWATER LEVELS:  DURING EXCAVATION: 12.0 ft. / El. 191.0 ft.  AT END OF EXCAVATION: | EXCAVATION SUBCONTRACTOR: Saunders Construction  EXCAVATION FOREMAN: Paul Meniates  EXCAVATOR TYPE/MODEL: Takeuchi TB-290  WEATHER:  TEST PIT DIMENSIONS: 13.0'x4.5'  LOGGED BY: MBH CHECKED BY: JKW |
| EI. Excavation (ft) Effort Strata  Depth EI.(ft.)                                                                                                                                                                                                        | Material Description                                                                                                                                                                                 |
| M Topsoil (4.3 0 ft 0.3 ft.: Topsoil (frozen)                                                                                                                                                                                                            |                                                                                                                                                                                                      |
| M Fill Fill 202.7 0.3 ft 1.5 ft.: Poorly Grader 10-15% fines, 20-25% mostly                                                                                                                                                                              | d SAND with Silt and Gravel (SP-SM), fine to medium with trace coarse, y coarse and fine subangular gravel, light brown, moist                                                                       |
| M  orange 201.5  1.5 ft 12 ft.: Well Graded S  up to 1.7' in diameter, grange                                                                                                                                                                            | AND with Gravel (SW), fine to coarse, 0-5% fines, 20% cobbles and boulders                                                                                                                           |
| 2.5                                                                                                                                                                                                                                                      | e to light brown, moist                                                                                                                                                                              |
| 7.5                                                                                                                                                                                                                                                      |                                                                                                                                                                                                      |
| Bottom of test pit at 12.0 fee                                                                                                                                                                                                                           | t. Backfilled test pit with excavated material and tamped in 12" lifts.  Very Difficult                                                                                                              |

### **TEST PIT LOG**

TP-14

PAGE 1 OF 1

| CLI              | ENT:        | Mount Verr                   | noı    | n Group       | Archit                                | ects,             | Inc.                             | PROJECT NAME: Proposed Green Meadow Elementary School                                                                                      |
|------------------|-------------|------------------------------|--------|---------------|---------------------------------------|-------------------|----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|
| LG               | CI PRO      | JECT NUM                     | BE     | ER: _220      | )1                                    |                   |                                  | PROJECT LOCATION: Maynard, MA                                                                                                              |
| TES              | ST PIT      | ARTED: <u>2/</u><br>LOCATION | l: _   |               | oropos                                |                   | TE COMPLETED: 2/7/24<br>padway   | EXCAVATION SUBCONTRACTOR: Saunders Construction EXCAVATION FOREMAN: Paul Meniates                                                          |
|                  |             | IATES: NA                    |        |               |                                       |                   |                                  | _ EXCAVATOR TYPE/MODEL: _Takeuchi TB-290                                                                                                   |
|                  |             | <b>EL</b> .: 218             |        |               | te 1)                                 |                   | TOTAL DEPTH: 12 ft.              | _ WEATHER:                                                                                                                                 |
|                  |             | WATER LEV                    |        |               |                                       |                   |                                  | TEST PIT DIMENSIONS: 10.0'X3.5'                                                                                                            |
| -\               | ∠ DUF       | RING EXCA                    | VA     | ATION: _      | 8.0 ft.                               | / EI.             | 210.0 ft.                        | LOGGED BY: MBH CHECKED BY: JKW                                                                                                             |
|                  | Z AT        | END OF EX                    | CA     | AVATION       | 1: <u>-</u> _                         |                   |                                  | -                                                                                                                                          |
| Depth<br>(ft)    | El.<br>(ft) | Excavation Effort            | Remark | Strat         |                                       | Depth<br>El.(ft.) |                                  | Material Description                                                                                                                       |
|                  | 217.5       | E                            |        | Topsoil       | · · · · · · · · · · · · · · · · · · · | 0.5               | 0 ft 0.5 ft.: Topsoil            |                                                                                                                                            |
| -                |             | E                            |        | Subsoil       |                                       | 217.5<br>1.0      | 0.5 ft 1 ft.: Poorly Graded S    | AND with Silt (SP-SM), fine to medium with trace coarse, 10-15% fines,                                                                     |
| 2.5              | <br>        | E                            |        |               |                                       | 217.0             |                                  | ed gravel, trace of roots, trace of organic soil, orange, moist  AND with Silt (SP-SM), fine to medium, 10-15% fines, 0-5% fine subrounded |
|                  | 215.0       | Е                            |        |               | 000                                   |                   |                                  | AND with Silt and Gravel (SW-SM), fine to coarse, ~10% fines, 15-20% fine                                                                  |
| <br>             |             |                              |        |               | .0.                                   |                   | to coarse subrounded gravel,     | 10-15% cobbles and boulders up to 3.5' in diameter                                                                                         |
| 5.0              | 212.5       |                              |        |               |                                       |                   |                                  |                                                                                                                                            |
| 7.5              | 210.0       |                              |        | and<br>Gravel |                                       | Ž                 | Z                                |                                                                                                                                            |
| <br>10.0<br><br> | 207.5       |                              |        |               |                                       | 12.0              |                                  |                                                                                                                                            |
|                  |             |                              |        |               |                                       |                   | Bottom of test pit at 12.0 feet. | Backfilled test pit with excavated material and tamped in 12" lifts.                                                                       |

#### GENERAL COMMENTS: E = Easy, M - Moderate, D = Difficult, V = Very Difficult

<sup>1.</sup> The ground surface elevation was interpolated to the nearest foot from Drawing EX-1 titled: "Site Survey Plan, Schematic Design, Maynard Public Schools, Green Meadow Elementary School," prepared by Samiotes Consultants, Inc., dated September 2, 2022 and provided to LGCI by Brennan via e-mail on February 1, 2024.

# **TEST PIT LOG**

**TP-15** PAGE 1 OF 1

|                 |                 | JECT NUN             |             | on Group <i>F</i><br>S <b>ER:</b> 220  |                 | icis, i          |                                                              | PROJECT NAME: Proposed Green Meadow Elementary School PROJECT LOCATION: Maynard, MA                                                                       |  |  |  |
|-----------------|-----------------|----------------------|-------------|----------------------------------------|-----------------|------------------|--------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
|                 |                 | ARTED: 2             |             |                                        |                 | DAT              | E COMPLETED: 2/7/24                                          | EXCAVATION SUBCONTRACTOR: Saunders Construction                                                                                                           |  |  |  |
|                 |                 | LOCATION             |             |                                        |                 |                  |                                                              | EXCAVATION SOBCONTRACTOR: Saunders Constituction  EXCAVATION FOREMAN: Paul Meniates                                                                       |  |  |  |
|                 |                 | IATES: N             |             | - VVICINI PI                           | оросс           | <u>/4 100</u>    | idiidi                                                       | EXCAVATOR TYPE/MODEL: _Takeuchi TB-290                                                                                                                    |  |  |  |
|                 |                 | EL.: 213             |             | . (see not                             | te 1)           |                  | TOTAL DEPTH: 12 ft.                                          | WEATHER:                                                                                                                                                  |  |  |  |
|                 |                 | WATER LE             |             |                                        |                 |                  |                                                              | TEST PIT DIMENSIONS: _13.0'x2.5'                                                                                                                          |  |  |  |
| Ž               | Z DUF           | RING EXCA            | V           | ATION: 2                               | 2.0 ft. /       | / El. 2          | 211.0 ft.                                                    | LOGGED BY: MBH CHECKED BY: JKW                                                                                                                            |  |  |  |
|                 |                 | END OF EX            |             |                                        |                 |                  |                                                              |                                                                                                                                                           |  |  |  |
| Depth<br>(ft)   | El.<br>(ft)     | Excavation<br>Effort | Remark      | 보<br>문<br>Strata<br>위                  |                 | Depth<br>I.(ft.) | Material Description                                         |                                                                                                                                                           |  |  |  |
|                 | 212.5           | Е                    |             | Topsoil 2                              | 11/1/1          |                  | 0 ft 0.5 ft.: Topsoil                                        |                                                                                                                                                           |  |  |  |
| <br><br><br>2.5 |                 | <br>E                |             | Subsoil                                | 2               | 0.5<br>212.5     | 0.5 ft 2.5 ft.: Poorly Graded Strace of roots,               | SAND with Silt (SP-SM), fine to medium, ~10% fines, trace of organic soil,                                                                                |  |  |  |
| <br>            | 210.0           | E                    |             |                                        | 000             | 210.5            | 2.5 ft 6.5 ft.: Poorly Graded S                              | SAND (SP), fine to medium with trace coarse, 0-5% fines, light brown, moist                                                                               |  |  |  |
| 5.0             | 207.5           | M                    |             |                                        |                 |                  |                                                              |                                                                                                                                                           |  |  |  |
| <br>            | -<br>-<br>-     | D                    | _           | 0                                      | 0 0             |                  | 6.5 ft 12 ft.: Well Graded SA fine to coarse subrounded grav | ND with Silt and Gravel (SW-SM), fine to coarse, 10-15% fines, 15-20% vel, light brown, moist                                                             |  |  |  |
| 7.5             | 205.0           | D                    |             | and Gravel                             | avel            |                  |                                                              |                                                                                                                                                           |  |  |  |
|                 | 202.5           | V                    |             |                                        | 000             | 2.0              |                                                              |                                                                                                                                                           |  |  |  |
|                 |                 |                      |             |                                        |                 |                  | Bottom of test pit at 12.0 feet.                             | Backfilled test pit with excavated material and tamped in 12" lifts.                                                                                      |  |  |  |
| GE              | 1. <sup>-</sup> | Public Scho          | l sı<br>ool | urface ele <sup>.</sup><br>Is, Green I | vation<br>Meado | was              |                                                              | fery Difficult from Drawing EX-1 titled: "Site Survey Plan, Schematic Design, Maynard Samiotes Consultants, Inc., dated September 2, 2022 and provided to |  |  |  |

### **TEST PIT LOG**

PAGE 1 OF 1

|                          |                                                  | Mount Ver                                                             |                      |                                                                 |                                        | ts, Inc.                                                                                                                                            | PROJECT NAME: Proposed Green Meadow Elementary School PROJECT LOCATION: Maynard, MA                                                                                                                  |  |  |
|--------------------------|--------------------------------------------------|-----------------------------------------------------------------------|----------------------|-----------------------------------------------------------------|----------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| TES<br>COC<br>SUR<br>GRC | T PIT<br>ORDIN<br>EFACE<br>DUND\<br>OUND\<br>DUF | ARTED: 2<br>LOCATION<br>ATES: N/<br>EL.: 212<br>WATER LE<br>RING EXCA | N:<br>A<br>ft.<br>VE | Within process (see notestate)  (See notestate)  ELS:  ATION: N | oposed<br>e 1)                         | TOTAL DEPTH: <u>8.5 ft.</u>                                                                                                                         | EXCAVATION SUBCONTRACTOR: Saunders Construction  EXCAVATION FOREMAN: Paul Meniates  EXCAVATOR TYPE/MODEL: Takeuchi TB-290  WEATHER:  TEST PIT DIMENSIONS: 11.0'x5.0'  LOGGED BY: MBH CHECKED BY: JKW |  |  |
| Depth<br>(ft)            | El.<br>(ft)                                      | Excavation<br>Effort                                                  | Remark               | Strata                                                          | Dep<br>El.(fi                          | <u>th</u><br>L)                                                                                                                                     | Material Description                                                                                                                                                                                 |  |  |
|                          |                                                  | Е                                                                     |                      | Topsoil :                                                       | 1/2\.\.\.\.\.\.\.\.\.\.\.\.\.\.\.\.\.\ | 0 ft 0.5 ft.: Topsoil                                                                                                                               |                                                                                                                                                                                                      |  |  |
|                          | <br><br>210.0                                    | E                                                                     | -                    | Subsoil                                                         | 2.0                                    | 5 0.5 ft 2 ft.: Silty SAND (SM) gravel, trace of roots, orange                                                                                      | ), fine to medium with trace coarse, 20-25% fines, 5-10% fine to coarse , moist                                                                                                                      |  |  |
| 2.5                      | 207.5                                            | M<br>D                                                                |                      | Sand and Gravel                                                 |                                        | SAND with Silt and Gravel (SW-SM), fine to coarse, 5-10% fines, 20-25% fine 5-10% cobbles and boulders up to 1.5' in diamter, brown to light brown, |                                                                                                                                                                                                      |  |  |
|                          |                                                  | ٧                                                                     | 1                    | 0                                                               | 8.5                                    | REMARK 1: Excavator refusa                                                                                                                          | al at depth of 8.5' on possible large boulders or rock.                                                                                                                                              |  |  |
|                          |                                                  |                                                                       |                      |                                                                 |                                        |                                                                                                                                                     | Backfilled test pit with excavated material and tamped in 12" lifts.                                                                                                                                 |  |  |
| GE                       | NFRA                                             | LCOMME                                                                | uт                   | S. E                                                            | = Fasy                                 | M - Moderate D = Difficult V = 1                                                                                                                    | Very Difficult                                                                                                                                                                                       |  |  |

### **TEST PIT LOG**

PAGE 1 OF 1

| CLIENT: Mount Vernon Group Architects, Inc.  LGCI PROJECT NUMBER: 2201                                                                                                                                                         | PROJECT NAME: Proposed Green Meadow Elementary School PROJECT LOCATION: Maynard, MA  EXCAVATION SUBCONTRACTOR: Saunders Construction EXCAVATION FOREMAN: Paul Meniates EXCAVATOR TYPE/MODEL: Takeuchi TB-290 WEATHER: TEST PIT DIMENSIONS: 9.5'x2.5' LOGGED BY: MBH CHECKED BY: SG |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| DATE STARTED: 2/9/24 DATE COMPLETED: 2/9/24  TEST PIT LOCATION: Within proposed roadway  COORDINATES: NA  SURFACE EL.: 213 ft. (see note 1) TOTAL DEPTH: 9 ft.  GROUNDWATER LEVELS:  DURING EXCAVATION:  AT END OF EXCAVATION: |                                                                                                                                                                                                                                                                                    |  |  |
| EI. Excavation (ft) Effort Strata  Depth EI.(ft.)                                                                                                                                                                              | Material Description                                                                                                                                                                                                                                                               |  |  |
| Topsoil 10 0 ft 0.3 ft.: Topsoil                                                                                                                                                                                               | with Silt (SP-SM), mostly fine with trace coarse and medium, 45% fines, trace, orange, moist                                                                                                                                                                                       |  |  |
| 2.5 ft 4.7 ft.: Silty SAND wi coarse subangular gravel, tra                                                                                                                                                                    | ith Gravel (SM), fine to medium with trace coarse, ~20% fines, ~15% fine to ace of roots, brown to orange, moist                                                                                                                                                                   |  |  |
| gravel, 25% cobbles and bou                                                                                                                                                                                                    | Gravel (SM), fine to coarse, 20-25% fines, 20-25% fine to coarse subangular ulders up to 3' in diamter, light brown to orange, moist                                                                                                                                               |  |  |
| REMARK 1: Excavator refus                                                                                                                                                                                                      | al at depth of 9' on possible large boulder or rock.  Backfilled test pit with excavated material and tamped in 12" lifts.                                                                                                                                                         |  |  |

### **TEST PIT LOG**

**TP-18B** PAGE 1 OF 1

| CLIENT: _M<br>LGCI PROJI      |                                                       |                        | n Group Archi<br>ER: _2201      | tects,            |                                                                                          | PROJECT NAME: Proposed Green Meadow Elementary School PROJECT LOCATION: Maynard, MA                                                                                                                 |  |  |
|-------------------------------|-------------------------------------------------------|------------------------|---------------------------------|-------------------|------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| COORDINATE SURFACE E GROUNDWA | OCATION<br>TES: NA<br>EL.: 213<br>ATER LE'<br>NG EXCA | N: _<br>A<br>ft.<br>VE | Within proposition (see note 1) | sed roa           | re completed: 2/9/24 adway  TOTAL DEPTH: 10 ft.                                          | EXCAVATION SUBCONTRACTOR: Saunders Construction  EXCAVATION FOREMAN: Paul Meniates  EXCAVATOR TYPE/MODEL: Takeuchi TB-290  WEATHER:  TEST PIT DIMENSIONS: 10.0'x4.0'  LOGGED BY: MBH CHECKED BY: SG |  |  |
| Depth (ft) EI.                | Excavation<br>Effort                                  | Remark                 | Strata                          | Depth<br>El.(ft.) |                                                                                          | Material Description                                                                                                                                                                                |  |  |
| 212.5                         | E                                                     |                        | Topsoil Fill                    | 0.5<br>212.5      | 0 ft 0.5 ft.: Topsoil<br>0.5 ft 3 ft.: Silty SAND with 0<br>subrounded gravel, brown, mo | Gravel (SM), fine to medium, 15-20% fines, 10-15% fine to coarse<br>pist                                                                                                                            |  |  |
| 2.5                           | M                                                     |                        | .0.                             | 3.0               |                                                                                          | ID with Silt and Gravel (SW-SM), fine to coarse, 5-10% fines, 15-20% fine to % cobbles and boulders up to 2.5' in diameter, orange, moist                                                           |  |  |
| 5.0 207.5                     | D                                                     |                        | Sand and Gravel                 |                   |                                                                                          |                                                                                                                                                                                                     |  |  |
| 7.5                           | V                                                     | 1                      |                                 |                   | DEMARK 1: Every later refuse                                                             | Let don't of 10' on possible large boulder or rock                                                                                                                                                  |  |  |
| 10.0                          |                                                       |                        |                                 | 10.0              |                                                                                          | l at depth of 10' on possible large boulder or rock.  Backfilled test pit with excavated material and tamped in 12" lifts.                                                                          |  |  |
| GENERAL                       | COMME                                                 | NT:                    | S: E = E                        | asv. M            | I - Moderate. D = Difficult. V = V                                                       | /erv Difficult                                                                                                                                                                                      |  |  |

<sup>1.</sup> The ground surface elevation was interpolated to the nearest foot from Drawing EX-1 titled: "Site Survey Plan, Schematic Design, Maynard Public Schools, Green Meadow Elementary School," prepared by Samiotes Consultants, Inc., dated September 2, 2022 and provided to LGCI by Brennan via e-mail on February 1, 2024.

### **TEST PIT LOG**

IP-19

PAGE 1 OF 1

|                                                                     | PROJECT NAME: Proposed Green Meadow Elementary School PROJECT LOCATION: Maynard, MA |  |  |  |  |
|---------------------------------------------------------------------|-------------------------------------------------------------------------------------|--|--|--|--|
|                                                                     | inayinara, ivii                                                                     |  |  |  |  |
| DATE STARTED:         2/9/24         DATE COMPLETED:         2/9/24 | EXCAVATION SUBCONTRACTOR: Saunders Construction                                     |  |  |  |  |
| TEST PIT LOCATION: Within proposed roadway                          | EXCAVATION FOREMAN: Paul Meniates                                                   |  |  |  |  |
| COORDINATES: NA                                                     | EXCAVATOR TYPE/MODEL: Takeuchi TB-290                                               |  |  |  |  |
| SURFACE EL.: 209 ft. (see note 1) TOTAL DEPTH: 12 ft.               | WEATHER:                                                                            |  |  |  |  |
| GROUNDWATER LEVELS:                                                 | TEST PIT DIMENSIONS: 8.0'x3.0'                                                      |  |  |  |  |
| $\overline{egin{array}{cccccccccccccccccccccccccccccccccccc$        | LOGGED BY: MBH CHECKED BY: SG                                                       |  |  |  |  |
| T AT END OF EXCAVATION:                                             |                                                                                     |  |  |  |  |
| 5 O EL Excavation                                                   |                                                                                     |  |  |  |  |

| El. Exca                                       | vation ort | Stra                  | Depth<br>El.(ft.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Material Description                                                                                                                                                                                                          |
|------------------------------------------------|------------|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| + - 1                                          | 1          | Topsoil               | \(\frac{1}{1} \frac{1}{1} \cdot \frac{1} \cdot \frac{1}{1} \cdot \frac{1}{1} \cdot \frac{1}{1} \cdot \ | 0 ft 1 ft.: Topsoil                                                                                                                                                                                                           |
| + +                                            | ≣          | Subsoil               | 208.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1 ft 2.3 ft.: Poorly Graded SAND with Silt (SP-SM), fine to medium, 15-20% fines, 0-5% fine subangular gravel, trace of organic soil, trace of roots, orange, moist                                                           |
| 205.0<br>205.0<br>5.0<br>202.5<br>7.5<br>200.0 |            | Sand<br>and<br>Gravel |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.3 ft 12 ft.: Poorly Graded SAND with Silt (SP-SM), fine to medium with trace coarse, 5-10% fines, light brown, moist  Bottom of test pit at 12.0 feet. Backfilled test pit with excavated material and tamped in 12" lifts. |

#### GENERAL COMMENTS: E = Easy, M - Moderate, D = Difficult, V = Very Difficult

<sup>1.</sup> The ground surface elevation was interpolated to the nearest foot from Drawing EX-1 titled: "Site Survey Plan, Schematic Design, Maynard Public Schools, Green Meadow Elementary School," prepared by Samiotes Consultants, Inc., dated September 2, 2022 and provided to LGCI by Brennan via e-mail on February 1, 2024.

# **TEST PIT LOG**

TP-21

PAGE 1 OF 1

| CLIENT: Mount Vernon Group Architects, Inc. LGCI PROJECT NUMBER: 2201                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | PROJECT NAME: Proposed Green Meadow Elementary School PROJECT LOCATION: Maynard, MA                                       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|
| DATE STARTED: 2/8/24 DATE COMPLETED: 2/8/24  TEST PIT LOCATION: East of proposed building  COORDINATES: NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | EXCAVATION SUBCONTRACTOR: Saunders Construction  EXCAVATION FOREMAN: Paul Meniates  EXCAVATOR TYPE/MODEL: Takeuchi TB-290 |
| SURFACE EL.: _202 ft. (see note 1) TOTAL DEPTH: _12 ft.  GROUNDWATER LEVELS:  DURING EXCAVATION: _2.5 ft. / El. 199.5 ft.  AT END OF EXCAVATION:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | WEATHER: TEST PIT DIMENSIONS: 12.0'x4.0' LOGGED BY: MBH CHECKED BY: SG                                                    |
| El. (ft) Excavation Effort Effort Depth El.(ft.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Material Description                                                                                                      |
| D Topsoil 0 ft 0.8 ft.: Topsoil    Topsoil   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8       | .ND with Silt and Gravel (SW-SM), fine to coarse, ~10% fines, 15-20% fine to                                              |
| 0.6 it 3 it Well Graded SA coarse subrounded gravel, graded grade       |                                                                                                                           |
| Organic 3.5 organic soil trace of roots da                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ), fine to medium, 25-30% fines, 0-5% fine subrounded gravel, trace of                                                    |
| E 3.5 ft 4 ft.: Poorly Graded S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SAND with Silt and Gravel (SP-SM), fine to medium with trace coarse,                                                      |
| 7.5   Sand and Gravel   Solution   Sand of the second of t |                                                                                                                           |
| 9.1 ft 12 ft.: Well Graded S to orange, wet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | AND (SW), fine to coarse, 0-5% fines, 5-10% fine subrounded gravel, brown                                                 |
| Bottom of test pit at 12.0 feet  GENERAL COMMENTS: E = Easy, M - Moderate, D = Difficult, V =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | t. Backfilled test pit with excavated material and tamped in 12" lifts.  Very Difficult                                   |
| 1. The ground surface elevation was interpolated to the nearest for                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | of from Drawing EX-1 titled: "Site Survey Plan, Schematic Design, Maynard                                                 |

# **TEST PIT LOG**

**TP-22** 

PAGE 1 OF 1

|                                                       |        | JECT NUN   |        |                 |                             | iecis,            |                                                              | PROJECT NAME: Proposed Green Meadow Elementary School PROJECT LOCATION: Maynard, MA |
|-------------------------------------------------------|--------|------------|--------|-----------------|-----------------------------|-------------------|--------------------------------------------------------------|-------------------------------------------------------------------------------------|
|                                                       |        |            |        |                 |                             | DAT               |                                                              |                                                                                     |
|                                                       |        | ARTED: 2   |        |                 |                             |                   | E COMPLETED: 2/8/24                                          | EXCAVATION SUBCONTRACTOR: Saunders Construction                                     |
|                                                       |        | LOCATION   |        | _East of        | r propo                     | sea bi            | uliding                                                      | EXCAVATION FOREMAN: Paul Meniates                                                   |
|                                                       |        | IATES: N   |        | /               | -4- 4\                      |                   | TOTAL DEDTIL: 40.5                                           | EXCAVATOR TYPE/MODEL: _Takeuchi TB-290                                              |
| SURFACE EL.: 202 ft. (see note 1) TOTAL DEPTH: 12 ft. |        |            |        |                 |                             |                   | IOIAL DEPTH: 12 π.                                           | WEATHER:                                                                            |
| GROUNDWATER LEVELS:  \$\sqrt{2}\$ DURING EXCAVATION:  |        |            |        |                 |                             |                   |                                                              | TEST PIT DIMENSIONS: 11.0'x4.0'                                                     |
|                                                       |        |            |        |                 |                             |                   |                                                              | LOGGED BY: MBH CHECKED BY: SG                                                       |
|                                                       | - AI I | END OF EX  | (C     | AVAIIO          | N:                          |                   |                                                              | -                                                                                   |
| Depth<br>(ft)                                         | El.    | Excavation | Remark | Stra            | ata                         |                   |                                                              | Material Description                                                                |
| ۵ ۵                                                   | (ft)   | Effort     | Rer    |                 |                             | Depth<br>El.(ft.) |                                                              | '                                                                                   |
|                                                       |        |            |        |                 | 71 1 7                      |                   | 0 ft 2 ft.: Topsoil                                          |                                                                                     |
|                                                       |        | E          |        |                 | 1/ 1/1/                     |                   |                                                              |                                                                                     |
|                                                       |        |            | 4      | Topsoil         | · <u>/ 1/2</u> · <u>/ 1</u> |                   |                                                              |                                                                                     |
|                                                       |        | E          |        | 1               | 1/2 1/2                     |                   |                                                              |                                                                                     |
|                                                       | 200.0  | _          |        |                 | <u>v</u> v v                | 2.0               |                                                              |                                                                                     |
|                                                       | 200.0  |            | 1      |                 |                             | 200.0             | 2 ft 3 ft.: Poorly Graded SAN                                | ND with Silt (SP-SM), fine to medium, 10-15% fines, orange to light brown,          |
| 2.5                                                   |        | E          |        | Fill            |                             |                   | moist                                                        |                                                                                     |
|                                                       |        |            |        | Buried          |                             | 3.0<br>199.0      | 3 ft = 3.5 ft · Silty SAND (SM)                              | fine to medium, 25-30% fines, trace of organic soil, dark brown to black,           |
|                                                       |        | E          | -      | Organic<br>Soil | , J                         | 3.5               | moist                                                        |                                                                                     |
|                                                       |        |            |        |                 | $[\cdot \circ \circ]$       |                   | 3.5 ft 7 ft.: Poorly Graded SA fine to coarse subrounded gra | AND with Silt (SP-SM), fine to medium with trace coarse, ~10% fines, 0-5%           |
|                                                       | 197.5  |            |        |                 | 000                         |                   | ille to coarse subrounded gra                                | vei, light brown, moist                                                             |
|                                                       |        |            |        |                 | . O. d                      |                   |                                                              |                                                                                     |
| 5.0                                                   |        | _          |        |                 | 00                          |                   |                                                              |                                                                                     |
| _                                                     |        | E          |        |                 | . o d                       |                   |                                                              |                                                                                     |
|                                                       |        |            |        |                 | 6 0°                        |                   |                                                              |                                                                                     |
|                                                       |        |            |        |                 |                             |                   |                                                              |                                                                                     |
|                                                       |        |            |        |                 | · 0 .                       |                   |                                                              |                                                                                     |
|                                                       | 195.0  |            | +      |                 | 000                         |                   | 7 ft - 12 ft · Sandy SILT (ML)                               | slightly to moderately plastic, 30-35% fine to medium sand, light brown to          |
| 7.5                                                   |        |            |        | G 1             | · 0 ·                       |                   | grey, moist                                                  | Signify to moderately plastic, 50-55% line to medium sand, light brown to           |
|                                                       |        |            |        | Sand            | 00                          |                   |                                                              |                                                                                     |
|                                                       |        |            |        | Gravel          | ° 0 d                       |                   |                                                              |                                                                                     |
|                                                       |        |            |        |                 | . O.                        |                   |                                                              |                                                                                     |
|                                                       |        |            |        |                 | 000                         |                   |                                                              |                                                                                     |
|                                                       | 192.5  | М          |        |                 | .00                         |                   |                                                              |                                                                                     |
| 10.0                                                  |        | 141        |        |                 | 000                         |                   |                                                              |                                                                                     |
|                                                       | _      |            |        |                 | . O d                       |                   |                                                              |                                                                                     |
|                                                       |        |            |        |                 | . ()°                       |                   |                                                              |                                                                                     |
|                                                       |        |            |        |                 | ° 0 d                       |                   |                                                              |                                                                                     |
|                                                       |        |            |        |                 | 60°                         |                   |                                                              |                                                                                     |
|                                                       | 190.0  |            |        |                 |                             | 12.0              |                                                              |                                                                                     |
|                                                       |        |            | T      |                 |                             |                   | Bottom of test pit at 12.0 feet.                             | Backfilled test pit with excavated material and tamped in 12" lifts.                |
|                                                       |        |            |        |                 |                             |                   |                                                              |                                                                                     |
|                                                       |        |            |        |                 |                             |                   |                                                              |                                                                                     |
|                                                       |        |            |        |                 |                             |                   |                                                              |                                                                                     |
|                                                       |        |            |        |                 |                             |                   |                                                              |                                                                                     |
|                                                       |        |            |        |                 |                             |                   |                                                              |                                                                                     |
|                                                       |        |            |        |                 |                             |                   |                                                              |                                                                                     |
|                                                       |        |            | L      |                 |                             |                   |                                                              |                                                                                     |
| GE                                                    |        | L COMME    |        |                 |                             |                   | - Moderate, D = Difficult, V = V                             | /ery Difficult                                                                      |

<sup>1.</sup> The ground surface elevation was interpolated to the nearest foot from Drawing EX-1 titled: "Site Survey Plan, Schematic Design, Maynard Public Schools, Green Meadow Elementary School," prepared by Samiotes Consultants, Inc., dated September 2, 2022 and provided to LGCI by Brennan via e-mail on February 1, 2024.

# **TEST PIT LOG**

TP-23

PAGE 1 OF 1

|                                                                                                                         | _                      | Mount Ver            |                   |                       |                   | tects,            | Inc.                                                         | PROJECT NAME: Proposed Green Meadow Elementary School PROJECT LOCATION: Maynard, MA                                                                            |
|-------------------------------------------------------------------------------------------------------------------------|------------------------|----------------------|-------------------|-----------------------|-------------------|-------------------|--------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| DAT<br>TES                                                                                                              | E STA                  | ARTED: 2             | /8/<br><b>\</b> : | /24                   |                   |                   | TE COMPLETED: 2/8/24 uilding                                 | EXCAVATION SUBCONTRACTOR: Saunders Construction  EXCAVATION FOREMAN: Paul Meniates  EXCAVATOR TYPE/MODEL: Takeuchi TB-290                                      |
| SURFACE EL.: 200 ft. (see note 1) TOTAL DEPTH: 12 ft.  GROUNDWATER LEVELS:  URING EXCAVATION: NE  AT END OF EXCAVATION: |                        |                      |                   |                       |                   |                   | TOTAL DEPTH: 12 ft.                                          | WEATHER: TEST PIT DIMENSIONS: 12.0'x4.0' LOGGED BY: MBH CHECKED BY: SG                                                                                         |
| Depth<br>(ft)                                                                                                           | El.<br>(ft)            | Excavation<br>Effort | Remark            | Stra                  |                   | Depth<br>El.(ft.) |                                                              | Material Description                                                                                                                                           |
|                                                                                                                         |                        | . E                  |                   | Topsoil               | 7 77<br>7 77      | 0.8               | 0 ft 0.8 ft.: Topsoil                                        |                                                                                                                                                                |
|                                                                                                                         |                        | E                    |                   | Fill                  |                   | 1.5               | to coarse subangular gravel, t                               | AND with Silt and Gravel (SW-SM), fine to coarse, 10-15% fines, ~15% fine race of organic soil, dark brown                                                     |
| 2.5                                                                                                                     | <br>197.5              | E<br>E               |                   | Subsoil               |                   | 198.5             | dark brown, moist                                            | AND with Gravel (SP), coare, 0-5% fines, 30-35% fine subrounded gravel, ND with Silt (SP-SM), fine to medium with trace coarse, 5-10% fines, 0-5% prown, moist |
|                                                                                                                         | <br><br>               | E                    | 1                 |                       |                   | 3.0<br>197.0      | 3 ft 12 ft.: Poorly Graded SA<br>REMARK 1: Infiltrometer tes | AND with Silt (SP-SM), fine to medium, ~10% fines, light brown, moist t performed at depth of 4'.                                                              |
|                                                                                                                         | 195.0<br><br><br>192.5 |                      |                   | Sand<br>and<br>Gravel |                   |                   |                                                              |                                                                                                                                                                |
| <br>10.0                                                                                                                | 190.0                  | M                    |                   |                       |                   | 12.0              |                                                              |                                                                                                                                                                |
|                                                                                                                         |                        |                      |                   |                       |                   |                   | Bottom of test pit at 12.0 feet.                             | Backfilled test pit with excavated material and tamped in 12" lifts.                                                                                           |
| GE                                                                                                                      | 1. <sup>1</sup>        | Public Scho          | l s               | urface e<br>ls, Greei | levatio<br>n Mead | n was<br>dow El   |                                                              | Very Difficult t from Drawing EX-1 titled: "Site Survey Plan, Schematic Design, Maynard y Samiotes Consultants, Inc., dated September 2, 2022 and provided to  |

### **TEST PIT LOG**

1 P-26 PAGE 1 OF 1

|                                                                                                                                                                                                                                               |             |                      |        | on Group Arch<br>ER: 2201 | itects,           | Inc.                                                        | PROJECT NAME: Proposed Green Meadow Elementary School PROJECT LOCATION: Maynard, MA                                                                                                      |  |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|----------------------|--------|---------------------------|-------------------|-------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| DATE STARTED: 2/8/24 DATE COMPLETED: 2/8/24  TEST PIT LOCATION: South East of proposed building  COORDINATES: NA  SURFACE EL.: 206 ft. (see note 1) TOTAL DEPTH: 11 ft.  GROUNDWATER LEVELS:  DURING EXCAVATION: NE  TAT END OF EXCAVATION: - |             |                      |        |                           |                   |                                                             | EXCAVATION SUBCONTRACTOR: Saunders Construction  EXCAVATION FOREMAN: Paul Meniates  EXCAVATOR TYPE/MODEL: Takeuchi TB-290  WEATHER:  TEST PIT DIMENSIONS:  LOGGED BY: MBH CHECKED BY: SG |  |  |  |  |
| Depth<br>(ft)                                                                                                                                                                                                                                 | El.<br>(ft) | Excavation<br>Effort | Remark | Strata                    | Depth<br>El.(ft.) |                                                             | Material Description                                                                                                                                                                     |  |  |  |  |
|                                                                                                                                                                                                                                               |             | Е                    |        | Topsoil N. N.             | 1/2               | 0 ft 0.5 ft.: Topsoil                                       |                                                                                                                                                                                          |  |  |  |  |
| <br><br>                                                                                                                                                                                                                                      | 205.0       | E                    |        | Subsoil                   | 0.5               |                                                             | SAND with Silt and Gravel (SP-SM), fine to medium with trace coarse, arse subangular gravel, trace of roots, orange, moist                                                               |  |  |  |  |
| 2.5                                                                                                                                                                                                                                           |             | M                    | -      |                           | 2.3               | 2.2 ft 4.5 ft : Doorly Craded                               | SAND with Silt and Gravel (SP-SM), fine to medium, 10-15% fines, 15-20%                                                                                                                  |  |  |  |  |
| -                                                                                                                                                                                                                                             | 202.5       | M                    | 1      |                           |                   | 2.3 ft 4.5 ft.: Poorly Graded fine to coarse subrounded gra | evel, light brown with orange strips, moist                                                                                                                                              |  |  |  |  |
| 7.5                                                                                                                                                                                                                                           | 197.5       | М                    |        | Sand and Gravel           |                   | coarse subangular gravel, ora                               |                                                                                                                                                                                          |  |  |  |  |
|                                                                                                                                                                                                                                               |             |                      |        |                           |                   | ·                                                           | Backfilled test pit with excavated material and tamped in 12" lifts.                                                                                                                     |  |  |  |  |
| GE                                                                                                                                                                                                                                            | NERA        | L COMME              | NT     | 'S: E = E                 | asy, M            | I - Moderate, D = Difficult, V = \                          | /ery Difficult                                                                                                                                                                           |  |  |  |  |





# **Double Ring Infiltrometer Test**

Project: Name: Prop. Green Meadow Elem. School

Location: Maynard, MA LGCI Project Number: 2201

Test Location: TP-23

**Test Procedure:** General accordance with ASTM D 3385

**Test Date** 2/8/2024

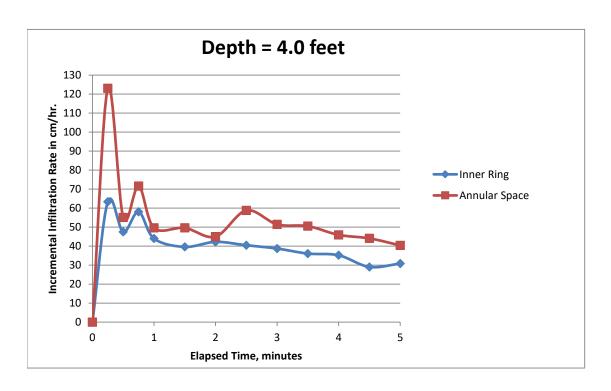
LGCI Representative: OIL

Weather Conditions:

Test Depth: 4.0 feet

Groundwater Depth: NE

Soil Stratum:


Poorly Graded SAND with Silt (SP-SM), mostly fine with trace

medium to coarse, 10% fines

Inner Annular Ring Space 2189 Area (sq. cm) 730 Depth Driven (in) 3 3 Water Depth (in) 3 3 Mariotte tube (cc/div.) 53.52 167.53

|              | Time      |         | Inner Ring | 1            | Aı      | nnular Spa | се           |
|--------------|-----------|---------|------------|--------------|---------|------------|--------------|
| Elapsed Time | Increment |         |            | Infiltration |         |            | Infiltration |
|              | morement  | Reading | Volume     | Rate         | Reading | Volume     | Rate         |
| (min)        | (min)     | (div)   | (cc)       | (cm/hr.)     | (div)   | (cc)       | (cm/hr.)     |
| 0            | 0         | 58.2    | 0          | 0            | 58.3    | 0          | 0            |
| 0.25         | 0.25      | 54.6    | 193        | 63.3         | 51.6    | 1122       | 123.1        |
| 0.5          | 0.25      | 51.9    | 145        | 47.5         | 48.6    | 503        | 55.1         |
| 0.75         | 0.25      | 48.6    | 177        | 58.1         | 44.7    | 653        | 71.6         |
| 1            | 0.25      | 46.1    | 134        | 44.0         | 42.0    | 452        | 49.6         |
| 1.5          | 0.5       | 41.6    | 241        | 39.6         | 36.6    | 905        | 49.6         |
| 2            | 0.5       | 36.8    | 257        | 42.2         | 31.7    | 821        | 45.0         |
| 2.5          | 0.5       | 32.2    | 246        | 40.5         | 25.3    | 1072       | 58.8         |
| 3            | 0.5       | 27.8    | 235        | 38.7         | 19.7    | 938        | 51.4         |
| 3.5          | 0.5       | 23.7    | 219        | 36.1         | 14.2    | 921        | 50.5         |
| 4            | 0.5       | 19.7    | 214        | 35.2         | 9.2     | 838        | 45.9         |
| 4.5          | 0.5       | 16.4    | 177        | 29.0         | 4.4     | 804        | 44.1         |
| 5            | 0.5       | 12.9    | 187        | 30.8         | 0.0     | 737        | 40.4         |
|              |           |         |            |              |         |            |              |
|              |           |         |            |              |         |            |              |
|              |           |         |            |              |         |            |              |
|              |           |         |            |              |         |            |              |
|              |           |         |            |              |         |            |              |
|              |           |         |            |              |         |            |              |
|              |           |         |            |              |         |            |              |

Notes:



K = 8.3E-03 cm/sec.



# **Double Ring Infiltrometer Test**

Project: Name: Prop. Green Meadow Elem. School

Location: Maynard, MA LGCI Project Number: 2201

Test Location: TP-26

**Test Procedure:** General accordance with ASTM D 3385

**Test Date** 2/8/2024

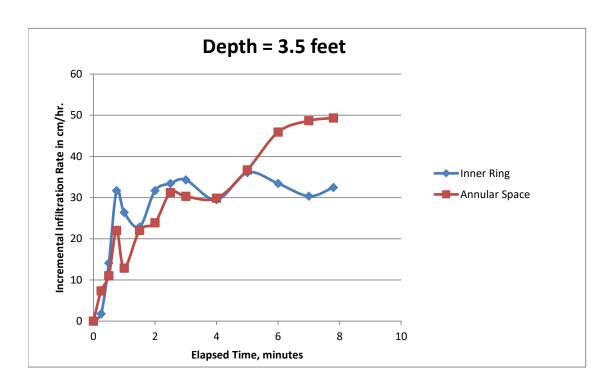
LGCI Representative: OIL

Weather Conditions:

Test Depth: 3.5 feet

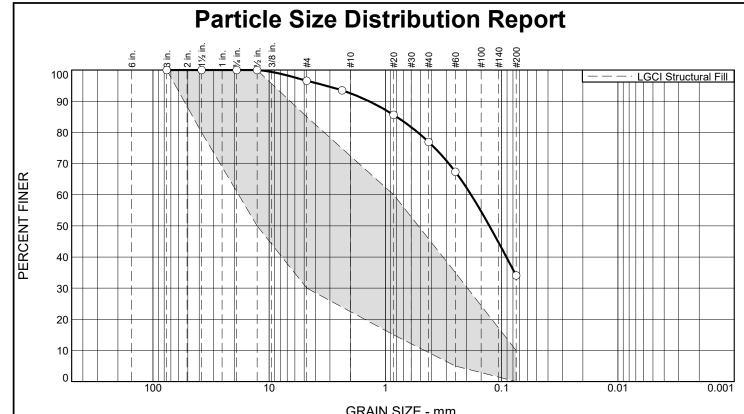
Groundwater Depth: NE

Soil Stratum:


Poorly Graded SAND with Silt (SP-SM), fine to medium with trace

coarse, 5-10% fines, 10% fine subangular gravel

Inner Annular Ring Space 2189 Area (sq. cm) 730 Depth Driven (in) 3 3 Water Depth (in) 3 3 Mariotte tube (cc/div.) 53.52 167.53


|              | Time      |         | Inner Ring |              | Aı      | nnular Spa |              |
|--------------|-----------|---------|------------|--------------|---------|------------|--------------|
| Elapsed Time | Increment |         |            | Infiltration |         |            | Infiltration |
|              | morement  | Reading | Volume     | Rate         | Reading | Volume     | Rate         |
| (min)        | (min)     | (div)   | (cc)       | (cm/hr.)     | (div)   | (cc)       | (cm/hr.)     |
| 0            | 0         | 58.3    | 0          | 0            | 58.3    | 0          | 0            |
| 0.25         | 0.25      | 58.2    | 5          | 1.8          | 57.9    | 67         | 7.3          |
| 0.5          | 0.25      | 57.4    | 43         | 14.1         | 57.3    | 101        | 11.0         |
| 0.75         | 0.25      | 55.6    | 96         | 31.7         | 56.1    | 201        | 22.0         |
| 1            | 0.25      | 54.1    | 80         | 26.4         | 55.4    | 117        | 12.9         |
| 1.5          | 0.5       | 51.5    | 139        | 22.9         | 53.0    | 402        | 22.0         |
| 2            | 0.5       | 47.9    | 193        | 31.7         | 50.4    | 436        | 23.9         |
| 2.5          | 0.5       | 44.1    | 203        | 33.4         | 47.0    | 570        | 31.2         |
| 3            | 0.5       | 40.2    | 209        | 34.3         | 43.7    | 553        | 30.3         |
| 4            | 1         | 33.5    | 359        | 29.5         | 37.2    | 1089       | 29.8         |
| 5            | 1         | 25.3    | 439        | 36.1         | 29.2    | 1340       | 36.7         |
| 6            | 1         | 17.7    | 407        | 33.4         | 19.2    | 1675       | 45.9         |
| 7            | 1         | 10.8    | 369        | 30.4         | 8.6     | 1776       | 48.7         |
| 7.8          | 0.8       | 4.9     | 316        | 32.4         | 0.0     | 1441       | 49.4         |
|              |           |         |            |              |         |            |              |
|              |           |         |            |              |         |            |              |
|              |           |         |            |              |         |            |              |
|              |           |         |            |              |         |            |              |
|              |           |         |            |              |         |            |              |
|              |           |         |            |              |         |            |              |
|              |           |         |            |              |         |            |              |

Notes:



K = 8.9E-03 cm/sec.





|                 |        |       |        |        | 1111111. |         |      |  |
|-----------------|--------|-------|--------|--------|----------|---------|------|--|
| % +3"           | % Gı   | ravel | % Sand |        |          | % Fines |      |  |
| % <del>+3</del> | Coarse | Fine  | Coarse | Medium | Fine     | Silt    | Clay |  |
| 0.0             | 0.0    | 3.4   | 4.1    | 15.6   | 42.8     | 34.1    |      |  |

|         | TEST R  | ESULTS       |          |
|---------|---------|--------------|----------|
| Opening | Percent | Spec.*       | Pass?    |
| Size    | Finer   | (Percent)    | (X=Fail) |
| 3"      | 100.0   | 100.0        |          |
| 1.5"    | 100.0   | 80.0 - 100.0 |          |
| 0.75"   | 100.0   |              |          |
| 0.5"    | 100.0   | 50.0 - 100.0 |          |
| #4      | 96.6    | 30.0 - 85.0  | X        |
| #8      | 93.5    |              |          |
| #20     | 85.6    | 15.0 - 60.0  | X        |
| #40     | 76.9    |              |          |
| #60     | 67.4    | 5.0 - 35.0   | X        |
| #200    | 34.1    | 0.0 - 10.0   | X        |
|         |         |              |          |
|         |         |              |          |
|         |         |              |          |
|         |         |              |          |
|         |         |              |          |
|         |         |              |          |
|         |         |              |          |
|         |         |              |          |
|         |         |              |          |
|         |         |              |          |
|         |         |              |          |

| N# - 4! - 1 | D           |
|-------------|-------------|
| Materiai    | Description |

ASTM (D 2488) Classification: Silty SAND (SM), fine to medium, 30-35% fines, 0-5% fine subangular gravel, trace of organic soil, light brown

#### **Atterberg Limits (ASTM D 4318)**

PL=

Classification USCS (D 2487)= AASHTO (M 145)=

Coefficients **D<sub>90</sub>=** 1.3826 **D<sub>60</sub>=** 0.1833  $D_{85} = 0.8015$ D<sub>50</sub>= 0.1273 D<sub>10</sub>=

Remarks

Subsoil sample.

**Date Received:** 01/28/2022 **Date Tested:** 02/01/2022

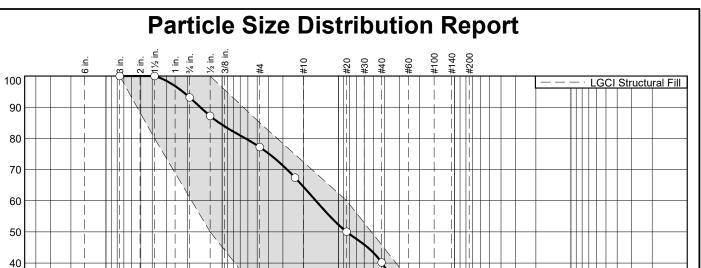
**Date Sampled:** 01/28/2022

Tested By: LB

Checked By: OIL

LGCI Structural Fill

Location: Boring B-7 Sample Number: S2 Top 13"


**Depth:** 2'-4'

**Client:** Mount Vernon Group Architects, Inc.

Project: Proposed Green Meadow Elementary School, Maynard, MA

Project No: 2201 **Figure** 





GRAIN SIZE - mm.

| 9/ 13" | % G    | ravel |        | % Sand | t    | % Fines |      |
|--------|--------|-------|--------|--------|------|---------|------|
| % +3"  | Coarse | Fine  | Coarse | Medium | Fine | Silt    | Clay |
| 0.0    | 6.9    | 15.9  | 12.7   | 24.3   | 31.0 | 9.2     |      |

| TEST RESULTS |         |              |          |  |  |
|--------------|---------|--------------|----------|--|--|
| Opening      | Percent | Spec.*       | Pass?    |  |  |
| Size         | Finer   | (Percent)    | (X=Fail) |  |  |
| 3"           | 100.0   | 100.0        |          |  |  |
| 1.5"         | 100.0   | 80.0 - 100.0 |          |  |  |
| 0.75"        | 93.1    |              |          |  |  |
| 0.5"         | 87.2    | 50.0 - 100.0 |          |  |  |
| #4           | 77.2    | 30.0 - 85.0  |          |  |  |
| #8           | 67.4    |              |          |  |  |
| #20          | 50.0    | 15.0 - 60.0  |          |  |  |
| #40          | 40.2    |              |          |  |  |
| #60          | 25.4    | 5.0 - 35.0   |          |  |  |
| #200         | 9.2     | 0.0 - 10.0   |          |  |  |
|              |         |              |          |  |  |
|              |         |              |          |  |  |
|              |         |              |          |  |  |
|              |         |              |          |  |  |
|              |         |              |          |  |  |
|              |         |              |          |  |  |
|              |         |              |          |  |  |
|              |         |              |          |  |  |
|              |         |              |          |  |  |
|              |         |              |          |  |  |
|              |         |              |          |  |  |

100

### **Material Description**

ASTM (D 2488) Classification: Well Graded SAND with Silt and Gravel (SW-SM), fine to coarse, 5-10% fines, 20-25% fine to coarse subrounded to angular gravel, orange to brown

#### Atterberg Limits (ASTM D 4318)

PL= ĽL=

0.01

Classification AASHTO (M 145)=

USCS (D 2487)=

Coefficients

**D<sub>90</sub>=** 15.4210 **D<sub>50</sub>=** 0.8487 **D<sub>10</sub>=** 0.0836

**D<sub>85</sub>=** 10.5818

 $\begin{array}{l} \mathbf{D_{60}} = 1.5641 \\ \mathbf{D_{15}} = 0.1433 \\ \mathbf{C_{c}} = 0.66 \end{array}$ 

0.001

**D<sub>30</sub>=** 0.2944 **C<sub>u</sub>=** 18.72

Remarks

Fill sample.

**Date Received:** 01/28/2022

**Date Tested:** 02/01/2022

**Date Sampled:** 01/28/2022

Tested By: LB

Checked By: OIL

LGCI Structural Fill

Location: Boring B-11 Sample Number: S2

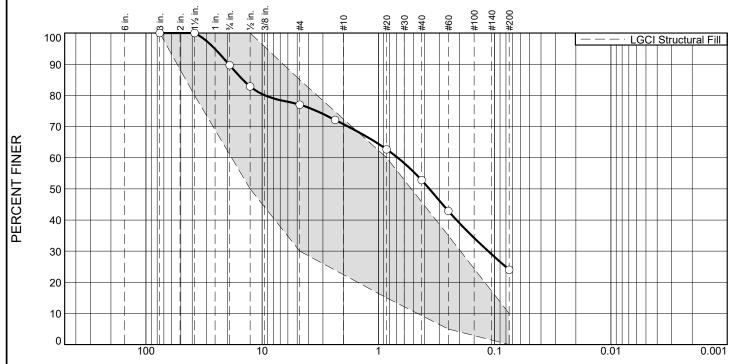
PERCENT FINER

30

20

10

**Depth: 2'-4'** 


**Client:** Mount Vernon Group Architects, Inc.

Project: Proposed Green Meadow Elementary School, Maynard, MA

Project No: 2201 **Figure** 







| GRAIN SIZE - mm. |        |       |        |        |         |      |      |
|------------------|--------|-------|--------|--------|---------|------|------|
| % Grave          |        | ravel | % Sand |        | % Fines |      |      |
| % +3"            | Coarse | Fine  | Coarse | Medium | Fine    | Silt | Clay |
| 0.0              | 10.3   | 12.7  | 6.2    | 18.0   | 28.8    | 24.0 |      |

| TEST RESULTS |         |              |          |  |  |
|--------------|---------|--------------|----------|--|--|
| Opening      | Percent | Spec.*       | Pass?    |  |  |
| Size         | Finer   | (Percent)    | (X=Fail) |  |  |
| 3"           | 100.0   | 100.0        |          |  |  |
| 1.5"         | 100.0   | 80.0 - 100.0 |          |  |  |
| 0.75"        | 89.7    |              |          |  |  |
| 0.5"         | 82.9    | 50.0 - 100.0 |          |  |  |
| #4           | 77.0    | 30.0 - 85.0  |          |  |  |
| #8           | 72.1    |              |          |  |  |
| #20          | 62.7    | 15.0 - 60.0  | X        |  |  |
| #40          | 52.8    |              |          |  |  |
| #60          | 42.9    | 5.0 - 35.0   | X        |  |  |
| #200         | 24.0    | 0.0 - 10.0   | X        |  |  |
|              |         |              |          |  |  |
|              |         |              |          |  |  |
|              |         |              |          |  |  |
|              |         |              |          |  |  |
|              |         |              |          |  |  |
|              |         |              |          |  |  |
|              |         |              |          |  |  |
|              |         |              |          |  |  |
|              |         |              |          |  |  |
|              |         |              |          |  |  |
|              |         |              |          |  |  |

### **Material Description**

ASTM (D 2488) Classification: Silty SAND with Gravel (SM), fine to medium, trace coarse, 20-25% fines, 20-25% fine to coarse subrounded to subangular gravel, trace of organic soil, brown

### Atterberg Limits (ASTM D 4318)

PL= LL= PI= Classification

USCS (D 2487)= AASHTO (M 145)=

Remarks

Fill sample.

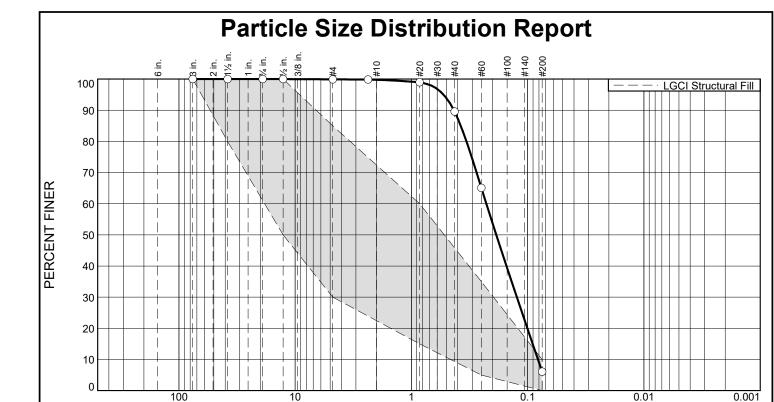
**Date Sampled:** 02/01/2022

Tested By: LB

Checked By: OIL

LGCI Structural Fill

**Location:** Boring B-1 **Sample Number:** S2


**Depth:** 2'-4'

Client: Mount Vernon Group Architects, Inc.

Project: Proposed Green Meadow Elementary School, Maynard, MA

Project No: 2201 Figure





| GRAIN SIZE - MM.  |          |      |        |        |         |      |      |
|-------------------|----------|------|--------|--------|---------|------|------|
| % +3"             | % Gravel |      | % Sand |        | % Fines |      |      |
| / <sub>6</sub> +3 | Coarse   | Fine | Coarse | Medium | Fine    | Silt | Clay |
| 0.0               | 0.0      | 0.1  | 0.1    | 10.2   | 83.5    | 6.1  |      |

ODAINI OIZE

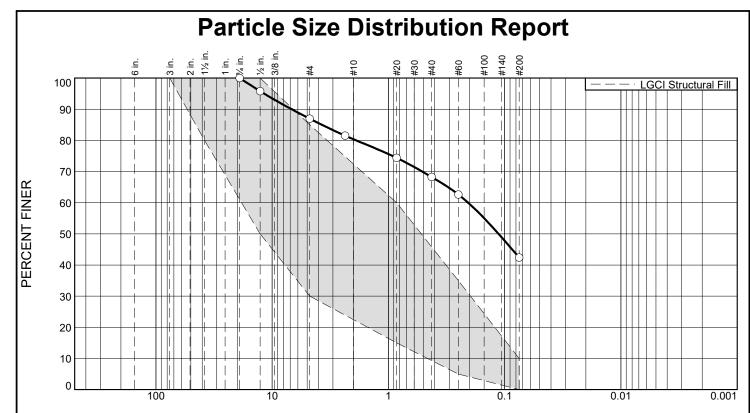
| TEST RESULTS |         |              |          |  |  |
|--------------|---------|--------------|----------|--|--|
| Opening      | Percent | Spec.*       | Pass?    |  |  |
| Size         | Finer   | (Percent)    | (X=Fail) |  |  |
| 3"           | 100.0   | 100.0        |          |  |  |
| 1.5"         | 100.0   | 80.0 - 100.0 |          |  |  |
| 0.75"        | 100.0   |              |          |  |  |
| 0.5"         | 100.0   | 50.0 - 100.0 |          |  |  |
| #4           | 99.9    | 30.0 - 85.0  | X        |  |  |
| #8           | 99.9    |              |          |  |  |
| #20          | 99.0    | 15.0 - 60.0  | X        |  |  |
| #40          | 89.6    |              |          |  |  |
| #60          | 65.1    | 5.0 - 35.0   | X        |  |  |
| #200         | 6.1     | 0.0 - 10.0   |          |  |  |
|              |         |              |          |  |  |
|              |         |              |          |  |  |
|              |         |              |          |  |  |
|              |         |              |          |  |  |
|              |         |              |          |  |  |
|              |         |              |          |  |  |
|              |         |              |          |  |  |
|              |         |              |          |  |  |
|              |         |              |          |  |  |
|              |         |              |          |  |  |
|              |         |              |          |  |  |

|                                                                                  | Material Descript                                                             | <u>ion</u>                          |  |  |  |  |  |
|----------------------------------------------------------------------------------|-------------------------------------------------------------------------------|-------------------------------------|--|--|--|--|--|
| ASTM (D 2488) Classification: Poorly Graded SAND with Silt                       |                                                                               |                                     |  |  |  |  |  |
| (SP-SM), fine, 5-                                                                | 10% fines, trace grave                                                        | l, tan                              |  |  |  |  |  |
|                                                                                  |                                                                               |                                     |  |  |  |  |  |
| Atte                                                                             | rberg Limits (ASTN                                                            | /I D 4318)                          |  |  |  |  |  |
| PL=                                                                              | LL=                                                                           | PI=                                 |  |  |  |  |  |
| Classification                                                                   |                                                                               |                                     |  |  |  |  |  |
| USCS (D 2487)= AASHTO (M 145)=                                                   |                                                                               |                                     |  |  |  |  |  |
| , ,                                                                              | , ,                                                                           |                                     |  |  |  |  |  |
| Doo= 0.4307                                                                      | Coefficients Doe= 0.3758                                                      | Dec= 0.2265                         |  |  |  |  |  |
| D <sub>90</sub> = 0.4307<br>D <sub>50</sub> = 0.1859<br>D <sub>10</sub> = 0.0815 | D <sub>85</sub> = 0.3758<br>D <sub>30</sub> = 0.1237<br>C <sub>u</sub> = 2.78 | $D_{60} = 0.2265$ $D_{15} = 0.0905$ |  |  |  |  |  |
| <b>D<sub>10</sub>=</b> 0.0815                                                    | <b>C</b> <sub>u</sub> = 2.78                                                  | $c_c^{13} = 0.83$                   |  |  |  |  |  |
|                                                                                  | Remarks                                                                       |                                     |  |  |  |  |  |
| Sand sample.                                                                     |                                                                               |                                     |  |  |  |  |  |
| -                                                                                |                                                                               |                                     |  |  |  |  |  |
|                                                                                  |                                                                               |                                     |  |  |  |  |  |
| <b>Date Received:</b> $01/31/2022$ <b>Date Tested:</b> $02/02/2022$              |                                                                               |                                     |  |  |  |  |  |
| Tested By: LB                                                                    |                                                                               |                                     |  |  |  |  |  |
| Checked By:                                                                      | OIL                                                                           |                                     |  |  |  |  |  |

**Date Sampled:** 01/31/2022

LGCI Structural Fill

**Location:** Boring B-6 **Sample Number:** S2


**Depth:** 2'-4'

Lahlaf Geotechnical Consulting, Inc.

Client: Mount Vernon Group Architects, Inc.

Project: Proposed Green Meadow Elementary School, Maynard, MA

Project No: 2201 Figure



| % <b>+3</b> " | % G    | ravel |        | % Sand | t    | % Fines |      |
|---------------|--------|-------|--------|--------|------|---------|------|
| % +3          | Coarse | Fine  | Coarse | Medium | Fine | Silt    | Clay |
| 0.0           | 0.0    | 13.0  | 6.6    | 12.1   | 25.9 | 42.4    |      |

|         | TEST R  | ESULTS       |          |  |
|---------|---------|--------------|----------|--|
| Opening | Percent | Spec.*       | Pass?    |  |
| Size    | Finer   | (Percent)    | (X=Fail) |  |
| 0.75"   | 100.0   |              |          |  |
| 0.5"    | 95.8    | 50.0 - 100.0 |          |  |
| #4      | 87.0    | 30.0 - 85.0  | X        |  |
| #8      | 81.5    |              |          |  |
| #20     | 74.4    | 15.0 - 60.0  | X        |  |
| #40     | 68.3    |              |          |  |
| #60     | 62.6    | 5.0 - 35.0   | X        |  |
| #200    | 42.4    | 0.0 - 10.0   | X        |  |
|         |         |              |          |  |
|         |         |              |          |  |
|         |         |              |          |  |
|         |         |              |          |  |
|         |         |              |          |  |
|         |         |              |          |  |
|         |         |              |          |  |
|         |         |              |          |  |
|         |         |              |          |  |
|         |         |              |          |  |
|         |         |              |          |  |
|         |         |              |          |  |

#### **Material Description**

ASTM (D 2488) Classification: Silty SAND (SM), fine to medium with trace coarse, 40-45% fines, 10-15% fine gravel

## **Atterberg Limits (ASTM D 4318)**

PL=

Classification USCS (D 2487)= AASHTO (M 145)=

D<sub>90</sub>= 6.7884 D<sub>50</sub>= 0.1127 D<sub>10</sub>= **D<sub>60</sub>=** 0.2058 **D<sub>85</sub>=** 3.7286

Remarks

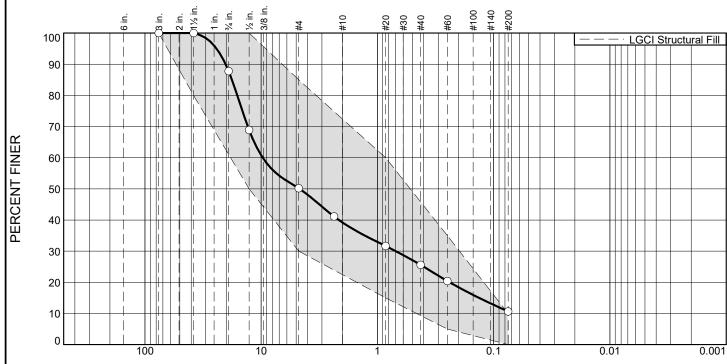
Coefficients

Date Received: 2/20/24 **Date Tested:** 3/22/24

**Tested By:** AS

Checked By: JKW

LGCI Structural Fill


Location: B-104 **Date Sampled:** 2/19/24 Sample Number: S2 **Depth:** 2.0'-4.0'



**Client:** Mount Vernon Group Architects, Inc. Project: Proposed Green Meadow School

**Figure** Project No: 2201





| GRAIN | SIZE - | mm. |
|-------|--------|-----|
|       |        |     |

| % <b>+3</b> "     | % G    | ravel |        | % Sand | t    | % Fines |      |
|-------------------|--------|-------|--------|--------|------|---------|------|
| 76 <del>T</del> 3 | Coarse | Fine  | Coarse | Medium | Fine | Silt    | Clay |
| 0.0               | 12.2   | 37.6  | 11.0   | 13.6   | 15.0 | 10.6    |      |

|         | TEST RESULTS |              |          |  |  |  |  |
|---------|--------------|--------------|----------|--|--|--|--|
| Opening | Percent      | Spec.*       | Pass?    |  |  |  |  |
| Size    | Finer        | (Percent)    | (X=Fail) |  |  |  |  |
| 3"      | 100.0        | 100.0        |          |  |  |  |  |
| 1.5"    | 100.0        | 80.0 - 100.0 |          |  |  |  |  |
| 0.75"   | 87.8         |              |          |  |  |  |  |
| 0.5"    | 68.9         | 50.0 - 100.0 |          |  |  |  |  |
| #4      | 50.2         | 30.0 - 85.0  |          |  |  |  |  |
| #8      | 41.1         |              |          |  |  |  |  |
| #20     | 31.7         | 15.0 - 60.0  |          |  |  |  |  |
| #40     | #40 25.6     |              |          |  |  |  |  |
| #60     | 20.4         | 5.0 - 35.0   |          |  |  |  |  |
| #200    | 10.6         | 0.0 - 10.0   | X        |  |  |  |  |
|         |              |              |          |  |  |  |  |
|         |              |              |          |  |  |  |  |
|         |              |              |          |  |  |  |  |
|         |              |              |          |  |  |  |  |
|         |              |              |          |  |  |  |  |
|         |              |              |          |  |  |  |  |
|         |              |              |          |  |  |  |  |
|         |              |              |          |  |  |  |  |
|         |              |              |          |  |  |  |  |
|         |              |              |          |  |  |  |  |
|         |              |              |          |  |  |  |  |

#### **Material Description**

ASTM (D 2488) Classification: Poorly Graded Gravel with Silt and Sand (GP-GM), mostly fine with coarse, 10% fines, 40% fine to coarse sand

## Atterberg Limits (ASTM D 4318)

PL= LL=

USCS (D 2487)= Classification AASHTO (M 145)=

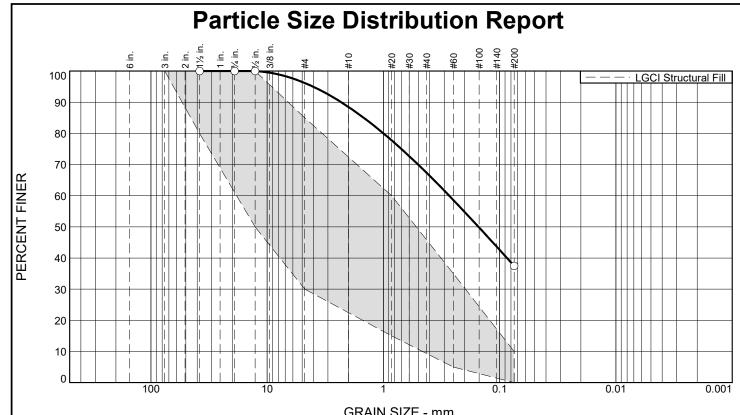
Coefficients

D<sub>90</sub>= 20.2222 D<sub>85</sub>= 17.8454 D<sub>60</sub>= 9.6793 D<sub>50</sub>= 4.6729 D<sub>0</sub>= 0.6954 D<sub>15</sub>= 0.1331 C<sub>c</sub>=

Remarks

Date Received: 2/26/24 Date Tested: 3/22/24

Tested By: AS


Checked By: JKW

LGCI Structural Fill

Location: B-105
Sample Number: S1 Bot 11
Depth: 0'-2.0'
Date Sampled: 2/26/24



**Client:** Mount Vernon Group Architects, Inc. **Project:** Proposed Green Meadow School



|                   | OTA III TO DELL' TITILI. |                 |        |        |         |      |      |
|-------------------|--------------------------|-----------------|--------|--------|---------|------|------|
| % +3"             | % G                      | % Gravel % Sand |        |        | % Fines |      |      |
| 76 <del>+ 5</del> | Coarse                   |                 | Coarse | Medium | Fine    | Silt | Clay |
| 0.0               | 0.0                      | 3.8             | 7.7    | 21.2   | 29.8    | 37.5 |      |

| Opening Percent Spec.* Pass? Size Finer (Percent) (X=Fail) | TEST RESULTS |         |           |          |  |  |  |  |
|------------------------------------------------------------|--------------|---------|-----------|----------|--|--|--|--|
| Size Finer (Percent) (X=Fail)                              | Opening      | Percent | Spec.*    | Pass?    |  |  |  |  |
|                                                            | Size         | Finer   | (Percent) | (X=Fail) |  |  |  |  |
|                                                            |              |         |           |          |  |  |  |  |
|                                                            |              |         |           |          |  |  |  |  |
|                                                            |              |         |           |          |  |  |  |  |
|                                                            |              |         |           |          |  |  |  |  |
|                                                            |              |         |           |          |  |  |  |  |
|                                                            |              |         |           |          |  |  |  |  |
|                                                            |              |         |           |          |  |  |  |  |
|                                                            |              |         |           |          |  |  |  |  |
|                                                            |              |         |           |          |  |  |  |  |
| 1 1                                                        |              |         |           |          |  |  |  |  |
|                                                            |              |         |           |          |  |  |  |  |
|                                                            |              |         |           |          |  |  |  |  |
|                                                            |              |         |           |          |  |  |  |  |
|                                                            |              |         |           |          |  |  |  |  |
|                                                            |              |         |           |          |  |  |  |  |
|                                                            |              |         |           |          |  |  |  |  |

| Ν | <u>la</u> | <u>ter</u> | <u>ial</u> | D | es | cr | ij | <u>oti</u> | io | n |  |
|---|-----------|------------|------------|---|----|----|----|------------|----|---|--|
|   |           |            |            |   |    |    |    |            |    |   |  |

ASTM (D 2488) Classification: Silty SAND (SM), fine to coarse, 35-40% fines, 0-5% fine subangular gravel, brown to grey.

# **Atterberg Limits (ASTM D 4318)**

PL=

USCS (D 2487)=

**Classification** 

AASHTO (M 145)= Coefficients

D<sub>90</sub>= 2.3045 D<sub>50</sub>= 0.1519 D<sub>10</sub>=

**D<sub>85</sub>=** 1.4758

**D<sub>60</sub>=** 0.2716

Remarks

Date Received: 2/23/24

**Date Tested:** 3/22/24

**Tested By:** AS

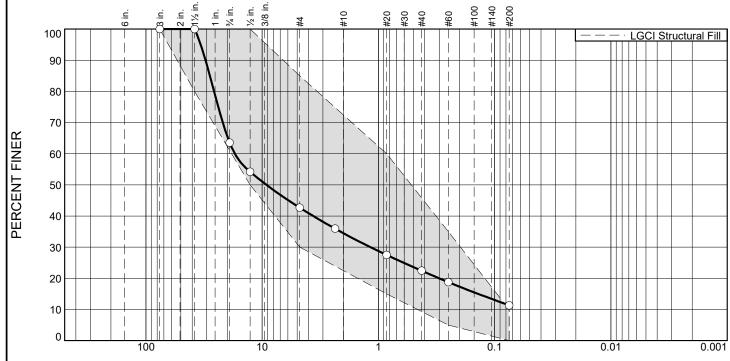
Checked By:

\* LGCI Structural Fill

Location: B-109 Sample Number: S2

**Depth:** 2.0'-4.0'

**Date Sampled:** 2/23/24


**Client:** Mount Vernon Group Architects, Inc. **Project:** Proposed Green Meadow School

Project No: 2201

**Figure** 







|              | GRAIN SIZE - mm. |                 |        |        |      |         |      |  |  |
|--------------|------------------|-----------------|--------|--------|------|---------|------|--|--|
| % +3"        | % G              | % Gravel % Sand |        |        | t    | % Fines |      |  |  |
| 76 <b>₹3</b> | Coarse           | Fine            | Coarse | Medium | Fine | Silt    | Clay |  |  |
| 0.0          | 36.5             | 20.8            | 8.2    | 12.1   | 11.1 | 11.3    |      |  |  |

|         | TEST R  | ESULTS       |          |  |
|---------|---------|--------------|----------|--|
| Opening | Percent | Spec.*       | Pass?    |  |
| Size    | Finer   | (Percent)    | (X=Fail) |  |
| 3"      | 100.0   | 100.0        |          |  |
| 1.5"    | 100.0   | 80.0 - 100.0 |          |  |
| 0.75"   | 63.5    |              |          |  |
| 0.5"    | 54.2    | 50.0 - 100.0 |          |  |
| #4      | 42.7    | 30.0 - 85.0  |          |  |
| #8      | 35.9    |              |          |  |
| #20     | 27.5    | 15.0 - 60.0  |          |  |
| #40     | 22.4    |              |          |  |
| #60     | 18.8    | 5.0 - 35.0   |          |  |
| #200    | 11.3    | 0.0 - 10.0   | X        |  |
|         |         |              |          |  |
|         |         |              |          |  |
|         |         |              |          |  |
|         |         |              |          |  |
|         |         |              |          |  |
|         |         |              |          |  |
|         |         |              |          |  |
|         |         |              |          |  |
|         |         |              |          |  |
|         |         |              |          |  |
|         |         |              |          |  |

#### **Material Description**

ASTM (D 2488) Classification: Well Graded Gravel with Sand and Silt (GW-GM), fine to coarse subangular gravel, 30-35% fine to coarse sand, 10-15% fines, brown to grey.

## Atterberg Limits (ASTM D 4318)

PL= LL= PI=

USCS (D 2487)= Classification
AASHTO (M 145)=

Coefficients

Remarks

Date Received: 2/22/24 Date Tested: 3/22/24

Tested By: AS


Checked By: SL

LGCI Structural Fill

Location: B-109
Sample Number: S3
Depth: 4.0'-6.0'
Date Sampled: 2/21/24



**Client:** Mount Vernon Group Architects, Inc. **Project:** Proposed Green Meadow School



| Г | % +3" % Gravel |        |      | % Sand | t      | % Fines |      |      |
|---|----------------|--------|------|--------|--------|---------|------|------|
|   | 76 T3          | Coarse | Fine | Coarse | Medium | Fine    | Silt | Clay |
| ſ | 0.0            | 0.0    | 0.0  | 0.1    | 8.9    | 34.5    | 56.5 |      |

|         | TEST R  | ESULTS       |          |  |
|---------|---------|--------------|----------|--|
| Opening | Percent | Spec.*       | Pass?    |  |
| Size    | Finer   | (Percent)    | (X=Fail) |  |
| 0.75"   | 100.0   |              |          |  |
| 0.5"    | 100.0   | 50.0 - 100.0 |          |  |
| #4      | 100.0   | 30.0 - 85.0  | X        |  |
| #8      | 99.9    |              |          |  |
| #20     | 98.4    | 15.0 - 60.0  | X        |  |
| #40     | 91.0    |              |          |  |
| #60     | 78.7    | 5.0 - 35.0   | X        |  |
| #200    | 56.5    | 0.0 - 10.0   | X        |  |
|         |         |              |          |  |
|         |         |              |          |  |

100

10

| Material | Description |
|----------|-------------|
| wateriai | Description |

ASTM (D 2488) Classification: Sandy SILT (ML), 40-45% fine

0.01

sand

**Atterberg Limits (ASTM D 4318)** 

PL=

**Classification** USCS (D 2487)= AASHTO (M 145)=

**D<sub>90</sub>=** 0.4035 **D<sub>60</sub>=** 0.0935 **D<sub>85</sub>=** 0.3239 D<sub>50</sub>= D<sub>10</sub>=

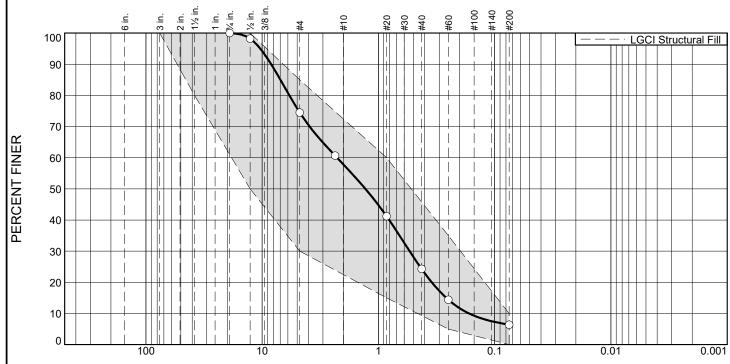
Remarks

Coefficients

Date Received: 2/22/24 **Date Tested:** 3/22/24

**Tested By:** AS

Checked By: JKW


LGCI Structural Fill

Location: B-110 **Date Sampled:** 2/22/24 Sample Number: S2 **Depth:** 2.0'-4.0'



**Client:** Mount Vernon Group Architects, Inc. **Project:** Proposed Green Meadow School





|       |        | GRAIN SIZE - mm. |        |        |         |      |      |
|-------|--------|------------------|--------|--------|---------|------|------|
| % +3" | % G    | % Gravel % Sand  |        | t      | % Fines |      |      |
| 76 +3 | Coarse | Fine             | Coarse | Medium | Fine    | Silt | Clay |
| 0.0   | 0.0    | 25.5             | 16.7   | 33.5   | 179     | 6.4  |      |

|         | TEST RESULTS |              |          |  |  |  |
|---------|--------------|--------------|----------|--|--|--|
| Opening | Percent      | Spec.*       | Pass?    |  |  |  |
| Size    | Finer        | (Percent)    | (X=Fail) |  |  |  |
| 0.75"   | 100.0        |              |          |  |  |  |
| 0.5"    | 98.2         | 50.0 - 100.0 |          |  |  |  |
| #4      | 74.5         | 30.0 - 85.0  |          |  |  |  |
| #8      | 60.7         |              |          |  |  |  |
| #20     | 41.2         | 15.0 - 60.0  |          |  |  |  |
| #40     | 24.3         |              |          |  |  |  |
| #60     | 14.4         | 5.0 - 35.0   |          |  |  |  |
| #200    | 6.4          | 0.0 - 10.0   |          |  |  |  |
|         |              |              |          |  |  |  |
|         |              |              |          |  |  |  |

#### **Material Description**

ASTM (D 2488) Classification: Well Graded SAND with Silt and Gravel (SW-SM), fine to coarse, 5-10% fines, 25% fine subangular gravel

# Atterberg Limits (ASTM D 4318)

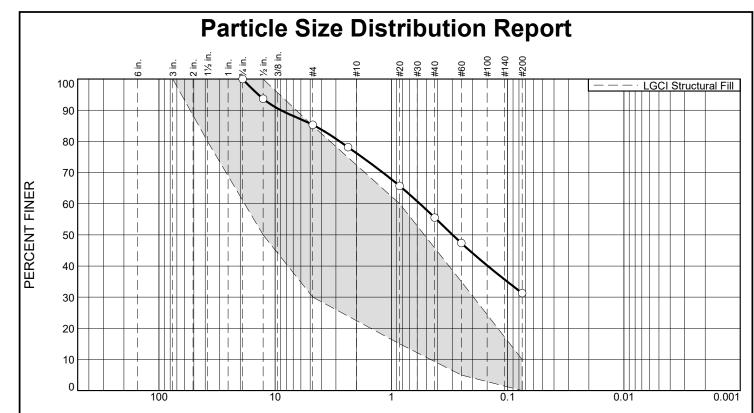
PL= LL=

USCS (D 2487)= Classification AASHTO (M 145)=

### Coefficients

#### Remarks

Tested By: AS


Checked By:

LGCI Structural Fill

Location: B-110 Sample Number: S3 Depth: 4.0'-6.0' Date Sampled: 2/22/24



**Client:** Mount Vernon Group Architects, Inc. **Project:** Proposed Green Meadow School



| % <b>+3</b> " | % G    | ravel |        | % Sand | t    | % Fines |      |
|---------------|--------|-------|--------|--------|------|---------|------|
| % +3          | Coarse | Fine  | Coarse | Medium | Fine | Silt    | Clay |
| 0.0           | 0.0    | 14.7  | 9.1    | 20.7   | 24.2 | 31.3    |      |

|         | TEST R  | ESULTS       |          |
|---------|---------|--------------|----------|
| Opening | Percent | Spec.*       | Pass?    |
| Size    | Finer   | (Percent)    | (X=Fail) |
| 0.75"   | 100.0   |              |          |
| 0.5"    | 93.7    | 50.0 - 100.0 |          |
| #4      | 85.3    | 30.0 - 85.0  | X        |
| #8      | 78.1    |              |          |
| #20     | 65.7    | 15.0 - 60.0  | X        |
| #40     | 55.5    |              |          |
| #60     | 47.4    | 5.0 - 35.0   | X        |
| #200    | 31.3    | 0.0 - 10.0   | X        |
|         |         |              |          |
|         |         |              |          |
|         |         |              |          |
|         |         |              |          |
|         |         |              |          |
|         |         |              |          |
|         |         |              |          |
|         |         |              |          |

#### **Material Description**

ASTM (D 2488) Classification: Silty SAND with Gravel (SM), fine to coarse, 30-35% fines, 15% fine gravel

#### Atterberg Limits (ASTM D 4318)

PL= LL= PI=

Classification

USCS (D 2487)= AASHTO (M 145)=

Coefficients

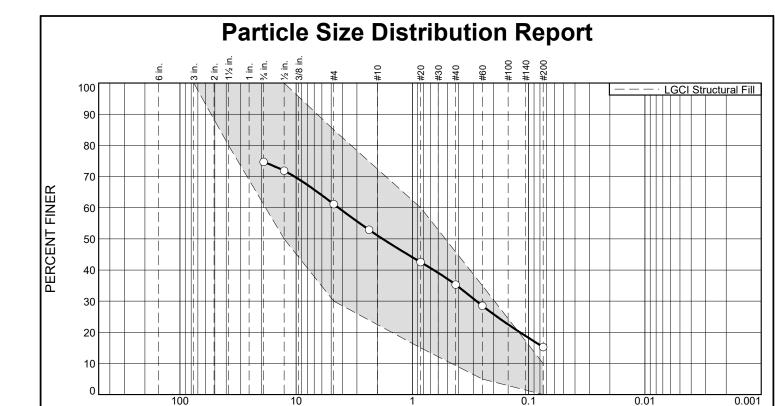
D<sub>90</sub>= 8.9103 D<sub>85</sub>= 4.5668 D<sub>60</sub>= 0.5697 D<sub>10</sub>= C<sub>u</sub>= C<sub>c</sub>=

Remarks

Date Received: 2/21/24 Date Tested: 3/22/24

Tested By: AS

Checked By: JKW


LGCI Structural Fill

Location: B-112 Sample Number: S2 Bot. 13" Depth: 2.0'-4.0' Date Sampled: 2/21/24



Client: Mount Vernon Group Architects, Inc.

Project: Proposed Green Meadow School



| 9/ ±2"       | % G    | Gravel % Sand |        | % Fines |      |      |      |
|--------------|--------|---------------|--------|---------|------|------|------|
| % <b>+3"</b> | Coarse | Fine          | Coarse | Medium  | Fine | Silt | Clay |
|              |        | 13.6          | 10.0   | 15.8    | 20.0 | 15.3 |      |

|         | TEST R  | ESULTS       |          |
|---------|---------|--------------|----------|
| Opening | Percent | Spec.*       | Pass?    |
| Size    | Finer   | (Percent)    | (X=Fail) |
| 0.75"   | 74.7    |              |          |
| 0.5"    | 71.9    | 50.0 - 100.0 |          |
| #4      | 61.1    | 30.0 - 85.0  |          |
| #8      | 52.9    |              |          |
| #20     | 42.5    | 15.0 - 60.0  |          |
| #40     | 35.3    |              |          |
| #60     | 28.5    | 5.0 - 35.0   |          |
| #200    | 15.3    | 0.0 - 10.0   | X        |
|         |         |              |          |
|         |         |              |          |
|         |         |              |          |
|         |         |              |          |
|         |         |              |          |
|         |         |              |          |
|         |         |              |          |
|         |         |              |          |
|         |         |              |          |
|         |         |              |          |
|         |         |              |          |
|         |         |              |          |
|         |         |              |          |

#### **Material Description**

ASTM (D 2488) Classification: Silty SAND (SM), fine to coarse, 15% fines, 10-15% fine gravel

#### **Atterberg Limits (ASTM D 4318)**

PL= LL= F

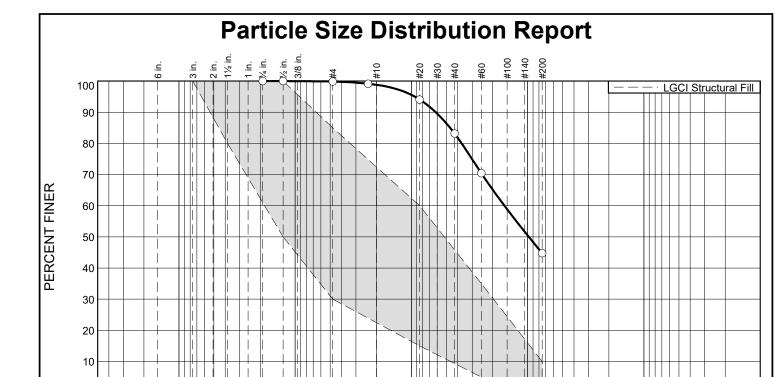
Classification

USCS (D 2487)= AASHTO (M 145)=

Coefficients

Remarks

Tested By: AS


Checked By: JKW

LGCI Structural Fill

Location: B-116
Sample Number: S2
Depth: 2.0'-4.0'
Date Sampled: 2/19/24



**Client:** Mount Vernon Group Architects, Inc. **Project:** Proposed Green Meadow School



| 0/ ±2" | % Gravel Coarse Fine C |      |        | % Sand |      | % Fines |      |
|--------|------------------------|------|--------|--------|------|---------|------|
| % +3"  | Coarse                 | Fine | Coarse | Medium | Fine | Silt    | Clay |
| 0.0    | 0.0                    | 0.1  | 1.1    | 15.6   | 38.5 | 44.7    |      |

10

| Opening         Percent         Spec.*         Pass?           0.75"         100.0         (X=Fail)           0.5"         100.0         50.0 - 100.0           #4         99.9         30.0 - 85.0         X           #8         99.1           #20         94.1         15.0 - 60.0         X           #40         83.2           #60         70.4         5.0 - 35.0         X           #200         44.7         0.0 - 10.0         X |    |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| 0.75"         100.0           0.5"         100.0           #4         99.9           #8         99.1           #20         94.1           #40         83.2           #60         70.4           5.0 - 35.0         X                                                                                                                                                                                                                         | ?  |
| 0.5"     100.0     50.0 - 100.0       #4     99.9     30.0 - 85.0     X       #8     99.1       #20     94.1     15.0 - 60.0     X       #40     83.2       #60     70.4     5.0 - 35.0     X                                                                                                                                                                                                                                                | I) |
| #4 99.9 30.0 - 85.0 X<br>#8 99.1 15.0 - 60.0 X<br>#40 83.2 #60 70.4 5.0 - 35.0 X                                                                                                                                                                                                                                                                                                                                                             |    |
| #8                                                                                                                                                                                                                                                                                                                                                                                                                                           |    |
| #20 94.1 15.0 - 60.0 X<br>#40 83.2<br>#60 70.4 5.0 - 35.0 X                                                                                                                                                                                                                                                                                                                                                                                  |    |
| #40 83.2<br>#60 70.4 5.0 - 35.0 X                                                                                                                                                                                                                                                                                                                                                                                                            |    |
| #60 70.4 5.0 - 35.0 X                                                                                                                                                                                                                                                                                                                                                                                                                        |    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                              |    |
| #200 44.7 0.0 - 10.0 X                                                                                                                                                                                                                                                                                                                                                                                                                       |    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                              |    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                              |    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                              |    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                              |    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                              |    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                              |    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                              |    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                              |    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                              |    |

100

#### **Material Description**

ASTM (D 2488) Classification: Poorly Graded SAND with Silt (SP-SM), mostly fine with trace coarse and medium, 45% fines

0.01

0.001

#### **Atterberg Limits (ASTM D 4318)**

PL=

Classification

USCS (D 2487)= AASHTO (M 145)=

Coefficients

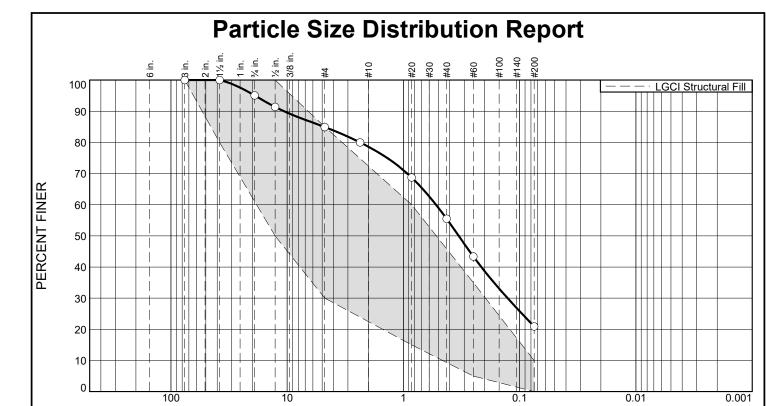
D<sub>90</sub>= 0.6173 D<sub>50</sub>= 0.0977 D<sub>10</sub>= **D<sub>60</sub>=** 0.1583 **D<sub>85</sub>=** 0.4643

Remarks

Date Received: 2/9/24 **Date Tested:** 3/22/24

**Tested By:** AS

Checked By: JKW


LGCI Structural Fill

Location: TP-17 Date Sampled: 2/9/24 Sample Number: G1 **Depth:** 0.3'-2.5'



**Client:** Mount Vernon Group Architects, Inc. Project: Proposed Green Meadow School

**Figure** Project No: 2201



| % <b>+3</b> " | % Gı   | ravel |        | % Sand | l    | % Fines |      |
|---------------|--------|-------|--------|--------|------|---------|------|
| % +3          | Coarse | Fine  | Coarse | Medium | Fine | Silt    | Clay |
| 0.0           | 4.9    | 10.2  | 6.3    | 23.1   | 34.6 | 20.9    |      |

|         | ESULTS  |              |          |
|---------|---------|--------------|----------|
| Opening | Percent | Spec.*       | Pass?    |
| Size    | Finer   | (Percent)    | (X=Fail) |
| 3"      | 100.0   | 100.0        |          |
| 1.5"    | 100.0   | 80.0 - 100.0 |          |
| 0.75"   | 95.1    |              |          |
| 0.5"    | 91.4    | 50.0 - 100.0 |          |
| #4      | 84.9    | 30.0 - 85.0  |          |
| #8      | 80.0    |              |          |
| #20     | 68.7    | 15.0 - 60.0  | X        |
| #40     | 55.5    |              |          |
| #60     | 43.4    | 5.0 - 35.0   | X        |
| #200    | 20.9    | 0.0 - 10.0   | X        |
|         |         |              |          |
|         |         |              |          |
|         |         |              |          |
|         |         |              |          |
|         |         |              |          |
|         |         |              |          |
|         |         |              |          |
|         |         |              |          |
|         |         |              |          |
|         |         |              |          |
|         |         |              |          |

#### **Material Description**

ASTM (D 2488) Classification: Silty SAND with Gravel (SM) , fine to medium with trace coarse, 20% fines,  $_15\%$  fine to coarse gravel

### Atterberg Limits (ASTM D 4318)

PL= LL= PI=

Classification

USCS (D 2487)= AASHTO (M 145)=

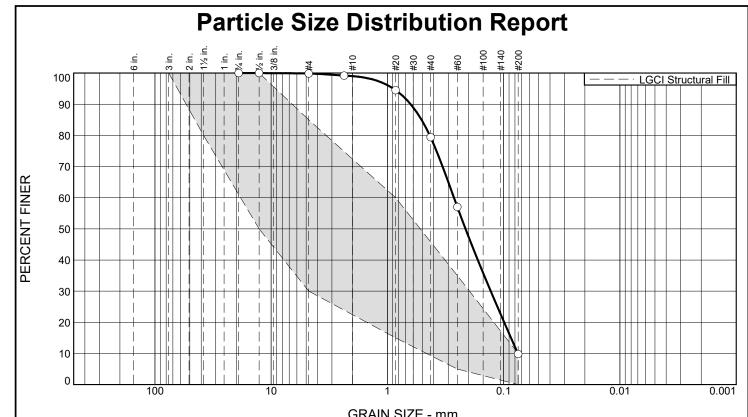
Remarks

Date Received: 2/9/24 Date Tested: 3/22/24

Date Sampled: 2/9/24

Tested By: AS

Checked By: JKW


LGCI Structural Fill

Location: TP-17
Sample Number: G2
Depth: 2.5'-4.7'



Client: Mount Vernon Group Architects, Inc.

Project: Proposed Green Meadow School



|             |        |       |        |        | ' 111111. |         |       |  |  |  |  |
|-------------|--------|-------|--------|--------|-----------|---------|-------|--|--|--|--|
| % +3"       | % G    | ravel |        | % Sand | i         | % Fines | Fines |  |  |  |  |
| % <b>₹3</b> | Coarse | Fine  | Coarse | Medium | Fine      | Silt    | Clay  |  |  |  |  |
| 0.0         | 0.0    | 0.1   | 0.9    | 19.6   | 69.6      | 9.8     |       |  |  |  |  |

|         | TEST R  | ESULTS       |          |
|---------|---------|--------------|----------|
| Opening | Percent | Spec.*       | Pass?    |
| Size    | Finer   | (Percent)    | (X=Fail) |
| 0.75"   | 100.0   |              |          |
| 0.5"    | 100.0   | 50.0 - 100.0 |          |
| #4      | 99.9    | 30.0 - 85.0  | X        |
| #8      | 99.2    |              |          |
| #20     | 94.5    | 15.0 - 60.0  | X        |
| #40     | 79.4    |              |          |
| #60     | 57.0    | 5.0 - 35.0   | X        |
| #200    | 9.8     | 0.0 - 10.0   |          |
|         |         |              |          |

#### **Material Description**

ASTM (D 2488) Classification: Poorly Graded SAND with Silt (SP-SM), mostly fine with trace medium to coarse, 10% fines

## Atterberg Limits (ASTM D 4318)

PL= LL=

USCS (D 2487)= Classification AASHTO (M 145)=

Coefficients

 D90=
 0.6312
 D85=
 0.5085
 D60=
 0.2674

 D50=
 0.2126
 D30=
 0.1291
 D15=
 0.0864

 D10=
 0.0754
 Cu=
 3.55
 Cc=
 0.83

Remarks

Infiltrometer Test

Date Received: 2/8/24 Date Tested: 3/22/24

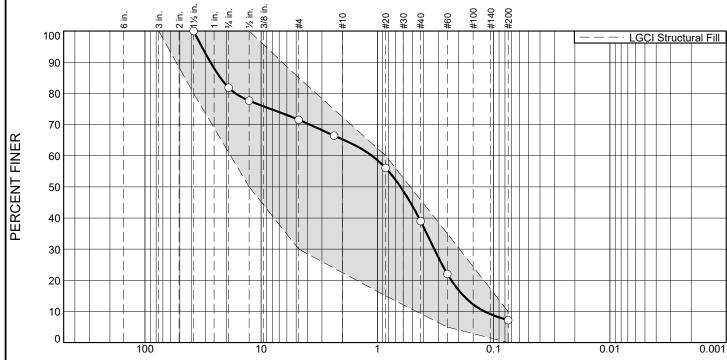
Date Sampled: 2/8/24

Tested By: AS

Checked By: JKW

LGCI Structural Fill

Location: TP-23 Sample Number: 4.0'


**Depth:** 4.0'

Client: Mount Vernon Group Architects, Inc.

Project: Proposed Green Meadow School







| araa | Madium       | Fine  | Cilt    | Clay |
|------|--------------|-------|---------|------|
|      | % Sand       | i     | % Fines |      |
|      | JRAIN SIZE - | · mm. |         |      |

| 0/ 12"               | % GI   | ravei |        | % Sand | 1    | % Fines |      |
|----------------------|--------|-------|--------|--------|------|---------|------|
| <i>7</i> ₀ <b>+3</b> | Coarse | Fine  | Coarse | Medium | Fine | Silt    | Clay |
| 0.0                  | 18.2   | 10.3  | 6.2    | 26.3   | 31.8 | 7.2     |      |

|         | TEST R  | ESULTS       |          |
|---------|---------|--------------|----------|
| Opening | Percent | Spec.*       | Pass?    |
| Size    | Finer   | (Percent)    | (X=Fail) |
| 1.5     | 100.0   | 80.0 - 100.0 |          |
| 0.75"   | 81.8    |              |          |
| 0.5"    | 77.7    | 50.0 - 100.0 |          |
| #4      | 71.5    | 30.0 - 85.0  |          |
| #8      | 66.4    |              |          |
| #20     | 56.0    | 15.0 - 60.0  |          |
| #40     | 39.0    |              |          |
| #60     | 22.0    | 5.0 - 35.0   |          |
| #200    | 7.2     | 0.0 - 10.0   |          |
|         |         |              |          |
|         |         |              |          |
|         |         |              |          |
|         |         |              |          |
|         |         |              |          |
|         |         |              |          |
|         |         |              |          |
|         |         |              |          |
|         |         |              |          |
|         |         |              |          |

#### **Material Description**

ASTM (D 2488) Classification: Poorly Graded SAND with Silt (SP-SM), fine to medium with trace coarse, 5-10% fines, 10% fine subangular gravel

#### **Atterberg Limits (ASTM D 4318)**

PL=

Classification

USCS (D 2487)= AASHTO (M 145)=

Coefficients

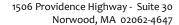
**D<sub>90</sub>=** 27.3179 **D<sub>50</sub>=** 0.6323 **D<sub>10</sub>=** 0.1197  $\begin{array}{l} \mathbf{D_{60}} = 1.1159 \\ \mathbf{D_{15}} = 0.1810 \\ \mathbf{C_{c}} = 0.79 \end{array}$ D<sub>85</sub>= 22.4211 D<sub>30</sub>= 0.3239 C<sub>u</sub>= 9.33

Remarks

Date Received: 2/8/24 **Date Tested:** 3/22/24

**Tested By:** AS

Checked By: JKW


LGCI Structural Fill

Location: TP-26 Date Sampled: 2/8/24 Sample Number: 3.5' **Depth:** 3.5'



**Client:** Mount Vernon Group Architects, Inc. Project: Proposed Green Meadow School

**Figure** Project No: 2201





Voice: 781.255.5554 Fax: 781.255.5535 www.lordenv.com

April 8, 2024

Christopher LeBlanc Mount Vernon Group Architects, Inc. 264 Exchange Street, Suite G4 Chicopee, MA 02013

RE: Soil Sampling and Analysis:

Green Meadow Elementary School

5 Tiger Drive

Maynard, Massachusetts

#### Dear Christopher:

In accordance with the March 27, 2023, proposal, approved by Mount Vernon Group Architects, Inc. (MVG), Lord Environmental, Inc. (LEI) has completed additional soil sampling and analyses at the above-referenced property. The objective of this work was to further evaluate soil at the proposed new building location to determine the extent, if any, of urban fill and submit representative samples to a state-certified laboratory for off-site disposal characterization.

This report supplements our earlier report dated April 5, 2023 that provided the results of samples collected from the north and west perimeter of the playground east of the school where urban fill was identified that contained concentrations of benzo (b) fluoranthene, previously detected on an abutting property as summarized in a report titled "Response Action Outcome Statement, Maynard Public School Department, Green Meadow School Soccer Field, Off Great Road, Maynard, Massachusetts, Release Tracking Number 2-12298", dated July 1998. This report indicated contamination on the soccer field located on Parcel 2, Sheet 24 on the Town of Maynard Assessor's Map. A Site Plan is attached as **Figure 1**.

#### **Soil Sampling and Organic Vapor Screening March 2023**

A total of seventy-three (73) soil borings, designated B-1 to B-73, were advanced at the Site on March 22 and March 24, 2023 to evaluate shallow soil conditions. Soil borings were advanced with a GeoProbe© 6712DT track-mounted, direct-push drill rig in locations as shown on the attached Site Plan (**Figure 1**). Continuous soil samples were collected in acetate sleeves to a depth of 3 feet below surface grade in all borings. Generally, soil encountered during drilling consisted of a loam topsoil to depths ranging from 2-8 inches with underlying coarse to fine sand and varying amounts of gravel and trace silt. Soil sample descriptions are attached in **Table 1**. No groundwater was detected.

All soil samples were screened in the field for total organic vapors (TOV) using a MiniRAE photoionization detector (PID) capable of detecting organic vapors from petroleum and solvents in soil

at concentrations above 0.1 parts per million by volume (ppmv). No organic vapors were detected above the PID detection limit in any of the soil samples.

#### **Laboratory Analyses of Soil March 2023**

Twelve soil samples were submitted to a Massachusetts certified laboratory for analyses of extractable petroleum hydrocarbons (EPH) with target polycyclic aromatic hydrocarbons (PAH) via MassDEP Methodologies. As is shown in **Table 2** attached, no PAH compounds were detected above their respective laboratory detection limits.

EPH fractions  $C_{19}$ - $C_{36}$  aliphatic hydrocarbons and  $C_{11}$ - $C_{22}$  aromatic hydrocarbons were detected.  $C_{19}$ - $C_{36}$  aliphatics were detected in two soil samples at concentrations of 17.7 milligram per kilogram (mg/kg) in B-2 and 15.7 mg/kg in B-52. Both detected concentrations of  $C_{19}$ - $C_{36}$  aliphatics are slightly above the laboratory detection limit of 15.1 mg/kg and well below the MassDEP S-1 Reportable Concentration of 3,000 mg/kg.

 $C_{11}$ - $C_{22}$  aliphatics were detected in two soil samples at concentrations of 21 mg/kg in B-18 and 8.7 mg/kg in B-52. Both detected concentrations of  $C_{11}$ - $C_{22}$  aliphatics are slightly above the laboratory detection limit of approximately 7.5 mg/kg and well below the MassDEP S-1 Reportable Concentration of 1,000 mg/kg.

### Soil Sampling and Organic Vapor Screening February 2024

Additional soil samples were collected from the school entrance roadway, rear of the existing school and the hillside slope on February 23 and 27, 2024. These samples were collected from the split-spoon soil sampler driven by Lahlaf Geotechnical's contractor's rig. Generally, soil encountered during drilling consisted of a loam topsoil to depths ranging from 2-8 inches with underlying coarse to fine sand and varying amounts of gravel and trace silt. Detailed soil sample descriptions are provided with the test pit and test boring logs in the geotechnical report. No groundwater was detected.

All soil samples were screened in the field for total organic vapors (TOV) using a MiniRAE photoionization detector (PID) capable of detecting organic vapors from petroleum and solvents in soil at concentrations above 0.1 parts per million by volume (ppmv). No organic vapors were detected above the PID detection limit in any of the soil samples.

#### **Laboratory Analyses of Soil February 2024**

Six soil samples were submitted to a Massachusetts certified laboratory for disposal characterization analyses including the Comm-97 landfill parameters, MCP 14 metals and RCRA Hazardous Waste parameters. As is shown in **Table 3** attached, no compounds or parameters were detected above their respective MassDEP S-1 Reportable Concentrations or landfill disposal criteria.

#### Conclusions

No organic vapors were detected above the field screening instrument detection limit, and no compounds or parameters were detected above their respective MassDEP S-1 Reportable

Concentrations or Massachusetts landfill disposal criteria. Note that not all privately operated landfills utilize these disposal criteria.

Feel free to call with any questions or comments. We appreciate the opportunity to provide our professional environmental consulting and analytical services.

Sincerely,

LORD ENVIRONMENTAL, INC.

Jonathon D. Puliafico, CPG Senior Project Manager Ralph J. Tella, LSP, CHMM President

Raph J. Tella

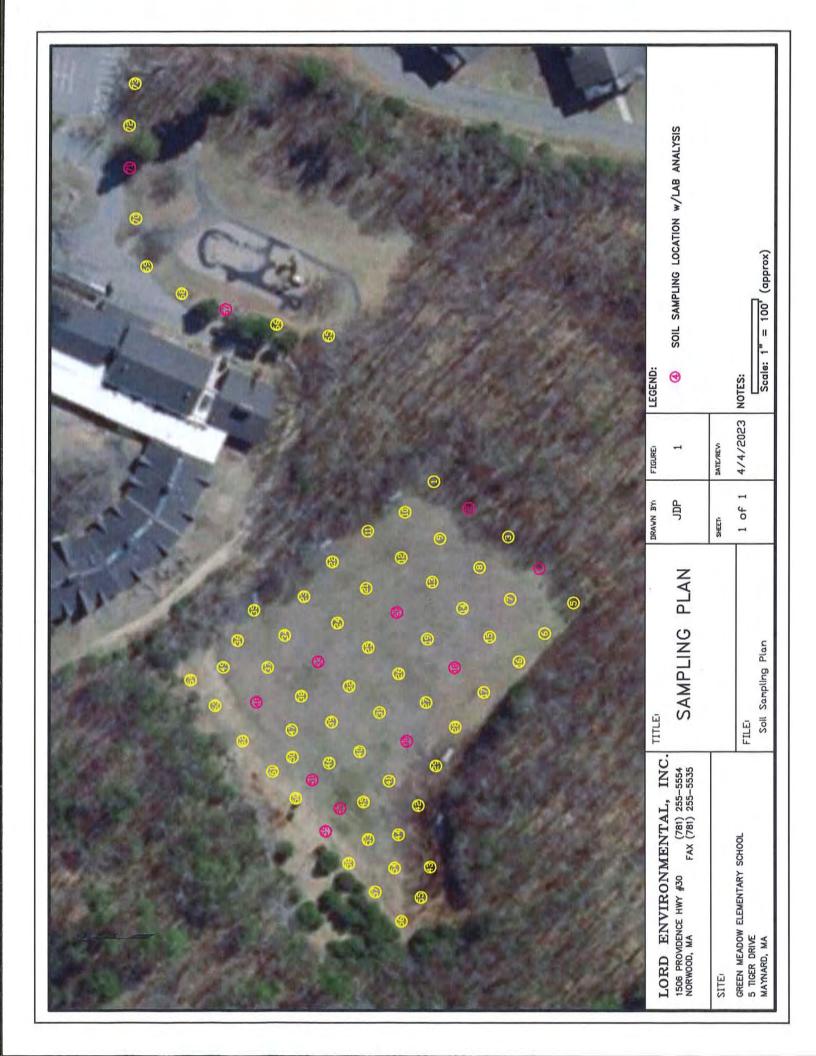
Enc: Limitations

Site Plan Tables

**Laboratory Analysis Report** 

#### Limitations

No warranty, whether expressed or implied, is given with respect to this report or any opinions expressed herein. It is expressly understood that this report and the opinions expressed herein are based upon Site conditions as they existed only at the time of assessment.


The data reported and the findings, observations, and opinions expressed in the report are limited by the Scope of Work. The Scope of Work was performed based on budgetary, time, and other constraints imposed by the Client, and the agencies and persons reviewed.

Due to the fact that geological and soil formations are inherently random, variable and indeterminate (heterogeneous) in nature, the professional services and opinions provided by Lord Environmental, Inc. under our agreement are not guaranteed to be a representation of complete Site conditions, which are variable and subject to change with time or the result of natural or man-made processes.

Although our services are extensive, opinions, findings and conclusions presented are limited to and by the data supplied, reported and obtained. Lord Environmental, Inc. makes no expressed or implied representations, warranties or guarantees regarding any changes in the condition of the premises after the date of the on-site inspection(s).

In preparing this report, Lord Environmental, Inc. has relied upon and presumed accurate certain information about the Site and adjacent properties provided by governmental agencies, the client and others identified in the report. Except as otherwise stated in the report, Lord Environmental, Inc. has not attempted to verify the accuracy or completeness of any such information.

# **FIGURES**



# **TABLES**

## Table 1

#### SOIL BORING LOGS - FIELD SCREENING

### 5 TIGER DRIVE, MAYNARD, MA

BORING METHOD: Geoprobe 6712DT Track Rig DATEs: March 22 and 24, 2023

| Boring | Depth (ft) | PID Reading (ppm) | Soil Description                                                                             |
|--------|------------|-------------------|----------------------------------------------------------------------------------------------|
| B-1    | 0-3        | ND                | 3" Loam topsoil. Brown, coarse to fine sand, little gravel, trace silt                       |
| B-2    | 0-3        | ND                | 6" Loam topsoil. Brown, medium to fine sand, little coarse sand, trace silt                  |
| B-3    | 0-3        | ND                | 4" Loam topsoil. Brown, coarse to fine sand, little coarse sand, trace silt                  |
| B-4    | 0-3        | ND                | 3" Loam topsoil. Brown, coarse to fine sand, little gravel, trace silt                       |
| B-5    | 0-3        | ND                | 3" Loam topsoil. Brown, coarse to fine sand, little gravel, trace silt                       |
| B-6    | 0-3        | ND                | 7" Loam topsoil. Brown, coarse to fine sand, little gravel, trace silt                       |
| B-7    | 0-3        | ND                | 2" Loam topsoil. Brown, medium to fine sand, little coarse sand, trace gravel, silt          |
| B-8    | 0-3        | ND                | 7" Loam topsoil. Brown, coarse to fine sand, little gravel, trace silt                       |
| B-9    | 0-3        | ND                | 3" Loam topsoil. Brown, coarse to fine sand and gravel                                       |
| B-10   | 0-3        | ND                | 4" Loam topsoil. Brown, coarse to fine sand and gravel                                       |
| B-11   | 0-3        | ND                | 4" Loam topsoil. Brown, coarse to fine sand and gravel                                       |
| B-12   | 0-3        | ND                | 3" Loam topsoil. Brown, coarse to fine sand, some gravel, trace silt                         |
| B-13   | 0-3        | ND                | 3" Loam topsoil. Brown, coarse to fine sand, little gravel, trace silt                       |
| B-14   | 0-3        | ND                | 2" Loam topsoil. Brown, coarse to fine sand, little gravel, trace silt                       |
| B-15   | 0-3        | ND                | 2" Loam topsoil. Brown, coarse to fine sand, some gravel, trace silt                         |
| B-16   | 0-3        | ND                | 3" Loam topsoil. Brown, coarse to fine sand, some gravel, trace silt                         |
| B-17   | 0-3        | ND                | 2" Loam topsoil. Brown, coarse to fine sand, some gravel, trace silt                         |
| B-18   | 0-3        | ND                | 2" Loam topsoil. Brown, coarse to fine sand, little gravel, trace silt                       |
| B-19   | 0-3        | ND                | 2" Loam topsoil. Brown, coarse to fine sand, little gravel, trace silt                       |
| B-20   | 0-3        | ND                | 2" Loam topsoil. Brown, coarse to fine sand, little gravel, trace silt                       |
| B-21   | 0-3        | ND                | 3" Loam topsoil. Brown, coarse to fine sand, some gravel, trace silt                         |
| B-22   | 0-3        | ND                | 2" Loam topsoil. Brown, coarse to fine sand, little gravel, trace silt                       |
| B-23   | 0-3        | ND                | 3" Loam topsoil. Brown, coarse to fine sand, some gravel, trace silt                         |
| B-24   | 0-3        | ND                | 2" Loam topsoil. Brown, coarse to fine sand, little gravel, trace silt                       |
| B-25   | 0-3        | ND                | 2" Loam topsoil. Brown, coarse to fine sand, little gravel, trace silt                       |
| B-26   | 0-3        | ND                | 2" Loam topsoil. Red brown, coarse to fine sand, some gravel, trace silt                     |
| B-27   | 0-3        | ND                | 2" Loam topsoil. Red brown, coarse to fine sand, some gravel, trace silt                     |
| B-28   | 0-3        | ND                | Brown, coarse to fine sand, some gravel, trace silt                                          |
| B-29   | 0-3        | ND                | 6" Loam topsoil. Red brown, coarse to fine sand, some gravel, trace silt                     |
| B-30   | 0-3        | ND                | 6" Loam topsoil. Red brown, coarse to fine sand, some gravel, trace silt                     |
| B-31   | 0-3        | ND                | 6" Loam topsoil. Red brown, coarse to fine sand, some gravel, trace silt                     |
| B-32   | 0-3        | ND                | 4" Loam topsoil. Red brown, medium to fine sand, some gravel, little coarse sand, trace silt |
| B-33   | 0-3        | ND                | 4" Loam topsoil. Red brown, medium to fine sand, some gravel, little coarse sand, trace silt |
| B-34   | 0-3        | ND                | 4" Loam topsoil. Red brown, medium to fine sand, some gravel, little coarse sand, trace silt |
| B-35   | 0-3        | ND                | Red brown, coarse to fine sand, some gravel, trace silt                                      |
| B-36   | 0-3        | ND                | Red brown, coarse to fine sand, some gravel, trace silt                                      |
| B-37   | 0-3        | ND                | 6" Loam topsoil. Brown, medium to fine sand, little coarse sand, trace silt                  |
| B-38   | 0-3        | ND                | 6" Loam topsoil. Brown, coarse to fine sand and gravel. One 1' boulder                       |
| B-39   | 0-3        | ND                | 3" Loam topsoil. Brown, medium to fine sand, little coarse sand, trace silt                  |
| B-40   | 0-3        | ND                | Brown, coarse to fine sand, little gravel, trace silt                                        |
| B-41   | 0-3        | ND                | Brown, coarse to fine sand, little gravel, trace silt                                        |
| B-42   | 0-3        | ND                | 3" Loam topsoil. Brown, medium to fine sand, little coarse sand, trace silt                  |
| B-43   | 0-3        | ND                | 4" Loam topsoil. Brown, coarse to fine sand, little gravel, trace silt                       |

#### Table 1

### SOIL BORING LOGS - FIELD SCREENING

#### 5 TIGER DRIVE, MAYNARD, MA

### BORING METHOD: Geoprobe 6712DT Track Rig DATEs: March 22 and 24, 2023

| Boring | Depth (ft) | PID Reading (ppm) | Soil Description                                                                    |
|--------|------------|-------------------|-------------------------------------------------------------------------------------|
| B-44   | 0-3        | ND                | 4" Loam topsoil. Brown, coarse to fine sand, little gravel, trace silt              |
| B-45   | 0-3        | ND                | 4" Loam topsoil. Brown, coarse to fine sand, little gravel, trace silt              |
| B-46   | 0-3        | ND                | 4" Loam topsoil. Brown, coarse to fine sand, little gravel, trace silt              |
| B-47   | 0-3        | ND                | 8" Loam topsoil. Brown, coarse to fine sand, little gravel, trace silt              |
| B-48   | 0-3        | ND                | 3" Loam topsoil. Brown, medium to fine sand, some silt                              |
| B-49   | 0-3        | ND                | 4" Loam topsoil. Brown, coarse to fine sand, little gravel, trace silt              |
| B-50   | 0-3        | ND                | 10" Loam topsoil. Brown, coarse to fine sand, little gravel, trace silt             |
| B-51   | 0-3        | ND                | 3" Loam topsoil. Brown, coarse to fine sand, trace gravel, silt                     |
| B-52   | 0-3        | ND                | Brown and grey, coarse to fine sand, little gravel, silt                            |
| B-53   | 0-3        | ND                | Brown, coarse to fine sand, little gravel, trace                                    |
| B-54   | 0-3        | ND                | Brown and grey, coarse to fine sand, little gravel, silt                            |
| B-55   | 0-3        | ND                | 4" Loam topsoil. Brown, coarse to fine sand, little gravel, trace silt              |
| B-56   | 0-3        | ND                | 4" Loam topsoil. Brown, coarse to fine sand, little gravel, trace silt              |
| B-57   | 0-3        | ND                | 4" Loam topsoil. Brown, coarse to fine sand, little gravel, trace silt              |
| B-58   | 0-3        | ND                | 3" Loam topsoil. Brown, medium to fine sand, little gravel, coarse sand, trace silt |
| B-59   | 0-3        | ND                | 3" Loam topsoil. Brown, coarse to fine sand, little gravel, trace silt              |
| B-60   | 0-3        | ND                | 3" Loam topsoil. Brown, coarse to fine sand, little gravel, trace silt              |
| B-61   | 0-3        | ND                | 3" Loam topsoil. Brown, coarse to fine sand, little gravel, trace silt              |
| B-62   | 0-3        | ND                | 3" Loam topsoil. Brown, coarse to fine sand, little gravel, trace silt              |
| B-63   | 0-3        | ND                | 4" Loam topsoil. Brown, coarse to fine sand, little gravel, trace silt              |
| B-64   | 0-3        | ND                | 8" Loam topsoil. Brown, coarse to fine sand, little cobbles, gravel, trace silt     |
| B-65   | 0-3        | ND                | 4" Loam topsoil. Brown, coarse to fine sand, little gravel, trace silt              |
| B-66   | 0-3        | ND                | 4" Loam topsoil. Brown, medium to fine sand, trace gravel, coarse sand, silt        |
| B-67   | 0-3        | ND                | 2" Loam topsoil. Brown, coarse to fine sand, little gravel, trace silt              |
| B-68   | 0-3        | ND                | 6" Loam topsoil. Brown, coarse to fine sand, little gravel, trace silt              |
| B-69   | 0-3        | ND                | 2" Loam topsoil. Brown, coarse to fine sand, some gravel, trace silt                |
| B-70   | 0-3        | ND                | 2" Loam topsoil. Brown, coarse to fine sand, some gravel, trace silt                |
| B-71   | 0-3        | ND                | Brown, coarse to fine sand, little gravel, trace silt                               |
| B-72   | 0-3        | ND                | Brown, medium to fine sand, trace gravel, coarse sand, silt                         |
| B-73   | 0-3        | ND                | Brown, coarse to fine sand, little gravel, trace silt                               |

Notes: ND – Not Detected

Table 2 Soil Analysis Results (mg/kg), 3/24/2023 5 Tiger Drive, Maynard, MA

| Sample                                   | B-2              | 2    | B-4              | ı    | B-18             | 8    | B-2              | 0    | B-3              | 0    | B-3              | 3    | B-4              | 8    | B-51             | L    | B-52             | 2    | B-59             | 9    | B-67             | 7    | B-7              | 1    | MADED | Standards |
|------------------------------------------|------------------|------|------------------|------|------------------|------|------------------|------|------------------|------|------------------|------|------------------|------|------------------|------|------------------|------|------------------|------|------------------|------|------------------|------|-------|-----------|
| Date Sampled:                            | 3/22/            | /23  | 3/22/            | 23   | 3/22/            | 23   | 3/22/            | /23  | 3/24,            | 23   | 3/24/            | 23   | 3/24/            | 23   | 3/24/            | 23   | 3/24/            | 23   | 3/24/            | 23   | 3/24/            | 23   | 3/24             | /23  | WADEP | standards |
| Parameter                                | Sample<br>Result | RL   | RC-S1 | RC-S2     |
|                                          |                  |      |                  |      |                  |      |                  |      |                  |      |                  |      |                  |      |                  |      |                  |      |                  |      |                  |      |                  |      |       |           |
| EPH and PAH                              |                  |      |                  |      |                  |      |                  |      |                  |      |                  |      |                  |      |                  |      |                  |      |                  |      |                  |      |                  |      |       |           |
| Unadjusted C11-C22 Aromatic Hydrocarbons | ND               | 7.59 | ND               | 7.48 | 21               | 8.46 | ND               | 6.99 | ND               | 7.04 | ND               | 7.47 | ND               | 7.57 | ND               | 7.57 | 8.7              | 7.53 | ND               | 7.63 | ND               | 7.26 | ND               | 7.33 |       |           |
| Naphthalene                              | ND               | 0.38 | ND               | 0.37 | ND               | 0.42 | ND               | 0.35 | ND               | 0.35 | ND               | 0.37 | ND               | 0.37 | ND               | 0.37 | ND               | 0.37 | ND               | 0.38 | ND               | 0.36 | ND               | 0.36 | 4     | 20        |
| 2-Methylnaphthalene                      | ND               | 0.38 | ND               | 0.37 | ND               | 0.42 | ND               | 0.35 | ND               | 0.35 | ND               | 0.37 | ND               | 0.37 | ND               | 0.37 | ND               | 0.37 | ND               | 0.38 | ND               | 0.36 | ND               | 0.36 | 0.7   | 80        |
| Phenanthrene                             | ND               | 0.38 | ND               | 0.37 | ND               | 0.42 | ND               | 0.35 | ND               | 0.35 | ND               | 0.37 | ND               | 0.37 | ND               | 0.37 | ND               | 0.37 | ND               | 0.38 | ND               | 0.36 | ND               | 0.36 | 10    | 1000      |
| Acenaphthene                             | ND               | 0.38 | ND               | 0.37 | ND               | 0.42 | ND               | 0.35 | ND               | 0.35 | ND               | 0.37 | ND               | 0.37 | ND               | 0.37 | ND               | 0.37 | ND               | 0.38 | ND               | 0.36 | ND               | 0.36 | 4     | 3000      |
| Acenaphthylene                           | ND               | 0.38 | ND               | 0.37 | ND               | 0.42 | ND               | 0.35 | ND               | 0.35 | ND               | 0.37 | ND               | 0.37 | ND               | 0.37 | ND               | 0.37 | ND               | 0.38 | ND               | 0.36 | ND               | 0.36 | 1     | 10        |
| Fluorene                                 | ND               | 0.38 | ND               | 0.37 | ND               | 0.42 | ND               | 0.35 | ND               | 0.35 | ND               | 0.37 | ND               | 0.37 | ND               | 0.37 | ND               | 0.37 | ND               | 0.38 | ND               | 0.36 | ND               | 0.36 | 1000  | 3000      |
| Anthracene                               | ND               | 0.38 | ND               | 0.37 | ND               | 0.42 | ND               | 0.35 | ND               | 0.35 | ND               | 0.37 | ND               | 0.37 | ND               | 0.37 | ND               | 0.37 | ND               | 0.38 | ND               | 0.36 | ND               | 0.36 | 1000  | 3000      |
| Fluoranthene                             | ND               | 0.38 | ND               | 0.37 | ND               | 0.42 | ND               | 0.35 | ND               | 0.35 | ND               | 0.37 | ND               | 0.37 | ND               | 0.37 | ND               | 0.37 | ND               | 0.38 | ND               | 0.36 | ND               | 0.36 | 1000  | 3000      |
| Pyrene                                   | ND               | 0.38 | ND               | 0.37 | ND               | 0.42 | ND               | 0.35 | ND               | 0.35 | ND               | 0.37 | ND               | 0.37 | ND               | 0.37 | ND               | 0.37 | ND               | 0.38 | ND               | 0.36 | ND               | 0.36 | 1000  | 3000      |
| Benzo(a)anthracene                       | ND               | 0.38 | ND               | 0.37 | ND               | 0.42 | ND               | 0.35 | ND               | 0.35 | ND               | 0.37 | ND               | 0.37 | ND               | 0.37 | ND               | 0.37 | ND               | 0.38 | ND               | 0.36 | ND               | 0.36 | 7     | 40        |
| Chrysene                                 | ND               | 0.38 | ND               | 0.37 | ND               | 0.42 | ND               | 0.35 | ND               | 0.35 | ND               | 0.37 | ND               | 0.37 | ND               | 0.37 | ND               | 0.37 | ND               | 0.38 | ND               | 0.36 | ND               | 0.36 | 70    | 400       |
| Benzo(b)fluoranthene                     | ND               | 0.38 | ND               | 0.37 | ND               | 0.42 | ND               | 0.35 | ND               | 0.35 | ND               | 0.37 | ND               | 0.37 | ND               | 0.37 | ND               | 0.37 | ND               | 0.38 | ND               | 0.36 | ND               | 0.36 | 7     | 40        |
| Benzo(k)fluoranthene                     | ND               | 0.38 | ND               | 0.37 | ND               | 0.42 | ND               | 0.35 | ND               | 0.35 | ND               | 0.37 | ND               | 0.37 | ND               | 0.37 | ND               | 0.37 | ND               | 0.38 | ND               | 0.36 | ND               | 0.36 | 70    | 400       |
| Benzo(a)pyrene                           | ND               | 0.38 | ND               | 0.37 | ND               | 0.42 | ND               | 0.35 | ND               | 0.35 | ND               | 0.37 | ND               | 0.37 | ND               | 0.37 | ND               | 0.37 | ND               | 0.38 | ND               | 0.36 | ND               | 0.36 | 2     | 7         |
| Indeno(1,2,3-cd)pyrene                   | ND               | 0.38 | ND               | 0.37 | ND               | 0.42 | ND               | 0.35 | ND               | 0.35 | ND               | 0.37 | ND               | 0.37 | ND               | 0.37 | ND               | 0.37 | ND               | 0.38 | ND               | 0.36 | ND               | 0.36 | 7     | 40        |
| Dibenz(a,h)anthracene                    | ND               | 0.38 | ND               | 0.37 | ND               | 0.42 | ND               | 0.35 | ND               | 0.35 | ND               | 0.37 | ND               | 0.37 | ND               | 0.37 | ND               | 0.37 | ND               | 0.38 | ND               | 0.36 | ND               | 0.36 | 0.7   | 4         |
| Benzo(g,h,i)perylene                     | ND               | 0.38 | ND               | 0.37 | ND               | 0.42 | ND               | 0.35 | ND               | 0.35 | ND               | 0.37 | ND               | 0.37 | ND               | 0.37 | ND               | 0.37 | ND               | 0.38 | ND               | 0.36 | ND               | 0.36 | 1000  | 3000      |
| C9-C18 Aliphatic Hydrocarbons            | ND               | 15.1 | ND               | 14.9 | ND               | 16.9 | ND               | 13.9 | ND               | 14   | ND               | 14.9 | ND               | 15.1 | ND               | 15.1 | ND               | 15   | ND               | 15.2 | ND               | 14.5 | ND               | 14.6 | 1000  | 3000      |
| C19-C36 Aliphatic Hydrocarbons           | 17.7             | 15.1 | ND               | 14.9 | ND               | 16.9 | ND               | 13.9 | ND               | 14   | ND               | 14.9 | ND               | 15.1 | ND               | 15.1 | 15.7             | 15   | ND               | 15.2 | ND               | 14.5 | ND               | 14.6 | 3000  | 5000      |
| C11-C22 Aromatic Hydrocarbons            | ND               | 7.59 | ND               | 7.48 | 21               | 8.46 | ND               | 6.99 | ND               | 7.04 | ND               | 7.47 | ND               | 7.57 | ND               | 7.57 | 8.7              | 7.53 | ND               | 7.63 | ND               | 7.26 | ND               | 7.33 | 1000  | 3000      |

mg/kg: Milligrams per kilogram EPH: Extractable Petroleum Hydrocarbons

PAH: Polycyclic Aromatic Hydrocarbons

RL: Reporting Limit RC-S1: MassDEP Reportable Concentration S-1

RC-S2: MassDEP Reportable Concentration S-2

Detected analytes are highlighted blue

No analytes were detected above their MADEP S-1 Reportable Concentrations

#### Table 3 Soil Sample Results Green Meadow School

| Councile ID:                              | B-108 2-4'              |            | B-118 2-4'              |            | TP-0      | •          | B-103           | 0.01       | B-113           | 2.4!       | D 113           | 2.61       |                |                   |                     |                                      |                                      |
|-------------------------------------------|-------------------------|------------|-------------------------|------------|-----------|------------|-----------------|------------|-----------------|------------|-----------------|------------|----------------|-------------------|---------------------|--------------------------------------|--------------------------------------|
| Sample ID:<br>Lab Sample Number:          | B-108 2-4<br>4B27035-01 |            | B-118 2-4<br>4B27035-02 |            | 4B2601    |            | 8-103<br>4B2601 |            | B-113<br>4B2601 |            | B-112<br>4B2601 |            |                |                   |                     |                                      |                                      |
| Date Sample Number:                       | 2/27/2024 0:00          |            | 2/27/2024 0:00          |            | 2/23/2024 |            | 2/23/2024       |            | 2/23/202        |            | 2/23/202        |            |                |                   |                     |                                      |                                      |
| Date Sampled:<br>Date Received:           | 2/27/2024 0:00          |            | 2/27/2024 0:00          |            | 2/23/2024 |            | 2/23/2024       |            | 2/23/202        |            | 2/23/202        |            |                |                   |                     |                                      |                                      |
| Date Necewed.                             | Sample                  | Reporting  | Sample                  | Reporting  | Sample    | Reporting  | Sample          | Reporting  | Sample          | Reporting  | Sample          | Reporting  |                | MOHML Reportable  | MOHMI Reportable    | MA COMM-97 Disposal                  | MA COMM-97 Disposal                  |
| Parameter                                 | Result                  | Limit      | Result                  | Limit      | Result    | Limit      | Result          | Limit      | Result          | Limit      | Result          | Limit      | Units          | Concentration S-1 | Concentration S-2   | Criteria                             | Criteria                             |
| General Chemistry                         |                         |            |                         |            |           |            |                 |            |                 |            |                 |            |                |                   |                     |                                      |                                      |
| Flashpoint                                | > 200                   | 70         | > 200                   | 70         | > 200     | 70         | > 200           | 70         | > 200           | 70         | > 200           | 70         | degrees F      |                   |                     |                                      |                                      |
| Specific Conductance                      | 13.7                    | 2          | 296                     | 2          | 56.3      | 2          | 15.9            | 2          | 9.4             | 2          | 17.4            | 2          | uS/cm          |                   |                     | 8000                                 | 4000                                 |
| pH                                        | 8.1                     |            | 7.1                     |            | 7         |            | 6               |            | 5.1             |            | 5.2             |            | SU             |                   |                     |                                      |                                      |
|                                           |                         |            |                         |            |           |            |                 |            |                 |            |                 |            |                |                   |                     |                                      |                                      |
| Polychlorinated Biphenyls (PCBs)          |                         |            |                         |            |           |            |                 |            |                 |            |                 |            |                |                   |                     |                                      |                                      |
| Aroclor-1016                              | ND                      | 71         | ND                      | 69         | ND        | 82         | ND              | 75         | ND              | 76         | ND              | 72         | ug/kg          | 1000              | 4000                | see PCBs (Total)                     | see PCBs (Total)                     |
| Aroclor-1221                              | ND                      | 71         | ND                      | 69         | ND        | 82         | ND              | 75         | ND              | 76         | ND              | 72         | ug/kg          | 1000              | 4000                | see PCBs (Total)                     | see PCBs (Total)                     |
| Aroclor-1232                              | ND<br>ND                | 71         | ND                      | 69         | ND        | 82         | ND<br>ND        | 75         | ND              | 76         | ND              | 72         | ug/kg          | 1000              | 4000                | see PCBs (Total)                     | see PCBs (Total)                     |
| Aroclor-1242<br>Aroclor-1248              | ND<br>ND                | 71<br>71   | ND<br>ND                | 69<br>69   | ND<br>ND  | 82<br>82   | ND<br>ND        | 75<br>75   | ND<br>ND        | 76<br>76   | ND<br>ND        | 72<br>72   | ug/kg<br>ug/kg | 1000<br>1000      | 4000<br>4000        | see PCBs (Total)<br>see PCBs (Total) | see PCBs (Total)<br>see PCBs (Total) |
| Aroclor-1254                              | ND<br>ND                | 71         | ND                      | 69         | ND        | 82         | ND              | 75         | ND              | 76         | ND              | 72         | ug/kg<br>ug/kg | 1000              | 4000                | see PCBs (Total)                     | see PCBs (Total)                     |
| Aroclor-1260                              | ND ND                   | 71         | ND                      | 69         | ND        | 82         | ND              | 75         | ND              | 76         | ND              | 72         | ug/kg          | 1000              | 4000                | see PCBs (Total)                     | see PCBs (Total)                     |
| Aroclor-1260<br>Aroclor-1262              | ND ND                   | 71         | ND                      | 69         | ND        | 82         | ND ND           | 75         | ND              | 76         | ND              | 72         | ug/kg          | 1000              | 4000                | see PCBs (Total)                     | see PCBs (Total)                     |
| Aroclor-1268                              | ND ND                   | 71         | ND                      | 69         | ND        | 82         | ND              | 75         | ND              | 76         | ND              | 72         | ug/kg          |                   |                     | see PCBs (Total)                     | see PCBs (Total)                     |
| PCBs (Total)                              | ND                      | 71         | ND                      | 69         | ND        | 82         | ND              | 75         | ND              | 76         | ND              | 72         | ug/kg          | 1000              | 4000                | 2000                                 | 2000                                 |
| Reactivity                                |                         |            |                         |            |           |            |                 |            |                 |            |                 |            |                |                   |                     |                                      |                                      |
| Cyanide                                   | ND                      | 0.2        | ND                      | 0.2        | ND        | 0.3        | ND              | 0.2        | ND              | 0.2        | ND              | 0.2        | mg/kg          | 30                | 100                 |                                      |                                      |
| Sulfide                                   | ND ND                   | 0.1        | ND                      | 0.1        | ND        | 0.1        | ND              | 0.1        | ND              | 0.1        | ND              | 0.1        | mg/kg          | 30                | 100                 |                                      |                                      |
|                                           |                         |            |                         |            |           |            |                 |            |                 |            |                 |            | 010            |                   |                     |                                      |                                      |
| Semivolatile organic compounds            |                         |            |                         |            |           |            |                 |            |                 |            |                 |            |                |                   |                     |                                      |                                      |
| 1,2,4-Trichlorobenzene                    | ND                      | 141        | ND                      | 137        | ND        | 163        | ND              | 150        | ND              | 154        | ND              | 143        | ug/kg          | 2000              | 6000                |                                      |                                      |
| 1,2-Dichlorobenzene                       | ND                      | 141        | ND                      | 137        | ND        | 163        | ND              | 150        | ND              | 154        | ND              | 143        | ug/kg          | 9000              | 100000              |                                      |                                      |
| 1,3-Dichlorobenzene                       | ND                      | 141        | ND                      | 137        | ND        | 163        | ND              | 150        | ND              | 154        | ND              | 143        | ug/kg          | 3000              | 200000              |                                      |                                      |
| 1,4-Dichlorobenzene                       | ND                      | 141        | ND                      | 137        | ND        | 163        | ND              | 150        | ND              | 154        | ND              | 143        | ug/kg          | 700               | 1000                |                                      |                                      |
| Phenol                                    | ND                      | 141        | ND                      | 137        | ND        | 163        | ND              | 150        | ND              | 154        | ND              | 143        | ug/kg          | 900               | 10000               |                                      |                                      |
| 2,4,5-Trichlorophenol                     | ND                      | 141        | ND                      | 137        | ND        | 163        | ND              | 150        | ND              | 154        | ND              | 143        | ug/kg          | 4000              | 600000              |                                      |                                      |
| 2,4,6-Trichlorophenol                     | ND                      | 141        | ND                      | 137        | ND        | 163        | ND              | 150        | ND              | 154        | ND              | 143        | ug/kg          | 700               | 20000               |                                      |                                      |
| 2,4-Dichlorophenol                        | ND                      | 141        | ND                      | 137        | ND        | 163        | ND              | 150        | ND              | 154        | ND              | 143        | ug/kg          | 700               | 40000               |                                      |                                      |
| 2,4-Dimethylphenol                        | ND                      | 357        | ND                      | 348        | ND        | 413        | ND              | 380        | ND              | 391        | ND              | 363        | ug/kg          | 700               | 100000              |                                      |                                      |
| 2,4-Dinitrophenol<br>2.4-Dinitrotoluene   | ND<br>ND                | 357<br>141 | ND<br>ND                | 348<br>137 | ND<br>ND  | 413<br>163 | ND<br>ND        | 380<br>150 | ND<br>ND        | 391<br>154 | ND<br>ND        | 363<br>143 | ug/kg          | 3000<br>700       | 50000<br>10000      |                                      |                                      |
| ,                                         | ND<br>ND                |            | ND<br>ND                |            | ND<br>ND  | 163        | ND<br>ND        |            |                 |            | ND<br>ND        | _          | ug/kg          |                   |                     |                                      |                                      |
| 2,6-Dinitrotoluene<br>2-Chloronaphthalene | ND<br>ND                | 141<br>141 | ND<br>ND                | 137<br>137 | ND        | 163        | ND<br>ND        | 150<br>150 | ND<br>ND        | 154<br>154 | ND              | 143<br>143 | ug/kg          | 100000<br>1000000 | 1000000<br>1.00E+07 |                                      |                                      |
| 2-Chlorophenol                            | ND<br>ND                | 141        | ND<br>ND                | 137        | ND        | 163        | ND<br>ND        | 150        | ND<br>ND        | 154        | ND              | 143        | ug/kg<br>ug/kg | 700               | 100000              |                                      |                                      |
| 2-Methylnaphthalene                       | ND ND                   | 141        | ND                      | 137        | ND        | 163        | ND              | 150        | ND              | 154        | ND              | 143        | ug/kg          | 700               | 80000               |                                      |                                      |
| Nitrobenzene                              | ND ND                   | 141        | ND                      | 137        | ND        | 163        | ND              | 150        | ND              | 154        | ND              | 143        | ug/kg          | 500000            | 500000              |                                      |                                      |
| 2-Methylphenol                            | ND ND                   | 141        | ND                      | 137        | ND        | 163        | ND              | 150        | ND              | 154        | ND              | 143        | ug/kg          | 500000            | 5000000             |                                      |                                      |
| 2-Nitroaniline                            | ND ND                   | 141        | ND                      | 137        | ND        | 163        | ND              | 150        | ND              | 154        | ND              | 143        | ug/kg          |                   |                     |                                      |                                      |
| 2-Nitrophenol                             | ND                      | 357        | ND                      | 348        | ND        | 413        | ND              | 380        | ND              | 391        | ND              | 363        | ug/kg          | 100000            | 1000000             |                                      |                                      |
| 3,3'-Dichlorobenzidine                    | ND                      | 357        | ND                      | 348        | ND        | 413        | ND              | 380        | ND              | 391        | ND              | 363        | ug/kg          | 3000              | 20000               |                                      |                                      |
| 3-Nitroaniline                            | ND                      | 141        | ND                      | 137        | ND        | 163        | ND              | 150        | ND              | 154        | ND              | 143        | ug/kg          |                   |                     |                                      |                                      |
| 4,6-Dinitro-2-methylphenol                | ND                      | 357        | ND                      | 348        | ND        | 413        | ND              | 380        | ND              | 391        | ND              | 363        | ug/kg          | 50000             | 500000              |                                      |                                      |
| 4-Bromophenyl phenyl ether                | ND                      | 141        | ND                      | 137        | ND        | 163        | ND              | 150        | ND              | 154        | ND              | 143        | ug/kg          | 100000            | 1000000             |                                      |                                      |
| 4-Chloro-3-methylphenol                   | ND                      | 141        | ND                      | 137        | ND        | 163        | ND              | 150        | ND              | 154        | ND              | 143        | ug/kg          | 1000000           | 1.00E+07            |                                      |                                      |
| 4-Chloroaniline                           | ND                      | 141        | ND                      | 137        | ND        | 163        | ND              | 150        | ND              | 154        | ND              | 143        | ug/kg          | 1000              | 3000                |                                      |                                      |
| 4-Chlorophenyl phenyl ether               | ND                      | 141        | ND                      | 137        | ND        | 163        | ND              | 150        | ND              | 154        | ND              | 143        | ug/kg          | 1000000           | 1.00E+07            |                                      |                                      |
| 4-Nitroaniline                            | ND                      | 141        | ND                      | 137        | ND        | 163        | ND              | 150        | ND              | 154        | ND              | 143        | ug/kg          |                   |                     |                                      |                                      |
| 4-Nitrophenol                             | ND                      | 357        | ND                      | 348        | ND        | 413        | ND              | 380        | ND              | 391        | ND              | 363        | ug/kg          | 100000            | 1000000             |                                      |                                      |
| Acenaphthene                              | ND<br>ND                | 141        | ND                      | 137        | ND        | 163        | ND              | 150        | ND              | 154        | ND              | 143        | ug/kg          | 4000              | 3000000             |                                      |                                      |
| Acenaphthylene                            | ND<br>ND                | 141        | ND<br>ND                | 137        | ND        | 163        | ND<br>ND        | 150        | ND              | 154        | ND              | 143        | ug/kg          | 2000              | 10000               |                                      |                                      |
| Anthrasono                                | ND<br>ND                | 141        | ND<br>ND                | 137        | ND<br>ND  | 163        | ND<br>ND        | 150        | ND<br>ND        | 154        | ND<br>ND        | 143        | ug/kg          | 1000000           | 1.00E+07            |                                      |                                      |
| Anthracene<br>Benzo(a)anthracene          | ND<br>ND                | 141<br>141 | ND<br>ND                | 137<br>137 | ND<br>ND  | 163<br>163 | ND<br>ND        | 150<br>150 | ND<br>ND        | 154<br>154 | ND<br>ND        | 143<br>143 | ug/kg          | 1000000<br>20000  | 300000<br>300000    |                                      |                                      |
| Benzo(a)pyrene                            | ND<br>ND                | 141        | ND<br>ND                | 137        | ND<br>ND  | 163        | ND<br>ND        | 150        | ND<br>ND        | 154        | ND<br>ND        | 143        | ug/kg<br>ug/kg | 2000              | 30000               |                                      |                                      |
| Benzo(b)fluoranthene                      | ND<br>ND                | 141        | ND<br>ND                | 137        | ND        | 163        | ND<br>ND        | 150        | ND              | 154        | ND              | 143        | ug/kg<br>ug/kg | 2000              | 30000               |                                      |                                      |
| Benzo(g,h,i)perylene                      | ND<br>ND                | 141        | ND<br>ND                | 137        | ND<br>ND  | 163        | ND<br>ND        | 150        | ND<br>ND        | 154        | ND              | 143        | ug/kg<br>ug/kg | 1000000           | 300000              |                                      |                                      |
| Benzo(k)fluoranthene                      | ND<br>ND                | 141        | ND                      | 137        | ND        | 163        | ND              | 150        | ND              | 154        | ND              | 143        | ug/kg<br>ug/kg | 200000            | 3000000             |                                      |                                      |
| Benzoic acid                              | ND ND                   | 1080       | ND                      | 1050       | ND        | 1250       | ND              | 1150       | ND              | 1180       | ND              | 1100       | ug/kg          | 1000000           | 1.00E+07            |                                      |                                      |
| Biphenyl                                  | ND                      | 22         | ND                      | 21         | ND        | 25         | ND              | 23         | ND              | 24         | ND              | 22         | ug/kg          | 50                | 6000                |                                      |                                      |
| Bis(2-chloroethoxy)methane                | ND                      | 141        | ND                      | 137        | ND        | 163        | ND              | 150        | ND              | 154        | ND              | 143        | ug/kg          | 500000            | 5000000             |                                      |                                      |
| Bis(2-chloroethyl)ether                   | ND                      | 141        | ND                      | 137        | ND        | 163        | ND              | 150        | ND              | 154        | ND              | 143        | ug/kg          | 700               | 700                 |                                      |                                      |
| Bis(2-chloroisopropyl)ether               | ND                      | 141        | ND                      | 137        | ND        | 163        | ND              | 150        | ND              | 154        | ND              | 143        | ug/kg          | 700               | 700                 |                                      |                                      |
| Bis(2-ethylhexyl)phthalate                | ND                      | 433        | ND                      | 422        | ND        | 501        | ND              | 460        | ND              | 474        | ND              | 440        | ug/kg          | 100000            | 700000              |                                      |                                      |
| Butyl benzyl phthalate                    | ND                      | 141        | ND                      | 137        | ND        | 163        | ND              | 150        | ND              | 154        | ND              | 143        | ug/kg          | 100000            | 1000000             |                                      |                                      |
| Chrysene                                  | ND                      | 141        | ND                      | 137        | ND        | 163        | ND              | 150        | ND              | 154        | ND              | 143        | ug/kg          | 200000            | 3000000             |                                      |                                      |
| Di-n-octyl phthalate                      | ND                      | 217        | ND                      | 211        | ND        | 250        | ND              | 230        | ND              | 237        | ND              | 220        | ug/kg          | 1000000           | 1.00E+07            |                                      |                                      |
| Dibenz(a,h)anthracene                     | ND                      | 141        | ND                      | 137        | ND        | 163        | ND              | 150        | ND              | 154        | ND              | 143        | ug/kg          | 2000              | 30000               |                                      |                                      |
| Dibenzofuran                              | ND                      | 141        | ND                      | 137        | ND        | 163        | ND              | 150        | ND              | 154        | ND              | 143        | ug/kg          | 100000            | 1000000             |                                      |                                      |
| Diethyl phthalate                         | ND                      | 141        | ND                      | 137        | ND        | 163        | ND              | 150        | ND              | 154        | ND              | 143        | ug/kg          | 10000             | 200000              |                                      |                                      |
| Dimethyl phthalate                        | ND                      | 357        | ND                      | 348        | ND        | 413        | ND              | 380        | ND              | 391        | ND              | 363        | ug/kg          | 700               | 50000               |                                      |                                      |
| Di-n-butyl phthalate                      | ND                      | 217        | ND                      | 211        | ND        | 250        | ND              | 230        | ND              | 237        | ND              | 220        | ug/kg          | 50000             | 500000              |                                      |                                      |

#### Table 3 Soil Sample Results Green Meadow School

| Sample ID:                                 | B-108 2-4'     |            | B-118 2-4'     |           | TP-      | 6          | B-103    | 0.6'       | B-113    | 2-4'       | B-112     | 2-6'       |                |                   |                   |                     |                     |
|--------------------------------------------|----------------|------------|----------------|-----------|----------|------------|----------|------------|----------|------------|-----------|------------|----------------|-------------------|-------------------|---------------------|---------------------|
| Lab Sample Number:                         | 4B27035-01     |            | 4B27035-02     |           | 4B2601   |            | 4B2601   |            | 4B260:   |            | 4B2601    |            |                |                   |                   |                     |                     |
| Date Sampled:                              | 2/27/2024 0:00 |            | 2/27/2024 0:00 |           | 2/23/202 |            | 2/23/202 |            | 2/23/202 |            | 2/23/2024 |            |                |                   |                   |                     |                     |
| Date Received:                             | 2/27/2024 0:00 |            | 2/27/2024 0:00 |           | 2/25/202 |            | 2/25/202 |            | 2/25/202 |            | 2/25/2024 |            |                |                   |                   |                     |                     |
| bute necessed.                             | Sample         | Reporting  | Sample         | Reporting | Sample   | Reporting  | Sample   | Reporting  | Sample   | Reporting  | Sample    | Reporting  |                | MOHML Reportable  | MOHML Reportable  | MA COMM-97 Disposal | MA COMM-97 Disposal |
| Parameter                                  | Result         | Limit      | Result         | Limit     | Result   | Limit      | Result   | Limit      | Result   | Limit      | Result    | Limit      | Units          | Concentration S-1 | Concentration S-2 | Criteria            | Criteria            |
| Fluoranthene                               | ND             | 141        | ND             | 137       | 208      | 163        | ND       | 150        | ND       | 154        | ND        | 143        | ug/kg          | 1000000           | 3000000           |                     |                     |
| Fluorene                                   | ND             | 141        | ND             | 137       | ND       | 163        | ND       | 150        | ND       | 154        | ND        | 143        | ug/kg          | 1000000           | 3000000           |                     |                     |
| Hexachlorobenzene                          | ND             | 141        | ND             | 137       | ND       | 163        | ND       | 150        | ND       | 154        | ND        | 143        | ug/kg          | 700               | 900               |                     |                     |
| Hexachlorobutadiene                        | ND             | 141        | ND             | 137       | ND       | 163        | ND       | 150        | ND       | 154        | ND        | 143        | ug/kg          | 30000             | 100000            |                     |                     |
| Hexachlorocyclopentadiene                  | ND             | 357        | ND             | 348       | ND       | 413        | ND       | 380        | ND       | 391        | ND        | 363        | ug/kg          | 50000             | 500000            |                     |                     |
| Hexachloroethane                           | ND             | 141        | ND             | 137       | ND       | 163        | ND       | 150        | ND       | 154        | ND        | 143        | ug/kg          | 700               | 3000              |                     |                     |
| Indeno(1,2,3-cd)pyrene                     | ND             | 141        | ND             | 137       | ND       | 163        | ND       | 150        | ND       | 154        | ND        | 143        | ug/kg          | 20000             | 300000            |                     |                     |
| Isophorone                                 | ND             | 141        | ND             | 137       | ND       | 163        | ND       | 150        | ND       | 154        | ND        | 143        | ug/kg          | 100000            | 1000000           |                     |                     |
| Naphthalene                                | ND             | 141        | ND             | 137       | ND       | 163        | ND       | 150        | ND       | 154        | ND        | 143        | ug/kg          | 4000              | 20000             |                     |                     |
| N-Nitrosodimethylamine                     | ND             | 141        | ND             | 137       | ND       | 163        | ND       | 150        | ND       | 154        | ND        | 143        | ug/kg          | 50000             | 500000            |                     |                     |
| N-Nitrosodi-n-propylamine                  | ND             | 141        | ND             | 137       | ND       | 163        | ND       | 150        | ND       | 154        | ND        | 143        | ug/kg          | 50000             | 500000            |                     |                     |
| N-Nitrosodiphenylamine                     | ND             | 141        | ND             | 137       | ND       | 163        | ND       | 150        | ND       | 154        | ND        | 143        | ug/kg          | 100000            | 1000000           |                     |                     |
| Pentachlorophenol                          | ND             | 357        | ND             | 348       | ND       | 413        | ND       | 380        | ND       | 391        | ND        | 363        | ug/kg          | 3000              | 10000             |                     |                     |
| Phenanthrene                               | ND             | 141        | ND             | 137       | ND       | 163        | ND       | 150        | ND       | 154        | ND        | 143        | ug/kg          | 10000             | 1000000           |                     |                     |
| Pyrene                                     | ND             | 141        | ND             | 137       | 240      | 163        | ND       | 150        | ND       | 154        | ND        | 143        | ug/kg          | 1000000           | 3000000           |                     |                     |
| m&p-Cresol                                 | ND<br>ND       | 282        | ND             | 274       | ND       | 326        | ND       | 299        | ND<br>ND | 308        | ND        | 286        | ug/kg          | 500000            | 5000000           |                     |                     |
| Pyridine                                   | ND<br>ND       | 141        | ND<br>ND       | 137       | ND<br>ND | 163        | ND<br>ND | 150        | ND<br>ND | 154        | ND<br>ND  | 143        | ug/kg          | 500000            | 5000000           |                     |                     |
| Azobenzene<br>Total Dichlorobenzene        | ND<br>ND       | 141<br>141 | ND<br>ND       | 137       | ND<br>ND | 163<br>163 | ND<br>ND | 150<br>150 | ND<br>ND | 154<br>154 | ND<br>ND  | 143<br>143 | ug/kg          | 700               | 4000              |                     |                     |
| rotal Dichioropenzene                      | ND             | 141        | ND             | 15/       | NU       | 103        | ND       | 120        | NU       | 154        | IND       | 143        | ug/kg          | 700               | 4000              |                     |                     |
| Total Metals                               |                |            |                |           |          |            |          |            |          |            |           |            |                |                   |                   |                     |                     |
| Antimony                                   | ND             | 0.81       | ND             | 0.77      | 1.09     | 0.86       | ND       | 0.88       | ND       | 0.95       | ND        | 0.88       | mg/kg          | 20                | 40                |                     |                     |
| Arsenic                                    | 8.77           | 1.22       | 6.64           | 1.17      | 10.5     | 1.3        | 5.92     | 1.33       | 9.73     | 1.44       | 6.4       | 1.33       | mg/kg          | 20                | 20                | 40                  | 40                  |
| Barium                                     | 29.1           | 0.4        | 55.4           | 0.39      | 32.5     | 0.43       | 38       | 0.44       | 13.6     | 0.48       | 65.3      | 0.44       | mg/kg          | 1000              | 3000              | 40                  | 40                  |
| Beryllium                                  | ND             | 0.4        | ND ND          | 0.39      | ND       | 0.43       | ND       | 0.44       | ND       | 0.48       | ND        | 0.44       | mg/kg          | 100               | 200               |                     |                     |
| Cadmium                                    | 2.43           | 0.61       | 4.49           | 0.58      | 3.42     | 0.65       | 4.33     | 0.66       | 2.54     | 0.72       | 5.34      | 0.66       | mg/kg          | 80                | 80                | 80                  | 30                  |
| Chromium                                   | 10.6           | 0.61       | 22.8           | 0.58      | 13.7     | 0.65       | 19.5     | 0.66       | 13       | 0.72       | 21.8      | 0.66       | mg/kg          | 100               | 200               | 1000                | 1000                |
| Lead                                       | 3.35           | 0.61       | 5.7            | 0.58      | 38.7     | 0.65       | 5.29     | 0.66       | 3.91     | 0.72       | 5.94      | 0.66       | mg/kg          | 200               | 600               | 2000                | 1000                |
| Nickel                                     | 6.35           | 0.61       | 13.7           | 0.58      | 9.11     | 0.65       | 9.06     | 0.66       | 8.94     | 0.72       | 9.97      | 0.66       | mg/kg          | 700               | 1000              |                     |                     |
| Selenium                                   | ND             | 1.22       | ND             | 1.17      | ND       | 1.3        | ND       | 1.33       | ND       | 1.44       | ND        | 1.33       | mg/kg          | 400               | 800               |                     |                     |
| Silver                                     | ND             | 1.22       | ND             | 1.17      | ND       | 1.3        | ND       | 1.33       | ND       | 1.44       | ND        | 1.33       | mg/kg          | 100               | 200               |                     |                     |
| Vanadium                                   | 12.4           | 0.4        | 26.1           | 0.39      | 21.4     | 0.43       | 24.4     | 0.44       | 14.4     | 0.48       | 36.7      | 0.44       | mg/kg          | 500               | 800               |                     |                     |
| Zinc                                       | 16.7           | 2.4        | 24.6           | 2.3       | 48.6     | 2.6        | 22.9     | 2.7        | 18       | 2.9        | 26.3      | 2.7        | mg/kg          | 1000              | 3000              |                     |                     |
| Thallium                                   | ND             | 0.4        | ND             | 0.39      | ND       | 0.43       | ND       | 0.44       | ND       | 0.48       | ND        | 0.44       | mg/kg          | 8                 | 70                |                     |                     |
| Mercury                                    | ND             | 0.104      | ND             | 0.09      | 0.129    | 0.118      | 0.184    | 0.111      | ND       | 0.11       | ND        | 0.097      | mg/kg          | 20                | 40                | 10                  | 10                  |
|                                            |                |            |                |           |          |            |          |            |          |            |           |            |                |                   |                   |                     |                     |
| Total Petroleum Hydrocarbons               |                |            |                |           |          |            |          |            |          |            |           |            |                |                   |                   |                     |                     |
| Total Petroleum Hydrocarbons               | ND             | 29         | ND             | 28        | ND       | 33         | ND       | 30         | ND       | 31         | ND        | 28         | mg/kg          | 1000              | 3000              | 5000                | 2500                |
|                                            |                |            |                |           |          |            |          |            |          |            |           |            |                |                   |                   |                     |                     |
| Volatile Organic Compounds 8260C (5035-LL) | ND             |            | ND             |           | ND       | 400        | ND       | 106        |          | 823        | ND        | 427        | . // .         | 6000              | 50000             |                     |                     |
| Acetone                                    |                | 93         |                | 92<br>5   |          | 103        |          | 106        | ND       |            |           | 137        | ug/kg          |                   |                   |                     |                     |
| Benzene                                    | ND             |            | ND             | 5         | ND       | 5          | ND       |            | ND       | 6          | ND        | 7          | ug/kg          | 2000              | 200000            |                     |                     |
| Bromobenzene<br>Bromochloromethane         | ND<br>ND       | 5          | ND<br>ND       | 5         | ND<br>ND | 5          | ND<br>ND | 5          | ND<br>ND | 6          | ND<br>ND  | 7          | ug/kg          | 100000            | 1000000           |                     |                     |
| Bromodichloromethane                       | ND<br>ND       | 5          | ND<br>ND       | 5         | ND       | 5          | ND       | 5          | ND<br>ND | 6          | ND        | 7          | ug/kg          | 100               | 100               |                     |                     |
| Bromodicnioromethane<br>Bromoform          | ND<br>ND       | 5          | ND<br>ND       | 5         | ND<br>ND | 5          | ND<br>ND | 5          | ND<br>ND | 6          | ND<br>ND  | 7          | ug/kg          | 100               | 1000              |                     |                     |
| Bromomethane                               | ND<br>ND       | 5          | ND<br>ND       | 5         | ND<br>ND | 5          | ND<br>ND | 5          | ND<br>ND | 6          | ND<br>ND  | 7          | ug/kg          | 500               | 500               |                     |                     |
| 2-Butanone                                 | ND<br>ND       | 93         | ND             | 92        | ND       | 103        | ND       | 106        | ND       | 118        | ND        | 137        | ug/kg<br>ug/kg | 4000              | 50000             |                     |                     |
| tert-Butyl alcohol                         | ND<br>ND       | 5          | ND             | 5         | ND       | 5          | ND       | 5          | ND<br>ND | 6          | ND        | 7          | ug/kg          | 100000            | 1000000           |                     |                     |
| sec-Butylbenzene                           | ND<br>ND       | 5          | ND<br>ND       | 5         | ND<br>ND | 5          | ND<br>ND | 5          | ND<br>ND | 6          | ND<br>ND  | 7          | ug/kg<br>ug/kg | 100000            | 1000000           |                     |                     |
| n-Butvlbenzene                             | ND<br>ND       | 5          | ND             | 5         | ND       | 5          | ND       | 5          | ND       | 6          | ND        | 7          | ug/kg          |                   |                   |                     |                     |
| tert-Butylbenzene                          | ND<br>ND       | 5          | ND             | 5         | ND       | 5          | ND       | 5          | ND       | 6          | ND        | 7          | ug/kg          | 100000            | 1000000           |                     |                     |
| Methyl t-butyl ether (MTBE)                | ND             | 5          | ND             | 5         | ND       | 5          | ND ND    | 5          | ND ND    | 6          | ND        | 7          | ug/kg          | 100               | 100000            |                     |                     |
| Carbon Disulfide                           | ND             | 5          | ND             | 5         | ND       | 5          | ND       | 5          | ND       | 6          | ND        | 7          | ug/kg          | 100000            | 1000000           |                     |                     |
| Carbon Tetrachloride                       | ND             | 5          | ND             | 5         | ND       | 5          | ND       | 5          | ND       | 6          | ND        | 7          | ug/kg          | 5000              | 5000              |                     |                     |
| Chlorobenzene                              | ND             | 5          | ND             | 5         | ND       | 5          | ND       | 5          | ND       | 6          | ND        | 7          | ug/kg          | 1000              | 3000              |                     |                     |
| Chloroethane                               | ND             | 5          | ND             | 5         | ND       | 5          | ND       | 5          | ND       | 6          | ND        | 7          | ug/kg          | 100000            | 1000000           |                     |                     |
| Chloroform                                 | ND             | 5          | ND             | 5         | ND       | 5          | ND       | 5          | ND       | 6          | ND        | 7          | ug/kg          | 200               | 200               |                     |                     |
| Chloromethane                              | ND             | 5          | ND             | 5         | ND       | 5          | ND       | 5          | ND       | 6          | ND        | 7          | ug/kg          | 100000            | 1000000           |                     |                     |
| 4-Chlorotoluene                            | ND             | 5          | ND             | 5         | ND       | 5          | ND       | 5          | ND       | 6          | ND        | 7          | ug/kg          |                   |                   |                     |                     |
| 2-Chlorotoluene                            | ND             | 5          | ND             | 5         | ND       | 5          | ND       | 5          | ND       | 6          | ND        | 7          | ug/kg          | 100000            | 1000000           |                     |                     |
| 1,2-Dibromo-3-chloropropane (DBCP)         | ND             | 5          | ND             | 5         | ND       | 5          | ND       | 5          | ND       | 6          | ND        | 7          | ug/kg          | 10000             | 100000            |                     |                     |
| Dibromochloromethane                       | ND             | 5          | ND             | 5         | ND       | 5          | ND       | 5          | ND       | 6          | ND        | 7          | ug/kg          | 5                 | 30                |                     |                     |
| 1,2-Dibromoethane (EDB)                    | ND             | 5          | ND             | 5         | ND       | 5          | ND       | 5          | ND       | 6          | ND        | 7          | ug/kg          | 100               | 100               |                     |                     |
| Dibromomethane                             | ND             | 5          | ND             | 5         | ND       | 5          | ND       | 5          | ND       | 6          | ND        | 7          | ug/kg          | 500000            | 5000000           |                     |                     |
| 1,2-Dichlorobenzene                        | ND             | 5          | ND             | 5         | ND       | 5          | ND       | 5          | ND       | 6          | ND        | 7          | ug/kg          | 9000              | 100000            |                     |                     |
| 1,3-Dichlorobenzene                        | ND             | 5          | ND             | 5         | ND       | 5          | ND       | 5          | ND       | 6          | ND        | 7          | ug/kg          | 3000              | 200000            |                     |                     |
| 1,4-Dichlorobenzene                        | ND             | 5          | ND             | 5         | ND       | 5          | ND       | 5          | ND       | 6          | ND        | 7          | ug/kg          | 700               | 1000              |                     |                     |
| 1,1-Dichloroethane                         | ND             | 5          | ND             | 5         | ND       | 5          | ND       | 5          | ND       | 6          | ND        | 7          | ug/kg          | 400               | 9000              |                     |                     |
| 1,2-Dichloroethane                         | ND             | 5          | ND             | 5         | ND       | 5          | ND       | 5          | ND       | 6          | ND        | 7          | ug/kg          | 100               | 100               |                     |                     |
| 1,2 Dichloroethene, Total                  | ND             | 5          | ND             | 5         | ND       | 5          | ND       | 5          | ND       | 6          | ND        | 7          | ug/kg          | 300               | 400               |                     |                     |
| trans-1,2-Dichloroethene                   | ND             | 5          | ND             | 5         | ND       | 5          | ND       | 5          | ND       | 6          | ND        | 7          | ug/kg          | 1000              | 1000              |                     |                     |
| cis-1 2-Dichloroethene                     | ND             | 5          | ND             | 5         | ND       | 5          | ND       | 5          | ND       | 6          | ND        | 7          | ug/kg          | 100               | 100               |                     |                     |

#### Table 3 Soil Sample Results Green Meadow School

| Sample ID:                        | B-108 2-4'      |           | B-118 2-4'      |           | TP       | -6        | B-103    | 0-6'      | B-113    | 2-4'      | B-112    | 2-6'      |       |                   |                   |                           |                           |
|-----------------------------------|-----------------|-----------|-----------------|-----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|-------|-------------------|-------------------|---------------------------|---------------------------|
| Lab Sample Number:                | 4B27035-01      |           | 4B27035-02      |           | 4B260    |           | 4B260    |           | 4B260    |           | 4B2601   |           |       |                   |                   |                           |                           |
| Date Sampled:                     | 2/27/2024 0:00  |           | 2/27/2024 0:00  |           | 2/23/202 |           | 2/23/202 |           | 2/23/202 |           | 2/23/202 |           |       |                   |                   |                           |                           |
| Date Received:                    | 2/27/2024 13:34 |           | 2/27/2024 13:34 |           | 2/26/202 |           | 2/26/202 |           | 2/26/202 |           | 2/26/202 |           |       |                   |                   |                           |                           |
| bate necewed.                     | Sample          | Reporting | Sample          | Reporting | Sample   | Reporting | Sample   | Reporting | Sample   | Reporting | Sample   | Reporting |       | MOHML Reportable  | MOHML Reportable  | MA COMM 07 Disposal       | MA COMM-97 Disposal       |
| Parameter                         | Result          | Limit     | Result          | Limit     | Result   | Limit     | Result   | Limit     | Result   | Limit     | Result   | Limit     | Units | Concentration S-1 | Concentration S-2 | Criteria                  | Criteria                  |
|                                   |                 |           |                 |           |          |           |          |           |          |           |          |           |       |                   |                   |                           |                           |
| 1,1-Dichloroethene                | ND              | 5         | ND              | 5         | ND       | 5         | ND       | 5         | ND       | 6         | ND       | 7         | ug/kg | 3000              | 40000             |                           |                           |
| 1,2-Dichloropropane               | ND              | 5         | ND              | 5         | ND       | 5         | ND       | 5         | ND       | 6         | ND       | 7         | ug/kg | 100               | 100               |                           |                           |
| 2,2-Dichloropropane               | ND              | 5         | ND              | 5         | ND       | 5         | ND       | 5         | ND       | 6         | ND       | 7         | ug/kg |                   |                   |                           |                           |
| cis-1,3-Dichloropropene           | ND              | 5         | ND              | 5         | ND       | 5         | ND       | 5         | ND       | 6         | ND       | 7         | ug/kg | 10                | 100               | ,3-Dichloropropene (cis + | ,3-Dichloropropene (cis + |
| trans-1,3-Dichloropropene         | ND              | 5         | ND              | 5         | ND       | 5         | ND       | 5         | ND       | 6         | ND       | 7         | ug/kg | 10                | 100               | ,3-Dichloropropene (cis + | ,3-Dichloropropene (cis + |
| 1,1-Dichloropropene               | ND              | 5         | ND              | 5         | ND       | 5         | ND       | 5         | ND       | 6         | ND       | 7         | ug/kg |                   |                   |                           |                           |
| 1,3-Dichloropropene (cis + trans) | ND              | 5         | ND              | 5         | ND       | 5         | ND       | 5         | ND       | 6         | ND       | 7         | ug/kg | 10                | 400               |                           |                           |
| Diethyl ether                     | ND              | 5         | ND              | 5         | ND       | 5         | ND       | 5         | ND       | 6         | ND       | 7         | ug/kg | 100000            | 1000000           |                           |                           |
| 1,4-Dioxane                       | ND              | 93        | ND              | 92        | ND       | 103       | ND       | 106       | ND       | 118       | ND       | 137       | ug/kg | 200               | 5000              |                           |                           |
| Ethylbenzene                      | ND              | 5         | ND              | 5         | ND       | 5         | ND       | 5         | ND       | 6         | ND       | 7         | ug/kg | 40000             | 1000000           |                           |                           |
| Hexachlorobutadiene               | ND              | 5         | ND              | 5         | ND       | 5         | ND       | 5         | ND       | 6         | ND       | 7         | ug/kg | 30000             | 100000            |                           |                           |
| 2-Hexanone                        | ND              | 93        | ND              | 92        | ND       | 103       | ND       | 106       | ND       | 118       | ND       | 137       | ug/kg | 100000            | 1000000           |                           |                           |
| Isopropylbenzene                  | ND              | 5         | ND              | 5         | ND       | 5         | ND       | 5         | ND       | 6         | ND       | 7         | ug/kg | 1000000           | 1.00E+07          |                           |                           |
| p-Isopropyltoluene                | ND              | 5         | ND              | 5         | ND       | 5         | ND       | 5         | ND       | 6         | ND       | 7         | ug/kg | 100000            | 1000000           |                           |                           |
| Methylene Chloride                | ND              | 5         | ND              | 5         | ND       | 5         | ND       | 5         | ND       | 6         | ND       | 7         | ug/kg | 100               | 3000              |                           |                           |
| 4-Methyl-2-pentanone              | ND              | 93        | ND              | 92        | ND       | 103       | ND       | 106       | ND       | 118       | ND       | 137       | ug/kg | 400               | 50000             |                           |                           |
| Naphthalene                       | ND              | 5         | ND              | 5         | ND       | 5         | ND       | 5         | ND       | 6         | ND       | 7         | ug/kg | 4000              | 20000             |                           |                           |
| n-Propylbenzene                   | ND              | 5         | ND              | 5         | ND       | 5         | ND       | 5         | ND       | 6         | ND       | 7         | ug/kg | 100000            | 1000000           |                           |                           |
| Styrene                           | ND              | 5         | ND              | 5         | ND       | 5         | ND       | 5         | ND       | 6         | ND       | 7         | ug/kg | 3000              | 4000              |                           |                           |
| 1,1,1,2-Tetrachloroethane         | ND              | 5         | ND              | 5         | ND       | 5         | ND       | 5         | ND       | 6         | ND       | 7         | ug/kg | 100               | 100               |                           |                           |
| Tetrachloroethene                 | ND              | 5         | ND              | 5         | ND       | 5         | ND       | 5         | ND       | 6         | ND       | 7         | ug/kg | 1000              | 4000              |                           |                           |
| Tetrahydrofuran                   | ND              | 5         | ND              | 5         | ND       | 5         | ND       | 5         | ND       | 6         | ND       | 7         | ug/kg | 500000            | 5000000           |                           |                           |
| Toluene                           | ND              | 5         | ND              | 5         | ND       | 5         | ND       | 5         | ND       | 6         | ND       | 7         | ug/kg | 30000             | 1000000           |                           |                           |
| 1,2,4-Trichlorobenzene            | ND              | 5         | ND              | 5         | ND       | 5         | ND       | 5         | ND       | 6         | ND       | 7         | ug/kg | 2000              | 6000              |                           |                           |
| 1,2,3-Trichlorobenzene            | ND              | 5         | ND              | 5         | ND       | 5         | ND       | 5         | ND       | 6         | ND       | 7         | ug/kg |                   |                   |                           |                           |
| 1,1,2-Trichloroethane             | ND              | 5         | ND              | 5         | ND       | 5         | ND       | 5         | ND       | 6         | ND       | 7         | ug/kg | 100               | 2000              |                           |                           |
| 1,1,1-Trichloroethane             | ND              | 5         | ND              | 5         | ND       | 5         | ND       | 5         | ND       | 6         | ND       | 7         | ug/kg | 30000             | 600000            |                           |                           |
| Trichloroethene                   | ND              | 5         | ND              | 5         | ND       | 5         | ND       | 5         | ND       | 6         | ND       | 7         | ug/kg | 300               | 300               |                           |                           |
| 1,2,3-Trichloropropane            | ND              | 5         | ND              | 5         | ND       | 5         | ND       | 5         | ND       | 6         | ND       | 7         | ug/kg | 100000            | 1000000           |                           |                           |
| 1,3,5-Trimethylbenzene            | ND              | 5         | ND              | 5         | ND       | 5         | ND       | 5         | ND       | 6         | ND       | 7         | ug/kg | 10000             | 100000            |                           |                           |
| 1,2,4-Trimethylbenzene            | ND              | 5         | ND              | 5         | ND       | 5         | ND       | 5         | ND       | 6         | ND       | 7         | ug/kg | 1000000           | 1.00E+07          |                           |                           |
| Vinyl Chloride                    | ND              | 5         | ND              | 5         | ND       | 5         | ND       | 5         | ND       | 6         | ND       | 7         | ug/kg | 300               | 700               |                           |                           |
| o-Xylene                          | ND              | 5         | ND              | 5         | ND       | 5         | ND       | 5         | ND       | 6         | ND       | 7         | ug/kg | see Total xylenes | see Total xylenes | see Total xylenes         | see Total xylenes         |
| m&p-Xylene                        | ND              | 9         | ND              | 9         | ND       | 10        | ND       | 11        | ND       | 12        | ND       | 14        | ug/kg | see Total xylenes | see Total xylenes | see Total xylenes         | see Total xylenes         |
| Total xylenes                     | ND              | 5         | ND              | 5         | ND       | 5         | ND       | 5         | ND       | 6         | ND       | 7         | ug/kg | 100000            | 100000            |                           |                           |
| 1,1,2,2-Tetrachloroethane         | ND              | 5         | ND              | 5         | ND       | 5         | ND       | 5         | ND       | 6         | ND       | 7         | ug/kg | 5                 | 20                |                           |                           |
| tert-Amyl methyl ether            | ND              | 5         | ND              | 5         | ND       | 5         | ND       | 5         | ND       | 6         | ND       | 7         | ug/kg |                   |                   |                           |                           |
| 1,3-Dichloropropane               | ND              | 5         | ND              | 5         | ND       | 5         | ND       | 5         | ND       | 6         | ND       | 7         | ug/kg | 500000            | 5000000           |                           |                           |
| Ethyl tert-butyl ether            | ND              | 5         | ND              | 5         | ND       | 5         | ND       | 5         | ND       | 6         | ND       | 7         | ug/kg |                   |                   |                           |                           |
| Diisopropyl ether                 | ND              | 5         | ND              | 5         | ND       | 5         | ND       | 5         | ND       | 6         | ND       | 7         | ug/kg | 100000            | 1000000           |                           |                           |
| Trichlorofluoromethane            | ND              | 5         | ND              | 5         | ND       | 5         | ND       | 5         | ND       | 6         | ND       | 7         | ug/kg | 1000000           | 1.00E+07          |                           |                           |
| Dichlorodifluoromethane           | ND              | 5         | ND              | 5         | ND       | 5         | ND       | 5         | ND       | 6         | ND       | 7         | ug/kg | 1000000           | 1.00E+07          |                           |                           |





### REPORT OF ANALYTICAL RESULTS

NETLAB Work Order Number: 3C27022 Client Project: 3096 - MVG Green

Report Date: 04-April-2023

Prepared for:

Jon Puliafico Lord Environmental, Inc. 1506 Providence Highway, Suite 30 Norwood, MA 02062

> Richard Warila, Laboratory Director New England Testing Laboratory, Inc. 59 Greenhill Street West Warwick, RI 02893 rich.warila@newenglandtesting.com

NETLAB Case Number: 3C27022

# Samples Submitted:

The samples listed below were submitted to New England Testing Laboratory on 03/27/23. The group of samples appearing in this report was assigned an internal identification number (case number) for laboratory information management purposes. The client's designations for the individual samples, along with our case numbers, are used to identify the samples in this report. This report of analytical results pertains only to the sample(s) provided to us by the client which are indicated on the custody record. The case number for this sample submission is 3C27022. Custody records are included in this report.

| Lab ID     | Sample | Matrix | Date Sampled | Date Received |
|------------|--------|--------|--------------|---------------|
| 3C27022-01 | B-2    | Soil   | 03/22/2023   | 03/27/2023    |
| 3C27022-02 | B-4    | Soil   | 03/22/2023   | 03/27/2023    |
| 3C27022-03 | B-18   | Soil   | 03/22/2023   | 03/27/2023    |
| 3C27022-04 | B-20   | Soil   | 03/22/2023   | 03/27/2023    |
| 3C27022-05 | B-30   | Soil   | 03/24/2023   | 03/27/2023    |
| 3C27022-06 | B-33   | Soil   | 03/24/2023   | 03/27/2023    |
| 3C27022-07 | B-48   | Soil   | 03/24/2023   | 03/27/2023    |
| 3C27022-08 | B-51   | Soil   | 03/24/2023   | 03/27/2023    |
| 3C27022-09 | B-52   | Soil   | 03/24/2023   | 03/27/2023    |
| 3C27022-10 | B-59   | Soil   | 03/24/2023   | 03/27/2023    |
| 3C27022-11 | B-67   | Soil   | 03/24/2023   | 03/27/2023    |
| 3C27022-12 | B-71   | Soil   | 03/24/2023   | 03/27/2023    |

NETLAB Case Number: 3C27022

## Request for Analysis

At the client's request, the analyses presented in the following table were performed on the samples submitted.

B-18 (Lab Number: 3C27022-03)

AnalysisMethodMADEP EPHMADEP EPH

B-2 (Lab Number: 3C27022-01)

AnalysisMethodMADEP EPHMADEP EPH

B-20 (Lab Number: 3C27022-04)

AnalysisMethodMADEP EPHMADEP EPH

B-30 (Lab Number: 3C27022-05)

AnalysisMethodMADEP EPHMADEP EPH

B-33 (Lab Number: 3C27022-06)

AnalysisMethodMADEP EPHMADEP EPH

B-4 (Lab Number: 3C27022-02)

AnalysisMethodMADEP EPHMADEP EPH

B-48 (Lab Number: 3C27022-07)

AnalysisMethodMADEP EPHMADEP EPH

B-51 (Lab Number: 3C27022-08)

Analysis Method
MADEP EPH MADEP EPH

B-52 (Lab Number: 3C27022-09)

AnalysisMethodMADEP EPHMADEP EPH

B-59 (Lab Number: 3C27022-10)

AnalysisMethodMADEP EPHMADEP EPH

B-67 (Lab Number: 3C27022-11)

AnalysisMethodMADEP EPHMADEP EPH

B-71 (Lab Number: 3C27022-12)

<u>Analysis</u> <u>Method</u>

MADEP EPH MADEP EPH Page 3 of 24

## **Method References**

*Method for the Determination of Extractable Petroleum Hydrocarbons, Rev. 2.1*, Massachusetts Department of Environmental Protection, 2004

Test Methods for Evaluating Solid Waste, Physical/Chemical Methods, SW846, USEPA

NETLAB Case Number: 3C27022

#### **Case Narrative**

### Sample Receipt:

The samples associated with this work order were received in appropriately cooled and preserved containers. The chain of custody was adequately completed and corresponded to the samples submitted.

Exceptions: None

### **Analysis:**

All samples were prepared and analyzed within method specified holding times and according to NETLAB's documented standard operating procedures. The results for the associated calibration, method blank and laboratory control sample (LCS) were within method specified quality control requirements and allowances. Results for all soil samples, unless otherwise indicated, are reported on a dry weight basis.

Exceptions: None

# **Extractable Petroleum Hydrocarbons Sample: B-2 (3C27022-01)**

#### **SAMPLE INFORMATION**

| Matrix                | Soil                                  |  |
|-----------------------|---------------------------------------|--|
| Containers            | Satisfactory                          |  |
| Aqueous Preservatives | NA                                    |  |
| Temperature           | Received on Ice Received at: 4+/-2 C° |  |
| Extraction Method     | EPA Method 3546                       |  |

| EPH ANALYTICAL RESU                               | JL13                   |                |               |              |            |                |
|---------------------------------------------------|------------------------|----------------|---------------|--------------|------------|----------------|
| Method for Ranges: MADEP EPH 4-1.1                |                        | Client ID      |               |              | B-2        |                |
| Method for Target Analytes: MADEP EPH 4-1.1       |                        | Lab ID         |               |              | 3C27022-01 |                |
| EPH Surrogate Standards:                          |                        |                | Dai           | te Collected | 03/22/23   |                |
| Aliphatic: Chlorooctadecane                       |                        |                | Date Received |              |            |                |
| Aromatic: o-Terphenyl                             |                        |                | D             | ate Thawed   | NA         |                |
|                                                   |                        | Date Extracted |               |              | 03/30/23   |                |
| EPH Fractionation Surrogates (1) 2-Fluorobiphenyl | Si .                   |                | Perce         | nt Moisture  | 12.70      |                |
| (2) 2-Bromonaphthalene                            |                        |                |               |              |            |                |
| RANGE/TARGET ANALYTE                              |                        | Dilution       | RL            | Units        | Result     | Analyzed       |
| Unadjusted C11-C22 Aron                           | natic Hydrocarbons [1] | 1X             | 7.59          | mg/kg        | <7.59      | 04/03/23 17:27 |
| •                                                 | Naphthalene            | 1X             | 0.38          | mg/kg        | <0.38      | 04/03/23 17:27 |
| Diesel PAH                                        | 2-Methylnaphthalene    | 1X             | 0.38          | mg/kg        | <0.38      | 04/03/23 17:27 |
| Analytes                                          | Phenanthrene           | 1X             | 0.38          | mg/kg        | <0.38      | 04/03/23 17:27 |
| ,                                                 | Acenaphthene           | 1X             | 0.38          | mg/kg        | <0.38      | 04/03/23 17:27 |
|                                                   | Acenaphthylene         | 1X             | 0.38          | mg/kg        | <0.38      | 04/03/23 17:27 |
|                                                   | Fluorene               | 1X             | 0.38          | mg/kg        | <0.38      | 04/03/23 17:27 |
|                                                   | Anthracene             | 1X             | 0.38          | mg/kg        | <0.38      | 04/03/23 17:27 |
|                                                   | Fluoranthene           | 1X             | 0.38          | mg/kg        | <0.38      | 04/03/23 17:27 |
|                                                   | Pyrene                 | 1X             | 0.38          | mg/kg        | <0.38      | 04/03/23 17:27 |
|                                                   | Benzo(a)anthracene     |                |               | mg/kg        |            | 04/03/23 17:27 |
| Other                                             | Chrysene               | 1X             | 0.38          |              | <0.38      | 04/03/23 17:27 |
| Target PAH                                        | Benzo(b)fluoranthene   | 1X             | 0.38          | mg/kg        | <0.38      | 04/03/23 17:27 |
| _                                                 | . ,                    | 1X             | 0.38          | mg/kg        | <0.38      | 04/03/23 17:27 |
| Analytes                                          | Benzo(k)fluoranthene   | 1X             | 0.38          | mg/kg        | <0.38      | + · · ·        |
|                                                   | Benzo(a)pyrene         | 1X             | 0.38          | mg/kg<br>    | <0.38      | 04/03/23 17:27 |
|                                                   | Indeno(1,2,3-cd)pyrene | 1X             | 0.38          | mg/kg        | <0.38      | 04/03/23 17:27 |
|                                                   | Dibenz(a,h)anthracene  | 1X             | 0.38          | mg/kg        | <0.38      | 04/03/23 17:27 |
|                                                   | Benzo(g,h,i)perylene   | 1X             | 0.38          | mg/kg        | <0.38      | 04/03/23 17:27 |
| C9-C18 Aliphatic Hydrocar                         | bons [1]               | 1X             | 15.1          | mg/kg        | <15.1      | 04/03/23 23:00 |
| C19-C36 Aliphatic Hydrocarbons [1]                |                        | 1X             | 15.1          | mg/kg        | 17.7       | 04/03/23 23:00 |
| C11-C22 Aromatic Hydroc                           |                        | 1X             | 7.59          | mg/kg        | <7.59      | 04/03/23 17:27 |
| Chlorooctadecane (Sample Surrogate)               |                        |                |               | %            | 90.3       | 04/03/23 23:00 |
| o-Terphenyl (Sample Surrogate)                    |                        |                |               | %            | 76.0       | 04/03/23 17:27 |
| 2-Fluorobiphenyl (Fractionation Surrogate)        |                        |                |               | %            | 99.8       | 04/03/23 17:27 |
| 2-Bromonaphthalene (Fractionation Surrogate)      |                        |                |               | %            | 97.6       | 04/03/23 17:27 |
| Surrogate Acceptance Range [                      | [3]                    |                |               | %            | 40 - 140   |                |

<sup>[1]</sup> Hydrocarbon range data excludes area counts of any surrogate(s) and/or internal standards eluting in that range.

 $<sup>\</sup>hbox{\hbox{$[2]$ C11-C22 Aromatic Hydrocarbons excludes the concentration of Target PAH Analytes.}} \\$ 

<sup>[3]</sup> See the case narrative in cases where a dash (-) is entered in the surrogate recovery block.

# **Extractable Petroleum Hydrocarbons Sample: B-4 (3C27022-02)**

#### **SAMPLE INFORMATION**

| Matrix                | Soil                                  |
|-----------------------|---------------------------------------|
| Containers            | Satisfactory                          |
| Aqueous Preservatives | NA                                    |
| Temperature           | Received on Ice Received at: 4+/-2 C° |
| Extraction Method     | EPA Method 3546                       |

| Method for Ranges: MADEP EPH 4-1.1                                    |                        | Client ID      |       |              | B-4        |                |
|-----------------------------------------------------------------------|------------------------|----------------|-------|--------------|------------|----------------|
| Method for Target Analytes: MADEP EPH 4-1.1                           |                        | Lab ID         |       |              | 3C27022-02 |                |
| EPH Surrogate Standards:                                              |                        | Date Collected |       |              | 03/22/23   |                |
| Aliphatic: Chlorooctadecane                                           |                        |                | Da    | te Received  | 03/27/23   |                |
| Aromatic: o-Terphenyl                                                 |                        |                | D     | ate Thawed   | NA         |                |
|                                                                       |                        |                | Dat   | e Extracted  | 03/30/23   |                |
| EPH Fractionation Surrogate                                           | s:                     |                | Perce | ent Moisture | 11.40      |                |
| <ul><li>(1) 2-Fluorobiphenyl</li><li>(2) 2-Bromonaphthalene</li></ul> |                        |                |       |              |            |                |
| RANGE/TARGET ANALYT                                                   | <b>I</b>               | Dilution       | RL    | Units        | Result     | Analyzed       |
| Unadjusted C11-C22 Aror                                               |                        | 1X             | 7.48  | mg/kg        | <7.48      | 04/03/23 17:04 |
|                                                                       | Naphthalene            | 1X             | 0.37  | mg/kg        | <0.37      | 04/03/23 17:04 |
| Diesel PAH                                                            | 2-Methylnaphthalene    | 1X             | 0.37  | mg/kg        | <0.37      | 04/03/23 17:04 |
| Analytes                                                              | Phenanthrene           | 1X             | 0.37  | mg/kg        | <0.37      | 04/03/23 17:04 |
|                                                                       | Acenaphthene           | 1X             | 0.37  | mg/kg        | <0.37      | 04/03/23 17:04 |
|                                                                       | Acenaphthylene         | 1X             | 0.37  | mg/kg        | <0.37      | 04/03/23 17:04 |
|                                                                       | Fluorene               | 1X             | 0.37  | mg/kg        | <0.37      | 04/03/23 17:04 |
|                                                                       | Anthracene             | 1X             | 0.37  | mg/kg        | <0.37      | 04/03/23 17:04 |
|                                                                       | Fluoranthene           | 1X             | 0.37  | mg/kg        | <0.37      | 04/03/23 17:04 |
|                                                                       | Pyrene                 | 1X             | 0.37  | mg/kg        | <0.37      | 04/03/23 17:04 |
|                                                                       | Benzo(a)anthracene     | 1X             | 0.37  | mg/kg        | <0.37      | 04/03/23 17:04 |
| Other                                                                 | Chrysene               | 1X             | 0.37  | mg/kg        | <0.37      | 04/03/23 17:04 |
| Target PAH                                                            | Benzo(b)fluoranthene   | 1X             | 0.37  | mg/kg        | <0.37      | 04/03/23 17:04 |
| Analytes                                                              | Benzo(k)fluoranthene   | 1X             | 0.37  | mg/kg        | <0.37      | 04/03/23 17:04 |
| . ,                                                                   | Benzo(a)pyrene         | 1X             | 0.37  | mg/kg        | <0.37      | 04/03/23 17:04 |
|                                                                       | Indeno(1,2,3-cd)pyrene | 1X             | 0.37  | mg/kg        | <0.37      | 04/03/23 17:04 |
|                                                                       | Dibenz(a,h)anthracene  | 1X             | 0.37  | mg/kg        | <0.37      | 04/03/23 17:04 |
|                                                                       | Benzo(g,h,i)perylene   | 1X             | 0.37  | mg/kg        | <0.37      | 04/03/23 17:04 |
| C9-C18 Aliphatic Hydroca                                              | 1 (3, 7,1, 7           | 1X             | 14.9  | mg/kg        | <14.9      | 04/03/23 23:24 |
| C19-C36 Aliphatic Hydroc                                              |                        | 1X             | 14.9  | mg/kg        | <14.9      | 04/03/23 23:24 |
| C11-C22 Aromatic Hydrod                                               |                        | 1X             | 7.48  | mg/kg        | <7.48      | 04/03/23 17:04 |
| Chlorooctadecane (Sample Surrogate)                                   |                        |                |       | %            | 71.3       | 04/03/23 23:24 |
| o-Terphenyl (Sample Surrogate)                                        |                        |                |       | %            | 68.3       | 04/03/23 17:04 |
| 2-Fluorobiphenyl (Fraction                                            | nation Surrogate)      |                |       | %            | 92.2       | 04/03/23 17:04 |
| 2-Bromonaphthalene (Fractionation Surrogate)                          |                        |                |       | %            | 89.8       | 04/03/23 17:04 |
| Surrogate Acceptance Range                                            | [3]                    |                |       | %            | 40 - 140   |                |

<sup>[1]</sup> Hydrocarbon range data excludes area counts of any surrogate(s) and/or internal standards eluting in that range.

 $<sup>\</sup>hbox{\hbox{$[2]$ C11-C22 Aromatic Hydrocarbons excludes the concentration of Target PAH Analytes.}} \\$ 

<sup>[3]</sup> See the case narrative in cases where a dash (-) is entered in the surrogate recovery block.

# **Extractable Petroleum Hydrocarbons Sample: B-18 (3C27022-03)**

#### **SAMPLE INFORMATION**

| Matrix                | Soil                                  |
|-----------------------|---------------------------------------|
| Containers            | Satisfactory                          |
| Aqueous Preservatives | NA                                    |
| Temperature           | Received on Ice Received at: 4+/-2 C° |
| Extraction Method     | EPA Method 3546                       |

| Method for Ranges: MADEP EPH 4-1.1           |                                                      | Client ID      |               |             | B-18       |                |  |
|----------------------------------------------|------------------------------------------------------|----------------|---------------|-------------|------------|----------------|--|
| Method for Target Analytes: MADEP EPH 4-1.1  |                                                      | Lab ID         |               |             | 3C27022-03 |                |  |
|                                              |                                                      | Date Collected |               |             | 03/22/23   |                |  |
| Aliphatic: Chlorooctadecane                  | EPH Surrogate Standards: Aliphatic: Chlorooctadecane |                | Date Received |             |            | 03/27/23       |  |
| Aromatic: o-Terphenyl                        |                                                      |                | D             | ate Thawed  | NA         |                |  |
|                                              |                                                      |                | Dat           | e Extracted | 03/30/23   |                |  |
| EPH Fractionation Surrogates                 |                                                      |                | Perce         | nt Moisture | 21.70      |                |  |
| (1) 2-Fluorobiphenyl (2) 2-Bromonaphthalene  |                                                      |                |               |             |            |                |  |
| RANGE/TARGET ANALYTE                         |                                                      | Dilution       | RL            | Units       | Result     | Analyzed       |  |
| Unadjusted C11-C22 Arom                      |                                                      | 1X             | 8.46          | mg/kg       | 21.0       | 04/03/23 17:50 |  |
| ondajasta eri ezz / ii oni                   | Naphthalene                                          | 1X             | 0.42          | mg/kg       | <0.42      | 04/03/23 17:50 |  |
| Diesel PAH                                   | 2-Methylnaphthalene                                  | 1X             | 0.42          | mg/kg       | <0.42      | 04/03/23 17:50 |  |
| Analytes                                     | Phenanthrene                                         | 1X             | 0.42          | mg/kg       | <0.42      | 04/03/23 17:50 |  |
|                                              | Acenaphthene                                         | 1X             | 0.42          | mg/kg       | <0.42      | 04/03/23 17:50 |  |
|                                              | Acenaphthylene                                       | 1X             | 0.42          | mg/kg       | <0.42      | 04/03/23 17:50 |  |
|                                              | Fluorene                                             | 1X             | 0.42          | mg/kg       | <0.42      | 04/03/23 17:50 |  |
|                                              | Anthracene                                           | 1X             | 0.42          | mg/kg       | <0.42      | 04/03/23 17:50 |  |
|                                              | Fluoranthene                                         | 1X             | 0.42          | mg/kg       | <0.42      | 04/03/23 17:50 |  |
|                                              | Pyrene                                               | 1X             | 0.42          | mg/kg       | <0.42      | 04/03/23 17:50 |  |
|                                              | Benzo(a)anthracene                                   | 1X             | 0.42          | mg/kg       | <0.42      | 04/03/23 17:50 |  |
| Other                                        | Chrysene                                             | 1X             | 0.42          | mg/kg       | <0.42      | 04/03/23 17:50 |  |
| Target PAH                                   | Benzo(b)fluoranthene                                 | 1X             | 0.42          | mg/kg       | <0.42      | 04/03/23 17:50 |  |
| Analytes                                     | Benzo(k)fluoranthene                                 | 1X             | 0.42          | mg/kg       | <0.42      | 04/03/23 17:50 |  |
|                                              | Benzo(a)pyrene                                       | 1X             | 0.42          | mg/kg       | <0.42      | 04/03/23 17:50 |  |
|                                              | Indeno(1,2,3-cd)pyrene                               | 1X             | 0.42          | mg/kg       | <0.42      | 04/03/23 17:50 |  |
|                                              | Dibenz(a,h)anthracene                                | 1X             | 0.42          | mg/kg       | <0.42      | 04/03/23 17:50 |  |
|                                              | Benzo(g,h,i)perylene                                 | 1X             | 0.42          | mg/kg       | <0.42      | 04/03/23 17:50 |  |
| C9-C18 Aliphatic Hydrocar                    | bons [1]                                             | 1X             | 16.9          | mg/kg       | <16.9      | 04/03/23 23:49 |  |
| C19-C36 Aliphatic Hydroca                    | arbons [1]                                           | 1X             | 16.9          | mg/kg       | <16.9      | 04/03/23 23:49 |  |
| C11-C22 Aromatic Hydroca                     | arbons [1,2]                                         | 1X             | 8.46          | mg/kg       | 21.0       | 04/03/23 17:50 |  |
| Chlorooctadecane (Sample Surrogate)          |                                                      |                |               | %           | 74.2       | 04/03/23 23:49 |  |
| o-Terphenyl (Sample Surrogate)               |                                                      |                |               | %           | 62.8       | 04/03/23 17:50 |  |
| 2-Fluorobiphenyl (Fractionation Surrogate)   |                                                      |                |               | %           | 89.2       | 04/03/23 17:50 |  |
| 2-Bromonaphthalene (Fractionation Surrogate) |                                                      |                |               | %           | 85.6       | 04/03/23 17:50 |  |
| Surrogate Acceptance Range [                 | 3]                                                   |                |               | %           | 40 - 140   |                |  |

<sup>[1]</sup> Hydrocarbon range data excludes area counts of any surrogate(s) and/or internal standards eluting in that range.

 $<sup>\</sup>hbox{\hbox{$[2]$ C11-C22 Aromatic Hydrocarbons excludes the concentration of Target PAH Analytes.}} \\$ 

<sup>[3]</sup> See the case narrative in cases where a dash (-) is entered in the surrogate recovery block.

# **Extractable Petroleum Hydrocarbons Sample: B-20 (3C27022-04)**

#### **SAMPLE INFORMATION**

| Matrix                | Soil                                  |
|-----------------------|---------------------------------------|
| Containers            | Satisfactory                          |
| Aqueous Preservatives | NA                                    |
| Temperature           | Received on Ice Received at: 4+/-2 C° |
| Extraction Method     | EPA Method 3546                       |

| Method for Ranges: MADEP EPH 4-1.1                                    |                        | Client ID |       |              | B-20       |                |
|-----------------------------------------------------------------------|------------------------|-----------|-------|--------------|------------|----------------|
| Method for Target Analytes: MADEP EPH 4-1.1                           |                        | Lab ID    |       |              | 3C27022-04 |                |
| EPH Surrogate Standards:                                              |                        |           | Dat   | te Collected | 03/22/23   |                |
| Aliphatic: Chlorooctadecane                                           |                        |           | Da    | te Received  | 03/27/23   |                |
| Aromatic: o-Terphenyl                                                 |                        |           | Da    | ate Thawed   | NA         |                |
|                                                                       |                        |           | Dat   | e Extracted  | 03/30/23   |                |
| EPH Fractionation Surrogates                                          | 5:                     |           | Perce | nt Moisture  | 5.10       |                |
| <ul><li>(1) 2-Fluorobiphenyl</li><li>(2) 2-Bromonaphthalene</li></ul> |                        |           |       |              |            |                |
| RANGE/TARGET ANALYTI                                                  | <b>.</b>               | Dilution  | RL    | Units        | Result     | Analyzed       |
| Unadjusted C11-C22 Aron                                               |                        | 1X        | 6.99  | mg/kg        | <6.99      | 04/03/23 16:42 |
| ·                                                                     | Naphthalene            | 1X        | 0.35  | mg/kg        | <0.35      | 04/03/23 16:42 |
| Diesel PAH                                                            | 2-Methylnaphthalene    | 1X        | 0.35  | mg/kg        | <0.35      | 04/03/23 16:42 |
| Analytes                                                              | Phenanthrene           | 1X        | 0.35  | mg/kg        | <0.35      | 04/03/23 16:42 |
| ,                                                                     | Acenaphthene           | 1X        | 0.35  | mg/kg        | <0.35      | 04/03/23 16:42 |
|                                                                       | Acenaphthylene         | 1X        | 0.35  | mg/kg        | <0.35      | 04/03/23 16:42 |
|                                                                       | Fluorene               | 1X        | 0.35  | mg/kg        | <0.35      | 04/03/23 16:42 |
|                                                                       | Anthracene             | 1X        | 0.35  | mg/kg        | <0.35      | 04/03/23 16:42 |
|                                                                       | Fluoranthene           | 1X        | 0.35  | mg/kg        | <0.35      | 04/03/23 16:42 |
|                                                                       | Pyrene                 | 1X        | 0.35  | mg/kg        | <0.35      | 04/03/23 16:42 |
|                                                                       | Benzo(a)anthracene     | 1X        | 0.35  | mg/kg        | <0.35      | 04/03/23 16:42 |
| Other                                                                 | Chrysene               | 1X        | 0.35  | mg/kg        | <0.35      | 04/03/23 16:42 |
| Target PAH                                                            | Benzo(b)fluoranthene   | 1X        | 0.35  | mg/kg        | <0.35      | 04/03/23 16:42 |
| Analytes                                                              | Benzo(k)fluoranthene   | 1X        | 0.35  | mg/kg        | <0.35      | 04/03/23 16:42 |
| ,                                                                     | Benzo(a)pyrene         | 1X        | 0.35  | mg/kg        | <0.35      | 04/03/23 16:42 |
|                                                                       | Indeno(1,2,3-cd)pyrene | 1X        | 0.35  | mg/kg        | <0.35      | 04/03/23 16:42 |
|                                                                       | Dibenz(a,h)anthracene  | 1X        | 0.35  | mg/kg        | <0.35      | 04/03/23 16:42 |
|                                                                       | Benzo(g,h,i)perylene   | 1X        | 0.35  | mg/kg        | <0.35      | 04/03/23 16:42 |
| C9-C18 Aliphatic Hydroca                                              |                        | 1X        | 13.9  | mg/kg        | <13.9      | 04/04/23 00:14 |
| C19-C36 Aliphatic Hydroc                                              |                        | 1X        | 13.9  | mg/kg        | <13.9      | 04/04/23 00:14 |
| C11-C22 Aromatic Hydroc                                               | arbons [1,2]           | 1X        | 6.99  | mg/kg        | <6.99      | 04/03/23 16:42 |
| Chlorooctadecane (Sampl                                               | e Surrogate)           |           |       | %            | 98.5       | 04/04/23 00:14 |
| o-Terphenyl (Sample Surrogate)                                        |                        |           |       | %            | 80.3       | 04/03/23 16:42 |
| 2-Fluorobiphenyl (Fractionation Surrogate)                            |                        |           |       | %            | 99.5       | 04/03/23 16:42 |
| 2-Bromonaphthalene (Fractionation Surrogate)                          |                        |           |       | %            | 96.1       | 04/03/23 16:42 |
| Surrogate Acceptance Range                                            | [3]                    |           |       | %            | 40 - 140   |                |

<sup>[1]</sup> Hydrocarbon range data excludes area counts of any surrogate(s) and/or internal standards eluting in that range.

 $<sup>\</sup>hbox{\hbox{$[2]$ C11-C22 Aromatic Hydrocarbons excludes the concentration of Target PAH Analytes.}} \\$ 

<sup>[3]</sup> See the case narrative in cases where a dash (-) is entered in the surrogate recovery block.

# **Extractable Petroleum Hydrocarbons Sample: B-30 (3C27022-05)**

#### **SAMPLE INFORMATION**

| Matrix                | Soil                                  |
|-----------------------|---------------------------------------|
| Containers            | Satisfactory                          |
| Aqueous Preservatives | NA                                    |
| Temperature           | Received on Ice Received at: 4+/-2 C° |
| Extraction Method     | EPA Method 3546                       |

| Method for Ranges: MADEP EPH 4-1.1           |                        | Client ID      |                |              | B-30       |                |
|----------------------------------------------|------------------------|----------------|----------------|--------------|------------|----------------|
| Method for Target Analytes: MADEP EPH 4-1.1  |                        | Lab ID         |                |              | 3C27022-05 |                |
| EPH Surrogate Standards:                     |                        | Date Collected |                |              | 03/24/23   |                |
| Aliphatic: Chlorooctadecane                  |                        |                | Da             | te Received  | 03/27/23   |                |
| Aromatic: o-Terphenyl                        |                        |                | D              | ate Thawed   | NA         |                |
|                                              |                        |                | Date Extracted |              | 03/30/23   |                |
| EPH Fractionation Surrogates:                | :                      |                | Perce          | ent Moisture | 5.90       |                |
| (1) 2-Fluorobiphenyl (2) 2-Bromonaphthalene  |                        |                |                |              |            |                |
| RANGE/TARGET ANALYTE                         |                        | Dilution       | RL             | Units        | Result     | Analyzed       |
| Unadjusted C11-C22 Arom                      | atic Hydrocarbons [1]  | 1X             | 7.04           | mg/kg        | <7.04      | 04/04/23 01:52 |
|                                              | Naphthalene            | 1X             | 0.35           | mg/kg        | <0.35      | 04/04/23 01:52 |
| Diesel PAH                                   | 2-Methylnaphthalene    | 1X             | 0.35           | mg/kg        | <0.35      | 04/04/23 01:52 |
| Analytes                                     | Phenanthrene           | 1X             | 0.35           | mg/kg        | <0.35      | 04/04/23 01:52 |
|                                              | Acenaphthene           | 1X             | 0.35           | mg/kg        | <0.35      | 04/04/23 01:52 |
|                                              | Acenaphthylene         | 1X             | 0.35           | mg/kg        | <0.35      | 04/04/23 01:52 |
|                                              | Fluorene               | 1X             | 0.35           | mg/kg        | <0.35      | 04/04/23 01:52 |
|                                              | Anthracene             | 1X             | 0.35           | mg/kg        | <0.35      | 04/04/23 01:52 |
|                                              | Fluoranthene           | 1X             | 0.35           | mg/kg        | <0.35      | 04/04/23 01:52 |
|                                              | Pyrene                 | 1X             | 0.35           | mg/kg        | <0.35      | 04/04/23 01:52 |
|                                              | Benzo(a)anthracene     | 1X             | 0.35           | mg/kg        | <0.35      | 04/04/23 01:52 |
| Other                                        | Chrysene               | 1X             | 0.35           | mg/kg        | <0.35      | 04/04/23 01:52 |
| Target PAH                                   | Benzo(b)fluoranthene   | 1X             | 0.35           | mg/kg        | <0.35      | 04/04/23 01:52 |
| Analytes                                     | Benzo(k)fluoranthene   | 1X             | 0.35           | mg/kg        | <0.35      | 04/04/23 01:52 |
|                                              | Benzo(a)pyrene         | 1X             | 0.35           | mg/kg        | <0.35      | 04/04/23 01:52 |
|                                              | Indeno(1,2,3-cd)pyrene | 1X             | 0.35           | mg/kg        | <0.35      | 04/04/23 01:52 |
|                                              | Dibenz(a,h)anthracene  | 1X             | 0.35           | mg/kg        | <0.35      | 04/04/23 01:52 |
|                                              | Benzo(g,h,i)perylene   | 1X             | 0.35           | mg/kg        | <0.35      | 04/04/23 01:52 |
| C9-C18 Aliphatic Hydrocarl                   | bons [1]               | 1X             | 14.0           | mg/kg        | <14.0      | 04/04/23 03:56 |
| C19-C36 Aliphatic Hydroca                    | rbons [1]              | 1X             | 14.0           | mg/kg        | <14.0      | 04/04/23 03:56 |
| C11-C22 Aromatic Hydrocarbons [1,2]          |                        | 1X             | 7.04           | mg/kg        | <7.04      | 04/04/23 01:52 |
| Chlorooctadecane (Sample Surrogate)          |                        |                |                | %            | 109        | 04/04/23 03:56 |
| o-Terphenyl (Sample Surrogate)               |                        |                |                | %            | 94.6       | 04/04/23 01:52 |
| 2-Fluorobiphenyl (Fractionation Surrogate)   |                        |                |                | %            | 111        | 04/04/23 01:52 |
| 2-Bromonaphthalene (Fractionation Surrogate) |                        |                |                | %            | 107        | 04/04/23 01:52 |
| Surrogate Acceptance Range [                 | 3]                     |                |                | %            | 40 - 140   | ]              |

<sup>[1]</sup> Hydrocarbon range data excludes area counts of any surrogate(s) and/or internal standards eluting in that range.

 $<sup>\</sup>hbox{\hbox{$[2]$ C11-C22 Aromatic Hydrocarbons excludes the concentration of Target PAH Analytes.}} \\$ 

<sup>[3]</sup> See the case narrative in cases where a dash (-) is entered in the surrogate recovery block.

# **Extractable Petroleum Hydrocarbons Sample: B-33 (3C27022-06)**

#### **SAMPLE INFORMATION**

| Matrix                | Soil                                  |
|-----------------------|---------------------------------------|
| Containers            | Satisfactory                          |
| Aqueous Preservatives | NA NA                                 |
| Temperature           | Received on Ice Received at: 4+/-2 C° |
| Extraction Method     | EPA Method 3546                       |

| EPH ANALYTICAL RES                               | UL13                     |           |       |              |            |                |
|--------------------------------------------------|--------------------------|-----------|-------|--------------|------------|----------------|
| Method for Ranges: MADEP EPH 4-1.1               |                          | Client ID |       |              | B-33       |                |
| Method for Target Analytes:                      | MADEP EPH 4-1.1          | Lab ID    |       |              | 3C27022-06 |                |
| EPH Surrogate Standards:                         | EPH Surrogate Standards: |           | Dai   | te Collected | 03/24/23   |                |
| Aliphatic: Chlorooctadecane                      |                          |           | Da    | te Received  | 03/27/23   |                |
| Aromatic: o-Terphenyl                            |                          |           | D     | ate Thawed   | NA         |                |
|                                                  |                          |           | Dat   | e Extracted  | 03/30/23   |                |
| EPH Fractionation Surrogate (1) 2-Fluorobiphenyl | es:                      |           | Perce | nt Moisture  | 11.30      |                |
| (2) 2-Bromonaphthalene                           |                          |           |       |              |            |                |
| RANGE/TARGET ANALYT                              | 'E                       | Dilution  | RL    | Units        | Result     | Analyzed       |
| Unadjusted C11-C22 Aro                           | matic Hydrocarbons [1]   | 1X        | 7.47  | mg/kg        | <7.47      | 04/04/23 13:14 |
| ·                                                | Naphthalene              | 1X        | 0.37  | mg/kg        | <0.37      | 04/04/23 13:14 |
| Diesel PAH                                       | 2-Methylnaphthalene      | 1X        | 0.37  | mg/kg        | <0.37      | 04/04/23 13:14 |
| Analytes                                         | Phenanthrene             | 1X        | 0.37  | mg/kg        | <0.37      | 04/04/23 13:14 |
| ,                                                | Acenaphthene             | 1X        | 0.37  | mg/kg        | <0.37      | 04/04/23 13:14 |
|                                                  | Acenaphthylene           | 1X        | 0.37  | mg/kg        | <0.37      | 04/04/23 13:14 |
|                                                  | Fluorene                 | 1X        | 0.37  | mg/kg        | <0.37      | 04/04/23 13:14 |
|                                                  | Anthracene               | 1X        | 0.37  | mg/kg        | <0.37      | 04/04/23 13:14 |
|                                                  | Fluoranthene             | 1X        | 0.37  | mg/kg        | <0.37      | 04/04/23 13:14 |
|                                                  | Pyrene                   | 1X        | 0.37  | mg/kg        | <0.37      | 04/04/23 13:14 |
|                                                  | Benzo(a)anthracene       | 1X        | 0.37  | mg/kg        | <0.37      | 04/04/23 13:14 |
| Other                                            | Chrysene                 | 1X        | 0.37  | mg/kg        | <0.37      | 04/04/23 13:14 |
| Target PAH                                       | Benzo(b)fluoranthene     | 1X        | 0.37  | mg/kg        | <0.37      | 04/04/23 13:14 |
| Analytes                                         | Benzo(k)fluoranthene     | 1X        | 0.37  | mg/kg        | <0.37      | 04/04/23 13:14 |
| · ···· <b>, ·-·</b>                              | Benzo(a)pyrene           | 1X        | 0.37  | mg/kg        | <0.37      | 04/04/23 13:14 |
|                                                  | Indeno(1,2,3-cd)pyrene   | 1X        | 0.37  | mg/kg        | <0.37      | 04/04/23 13:14 |
|                                                  | Dibenz(a,h)anthracene    | 1X        | 0.37  | mg/kg        | <0.37      | 04/04/23 13:14 |
|                                                  | Benzo(g,h,i)perylene     | 1X        | 0.37  | mg/kg        | <0.37      | 04/04/23 13:14 |
| C9-C18 Aliphatic Hydroca                         | 1 (5/ / // /             | 1X        | 14.9  | mg/kg        | <14.9      | 04/04/23 04:20 |
| C19-C36 Aliphatic Hydro                          |                          | 1X        | 14.9  | mg/kg        | <14.9      | 04/04/23 04:20 |
| C11-C22 Aromatic Hydro                           |                          | 1X        | 7.47  | mg/kg        | <7.47      | 04/04/23 13:14 |
| Chlorooctadecane (Samp                           |                          |           |       | %            | 103        | 04/04/23 04:20 |
| o-Terphenyl (Sample Sur                          |                          |           |       | %            | 80.9       | 04/04/23 13:14 |
| 2-Fluorobiphenyl (Fractionation Surrogate)       |                          |           |       | %            | 97.7       | 04/04/23 13:14 |
| 2-Bromonaphthalene (Fr                           |                          |           |       | %            | 91.3       | 04/04/23 13:14 |
| Surrogate Acceptance Range                       | [3]                      |           |       | %            | 40 - 140   |                |

<sup>[1]</sup> Hydrocarbon range data excludes area counts of any surrogate(s) and/or internal standards eluting in that range.

 $<sup>\</sup>hbox{\hbox{$[2]$ C11-C22 Aromatic Hydrocarbons excludes the concentration of Target PAH Analytes.}} \\$ 

<sup>[3]</sup> See the case narrative in cases where a dash (-) is entered in the surrogate recovery block.

# **Extractable Petroleum Hydrocarbons Sample: B-48 (3C27022-07)**

#### **SAMPLE INFORMATION**

| Matrix                | Soil                                  |
|-----------------------|---------------------------------------|
| Containers            | Satisfactory                          |
| Aqueous Preservatives | NA                                    |
| Temperature           | Received on Ice Received at: 4+/-2 C° |
| Extraction Method     | EPA Method 3546                       |

| Method for Ranges: MADEP EPH 4-1.1                                    |                        | Client ID |       |              | B-48       |                |
|-----------------------------------------------------------------------|------------------------|-----------|-------|--------------|------------|----------------|
| Method for Target Analytes:                                           | MADEP EPH 4-1.1        | Lab ID    |       |              | 3C27022-07 |                |
| EPH Surrogate Standards:                                              |                        |           | Dat   | te Collected | 03/24/23   |                |
| Aliphatic: Chlorooctadecane                                           |                        |           | Da    | te Received  | 03/27/23   |                |
| Aromatic: o-Terphenyl                                                 |                        |           | Da    | ate Thawed   | NA         |                |
|                                                                       |                        |           | Dat   | e Extracted  | 03/30/23   |                |
| EPH Fractionation Surrogates                                          | 5:                     |           | Perce | nt Moisture  | 12.50      |                |
| <ul><li>(1) 2-Fluorobiphenyl</li><li>(2) 2-Bromonaphthalene</li></ul> |                        |           |       |              |            |                |
| RANGE/TARGET ANALYTI                                                  |                        | Dilution  | RL    | Units        | Result     | Analyzed       |
| Unadjusted C11-C22 Aron                                               | natic Hydrocarbons [1] | 1X        | 7.57  | mg/kg        | <7.57      | 04/04/23 13:37 |
|                                                                       | Naphthalene            | 1X        | 0.37  | mg/kg        | <0.37      | 04/04/23 13:37 |
| Diesel PAH                                                            | 2-Methylnaphthalene    | 1X        | 0.37  | mg/kg        | <0.37      | 04/04/23 13:37 |
| Analytes                                                              | Phenanthrene           | 1X        | 0.37  | mg/kg        | <0.37      | 04/04/23 13:37 |
|                                                                       | Acenaphthene           | 1X        | 0.37  | mg/kg        | <0.37      | 04/04/23 13:37 |
|                                                                       | Acenaphthylene         | 1X        | 0.37  | mg/kg        | <0.37      | 04/04/23 13:37 |
|                                                                       | Fluorene               | 1X        | 0.37  | mg/kg        | <0.37      | 04/04/23 13:37 |
|                                                                       | Anthracene             | 1X        | 0.37  | mg/kg        | <0.37      | 04/04/23 13:37 |
|                                                                       | Fluoranthene           | 1X        | 0.37  | mg/kg        | <0.37      | 04/04/23 13:37 |
|                                                                       | Pyrene                 | 1X        | 0.37  | mg/kg        | <0.37      | 04/04/23 13:37 |
|                                                                       | Benzo(a)anthracene     | 1X        | 0.37  | mg/kg        | <0.37      | 04/04/23 13:37 |
| Other                                                                 | Chrysene               | 1X        | 0.37  | mg/kg        | <0.37      | 04/04/23 13:37 |
| Target PAH                                                            | Benzo(b)fluoranthene   | 1X        | 0.37  | mg/kg        | <0.37      | 04/04/23 13:37 |
| Analytes                                                              | Benzo(k)fluoranthene   | 1X        | 0.37  | mg/kg        | <0.37      | 04/04/23 13:37 |
| ·                                                                     | Benzo(a)pyrene         | 1X        | 0.37  | mg/kg        | <0.37      | 04/04/23 13:37 |
|                                                                       | Indeno(1,2,3-cd)pyrene | 1X        | 0.37  | mg/kg        | <0.37      | 04/04/23 13:37 |
|                                                                       | Dibenz(a,h)anthracene  | 1X        | 0.37  | mg/kg        | <0.37      | 04/04/23 13:37 |
|                                                                       | Benzo(g,h,i)perylene   | 1X        | 0.37  | mg/kg        | <0.37      | 04/04/23 13:37 |
| C9-C18 Aliphatic Hydroca                                              |                        | 1X        | 15.1  | mg/kg        | <15.1      | 04/04/23 04:45 |
| C19-C36 Aliphatic Hydroca                                             | arbons [1]             | 1X        | 15.1  | mg/kg        | <15.1      | 04/04/23 04:45 |
| C11-C22 Aromatic Hydroc                                               | arbons [1,2]           | 1X        | 7.57  | mg/kg        | <7.57      | 04/04/23 13:37 |
| Chlorooctadecane (Sample                                              | e Surrogate)           |           |       | %            | 98.6       | 04/04/23 04:45 |
| o-Terphenyl (Sample Surr                                              | ogate)                 |           |       | %            | 83.4       | 04/04/23 13:37 |
| 2-Fluorobiphenyl (Fraction                                            | nation Surrogate)      |           |       | %            | 104        | 04/04/23 13:37 |
| 2-Bromonaphthalene (Fra                                               | ctionation Surrogate)  |           |       | %            | 99.7       | 04/04/23 13:37 |
| Surrogate Acceptance Range                                            | [3]                    |           |       | %            | 40 - 140   |                |

<sup>[1]</sup> Hydrocarbon range data excludes area counts of any surrogate(s) and/or internal standards eluting in that range.

 $<sup>\</sup>hbox{\hbox{$[2]$ C11-C22 Aromatic Hydrocarbons excludes the concentration of Target PAH Analytes.}} \\$ 

<sup>[3]</sup> See the case narrative in cases where a dash (-) is entered in the surrogate recovery block.

# **Extractable Petroleum Hydrocarbons Sample: B-51 (3C27022-08)**

#### **SAMPLE INFORMATION**

| Matrix                | Soil                                  |  |
|-----------------------|---------------------------------------|--|
| Containers            | Satisfactory                          |  |
| Aqueous Preservatives | NA NA                                 |  |
| Temperature           | Received on Ice Received at: 4+/-2 C° |  |
| Extraction Method     | EPA Method 3546                       |  |

| EPH ANALYTICAL RESU                                  | JE13                   |           |       |              |            |                |
|------------------------------------------------------|------------------------|-----------|-------|--------------|------------|----------------|
| Method for Ranges: MADEP EPH 4-1.1                   |                        | Client ID |       |              | B-51       |                |
| Method for Target Analytes:                          | MADEP EPH 4-1.1        | Lab ID    |       |              | 3C27022-08 |                |
| EPH Surrogate Standards:                             |                        |           | Da    | te Collected | 03/24/23   |                |
| Aliphatic: Chlorooctadecane<br>Aromatic: o-Terphenyl |                        |           | Da    | te Received  | 03/27/23   |                |
|                                                      |                        |           | D     | ate Thawed   | NA         |                |
|                                                      |                        |           | Dat   | e Extracted  | 03/30/23   |                |
| EPH Fractionation Surrogates (1) 2-Fluorobiphenyl    | 5:                     |           | Perce | nt Moisture  | 12.40      |                |
| (2) 2-Bromonaphthalene                               |                        |           |       |              |            |                |
| RANGE/TARGET ANALYTI                                 |                        | Dilution  | RL    | Units        | Result     | Analyzed       |
| Unadjusted C11-C22 Aron                              | natic Hydrocarbons [1] | 1X        | 7.57  | mg/kg        | <7.57      | 04/04/23 03:45 |
| •                                                    | Naphthalene            | 1X        | 0.37  | mg/kg        | <0.37      | 04/04/23 03:45 |
| Diesel PAH                                           | 2-Methylnaphthalene    | 1X        | 0.37  | mg/kg        | <0.37      | 04/04/23 03:45 |
| Analytes                                             | Phenanthrene           | 1X        | 0.37  | mg/kg        | <0.37      | 04/04/23 03:45 |
|                                                      | Acenaphthene           | 1X        | 0.37  | mg/kg        | <0.37      | 04/04/23 03:45 |
|                                                      | Acenaphthylene         | 1X        | 0.37  | mg/kg        | <0.37      | 04/04/23 03:45 |
|                                                      | Fluorene               | 1X        | 0.37  | mg/kg        | <0.37      | 04/04/23 03:45 |
|                                                      | Anthracene             | 1X        | 0.37  | mg/kg        | <0.37      | 04/04/23 03:45 |
|                                                      | Fluoranthene           | 1X        | 0.37  | mg/kg        | <0.37      | 04/04/23 03:45 |
|                                                      | Pyrene                 | 1X        | 0.37  | mg/kg        | <0.37      | 04/04/23 03:45 |
|                                                      | Benzo(a)anthracene     | 1X        | 0.37  | mg/kg        | <0.37      | 04/04/23 03:45 |
| Other                                                | Chrysene               | 1X        | 0.37  | mg/kg        | <0.37      | 04/04/23 03:45 |
| Target PAH                                           | Benzo(b)fluoranthene   | 1X        | 0.37  | mg/kg        | <0.37      | 04/04/23 03:45 |
| Analytes                                             | Benzo(k)fluoranthene   | 1X        | 0.37  | mg/kg        | <0.37      | 04/04/23 03:45 |
|                                                      | Benzo(a)pyrene         | 1X        | 0.37  | mg/kg        | <0.37      | 04/04/23 03:45 |
|                                                      | Indeno(1,2,3-cd)pyrene | 1X        | 0.37  | mg/kg        | <0.37      | 04/04/23 03:45 |
|                                                      | Dibenz(a,h)anthracene  | 1X        | 0.37  | mg/kg        | <0.37      | 04/04/23 03:45 |
|                                                      | Benzo(g,h,i)perylene   | 1X        | 0.37  | mg/kg        | <0.37      | 04/04/23 03:45 |
| C9-C18 Aliphatic Hydroca                             |                        | 1X        | 15.1  | mg/kg        | <15.1      | 04/04/23 05:09 |
| C19-C36 Aliphatic Hydroci                            |                        | 1X        | 15.1  | mg/kg        | <15.1      | 04/04/23 05:09 |
| C11-C22 Aromatic Hydroc                              |                        | 1X        | 7.57  | mg/kg        | <7.57      | 04/04/23 03:45 |
| Chlorooctadecane (Sample                             |                        |           | ,15,  | %            | 115        | 04/04/23 05:09 |
| o-Terphenyl (Sample Surr                             |                        |           |       | %            | 102        | 04/04/23 03:45 |
| 2-Fluorobiphenyl (Fractionation Surrogate)           |                        |           |       | %            | 113        | 04/04/23 03:45 |
| 2-Bromonaphthalene (Fra                              |                        |           |       | %            | 108        | 04/04/23 03:45 |
| Surrogate Acceptance Range                           | 5 ,                    |           |       | %            | 40 - 140   |                |

<sup>[1]</sup> Hydrocarbon range data excludes area counts of any surrogate(s) and/or internal standards eluting in that range.

 $<sup>\</sup>hbox{\hbox{$[2]$ C11-C22 Aromatic Hydrocarbons excludes the concentration of Target PAH Analytes.}} \\$ 

<sup>[3]</sup> See the case narrative in cases where a dash (-) is entered in the surrogate recovery block.

# **Extractable Petroleum Hydrocarbons Sample: B-52 (3C27022-09)**

#### **SAMPLE INFORMATION**

| Matrix                | Soil                                  |
|-----------------------|---------------------------------------|
| Containers            | Satisfactory                          |
| Aqueous Preservatives | NA NA                                 |
| Temperature           | Received on Ice Received at: 4+/-2 C° |
| Extraction Method     | EPA Method 3546                       |

|                                                      |                        | 1         |       |              |          |                |
|------------------------------------------------------|------------------------|-----------|-------|--------------|----------|----------------|
| Method for Ranges: MADEP EPH 4-1.1                   |                        | Client ID |       |              | B-52     |                |
| Method for Target Analytes: I                        | MADEP EPH 4-1.1        | Lab ID    |       | 3C27022-09   |          |                |
| EPH Surrogate Standards:                             |                        |           | Dat   | te Collected | 03/24/23 |                |
| Aliphatic: Chlorooctadecane<br>Aromatic: o-Terphenyl |                        |           | Da    | te Received  | 03/27/23 |                |
|                                                      |                        |           | Da    | ate Thawed   | NA       |                |
|                                                      |                        |           | Dat   | e Extracted  | 03/30/23 |                |
| EPH Fractionation Surrogates (1) 2-Fluorobiphenyl    | :                      |           | Perce | nt Moisture  | 12.00    |                |
| (2) 2-Bromonaphthalene                               |                        |           |       |              |          |                |
| RANGE/TARGET ANALYTE                                 |                        | Dilution  | RL    | Units        | Result   | Analyzed       |
| Unadjusted C11-C22 Arom                              | natic Hydrocarbons [1] | 1X        | 7.53  | mg/kg        | 8.70     | 04/04/23 02:37 |
|                                                      | Naphthalene            | 1X        | 0.37  | mg/kg        | <0.37    | 04/04/23 02:37 |
| Diesel PAH                                           | 2-Methylnaphthalene    | 1X        | 0.37  | mg/kg        | <0.37    | 04/04/23 02:37 |
| Analytes                                             | Phenanthrene           | 1X        | 0.37  | mg/kg        | <0.37    | 04/04/23 02:37 |
| ·                                                    | Acenaphthene           | 1X        | 0.37  | mg/kg        | <0.37    | 04/04/23 02:37 |
|                                                      | Acenaphthylene         | 1X        | 0.37  | mg/kg        | <0.37    | 04/04/23 02:37 |
|                                                      | Fluorene               | 1X        | 0.37  | mg/kg        | <0.37    | 04/04/23 02:37 |
|                                                      | Anthracene             | 1X        | 0.37  | mg/kg        | <0.37    | 04/04/23 02:37 |
|                                                      | Fluoranthene           | 1X        | 0.37  | mg/kg        | <0.37    | 04/04/23 02:37 |
|                                                      | Pyrene                 | 1X        | 0.37  | mg/kg        | <0.37    | 04/04/23 02:37 |
|                                                      | Benzo(a)anthracene     | 1X        | 0.37  | mg/kg        | <0.37    | 04/04/23 02:37 |
| Other                                                | Chrysene               | 1X        | 0.37  | mg/kg        | <0.37    | 04/04/23 02:37 |
| Target PAH                                           | Benzo(b)fluoranthene   | 1X        | 0.37  | mg/kg        | <0.37    | 04/04/23 02:37 |
| Analytes                                             | Benzo(k)fluoranthene   | 1X        | 0.37  | mg/kg        | <0.37    | 04/04/23 02:37 |
|                                                      | Benzo(a)pyrene         | 1X        | 0.37  | mg/kg        | <0.37    | 04/04/23 02:37 |
|                                                      | Indeno(1,2,3-cd)pyrene | 1X        | 0.37  | mg/kg        | <0.37    | 04/04/23 02:37 |
|                                                      | Dibenz(a,h)anthracene  | 1X        | 0.37  | mg/kg        | <0.37    | 04/04/23 02:37 |
|                                                      | Benzo(g,h,i)perylene   | 1X        | 0.37  | mg/kg        | <0.37    | 04/04/23 02:37 |
| C9-C18 Aliphatic Hydrocar                            |                        | 1X        | 15.0  | mg/kg        | <15.0    | 04/04/23 05:34 |
| C19-C36 Aliphatic Hydroca                            |                        | 1X        | 15.0  | mg/kg        | 15.7     | 04/04/23 05:34 |
| C11-C22 Aromatic Hydroca                             |                        | 1X        | 7.53  | mg/kg        | 8.70     | 04/04/23 02:37 |
| Chlorooctadecane (Sample                             |                        | 177       | 7.33  | %            | 89.2     | 04/04/23 05:34 |
| o-Terphenyl (Sample Surro                            |                        |           |       | %            | 70.4     | 04/04/23 02:37 |
| 2-Fluorobiphenyl (Fractionation Surrogate)           |                        |           |       | %            | 98.7     | 04/04/23 02:37 |
| 2-Bromonaphthalene (Frac                             |                        |           |       | %            | 96.4     | 04/04/23 02:37 |
| Surrogate Acceptance Range [                         | 3 ,                    |           |       | %            | 40 - 140 |                |

<sup>[1]</sup> Hydrocarbon range data excludes area counts of any surrogate(s) and/or internal standards eluting in that range.

 $<sup>\</sup>hbox{\hbox{$[2]$ C11-C22 Aromatic Hydrocarbons excludes the concentration of Target PAH Analytes.}} \\$ 

<sup>[3]</sup> See the case narrative in cases where a dash (-) is entered in the surrogate recovery block.

# **Extractable Petroleum Hydrocarbons Sample: B-59 (3C27022-10)**

#### **SAMPLE INFORMATION**

| Matrix                | Soil                                  |  |
|-----------------------|---------------------------------------|--|
| Containers            | Satisfactory                          |  |
| Aqueous Preservatives | NA NA                                 |  |
| Temperature           | Received on Ice Received at: 4+/-2 C° |  |
| Extraction Method     | EPA Method 3546                       |  |

| EPH ANALYTICAL RES                                   | JOL 13                  |           |       |              | Т        |                |
|------------------------------------------------------|-------------------------|-----------|-------|--------------|----------|----------------|
| Method for Ranges: MADEP EPH 4-1.1                   |                         | Client ID |       |              | B-59     |                |
| Method for Target Analytes                           | : MADEP EPH 4-1.1       | Lab ID    |       | 3C27022-10   |          |                |
| EPH Surrogate Standards:                             |                         |           | Da    | te Collected | 03/24/23 |                |
| Aliphatic: Chlorooctadecane<br>Aromatic: o-Terphenyl |                         |           | Da    | te Received  | 03/27/23 |                |
|                                                      |                         |           | D     | ate Thawed   | NA       |                |
|                                                      |                         |           | Dat   | e Extracted  | 03/30/23 |                |
| EPH Fractionation Surrogat (1) 2-Fluorobiphenyl      | es:                     |           | Perce | nt Moisture  | 13.20    |                |
| (2) 2-Bromonaphthalene                               |                         |           |       |              |          |                |
| RANGE/TARGET ANALY                                   | TE                      | Dilution  | RL    | Units        | Result   | Analyzed       |
| Unadjusted C11-C22 Arc                               | omatic Hydrocarbons [1] | 1X        | 7.63  | mg/kg        | <7.63    | 04/04/23 02:15 |
| ·                                                    | Naphthalene             | 1X        | 0.38  | mg/kg        | <0.38    | 04/04/23 02:15 |
| Diesel PAH                                           | 2-Methylnaphthalene     | 1X        | 0.38  | mg/kg        | <0.38    | 04/04/23 02:15 |
| Analytes                                             | Phenanthrene            | 1X        | 0.38  | mg/kg        | <0.38    | 04/04/23 02:15 |
| ·                                                    | Acenaphthene            | 1X        | 0.38  | mg/kg        | <0.38    | 04/04/23 02:15 |
|                                                      | Acenaphthylene          | 1X        | 0.38  | mg/kg        | <0.38    | 04/04/23 02:15 |
|                                                      | Fluorene                | 1X        | 0.38  | mg/kg        | <0.38    | 04/04/23 02:15 |
|                                                      | Anthracene              | 1X        | 0.38  | mg/kg        | <0.38    | 04/04/23 02:15 |
|                                                      | Fluoranthene            | 1X        | 0.38  | mg/kg        | <0.38    | 04/04/23 02:15 |
|                                                      | Pyrene                  | 1X        | 0.38  | mg/kg        | <0.38    | 04/04/23 02:15 |
|                                                      | Benzo(a)anthracene      | 1X        | 0.38  | mg/kg        | <0.38    | 04/04/23 02:15 |
| Other                                                | Chrysene                | 1X        | 0.38  | mg/kg        | <0.38    | 04/04/23 02:15 |
| Target PAH                                           | Benzo(b)fluoranthene    | 1X        | 0.38  | mg/kg        | <0.38    | 04/04/23 02:15 |
| Analytes                                             | Benzo(k)fluoranthene    | 1X        | 0.38  | mg/kg        | <0.38    | 04/04/23 02:15 |
| ·                                                    | Benzo(a)pyrene          | 1X        | 0.38  | mg/kg        | <0.38    | 04/04/23 02:15 |
|                                                      | Indeno(1,2,3-cd)pyrene  | 1X        | 0.38  | mg/kg        | <0.38    | 04/04/23 02:15 |
|                                                      | Dibenz(a,h)anthracene   | 1X        | 0.38  | mg/kg        | <0.38    | 04/04/23 02:15 |
|                                                      | Benzo(g,h,i)perylene    | 1X        | 0.38  | mg/kg        | <0.38    | 04/04/23 02:15 |
| C9-C18 Aliphatic Hydroc                              |                         | 1X        | 15.2  | mg/kg        | <15.2    | 04/04/23 05:58 |
| C19-C36 Aliphatic Hydro                              |                         | 1X        | 15.2  | mg/kg        | <15.2    | 04/04/23 05:58 |
| C11-C22 Aromatic Hydro                               |                         | 1X        | 7.63  | mg/kg        | <7.63    | 04/04/23 02:15 |
| Chlorooctadecane (Sam                                |                         |           |       | %            | 96.2     | 04/04/23 05:58 |
| o-Terphenyl (Sample Su                               | rrogate)                |           |       | %            | 54.3     | 04/04/23 02:15 |
| 2-Fluorobiphenyl (Fractionation Surrogate)           |                         |           |       | %            | 65.9     | 04/04/23 02:15 |
| 2-Bromonaphthalene (Fr                               | ractionation Surrogate) |           |       | %            | 63.1     | 04/04/23 02:15 |
| Surrogate Acceptance Range                           | e [3]                   |           |       | %            | 40 - 140 |                |

<sup>[1]</sup> Hydrocarbon range data excludes area counts of any surrogate(s) and/or internal standards eluting in that range.

 $<sup>\</sup>hbox{\hbox{$[2]$ C11-C22 Aromatic Hydrocarbons excludes the concentration of Target PAH Analytes.}} \\$ 

<sup>[3]</sup> See the case narrative in cases where a dash (-) is entered in the surrogate recovery block.

# **Extractable Petroleum Hydrocarbons Sample: B-67 (3C27022-11)**

#### **SAMPLE INFORMATION**

| Matrix                | Soil                                  |
|-----------------------|---------------------------------------|
| Containers            | Satisfactory                          |
| Aqueous Preservatives | NA                                    |
| Temperature           | Received on Ice Received at: 4+/-2 C° |
| Extraction Method     | EPA Method 3546                       |

| Method for Ranges: MADEP EPH 4-1.1                                    |                        | Client ID      |       |             | B-67       |                |
|-----------------------------------------------------------------------|------------------------|----------------|-------|-------------|------------|----------------|
| Method for Target Analytes: MADEP EPH 4-1.1                           |                        | Lab ID         |       |             | 3C27022-11 |                |
| EPH Surrogate Standards:                                              |                        | Date Collected |       |             | 03/24/23   |                |
| Aliphatic: Chlorooctadecane                                           |                        |                | Da    | te Received | 03/27/23   |                |
| Aromatic: o-Terphenyl                                                 | Aromatic: o-Terphenyl  |                | D     | ate Thawed  | NA         |                |
|                                                                       |                        |                | Dat   | e Extracted | 03/30/23   |                |
| EPH Fractionation Surrogates                                          | S:                     |                | Perce | nt Moisture | 8.80       |                |
| <ul><li>(1) 2-Fluorobiphenyl</li><li>(2) 2-Bromonaphthalene</li></ul> |                        |                |       |             |            |                |
| RANGE/TARGET ANALYTE                                                  |                        | Dilution       | RL    | Units       | Result     | Analyzed       |
| Unadjusted C11-C22 Aron                                               | natic Hydrocarbons [1] | 1X             | 7.26  | mg/kg       | <7.26      | 04/04/23 13:59 |
|                                                                       | Naphthalene            | 1X             | 0.36  | mg/kg       | <0.36      | 04/04/23 13:59 |
| Diesel PAH                                                            | 2-Methylnaphthalene    | 1X             | 0.36  | mg/kg       | <0.36      | 04/04/23 13:59 |
| Analytes                                                              | Phenanthrene           | 1X             | 0.36  | mg/kg       | <0.36      | 04/04/23 13:59 |
|                                                                       | Acenaphthene           | 1X             | 0.36  | mg/kg       | <0.36      | 04/04/23 13:59 |
|                                                                       | Acenaphthylene         | 1X             | 0.36  | mg/kg       | <0.36      | 04/04/23 13:59 |
|                                                                       | Fluorene               | 1X             | 0.36  | mg/kg       | <0.36      | 04/04/23 13:59 |
|                                                                       | Anthracene             | 1X             | 0.36  | mg/kg       | <0.36      | 04/04/23 13:59 |
|                                                                       | Fluoranthene           | 1X             | 0.36  | mg/kg       | <0.36      | 04/04/23 13:59 |
|                                                                       | Pyrene                 | 1X             | 0.36  | mg/kg       | <0.36      | 04/04/23 13:59 |
|                                                                       | Benzo(a)anthracene     | 1X             | 0.36  | mg/kg       | <0.36      | 04/04/23 13:59 |
| Other                                                                 | Chrysene               | 1X             | 0.36  | mg/kg       | <0.36      | 04/04/23 13:59 |
| Target PAH                                                            | Benzo(b)fluoranthene   | 1X             | 0.36  | mg/kg       | <0.36      | 04/04/23 13:59 |
| Analytes                                                              | Benzo(k)fluoranthene   | 1X             | 0.36  | mg/kg       | <0.36      | 04/04/23 13:59 |
|                                                                       | Benzo(a)pyrene         | 1X             | 0.36  | mg/kg       | <0.36      | 04/04/23 13:59 |
|                                                                       | Indeno(1,2,3-cd)pyrene | 1X             | 0.36  | mg/kg       | <0.36      | 04/04/23 13:59 |
|                                                                       | Dibenz(a,h)anthracene  | 1X             | 0.36  | mg/kg       | <0.36      | 04/04/23 13:59 |
|                                                                       | Benzo(g,h,i)perylene   | 1X             | 0.36  | mg/kg       | <0.36      | 04/04/23 13:59 |
| C9-C18 Aliphatic Hydrocar                                             | bons [1]               | 1X             | 14.5  | mg/kg       | <14.5      | 04/04/23 06:23 |
| C19-C36 Aliphatic Hydroca                                             | arbons [1]             | 1X             | 14.5  | mg/kg       | <14.5      | 04/04/23 06:23 |
| C11-C22 Aromatic Hydroc                                               | arbons [1,2]           | 1X             | 7.26  | mg/kg       | <7.26      | 04/04/23 13:59 |
| Chlorooctadecane (Sample                                              | e Surrogate)           |                |       | %           | 112        | 04/04/23 06:23 |
| o-Terphenyl (Sample Surrogate)                                        |                        |                |       | %           | 71.3       | 04/04/23 13:59 |
| 2-Fluorobiphenyl (Fractionation Surrogate)                            |                        |                |       | %           | 78.9       | 04/04/23 13:59 |
| 2-Bromonaphthalene (Fra                                               | ctionation Surrogate)  |                |       | %           | 75.1       | 04/04/23 13:59 |
| Surrogate Acceptance Range [                                          | [3]                    |                |       | %           | 40 - 140   |                |

<sup>[1]</sup> Hydrocarbon range data excludes area counts of any surrogate(s) and/or internal standards eluting in that range.

 $<sup>\</sup>hbox{\hbox{$[2]$ C11-C22 Aromatic Hydrocarbons excludes the concentration of Target PAH Analytes.}} \\$ 

<sup>[3]</sup> See the case narrative in cases where a dash (-) is entered in the surrogate recovery block.

# **Extractable Petroleum Hydrocarbons Sample: B-71 (3C27022-12)**

#### **SAMPLE INFORMATION**

| Matrix                            | Soil                                  |  |  |  |  |  |
|-----------------------------------|---------------------------------------|--|--|--|--|--|
| Containers                        | Satisfactory                          |  |  |  |  |  |
| Aqueous Preservatives             | NA NA                                 |  |  |  |  |  |
| Temperature                       | Received on Ice Received at: 4+/-2 C° |  |  |  |  |  |
| Extraction Method EPA Method 3546 |                                       |  |  |  |  |  |

| Method for Ranges: MADEP E                     | FDH 4-1 1                                    |          |       | Client ID    | B-71       |                |  |
|------------------------------------------------|----------------------------------------------|----------|-------|--------------|------------|----------------|--|
| Method for Target Analytes: I                  |                                              |          |       | Lab ID       | 3C27022-12 |                |  |
| EPH Surrogate Standards:                       |                                              |          | Dat   | te Collected | 03/24/23   |                |  |
| Aliphatic: Chlorooctadecane                    |                                              |          |       | te Received  | 03/27/23   |                |  |
| Aromatic: o-Terphenyl                          |                                              |          | D     | ate Thawed   | NA         |                |  |
|                                                |                                              |          | Dat   | e Extracted  | 03/30/23   |                |  |
| EPH Fractionation Surrogates                   | :                                            |          | Perce | ent Moisture | 9.70       |                |  |
| (1) 2-Fluorobiphenyl<br>(2) 2-Bromonaphthalene |                                              |          |       |              |            |                |  |
| RANGE/TARGET ANALYTE                           |                                              | Dilution | RL    | Units        | Result     | Analyzed       |  |
| •                                              | Unadjusted C11-C22 Aromatic Hydrocarbons [1] |          | 7.33  | mg/kg        | <7.33      | 04/04/23 03:22 |  |
| onadjusted ell ell filon                       | Naphthalene                                  | 1X<br>1X | 0.36  | mg/kg        | <0.36      | 04/04/23 03:22 |  |
| Diesel PAH                                     | 2-Methylnaphthalene                          | 1X       | 0.36  | mg/kg        | <0.36      | 04/04/23 03:22 |  |
| Analytes                                       | Phenanthrene                                 | 1X       | 0.36  | mg/kg        | <0.36      | 04/04/23 03:22 |  |
| •                                              | Acenaphthene                                 | 1X       | 0.36  | mg/kg        | <0.36      | 04/04/23 03:22 |  |
|                                                | Acenaphthylene                               | 1X       | 0.36  | mg/kg        | <0.36      | 04/04/23 03:22 |  |
|                                                | Fluorene                                     | 1X       | 0.36  | mg/kg        | <0.36      | 04/04/23 03:22 |  |
|                                                | Anthracene                                   | 1X       | 0.36  | mg/kg        | <0.36      | 04/04/23 03:22 |  |
|                                                | Fluoranthene                                 | 1X       | 0.36  | mg/kg        | <0.36      | 04/04/23 03:22 |  |
|                                                | Pyrene                                       | 1X       | 0.36  | mg/kg        | <0.36      | 04/04/23 03:22 |  |
|                                                | Benzo(a)anthracene                           | 1X       | 0.36  | mg/kg        | <0.36      | 04/04/23 03:22 |  |
| Other                                          | Chrysene                                     | 1X       | 0.36  | mg/kg        | <0.36      | 04/04/23 03:22 |  |
| Target PAH                                     | Benzo(b)fluoranthene                         | 1X       | 0.36  | mg/kg        | <0.36      | 04/04/23 03:22 |  |
| Analytes                                       | Benzo(k)fluoranthene                         | 1X       | 0.36  | mg/kg        | <0.36      | 04/04/23 03:22 |  |
|                                                | Benzo(a)pyrene                               | 1X       | 0.36  | mg/kg        | <0.36      | 04/04/23 03:22 |  |
|                                                | Indeno(1,2,3-cd)pyrene                       | 1X       | 0.36  | mg/kg        | <0.36      | 04/04/23 03:22 |  |
|                                                | Dibenz(a,h)anthracene                        | 1X       | 0.36  | mg/kg        | <0.36      | 04/04/23 03:22 |  |
|                                                | Benzo(g,h,i)perylene                         | 1X       | 0.36  | mg/kg        | <0.36      | 04/04/23 03:22 |  |
| C9-C18 Aliphatic Hydrocar                      | 15, , , , ,                                  | 1X       | 14.6  | mg/kg        | <14.6      | 04/04/23 06:47 |  |
| C19-C36 Aliphatic Hydroca                      | arbons [1]                                   | 1X       | 14.6  | mg/kg        | <14.6      | 04/04/23 06:47 |  |
| C11-C22 Aromatic Hydroca                       | arbons [1,2]                                 | 1X       | 7.33  | mg/kg        | <7.33      | 04/04/23 03:22 |  |
| Chlorooctadecane (Sample                       | e Surrogate)                                 |          |       | %            | 100        | 04/04/23 06:47 |  |
| o-Terphenyl (Sample Surro                      | ogate)                                       |          |       | %            | 82.6       | 04/04/23 03:22 |  |
| 2-Fluorobiphenyl (Fraction                     | ation Surrogate)                             |          |       | %            | 96.6       | 04/04/23 03:22 |  |
| 2-Bromonaphthalene (Frac                       | ctionation Surrogate)                        |          |       | %            | 93.2       | 04/04/23 03:22 |  |
| Surrogate Acceptance Range [                   | 3]                                           |          |       | %            | 40 - 140   |                |  |

<sup>[1]</sup> Hydrocarbon range data excludes area counts of any surrogate(s) and/or internal standards eluting in that range.

 $<sup>\</sup>hbox{\hbox{$[2]$ C11-C22 Aromatic Hydrocarbons excludes the concentration of Target PAH Analytes.}} \\$ 

<sup>[3]</sup> See the case narrative in cases where a dash (-) is entered in the surrogate recovery block.

### **Quality Control**

### **Extractable Petroleum Hydrocarbons (MADEP-EPH)**

| Analyte                        | Result | Reporting<br>Qual Limit | Units   | Spike<br>Level | Source<br>Result | %REC            | %REC<br>Limits | RPD  | RPD<br>Limit |
|--------------------------------|--------|-------------------------|---------|----------------|------------------|-----------------|----------------|------|--------------|
| Batch: B3C1293 - EPA 3546      |        |                         |         |                |                  |                 |                |      |              |
| Blank (B3C1293-BLK1)           |        |                         | Pr      | enared: 03/3   | 30/23 Analyzed   | 1: 04/03/23     |                |      |              |
| Unadjusted C11-C22 Aromatic    | ND     | 6.63                    | mg/kg   | cparcar obje   | 70,25 71101,200  | 21. 0 1, 05, 25 |                |      |              |
| Hydrocarbons                   | ND     | 0.05                    | 99      |                |                  |                 |                |      |              |
| Naphthalene                    | ND     | 0.33                    | mg/kg   |                |                  |                 |                |      |              |
| 2-Methylnaphthalene            | ND     | 0.33                    | mg/kg   |                |                  |                 |                |      |              |
| Phenanthrene                   | ND     | 0.33                    | mg/kg   |                |                  |                 |                |      |              |
| Acenaphthene                   | ND     | 0.33                    | mg/kg   |                |                  |                 |                |      |              |
| Acenaphthylene                 | ND     | 0.33                    | mg/kg   |                |                  |                 |                |      |              |
| Fluorene                       | ND     | 0.33                    | mg/kg   |                |                  |                 |                |      |              |
| Anthracene                     | ND     | 0.33                    | mg/kg   |                |                  |                 |                |      |              |
| Fluoranthene                   | ND     | 0.33                    | mg/kg   |                |                  |                 |                |      |              |
| Pyrene                         | ND     | 0.33                    | mg/kg   |                |                  |                 |                |      |              |
| •                              | ND     | 0.33                    | mg/kg   |                |                  |                 |                |      |              |
| Benzo(a)anthracene             |        |                         | mg/kg   |                |                  |                 |                |      |              |
| Chrysene                       | ND     | 0.33                    |         |                |                  |                 |                |      |              |
| Benzo(b)fluoranthene           | ND     | 0.33                    | mg/kg   |                |                  |                 |                |      |              |
| Benzo(k)fluoranthene           | ND     | 0.33                    | mg/kg   |                |                  |                 |                |      |              |
| Benzo(a)pyrene                 | ND     | 0.33                    | mg/kg   |                |                  |                 |                |      |              |
| Indeno(1,2,3-cd)pyrene         | ND     | 0.33                    | mg/kg   |                |                  |                 |                |      |              |
| Dibenz(a,h)anthracene          | ND     | 0.33                    | mg/kg   |                |                  |                 |                |      |              |
| Benzo(g,h,i)perylene           | ND     | 0.33                    | mg/kg   |                |                  |                 |                |      |              |
| C9-C18 Aliphatic Hydrocarbons  | ND     | 13.2                    | mg/kg   |                |                  |                 |                |      |              |
| C19-C36 Aliphatic Hydrocarbons | ND     | 13.2                    | mg/kg   |                |                  |                 |                |      |              |
| C11-C22 Aromatic Hydrocarbons  | ND     | 6.63                    | mg/kg   |                |                  |                 |                |      |              |
| Surrogate: Chlorooctadecane    |        | 7.41                    | mg/kg   | 8.28           |                  | 89.5            | 40-140         |      |              |
| Surrogate: o-Terphenyl         |        | 5.29                    | mg/kg   | 8.28           |                  | 63.9            | 40-140         |      |              |
| Surrogate: 2-Fluorobiphenyl    |        | 2.95                    | mg/kg   | 3.31           |                  | 89.2            | 40-140         |      |              |
| Surrogate: 2-Bromonaphthalene  |        | 2.78                    | mg/kg   | 3.31           |                  | 83.8            | 40-140         |      |              |
| LCS (B3C1293-BS1)              |        |                         | Pr      | epared: 03/3   | 30/23 Analyzed   | d: 04/04/23     |                |      |              |
| Naphthalene                    | 1.66   | 0.33                    | mg/kg   | 2.65           | •                | 62.8            | 40-140         |      |              |
| 2-Methylnaphthalene            | 1.66   | 0.33                    | mg/kg   | 2.65           |                  | 62.5            | 40-140         |      |              |
| Phenanthrene                   | 1.83   | 0.33                    | mg/kg   | 2.65           |                  | 69.1            | 40-140         |      |              |
| Acenaphthene                   | 1.81   | 0.33                    | mg/kg   | 2.65           |                  | 68.2            | 40-140         |      |              |
| Acenaphthylene                 | 1.71   | 0.33                    | mg/kg   | 2.65           |                  | 64.5            | 40-140         |      |              |
| Fluorene                       | 1.73   | 0.33                    | mg/kg   | 2.65           |                  | 65.5            | 40-140         |      |              |
| Anthracene                     |        | 0.33                    |         | 2.65           |                  | 67.0            | 40-140         |      |              |
|                                | 1.78   |                         | mg/kg   |                |                  |                 |                |      |              |
| Fluoranthene                   | 1.93   | 0.33                    | mg/kg   | 2.65           |                  | 72.7            | 40-140         |      |              |
| Pyrene                         | 1.93   | 0.33                    | mg/kg   | 2.65           |                  | 72.7            | 40-140         |      |              |
| Benzo(a)anthracene             | 1.92   | 0.33                    | mg/kg   | 2.65           |                  | 72.6            | 40-140         |      |              |
| Chrysene                       | 2.03   | 0.33                    | mg/kg   | 2.65           |                  | 76.8            | 40-140         |      |              |
| Benzo(b)fluoranthene           | 1.88   | 0.33                    | mg/kg   | 2.65           |                  | 71.0            | 40-140         |      |              |
| Benzo(k)fluoranthene           | 1.98   | 0.33                    | mg/kg   | 2.65           |                  | 74.8            | 40-140         |      |              |
| Benzo(a)pyrene                 | 1.86   | 0.33                    | mg/kg   | 2.65           |                  | 70.1            | 40-140         |      |              |
| Indeno(1,2,3-cd)pyrene         | 1.84   | 0.33                    | mg/kg   | 2.65           |                  | 69.4            | 40-140         |      |              |
| Dibenz(a,h)anthracene          | 1.91   | 0.33                    | mg/kg   | 2.65           |                  | 72.0            | 40-140         |      |              |
| Benzo(g,h,i)perylene           | 1.85   | 0.33                    | mg/kg   | 2.65           |                  | 69.9            | 40-140         |      |              |
| EPH_LCS_Aliphatic_C19-C36      | 14.6   | 0.00                    | mg/kg   | 21.2           |                  | 68.8            | 40-140         |      |              |
| EPH_LCS_Aliphatic_C9-C18       | 8.48   | 0.00                    | mg/kg   | 15.9           |                  | 53.4            | 40-140         |      |              |
| EPH_LCS_Aromatic_C11-C22       | 31.3   | 0.00                    | mg/kg   | 45.0           |                  | 69.5            | 40-140         |      |              |
| Nonane                         | 0.88   | 0.33                    | mg/kg   | 2.65           |                  | 33.2            | 30-140         |      |              |
| Decane                         | 1.25   | 0.33                    | mg/kg   | 2.65           |                  | 47.4            | 40-140         |      |              |
| Dodecane                       | 1.50   | 0.33                    | mg/kg   | 2.65           |                  | 56.8            | 40-140         |      |              |
| Tetradecane                    | 1.55   | 0.33                    | mg/kg   | 2.65           |                  | 58.6            | 40-140         |      |              |
| Hexadecane                     | 1.60   | 0.33                    | mg/kg   | 2.65           |                  | 60.2            | 40-140         |      |              |
| Octadecane                     | 1.70   | 0.33                    | mg/kg   | 2.65           |                  | 64.0            | 40-140         |      |              |
|                                |        |                         | mg/kg   |                |                  |                 |                |      |              |
| Nonadecane                     | 1.76   | 0.33                    | iiig/kg | 2.65           |                  | 66.3            | 40-140         | Page | 18 of        |

# Quality Control (Continued)

# Extractable Petroleum Hydrocarbons (MADEP-EPH) (Continued)

| Analyte                       | Result     | Qual | Reporting<br>Limit | Units | Spike<br>Level | Source<br>Result | %REC        | %REC<br>Limits | RPD   | RPD<br>Limi |
|-------------------------------|------------|------|--------------------|-------|----------------|------------------|-------------|----------------|-------|-------------|
| Batch: B3C1293 - EPA 3546 (C  | Continued) |      |                    |       |                |                  |             |                |       |             |
| LCS (B3C1293-BS1)             | _          |      |                    | Pr    | epared: 03/3   | 30/23 Analyze    | d: 04/03/23 |                |       |             |
| Eicosane                      | 1.81       |      | 0.33               | mg/kg | 2.65           |                  | 68.5        | 40-140         |       |             |
| Docosane                      | 1.88       |      | 0.33               | mg/kg | 2.65           |                  | 71.0        | 40-140         |       |             |
| Tetracosane                   | 1.91       |      | 0.33               | mg/kg | 2.65           |                  | 72.2        | 40-140         |       |             |
| Hexacosane                    | 1.91       |      | 0.33               | mg/kg | 2.65           |                  | 71.9        | 40-140         |       |             |
| Octacosane                    | 1.89       |      | 0.33               | mg/kg | 2.65           |                  | 71.3        | 40-140         |       |             |
| Triacontane                   | 1.85       |      | 0.33               | mg/kg | 2.65           |                  | 69.9        | 40-140         |       |             |
| Hexatriacontane               | 1.57       |      | 0.33               | mg/kg | 2.65           |                  | 59.4        | 40-140         |       |             |
| Surrogate: Chlorooctadecane   |            |      | 6.48               | mg/kg | 8.28           |                  | 78.3        | 40-140         |       |             |
| Surrogate: o-Terphenyl        |            |      | 6.31               | mg/kg | 8.28           |                  | 76.2        | 40-140         |       |             |
| Surrogate: 2-Fluorobiphenyl   |            |      | 3.15               | mg/kg | 3.31           |                  | 95.1        | 40-140         |       |             |
| Surrogate: 2-Bromonaphthalene |            |      | 3.05               | mg/kg | 3.31           |                  | 92.1        | 40-140         |       |             |
|                               |            |      | 3.03               |       |                | 20/22 4 1        |             | 70-170         |       |             |
| LCS Dup (B3C1293-BSD1)        | 1.50       |      | 0.22               |       | -              | 30/23 Analyze    |             | 40 440         | 0.422 |             |
| Naphthalene                   | 1.66       |      | 0.33               | mg/kg | 2.65           |                  | 62.5        | 40-140         | 0.439 | 2!          |
| 2-Methylnaphthalene           | 1.63       |      | 0.33               | mg/kg | 2.65           |                  | 61.6        | 40-140         | 1.57  | 2.          |
| Phenanthrene                  | 1.81       |      | 0.33               | mg/kg | 2.65           |                  | 68.2        | 40-140         | 1.35  | 2           |
| Acenaphtheles                 | 1.79       |      | 0.33               | mg/kg | 2.65           |                  | 67.6        | 40-140         | 0.847 | 2           |
| Acenaphthylene                | 1.72       |      | 0.33               | mg/kg | 2.65           |                  | 65.1        | 40-140         | 0.926 | 2           |
| Fluorene                      | 1.75       |      | 0.33               | mg/kg | 2.65           |                  | 66.1        | 40-140         | 1.03  | 2           |
| Anthracene                    | 1.84       |      | 0.33               | mg/kg | 2.65           |                  | 69.4        | 40-140         | 3.52  | 2           |
| Fluoranthene                  | 1.87       |      | 0.33               | mg/kg | 2.65           |                  | 70.7        | 40-140         | 2.82  | 2.          |
| Pyrene                        | 1.90       |      | 0.33               | mg/kg | 2.65           |                  | 71.7        | 40-140         | 1.42  | 2           |
| Benzo(a)anthracene            | 1.79       |      | 0.33               | mg/kg | 2.65           |                  | 67.6        | 40-140         | 7.02  | 2           |
| Chrysene                      | 2.01       |      | 0.33               | mg/kg | 2.65           |                  | 75.7        | 40-140         | 1.38  | 2           |
| Benzo(b)fluoranthene          | 1.79       |      | 0.33               | mg/kg | 2.65           |                  | 67.4        | 40-140         | 5.27  | 2           |
| Benzo(k)fluoranthene          | 1.92       |      | 0.33               | mg/kg | 2.65           |                  | 72.3        | 40-140         | 3.40  | 2           |
| Benzo(a)pyrene                | 1.73       |      | 0.33               | mg/kg | 2.65           |                  | 65.2        | 40-140         | 7.13  | 2           |
| Indeno(1,2,3-cd)pyrene        | 1.53       |      | 0.33               | mg/kg | 2.65           |                  | 57.9        | 40-140         | 18.1  | 2           |
| Dibenz(a,h)anthracene         | 1.75       |      | 0.33               | mg/kg | 2.65           |                  | 66.1        | 40-140         | 8.62  | 2           |
| Benzo(g,h,i)perylene          | 1.77       |      | 0.33               | mg/kg | 2.65           |                  | 66.7        | 40-140         | 4.65  | 2           |
| EPH_LCS_Aliphatic_C19-C36     | 13.5       |      | 0.00               | mg/kg | 21.2           |                  | 63.7        | 40-140         | 7.71  | 2           |
| EPH_LCS_Aliphatic_C9-C18      | 7.46       |      | 0.00               | mg/kg | 15.9           |                  | 46.9        | 40-140         | 12.8  | 2           |
| EPH_LCS_Aromatic_C11-C22      | 30.2       |      | 0.00               | mg/kg | 45.0           |                  | 67.2        | 40-140         | 3.42  | 2           |
| Nonane                        | 0.81       |      | 0.33               | mg/kg | 2.65           |                  | 30.4        | 30-140         | 8.72  | 2.          |
| Decane                        | 1.10       |      | 0.33               | mg/kg | 2.65           |                  | 41.4        | 40-140         | 13.3  | 2.          |
| Dodecane                      | 1.30       |      | 0.33               | mg/kg | 2.65           |                  | 49.2        | 40-140         | 14.3  | 2.          |
| Tetradecane                   | 1.30       |      | 0.33               | mg/kg | 2.65           |                  | 49.1        | 40-140         | 17.6  | 2           |
| Hexadecane                    | 1.42       |      | 0.33               | mg/kg | 2.65           |                  | 53.4        | 40-140         | 12.0  | 2           |
| Octadecane                    | 1.54       |      | 0.33               | mg/kg | 2.65           |                  | 58.0        | 40-140         | 9.83  | 2           |
| Nonadecane                    | 1.62       |      | 0.33               | mg/kg | 2.65           |                  | 61.0        | 40-140         | 8.29  | 2           |
| Eicosane                      | 1.68       |      | 0.33               | mg/kg | 2.65           |                  | 63.2        | 40-140         | 7.93  | 2           |
| Docosane                      | 1.75       |      | 0.33               | mg/kg | 2.65           |                  | 66.1        | 40-140         | 7.26  | 2           |
| Tetracosane                   | 1.79       |      | 0.33               | mg/kg | 2.65           |                  | 67.4        | 40-140         | 6.95  | 2.          |
| Hexacosane                    | 1.78       |      | 0.33               | mg/kg | 2.65           |                  | 67.1        | 40-140         | 7.01  | 2.          |
| Octacosane                    | 1.75       |      | 0.33               | mg/kg | 2.65           |                  | 66.1        | 40-140         | 7.53  | 2.          |
| Triacontane                   | 1.71       |      | 0.33               | mg/kg | 2.65           |                  | 64.7        | 40-140         | 7.80  | 2.          |
| Hexatriacontane               | 1.43       |      | 0.33               | mg/kg | 2.65           |                  | 54.1        | 40-140         | 9.29  | 2           |
| Surrogate: Chlorooctadecane   |            |      | 5.94               | mg/kg | 8.28           |                  | 71.8        | 40-140         |       |             |
| Surrogate: o-Terphenyl        |            |      | 6.53               | mg/kg | 8.28           |                  | 78.9        | 40-140         |       |             |
| Surrogate: 2-Fluorobiphenyl   |            |      | 3.27               | mg/kg | 3.31           |                  | 98.8        | 40-140         |       |             |
| Surrogate: 2-Bromonaphthalene |            |      | 3.11               | mg/kg | 3.31           |                  | 93.8        | 40-140         |       |             |

# **Quality Control**

(Continued)

### Extractable Petroleum Hydrocarbons (MADEP-EPH) (Continued)

| Analyte                        | Result | Qual | Reporting<br>Limit | Units | Spike<br>Level | Source<br>Result | %REC         | %REC<br>Limits | RPD | RPI<br>Lim |
|--------------------------------|--------|------|--------------------|-------|----------------|------------------|--------------|----------------|-----|------------|
| Batch: B3C1325 - EPA 3546      |        |      |                    |       |                |                  |              |                |     |            |
| Blank (B3C1325-BLK1)           |        |      |                    | Pr    | epared: 03/3   | 30/23 Analyze    | ed: 04/04/23 |                |     |            |
| Unadjusted C11-C22 Aromatic    | ND     |      | 6.63               | mg/kg | cparcar obje   | 70,25 71101,720  | 0 1, 0 1, 25 |                |     |            |
| Hydrocarbons                   | ND.    |      | 0.03               | 99    |                |                  |              |                |     |            |
| Naphthalene                    | ND     |      | 0.33               | mg/kg |                |                  |              |                |     |            |
| 2-Methylnaphthalene            | ND     |      | 0.33               | mg/kg |                |                  |              |                |     |            |
| Phenanthrene                   | ND     |      | 0.33               | mg/kg |                |                  |              |                |     |            |
| Acenaphthene                   | ND     |      | 0.33               | mg/kg |                |                  |              |                |     |            |
| Acenaphthylene                 | ND     |      | 0.33               | mg/kg |                |                  |              |                |     |            |
| Fluorene                       | ND     |      | 0.33               | mg/kg |                |                  |              |                |     |            |
| Anthracene                     | ND     |      | 0.33               | mg/kg |                |                  |              |                |     |            |
| Fluoranthene                   | ND     |      | 0.33               | mg/kg |                |                  |              |                |     |            |
| Pyrene                         | ND     |      | 0.33               | mg/kg |                |                  |              |                |     |            |
| Benzo(a)anthracene             | ND     |      | 0.33               | mg/kg |                |                  |              |                |     |            |
|                                |        |      |                    | mg/kg |                |                  |              |                |     |            |
| Chrysene                       | ND     |      | 0.33               |       |                |                  |              |                |     |            |
| Benzo(b)fluoranthene           | ND     |      | 0.33               | mg/kg |                |                  |              |                |     |            |
| Benzo(k)fluoranthene           | ND     |      | 0.33               | mg/kg |                |                  |              |                |     |            |
| Benzo(a)pyrene                 | ND     |      | 0.33               | mg/kg |                |                  |              |                |     |            |
| Indeno(1,2,3-cd)pyrene         | ND     |      | 0.33               | mg/kg |                |                  |              |                |     |            |
| Dibenz(a,h)anthracene          | ND     |      | 0.33               | mg/kg |                |                  |              |                |     |            |
| Benzo(g,h,i)perylene           | ND     |      | 0.33               | mg/kg |                |                  |              |                |     |            |
| C9-C18 Aliphatic Hydrocarbons  | ND     |      | 13.2               | mg/kg |                |                  |              |                |     |            |
| C19-C36 Aliphatic Hydrocarbons | ND     |      | 13.2               | mg/kg |                |                  |              |                |     |            |
| C11-C22 Aromatic Hydrocarbons  | ND     |      | 6.63               | mg/kg |                |                  |              |                |     |            |
| Surrogate: Chlorooctadecane    |        |      | 9.65               | mg/kg | 8.28           |                  | 117          | 40-140         |     |            |
|                                |        |      | <i>6.57</i>        | mg/kg | 8.28           |                  |              |                |     |            |
| Surrogate: o-Terphenyl         |        |      |                    | mg/kg |                |                  | 79.4         | 40-140         |     |            |
| Surrogate: 2-Fluorobiphenyl    |        |      | 2.78               | mg/kg | 3.31           |                  | 83.9         | 40-140         |     |            |
| Surrogate: 2-Bromonaphthalene  |        |      | 2.63               |       | 3.31           |                  | 79.4         | 40-140         |     |            |
| LCS (B3C1325-BS1)              |        |      |                    |       | epared: 03/3   | 30/23 Analyze    | ed: 04/04/23 |                |     |            |
| Naphthalene                    | 2.15   |      | 0.33               | mg/kg | 2.65           |                  | 81.2         | 40-140         |     |            |
| 2-Methylnaphthalene            | 2.09   |      | 0.33               | mg/kg | 2.65           |                  | 78.9         | 40-140         |     |            |
| Phenanthrene                   | 2.22   |      | 0.33               | mg/kg | 2.65           |                  | 83.6         | 40-140         |     |            |
| Acenaphthene                   | 2.17   |      | 0.33               | mg/kg | 2.65           |                  | 82.0         | 40-140         |     |            |
| Acenaphthylene                 | 2.14   |      | 0.33               | mg/kg | 2.65           |                  | 80.9         | 40-140         |     |            |
| Fluorene                       | 2.14   |      | 0.33               | mg/kg | 2.65           |                  | 80.9         | 40-140         |     |            |
| Anthracene                     | 2.25   |      | 0.33               | mg/kg | 2.65           |                  | 85.0         | 40-140         |     |            |
| Fluoranthene                   | 2.35   |      | 0.33               | mg/kg | 2.65           |                  | 88.6         | 40-140         |     |            |
| Pyrene                         | 2.34   |      | 0.33               | mg/kg | 2.65           |                  | 88.4         | 40-140         |     |            |
| Benzo(a)anthracene             | 2.30   |      | 0.33               | mg/kg | 2.65           |                  | 87.0         | 40-140         |     |            |
| Chrysene                       | 2.44   |      | 0.33               | mg/kg | 2.65           |                  | 92.0         | 40-140         |     |            |
| Benzo(b)fluoranthene           | 2.26   |      | 0.33               | mg/kg | 2.65           |                  | 85.4         | 40-140         |     |            |
|                                |        |      |                    | mg/kg |                |                  |              |                |     |            |
| Benzo(k)fluoranthene           | 2.31   |      | 0.33               |       | 2.65           |                  | 87.3         | 40-140         |     |            |
| Benzo(a)pyrene                 | 2.15   |      | 0.33               | mg/kg | 2.65           |                  | 81.1         | 40-140         |     |            |
| Indeno(1,2,3-cd)pyrene         | 2.05   |      | 0.33               | mg/kg | 2.65           |                  | 77.3         | 40-140         |     |            |
| Dibenz(a,h)anthracene          | 2.05   |      | 0.33               | mg/kg | 2.65           |                  | 77.2         | 40-140         |     |            |
| Benzo(g,h,i)perylene           | 2.13   |      | 0.33               | mg/kg | 2.65           |                  | 80.5         | 40-140         |     |            |
| EPH_LCS_Aliphatic_C19-C36      | 18.7   |      | 0.00               | mg/kg | 21.2           |                  | 88.0         | 40-140         |     |            |
| EPH_LCS_Aliphatic_C9-C18       | 10.3   |      | 0.00               | mg/kg | 15.9           |                  | 65.0         | 40-140         |     |            |
| EPH_LCS_Aromatic_C11-C22       | 37.5   |      | 0.00               | mg/kg | 45.0           |                  | 83.4         | 40-140         |     |            |
| Nonane                         | 1.04   |      | 0.33               | mg/kg | 2.65           |                  | 39.1         | 30-140         |     |            |
| Decane                         | 1.50   |      | 0.33               | mg/kg | 2.65           |                  | 56.8         | 40-140         |     |            |
| Dodecane                       | 1.84   |      | 0.33               | mg/kg | 2.65           |                  | 69.3         | 40-140         |     |            |
| Tetradecane                    | 1.86   |      | 0.33               | mg/kg | 2.65           |                  | 70.2         | 40-140         |     |            |
| Hexadecane                     | 1.96   |      | 0.33               | mg/kg | 2.65           |                  | 74.0         | 40-140         |     |            |
| Octadecane                     | 2.14   |      | 0.33               | mg/kg | 2.65           |                  | 80.9         | 40-140         |     |            |
| Nonadecane                     | 2.25   |      | 0.33               | mg/kg | 2.65           |                  | 85.1         | 40-140         |     |            |
| Eicosane                       | 2.23   |      | 0.33               | mg/kg | 2.65           |                  | 87.3         | 40-140         |     |            |
| LICOSAITE                      |        |      |                    |       |                |                  |              |                |     |            |
| Docosane                       | 2.37   |      | 0.33               | mg/kg | 2.65           |                  | 89.6         | 40-140         |     |            |

# Quality Control (Continued)

### Extractable Petroleum Hydrocarbons (MADEP-EPH) (Continued)

| Analyte                       | Result     | Qual | Reporting<br>Limit | Units  | Spike<br>Level | Source<br>Result | %REC         | %REC<br>Limits | RPD    | RPD<br>Limit |
|-------------------------------|------------|------|--------------------|--------|----------------|------------------|--------------|----------------|--------|--------------|
| Analyte                       | Result     | Quui | Limit              | Offics | Level          | Result           | 70KLC        | Lillics        | KFD    | LIIIII       |
| Batch: B3C1325 - EPA 3546 (   | Continued) |      |                    |        |                |                  |              |                |        |              |
| LCS (B3C1325-BS1)             |            |      |                    |        |                | 30/23 Analyze    |              |                |        |              |
| Hexacosane                    | 2.42       |      | 0.33               | mg/kg  | 2.65           |                  | 91.2         | 40-140         |        |              |
| Octacosane                    | 2.40       |      | 0.33               | mg/kg  | 2.65           |                  | 90.7         | 40-140         |        |              |
| Triacontane                   | 2.38       |      | 0.33               | mg/kg  | 2.65           |                  | 90.0         | 40-140         |        |              |
| Hexatriacontane               | 2.11       |      | 0.33               | mg/kg  | 2.65           |                  | 79.5<br>     | 40-140         |        |              |
| Surrogate: Chlorooctadecane   |            |      | 8.41               | mg/kg  | 8.28           |                  | 102          | 40-140         |        |              |
| Surrogate: o-Terphenyl        |            |      | 7.92               | mg/kg  | 8.28           |                  | <i>95.7</i>  | 40-140         |        |              |
| Surrogate: 2-Fluorobiphenyl   |            |      | 3.61               | mg/kg  | 3.31           |                  | 109          | 40-140         |        |              |
| Surrogate: 2-Bromonaphthalene |            |      | 3.49               | mg/kg  | 3.31           |                  | 105          | 40-140         |        |              |
| LCS Dup (B3C1325-BSD1)        |            |      |                    | Pr     | epared: 03/3   | 30/23 Analyze    | ed: 04/04/23 |                |        |              |
| Naphthalene                   | 2.24       |      | 0.33               | mg/kg  | 2.65           |                  | 84.4         | 40-140         | 3.90   | 25           |
| 2-Methylnaphthalene           | 2.16       |      | 0.33               | mg/kg  | 2.65           |                  | 81.7         | 40-140         | 3.49   | 25           |
| Phenanthrene                  | 2.20       |      | 0.33               | mg/kg  | 2.65           |                  | 83.1         | 40-140         | 0.630  | 25           |
| Acenaphthene                  | 2.23       |      | 0.33               | mg/kg  | 2.65           |                  | 84.0         | 40-140         | 2.44   | 25           |
| Acenaphthylene                | 2.20       |      | 0.33               | mg/kg  | 2.65           |                  | 83.1         | 40-140         | 2.71   | 25           |
| Fluorene                      | 2.17       |      | 0.33               | mg/kg  | 2.65           |                  | 81.9         | 40-140         | 1.29   | 25           |
| Anthracene                    | 2.23       |      | 0.33               | mg/kg  | 2.65           |                  | 84.2         | 40-140         | 0.886  | 25           |
| Fluoranthene                  | 2.28       |      | 0.33               | mg/kg  | 2.65           |                  | 86.0         | 40-140         | 3.01   | 25           |
| Pyrene                        | 2.28       |      | 0.33               | mg/kg  | 2.65           |                  | 86.0         | 40-140         | 2.72   | 25           |
| Benzo(a)anthracene            | 2.24       |      | 0.33               | mg/kg  | 2.65           |                  | 84.7         | 40-140         | 2.71   | 25           |
| Chrysene                      | 2.38       |      | 0.33               | mg/kg  | 2.65           |                  | 89.8         | 40-140         | 2.47   | 25           |
| Benzo(b)fluoranthene          | 2.23       |      | 0.33               | mg/kg  | 2.65           |                  | 84.2         | 40-140         | 1.36   | 25           |
| Benzo(k)fluoranthene          | 2.32       |      | 0.33               | mg/kg  | 2.65           |                  | 87.4         | 40-140         | 0.172  | 25           |
| Benzo(a)pyrene                | 2.14       |      | 0.33               | mg/kg  | 2.65           |                  | 80.8         | 40-140         | 0.402  | 25           |
| Indeno(1,2,3-cd)pyrene        | 2.02       |      | 0.33               | mg/kg  | 2.65           |                  | 76.3         | 40-140         | 1.37   | 25           |
| Dibenz(a,h)anthracene         | 2.03       |      | 0.33               | mg/kg  | 2.65           |                  | 76.7         | 40-140         | 0.617  | 25           |
| Benzo(g,h,i)perylene          | 2.19       |      | 0.33               | mg/kg  | 2.65           |                  | 82.5         | 40-140         | 2.45   | 25           |
| EPH_LCS_Aliphatic_C19-C36     | 20.4       |      | 0.00               | mg/kg  | 21.2           |                  | 96.2         | 40-140         | 8.84   | 25           |
| EPH_LCS_Aliphatic_C9-C18      | 11.9       |      | 0.00               | mg/kg  | 15.9           |                  | 74.6         | 40-140         | 13.7   | 25           |
| EPH_LCS_Aromatic_C11-C22      | 37.5       |      | 0.00               | mg/kg  | 45.0           |                  | 83.4         | 40-140         | 0.0265 | 25           |
| Nonane                        | 1.34       |      | 0.33               | mg/kg  | 2.65           |                  | 50.5         | 30-140         | 25.6   | 25           |
| Decane                        | 1.83       |      | 0.33               | mg/kg  | 2.65           |                  | 68.9         | 40-140         | 19.3   | 25           |
| Dodecane                      | 2.11       |      | 0.33               | mg/kg  | 2.65           |                  | 79.5         | 40-140         | 13.7   | 25           |
| Tetradecane                   | 2.10       |      | 0.33               | mg/kg  | 2.65           |                  | 79.3         | 40-140         | 12.1   | 25           |
| Hexadecane                    | 2.17       |      | 0.33               | mg/kg  | 2.65           |                  | 81.8         | 40-140         | 9.98   | 25           |
| Octadecane                    | 2.31       |      | 0.33               | mg/kg  | 2.65           |                  | 87.4         | 40-140         | 7.63   | 25           |
| Nonadecane                    | 2.42       |      | 0.33               | mg/kg  | 2.65           |                  | 91.2         | 40-140         | 7.00   | 25           |
| Eicosane                      | 2.50       |      | 0.33               | mg/kg  | 2.65           |                  | 94.4         | 40-140         | 7.84   | 25           |
| Docosane                      | 2.60       |      | 0.33               | mg/kg  | 2.65           |                  | 98.1         | 40-140         | 9.06   | 25           |
| Tetracosane                   | 2.65       |      | 0.33               | mg/kg  | 2.65           |                  | 99.9         | 40-140         | 9.41   | 25           |
| Hexacosane                    | 2.65       |      | 0.33               | mg/kg  | 2.65           |                  | 100          | 40-140         | 9.38   | 25           |
| Octacosane                    | 2.64       |      | 0.33               | mg/kg  | 2.65           |                  | 99.7         | 40-140         | 9.45   | 25           |
| Triacontane                   | 2.61       |      | 0.33               | mg/kg  | 2.65           |                  | 98.4         | 40-140         | 8.92   | 25           |
| Hexatriacontane               | 2.32       |      | 0.33               | mg/kg  | 2.65           |                  | 87.5         | 40-140         | 9.61   | 25           |
| Surrogate: Chlorooctadecane   |            |      | 8.87               | mg/kg  | 8.28           |                  | 107          | 40-140         |        |              |
| Surrogate: o-Terphenyl        |            |      | 7.65               | mg/kg  | 8.28           |                  | 92.4         | 40-140         |        |              |
| Surrogate: 2-Fluorobiphenyl   |            |      | 3.30               | mg/kg  | 3.31           |                  | 99.5         | 40-140         |        |              |
| Surrogate: 2-Bromonaphthalene |            |      | 3.12               | mg/kg  | 3.31           |                  | 94.3         | 40-140         |        |              |

#### **Notes and Definitions**

# Item Definition Wet Sample results reported on a wet weight basis. ND Analyte NOT DETECTED at or above the reporting limit.

#### NEW ENGLAND TESTING LABORATO

59 Greenhill Street
West Warwick, RI 02893



1-888-863-8522 PROJ. NO. PROJECT NAME/LOCATION ACCHCOS NO. REPORT TO: INVOICE TO: REMARKS CONTAINERS COMP G R A B DATE TIME SAMPLE I.D. 9:00 XB-2 P(D = 0 10:00 36423 9:00 B-30 B-33 • 10:00 B-51 ID: 20 4 11:00 11:30 B-67 12:30 B-7/ 1:00 Received by: (Signature) Date/Time Date/Time Laboratory Remarks: Special Instructions: List Specific Detection Temp. received: Limit Requirements: Cooled □ Received by: (Signature) Date/Time Received for Laboratory by: (Signature) Teums 3/27/23 Turnaround (Business Days)

<sup>\*\*</sup>Netlab subcontracts the following tests: Radiologicals, Radon, Asbestos, UCMRs, Perchlorate, Bromate, Bromide, Sieve, Salmonella, Carbamates, CT ETPH

|                                                                                                            | MassDEP Analytical Protocol Certification Form                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |                               |                          |  |  |  |  |
|------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|-------------------------------|--------------------------|--|--|--|--|
| Labo                                                                                                       | ratory Na                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | me: New England                           | d Testing Laboratory                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | , Inc.                    | Project #: 3096               |                          |  |  |  |  |
| Proje                                                                                                      | ect Location                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | on: MVG Green                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           | RTN:                          |                          |  |  |  |  |
| This Form provides certifications for the following data set: list Laboratory Sample ID Number(s): 3C27022 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |                               |                          |  |  |  |  |
| Matrio                                                                                                     | ces: 🗆 Gi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | oundwater/Surfac                          | ce Water ⊠ Soil/Se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | diment   Drinking         | ı Water □ Air □ Ot            | her:                     |  |  |  |  |
| CAM                                                                                                        | Protoco                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (check all that a                         | apply below):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                           |                               |                          |  |  |  |  |
|                                                                                                            | 3260 VOC CAM III B ☐ MassDEP VPH (GC/PID/FID) CAM IV A ☐ B082 PCB CAM V A ☐ CAM VI A ☐ CAM VIII B ☐ CAM VIII B ☐                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |                               |                          |  |  |  |  |
|                                                                                                            | B270 SVOC 7010 Metals (GC/MS) 8081 Pesticides 7196 Hex Cr CAM II B □ CAM III C □ CAM IV C □ CAM V B □ CAM VI B □ CAM VI |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |                               |                          |  |  |  |  |
| 6010 Metals CAM III A ☐ CAM III D ☐ CAM IV B ☒ 8151 Herbicides CAM V C ☐ CAM VIII A ☐ CAM                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |                               |                          |  |  |  |  |
| A                                                                                                          | Affirmativ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | e Responses to                            | Questions A throug                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | gh F are required t       | for "Presumptive C            | ertainty" status         |  |  |  |  |
| A                                                                                                          | Custody,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | properly preserv                          | in a condition consisved (including temporation) temporation to the consistence of the co |                           |                               |                          |  |  |  |  |
| В                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | e analytical method<br>tocol(s) followed? | d(s) and all associated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | d QC requirements s       | pecified in the select        | ed ⊠ Yes □ No            |  |  |  |  |
| С                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                           | e actions and analytica<br>ed for all identified perf                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                           |                               | ed ⊠ Yes □ No            |  |  |  |  |
| D                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Assurance and C                           | comply with all the reposition Control Guidel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                           |                               |                          |  |  |  |  |
| E                                                                                                          | <ul><li>a. VPH, modificat</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ion(s)? (Refer to the                     | only<br>Methods only: Was<br>e individual method(s)<br>only: Was the complet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | for a list of significant | modifications).               | nt ⊠ Yes □ No □ Yes □ No |  |  |  |  |
| F                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                           | rotocol QC and perfori<br>y narrative (including a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                           |                               |                          |  |  |  |  |
| Res                                                                                                        | ponses                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | to Questions G,                           | H and I below are re                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | equired for "Presu        | mptive Certainty" s           | status                   |  |  |  |  |
| G                                                                                                          | Were the protocol(                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                           | or below all CAM repor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ting limits specified in  | the selected CAM              | ⊠ Yes □ No¹              |  |  |  |  |
|                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                           | ve "Presumptive Certains described in 310 CMR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                           |                               | usability and            |  |  |  |  |
| Н                                                                                                          | Were all                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | QC performance st                         | andards specified in th                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ne CAM protocol(s) ac     | chieved?                      | ⊠ Yes □ No¹              |  |  |  |  |
| ı                                                                                                          | Were res                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ults reported for the                     | e complete analyte list                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | specified in the select   | ted CAM protocol(s)?          | ⊠ Yes □ No¹              |  |  |  |  |
| ¹All r                                                                                                     | negative re                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | esponses must be                          | addressed in an attac                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ched laboratory narra     | ative.                        |                          |  |  |  |  |
| respoi                                                                                                     | nsible for o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                           | ne pains and penalties<br>nation, the material con                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                           |                               |                          |  |  |  |  |
| Sign                                                                                                       | ature: 🚱                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Color                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Positio                   | n: <u>Laboratory Director</u> |                          |  |  |  |  |
| Print                                                                                                      | ed Name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Richard Warila                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | — Date:                   | 4/4/2023                      |                          |  |  |  |  |

Page 24 of 24



#### REPORT OF ANALYTICAL RESULTS

NETLAB Work Order Number: 4B26010 Client Project: 3096 - Maynard

Report Date: 06-March-2024

Prepared for:

Ralph Tella Lord Environmental, Inc. 1506 Providence Highway, Suite 30 Norwood, MA 02062

> Richard Warila, Laboratory Director New England Testing Laboratory, Inc. 59 Greenhill Street West Warwick, RI 02893 rich.warila@newenglandtesting.com

# Samples Submitted:

The samples listed below were submitted to New England Testing Laboratory on 02/26/24. The group of samples appearing in this report was assigned an internal identification number (case number) for laboratory information management purposes. The client's designations for the individual samples, along with our case numbers, are used to identify the samples in this report. This report of analytical results pertains only to the sample(s) provided to us by the client which are indicated on the custody record. The case number for this sample submission is 4B26010. Custody records are included in this report.

| Lab ID     | Sample     | Matrix | Date Sampled | Date Received |
|------------|------------|--------|--------------|---------------|
| 4B26010-01 | TP-6       | Soil   | 02/23/2024   | 02/26/2024    |
| 4B26010-02 | B-103 0-6' | Soil   | 02/23/2024   | 02/26/2024    |
| 4B26010-03 | B-113 2-4' | Soil   | 02/23/2024   | 02/26/2024    |
| 4B26010-04 | B-112 2-6' | Soil   | 02/23/2024   | 02/26/2024    |

# Request for Analysis

At the client's request, the analyses presented in the following table were performed on the samples submitted.

### B-103 0-6' (Lab Number: 4B26010-02)

|                                | <u>Method</u>     |
|--------------------------------|-------------------|
| Antimony                       | EPA 6010C         |
| Arsenic                        | EPA 6010C         |
| Barium                         | EPA 6010C         |
| Beryllium                      | EPA 6010C         |
| Cadmium                        | EPA 6010C         |
| Chromium                       | EPA 6010C         |
| Flashpoint                     | EPA 1010A-Mod     |
| Lead                           | EPA 6010C         |
| Mercury                        | EPA 7471B         |
| Nickel                         | EPA 6010C         |
| PCBs                           | EPA 8082A         |
| pH                             | SM4500-H-B (11)   |
| Reactive Cyanide               | NETL Internal     |
| Reactive Sulfide               | NETL Internal     |
| Selenium                       | EPA 6010C         |
| Semivolatile Organic Compounds | EPA 8270D         |
| Silver                         | EPA 6010C         |
| Specific Conductance           | SM2510 - Modified |
| Thallium                       | EPA 6010C         |
| Total Petroleum Hydrocarbons   | EPA-8100-mod      |
| Vanadium                       | EPA 6010C         |
| Volatile Organic Compounds     | EPA 8260C         |
| Zinc                           | EPA 6010C         |

### B-112 2-6' (Lab Number: 4B26010-04)

| <u>Method</u>     |
|-------------------|
| EPA 6010C         |
| EPA 1010A-Mod     |
| EPA 6010C         |
| EPA 7471B         |
| EPA 6010C         |
| EPA 8082A         |
| SM4500-H-B (11)   |
| NETL Internal     |
| NETL Internal     |
| EPA 6010C         |
| EPA 8270D         |
| EPA 6010C         |
| SM2510 - Modified |
| EPA 6010C         |
| EPA-8100-mod      |
| EPA 6010C         |
| EPA 8260C         |
| EPA 6010C         |
|                   |

### Request for Analysis (continued)

#### B-113 2-4' (Lab Number: 4B26010-03)

**Method EPA 6010C** Antimony **EPA 6010C** Arsenic Barium **EPA 6010C** Beryllium **EPA 6010C** Cadmium **EPA 6010C** Chromium **EPA 6010C** EPA 1010A-Mod Flashpoint **EPA 6010C** Lead EPA 7471B Mercury Nickel EPA 6010C **PCBs** EPA 8082A SM4500-H-B (11) рΗ Reactive Cyanide **NETL Internal** Reactive Sulfide **NETL Internal** Selenium EPA 6010C Semivolatile Organic Compounds **EPA 8270D** Silver **EPA 6010C** Specific Conductance SM2510 - Modified Thallium **EPA 6010C** Total Petroleum Hydrocarbons EPA-8100-mod Vanadium **EPA 6010C** Volatile Organic Compounds **EPA 8260C** Zinc **EPA 6010C** 

#### TP-6 (Lab Number: 4B26010-01)

**Method Antimony** EPA 6010C Arsenic EPA 6010C Barium EPA 6010C Beryllium EPA 6010C Cadmium **EPA 6010C** Chromium **EPA 6010C** Flashpoint EPA 1010A-Mod **EPA 6010C** Lead Mercury EPA 7471B Nickel **EPA 6010C PCBs** EPA 8082A рΗ SM4500-H-B (11) Reactive Cyanide **NETL Internal** Reactive Sulfide **NETL Internal** Selenium **EPA 6010C** Semivolatile Organic Compounds EPA 8270D Silver EPA 6010C Specific Conductance SM2510 - Modified Thallium EPA 6010C **Total Petroleum Hydrocarbons** EPA-8100-mod Vanadium **EPA 6010C** Volatile Organic Compounds **EPA 8260C EPA 6010C** Zinc

#### **Method References**

Reactive Cyanide, Standard Operating Procedure 407, New England Testing Laboratory Inc.

Reactive Sulfide, Standard Operating Procedure 426, New England Testing Laboratory Inc.

Standard Methods for the Examination of Water and Wastewater, 20th Edition, APHA/ AWWA-WPCF, 1998

Test Methods for Evaluating Solid Waste, Physical/Chemical Methods, SW846, USEPA

#### **Case Narrative**

#### Sample Receipt:

The samples associated with this work order were received in appropriately cooled and preserved containers. The chain of custody was adequately completed and corresponded to the samples submitted.

Exceptions: None

#### **Analysis:**

All samples were prepared and analyzed within method specified holding times and according to NETLAB's documented standard operating procedures. The results for the associated calibration, method blank and laboratory control sample (LCS) were within method specified quality control requirements and allowances. Results for all soil samples, unless otherwise indicated, are reported on a dry weight basis.

Exceptions: None

VOA 8260: Sample 'TP-6' and 'B-113 2-4" were prepared and analyzed utilizing bulk material provided by the client due to matrix interference.

# **Results: General Chemistry**

Sample: TP-6

Lab Number: 4B26010-01 (Soil)

|                      |        |      | Reporting |           |               |               |
|----------------------|--------|------|-----------|-----------|---------------|---------------|
| Analyte              | Result | Qual | Limit     | Units     | Date Prepared | Date Analyzed |
| Flashpoint           | > 200  |      | 70        | degrees F | 03/01/24      | 03/01/24      |
| pH                   | 7.0    |      |           | SU        | 02/28/24      | 02/28/24      |
| Specific Conductance | 56.3   |      | 2.0       | uS/cm     | 02/28/24      | 02/28/24      |

# **Results: General Chemistry**

Sample: B-103 0-6'

Lab Number: 4B26010-02 (Soil)

|                      |        |      | Reporting |           |               |               |
|----------------------|--------|------|-----------|-----------|---------------|---------------|
| Analyte              | Result | Qual | Limit     | Units     | Date Prepared | Date Analyzed |
| Flashpoint           | > 200  |      | 70        | degrees F | 03/01/24      | 03/01/24      |
| рН                   | 6.0    |      |           | SU        | 02/28/24      | 02/28/24      |
| Specific Conductance | 15.9   |      | 2.0       | uS/cm     | 02/28/24      | 02/28/24      |

# **Results: General Chemistry**

Sample: B-113 2-4'

Lab Number: 4B26010-03 (Soil)

|                      |        |      | Reporting |           |               |               |
|----------------------|--------|------|-----------|-----------|---------------|---------------|
| Analyte              | Result | Qual | Limit     | Units     | Date Prepared | Date Analyzed |
| Flashpoint           | > 200  |      | 70        | degrees F | 03/01/24      | 03/01/24      |
| рН                   | 5.1    |      |           | SU        | 02/28/24      | 02/28/24      |
| Specific Conductance | 9.4    |      | 2.0       | uS/cm     | 02/28/24      | 02/28/24      |

# **Results: General Chemistry**

Sample: B-112 2-6'

Lab Number: 4B26010-04 (Soil)

|                      |        |      | Reporting |           |               |               |
|----------------------|--------|------|-----------|-----------|---------------|---------------|
| Analyte              | Result | Qual | Limit     | Units     | Date Prepared | Date Analyzed |
| Flashpoint           | > 200  |      | 70        | degrees F | 03/01/24      | 03/01/24      |
| рН                   | 5.2    |      |           | SU        | 02/28/24      | 02/28/24      |
| Specific Conductance | 17.4   |      | 2.0       | uS/cm     | 02/28/24      | 02/28/24      |

# **Results: Reactivity**

Sample: TP-6

Lab Number: 4B26010-01 (Soil)

|                  |        |      | Reporting |       |               |               |
|------------------|--------|------|-----------|-------|---------------|---------------|
| Analyte          | Result | Qual | Limit     | Units | Date Prepared | Date Analyzed |
| Reactive Cyanide | ND     |      | 0.3       | mg/kg | 02/29/24      | 02/29/24      |
| Reactive Sulfide | ND     |      | 0.1       | mg/kg | 02/29/24      | 02/29/24      |

**Results: Reactivity** 

Sample: B-103 0-6'

Lab Number: 4B26010-02 (Soil)

| Reporting        |        |      |       |       |               |               |  |
|------------------|--------|------|-------|-------|---------------|---------------|--|
| Analyte          | Result | Qual | Limit | Units | Date Prepared | Date Analyzed |  |
| Reactive Cyanide | ND     |      | 0.2   | mg/kg | 02/29/24      | 02/29/24      |  |
| Reactive Sulfide | ND     |      | 0.1   | ma/ka | 02/29/24      | 02/29/24      |  |

**Results: Reactivity** 

Sample: B-113 2-4'

Lab Number: 4B26010-03 (Soil)

| Reporting        |        |      |       |       |               |               |  |
|------------------|--------|------|-------|-------|---------------|---------------|--|
| Analyte          | Result | Qual | Limit | Units | Date Prepared | Date Analyzed |  |
| Reactive Cyanide | ND     |      | 0.2   | mg/kg | 02/29/24      | 02/29/24      |  |
| Reactive Sulfide | ND     |      | 0.1   | ma/ka | 02/29/24      | 02/29/24      |  |

**Results: Reactivity** 

Sample: B-112 2-6'

Lab Number: 4B26010-04 (Soil)

| Reporting        |        |      |       |       |               |               |  |
|------------------|--------|------|-------|-------|---------------|---------------|--|
| Analyte          | Result | Qual | Limit | Units | Date Prepared | Date Analyzed |  |
| Reactive Cyanide | ND     |      | 0.2   | mg/kg | 02/29/24      | 02/29/24      |  |
| Reactive Sulfide | ND     |      | 0.1   | ma/ka | 02/29/24      | 02/29/24      |  |

Sample: TP-6

Lab Number: 4B26010-01 (Soil)

|           | Reporting |      |       |       |               |               |  |  |  |  |
|-----------|-----------|------|-------|-------|---------------|---------------|--|--|--|--|
| Analyte   | Result    | Qual | Limit | Units | Date Prepared | Date Analyzed |  |  |  |  |
| Antimony  | 1.09      |      | 0.86  | mg/kg | 02/27/24      | 03/01/24      |  |  |  |  |
| Arsenic   | 10.5      |      | 1.30  | mg/kg | 02/27/24      | 03/01/24      |  |  |  |  |
| Barium    | 32.5      |      | 0.43  | mg/kg | 02/27/24      | 03/01/24      |  |  |  |  |
| Beryllium | ND        |      | 0.43  | mg/kg | 02/27/24      | 03/01/24      |  |  |  |  |
| Cadmium   | 3.42      |      | 0.65  | mg/kg | 02/27/24      | 03/01/24      |  |  |  |  |
| Chromium  | 13.7      |      | 0.65  | mg/kg | 02/27/24      | 03/01/24      |  |  |  |  |
| Lead      | 38.7      |      | 0.65  | mg/kg | 02/27/24      | 03/01/24      |  |  |  |  |
| Mercury   | 0.129     |      | 0.118 | mg/kg | 02/28/24      | 02/28/24      |  |  |  |  |
| Nickel    | 9.11      |      | 0.65  | mg/kg | 02/27/24      | 03/01/24      |  |  |  |  |
| Selenium  | ND        |      | 1.30  | mg/kg | 02/27/24      | 03/01/24      |  |  |  |  |
| Silver    | ND        |      | 1.30  | mg/kg | 02/27/24      | 03/01/24      |  |  |  |  |
| Vanadium  | 21.4      |      | 0.43  | mg/kg | 02/27/24      | 03/01/24      |  |  |  |  |
| Zinc      | 48.6      |      | 2.6   | mg/kg | 02/27/24      | 03/01/24      |  |  |  |  |
| Thallium  | ND        |      | 0.43  | mg/kg | 02/27/24      | 03/01/24      |  |  |  |  |
|           |           |      |       |       |               |               |  |  |  |  |

Sample: B-103 0-6'

Lab Number: 4B26010-02 (Soil)

| Reporting |        |      |       |       |               |               |  |  |  |
|-----------|--------|------|-------|-------|---------------|---------------|--|--|--|
| Analyte   | Result | Qual | Limit | Units | Date Prepared | Date Analyzed |  |  |  |
| Antimony  | ND     |      | 0.88  | mg/kg | 02/27/24      | 03/01/24      |  |  |  |
| Arsenic   | 5.92   |      | 1.33  | mg/kg | 02/27/24      | 03/01/24      |  |  |  |
| Barium    | 38.0   |      | 0.44  | mg/kg | 02/27/24      | 03/01/24      |  |  |  |
| Beryllium | ND     |      | 0.44  | mg/kg | 02/27/24      | 03/01/24      |  |  |  |
| Cadmium   | 4.33   |      | 0.66  | mg/kg | 02/27/24      | 03/01/24      |  |  |  |
| Chromium  | 19.5   |      | 0.66  | mg/kg | 02/27/24      | 03/01/24      |  |  |  |
| Lead      | 5.29   |      | 0.66  | mg/kg | 02/27/24      | 03/01/24      |  |  |  |
| Mercury   | 0.184  |      | 0.111 | mg/kg | 02/28/24      | 02/28/24      |  |  |  |
| Nickel    | 9.06   |      | 0.66  | mg/kg | 02/27/24      | 03/01/24      |  |  |  |
| Selenium  | ND     |      | 1.33  | mg/kg | 02/27/24      | 03/01/24      |  |  |  |
| Silver    | ND     |      | 1.33  | mg/kg | 02/27/24      | 03/01/24      |  |  |  |
| Vanadium  | 24.4   |      | 0.44  | mg/kg | 02/27/24      | 03/01/24      |  |  |  |
| Zinc      | 22.9   |      | 2.7   | mg/kg | 02/27/24      | 03/01/24      |  |  |  |
| Thallium  | ND     |      | 0.44  | mg/kg | 02/27/24      | 03/01/24      |  |  |  |
|           |        |      |       |       |               |               |  |  |  |

Sample: B-113 2-4' Lab Number: 4B26010-03 (Soil)

| Reporting |        |      |       |       |               |               |  |  |
|-----------|--------|------|-------|-------|---------------|---------------|--|--|
| Analyte   | Result | Qual | Limit | Units | Date Prepared | Date Analyzed |  |  |
| Antimony  | ND     |      | 0.95  | mg/kg | 02/27/24      | 03/01/24      |  |  |
| Arsenic   | 9.73   |      | 1.44  | mg/kg | 02/27/24      | 03/01/24      |  |  |
| Barium    | 13.6   |      | 0.48  | mg/kg | 02/27/24      | 03/01/24      |  |  |
| Beryllium | ND     |      | 0.48  | mg/kg | 02/27/24      | 03/01/24      |  |  |
| Cadmium   | 2.54   |      | 0.72  | mg/kg | 02/27/24      | 03/01/24      |  |  |
| Chromium  | 13.0   |      | 0.72  | mg/kg | 02/27/24      | 03/01/24      |  |  |
| Lead      | 3.91   |      | 0.72  | mg/kg | 02/27/24      | 03/01/24      |  |  |
| Mercury   | ND     |      | 0.110 | mg/kg | 02/28/24      | 02/28/24      |  |  |
| Nickel    | 8.94   |      | 0.72  | mg/kg | 02/27/24      | 03/01/24      |  |  |
| Selenium  | ND     |      | 1.44  | mg/kg | 02/27/24      | 03/01/24      |  |  |
| Silver    | ND     |      | 1.44  | mg/kg | 02/27/24      | 03/01/24      |  |  |
| Vanadium  | 14.4   |      | 0.48  | mg/kg | 02/27/24      | 03/01/24      |  |  |
| Zinc      | 18.0   |      | 2.9   | mg/kg | 02/27/24      | 03/01/24      |  |  |
| Thallium  | ND     |      | 0.48  | mg/kg | 02/27/24      | 03/01/24      |  |  |

Sample: B-112 2-6'

Lab Number: 4B26010-04 (Soil)

| Reporting |        |      |       |       |               |               |  |  |
|-----------|--------|------|-------|-------|---------------|---------------|--|--|
| Analyte   | Result | Qual | Limit | Units | Date Prepared | Date Analyzed |  |  |
| Antimony  | ND     |      | 0.88  | mg/kg | 02/27/24      | 03/01/24      |  |  |
| Arsenic   | 6.40   |      | 1.33  | mg/kg | 02/27/24      | 03/01/24      |  |  |
| Barium    | 65.3   |      | 0.44  | mg/kg | 02/27/24      | 03/01/24      |  |  |
| Beryllium | ND     |      | 0.44  | mg/kg | 02/27/24      | 03/01/24      |  |  |
| Cadmium   | 5.34   |      | 0.66  | mg/kg | 02/27/24      | 03/01/24      |  |  |
| Chromium  | 21.8   |      | 0.66  | mg/kg | 02/27/24      | 03/01/24      |  |  |
| Lead      | 5.94   |      | 0.66  | mg/kg | 02/27/24      | 03/01/24      |  |  |
| Mercury   | ND     |      | 0.097 | mg/kg | 02/28/24      | 02/28/24      |  |  |
| Nickel    | 9.97   |      | 0.66  | mg/kg | 02/27/24      | 03/01/24      |  |  |
| Selenium  | ND     |      | 1.33  | mg/kg | 02/27/24      | 03/01/24      |  |  |
| Silver    | ND     |      | 1.33  | mg/kg | 02/27/24      | 03/01/24      |  |  |
| Vanadium  | 36.7   |      | 0.44  | mg/kg | 02/27/24      | 03/01/24      |  |  |
| Zinc      | 26.3   |      | 2.7   | mg/kg | 02/27/24      | 03/01/24      |  |  |
| Thallium  | ND     |      | 0.44  | mg/kg | 02/27/24      | 03/01/24      |  |  |
|           |        |      |       |       |               |               |  |  |

# **Results: Volatile Organic Compounds 8260C (5035-LL)**

Sample: TP-6

Lab Number: 4B26010-01 (Soil)

| Analyto                           | Posult   | Reporting<br>Qual Limit | Units          | Date Bronaved | Date Analysis       |
|-----------------------------------|----------|-------------------------|----------------|---------------|---------------------|
| Analyte                           | Result   | Qual Limit              | Units          | Date Prepared | Date Analyzed       |
| Acetone                           | ND       | 103                     | ug/kg          | 03/05/24      | 03/05/24            |
| Benzene                           | ND       | 5                       | ug/kg          | 03/05/24      | 03/05/24            |
| Bromobenzene                      | ND       | 5                       | ug/kg          | 03/05/24      | 03/05/24            |
| Bromochloromethane                | ND       | 5                       | ug/kg          | 03/05/24      | 03/05/24            |
| Bromodichloromethane              | ND       | 5                       | ug/kg          | 03/05/24      | 03/05/24            |
| Bromoform                         | ND       | 5                       | ug/kg          | 03/05/24      | 03/05/24            |
| Bromomethane                      | ND       | 5                       | ug/kg          | 03/05/24      | 03/05/24            |
| 2-Butanone                        | ND       | 103                     | ug/kg          | 03/05/24      | 03/05/24            |
| ert-Butyl alcohol                 | ND       | 5                       | ug/kg          | 03/05/24      | 03/05/24            |
| sec-Butylbenzene                  | ND       | 5                       | ug/kg          | 03/05/24      | 03/05/24            |
| n-Butylbenzene                    | ND       | 5                       | ug/kg          | 03/05/24      | 03/05/24            |
| ert-Butylbenzene                  | ND       | 5                       | ug/kg          | 03/05/24      | 03/05/24            |
| Methyl t-butyl ether (MTBE)       | ND       | 5                       | ug/kg          | 03/05/24      | 03/05/24            |
| Carbon Disulfide                  | ND       | 5                       | ug/kg          | 03/05/24      | 03/05/24            |
| Carbon Tetrachloride              | ND       | 5                       | ug/kg          | 03/05/24      | 03/05/24            |
| Chlorobenzene                     | ND       | 5                       | ug/kg          | 03/05/24      | 03/05/24            |
| Chloroethane                      | ND       | 5                       | ug/kg          | 03/05/24      | 03/05/24            |
| Chloroform                        | ND       | 5                       | ug/kg          | 03/05/24      | 03/05/24            |
| Chloromethane                     | ND       | 5                       | ug/kg          | 03/05/24      | 03/05/24            |
| I-Chlorotoluene                   | ND       | 5                       | ug/kg          | 03/05/24      | 03/05/24            |
| -Chlorotoluene                    | ND       | 5                       | ug/kg          | 03/05/24      | 03/05/24            |
| ,2-Dibromo-3-chloropropane (DBCP) | ND       | 5                       | ug/kg          | 03/05/24      | 03/05/24            |
| bibromochloromethane              | ND       | 5                       | ug/kg          | 03/05/24      | 03/05/24            |
| ,2-Dibromoethane (EDB)            | ND       | 5                       | ug/kg          | 03/05/24      | 03/05/24            |
| Dibromomethane                    | ND       | 5                       | ug/kg          | 03/05/24      | 03/05/24            |
| ,,2-Dichlorobenzene               | ND       | 5                       | ug/kg          | 03/05/24      | 03/05/24            |
| ,,3-Dichlorobenzene               | ND       | 5                       | ug/kg          | 03/05/24      | 03/05/24            |
| ,4-Dichlorobenzene                | ND       | 5                       | ug/kg          | 03/05/24      | 03/05/24            |
| ,1-Dichloroethane                 | ND       | 5                       | ug/kg          | 03/05/24      | 03/05/24            |
| 1,2-Dichloroethane                | ND<br>ND | 5                       | ug/kg          | 03/05/24      | 03/05/24            |
| 1,2 Dichloroethene, Total         | ND<br>ND | 5                       | ug/kg          | 03/05/24      | 03/05/24            |
| rans-1,2-Dichloroethene           | ND<br>ND | 5                       | ug/kg<br>ug/kg | 03/05/24      | 03/05/24            |
| cis-1,2-Dichloroethene            | ND<br>ND | 5                       | ug/kg<br>ug/kg | 03/05/24      | 03/05/24            |
| .,1-Dichloroethene                | ND<br>ND | 5                       | ug/kg<br>ug/kg | 03/05/24      | 03/05/24            |
|                                   |          | 5                       | ug/kg<br>ug/kg | 03/05/24      | 03/05/24            |
| ,2-Dichloropropane                | ND       |                         |                |               |                     |
| ,2-Dichloropropane                | ND       | 5                       | ug/kg          | 03/05/24      | 03/05/24            |
| ris-1,3-Dichloropropene           | ND       | 5                       | ug/kg          | 03/05/24      | 03/05/24            |
| rans-1,3-Dichloropropene          | ND       | 5                       | ug/kg          | 03/05/24      | 03/05/24            |
| ,1-Dichloropropene                | ND       | 5                       | ug/kg          | 03/05/24      | 03/05/24            |
| ,3-Dichloropropene (cis + trans)  | ND       | 5                       | ug/kg          | 03/05/24      | 03/05/24            |
| liethyl ether                     | ND       | 5                       | ug/kg          | 03/05/24      | 03/05/24            |
| I,4-Dioxane                       | ND       | 103                     | ug/kg          | 03/05/24      | 03/05/24            |
| Ethylbenzene                      | ND       | 5                       | ug/kg<br>      | 03/05/24      | 03/05/24            |
| Hexachlorobutadiene               | ND       | 5                       | ug/kg<br>      | 03/05/24      | 03/05/24            |
| 2-Hexanone                        | ND       | 103                     | ug/kg          | 03/05/24      | 03/05/24            |
| sopropylbenzene                   | ND       | 5                       | ug/kg          | 03/05/24      | 03/05/24            |
| -Isopropyltoluene                 | ND       | 5                       | ug/kg          | 03/05/24      | <sup>03/05</sup> Pa |

# Results: Volatile Organic Compounds 8260C (5035-LL) (Continued)

Sample: TP-6 (Continued) Lab Number: 4B26010-01 (Soil)

| Analyte                   | Result    | Qual | Reporting<br>Limit | Units          | Date Prepared | Date Analyzed |
|---------------------------|-----------|------|--------------------|----------------|---------------|---------------|
| Methylene Chloride        | ND        |      | 5                  | ug/kg          | 03/05/24      | 03/05/24      |
| 4-Methyl-2-pentanone      | ND<br>ND  |      | 103                | ug/kg<br>ug/kg | 03/05/24      | 03/05/24      |
| Naphthalene               | ND<br>ND  |      | 5                  | ug/kg<br>ug/kg | 03/05/24      | 03/05/24      |
| n-Propylbenzene           | ND<br>ND  |      | 5                  | ug/kg<br>ug/kg | 03/05/24      | 03/05/24      |
| Styrene                   | ND<br>ND  |      | 5                  | ug/kg<br>ug/kg | 03/05/24      | 03/05/24      |
| 1,1,1,2-Tetrachloroethane |           |      | 5                  | ug/kg<br>ug/kg | 03/05/24      | 03/05/24      |
| Tetrachloroethene         | ND        |      | 5                  | ug/kg<br>ug/kg | • •           | 03/05/24      |
|                           | ND        |      |                    |                | 03/05/24      |               |
| Tetrahydrofuran           | ND        |      | 5                  | ug/kg          | 03/05/24      | 03/05/24      |
| Toluene                   | ND        |      | 5                  | ug/kg          | 03/05/24      | 03/05/24      |
| 1,2,4-Trichlorobenzene    | ND        |      | 5                  | ug/kg          | 03/05/24      | 03/05/24      |
| 1,2,3-Trichlorobenzene    | ND        |      | 5                  | ug/kg          | 03/05/24      | 03/05/24      |
| 1,1,2-Trichloroethane     | ND        |      | 5                  | ug/kg          | 03/05/24      | 03/05/24      |
| 1,1,1-Trichloroethane     | ND        |      | 5                  | ug/kg          | 03/05/24      | 03/05/24      |
| Trichloroethene           | ND        |      | 5                  | ug/kg          | 03/05/24      | 03/05/24      |
| 1,2,3-Trichloropropane    | ND        |      | 5                  | ug/kg          | 03/05/24      | 03/05/24      |
| 1,3,5-Trimethylbenzene    | ND        |      | 5                  | ug/kg          | 03/05/24      | 03/05/24      |
| 1,2,4-Trimethylbenzene    | ND        |      | 5                  | ug/kg          | 03/05/24      | 03/05/24      |
| Vinyl Chloride            | ND        |      | 5                  | ug/kg          | 03/05/24      | 03/05/24      |
| o-Xylene                  | ND        |      | 5                  | ug/kg          | 03/05/24      | 03/05/24      |
| m&p-Xylene                | ND        |      | 10                 | ug/kg          | 03/05/24      | 03/05/24      |
| Total xylenes             | ND        |      | 5                  | ug/kg          | 03/05/24      | 03/05/24      |
| 1,1,2,2-Tetrachloroethane | ND        |      | 5                  | ug/kg          | 03/05/24      | 03/05/24      |
| tert-Amyl methyl ether    | ND        |      | 5                  | ug/kg          | 03/05/24      | 03/05/24      |
| 1,3-Dichloropropane       | ND        |      | 5                  | ug/kg          | 03/05/24      | 03/05/24      |
| Ethyl tert-butyl ether    | ND        |      | 5                  | ug/kg          | 03/05/24      | 03/05/24      |
| Diisopropyl ether         | ND        |      | 5                  | ug/kg          | 03/05/24      | 03/05/24      |
| Trichlorofluoromethane    | ND        |      | 5                  | ug/kg          | 03/05/24      | 03/05/24      |
| Dichlorodifluoromethane   | ND        |      | 5                  | ug/kg          | 03/05/24      | 03/05/24      |
| Surrogate(s)              | Recovery% |      | Limits             | 3              |               |               |
| 4-Bromofluorobenzene      | 81.1%     |      | 70-130             | )              | 03/05/24      | 03/05/24      |
| 1,2-Dichloroethane-d4     | 103%      |      | 70-130             | 7              | 03/05/24      | 03/05/24      |
| Toluene-d8                | 92.5%     |      | 70-130             | 7              | 03/05/24      | 03/05/24      |

# **Results: Volatile Organic Compounds 8260C (5035-LL)**

Sample: B-103 0-6'

Lab Number: 4B26010-02 (Soil)

| Analyte  Acetone Benzene Bromobenzene Bromodichloromethane Bromodichloromethane Bromomethane Bromodichloromethane Bromomethane Bromodichloromethane Bromodi | Result  ND | Qual         Limit           106         5           5         5           5         5           5         5           106         5           5         5           5         5           5         5           5         5           5         5           5         5           5         5 | ug/kg | 03/04/24<br>03/04/24<br>03/04/24<br>03/04/24<br>03/04/24<br>03/04/24<br>03/04/24<br>03/04/24<br>03/04/24 | 03/04/24<br>03/04/24<br>03/04/24<br>03/04/24<br>03/04/24<br>03/04/24<br>03/04/24<br>03/04/24<br>03/04/24 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|
| Benzene Bromobenzene Bromochloromethane Bromodichloromethane Bromoform Bromomethane 2-Butanone sert-Butyl alcohol sec-Butylbenzene n-Butylbenzene sert-Butylbenzene detr-Butylbenzene sert-Butylbenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ND N       | 5<br>5<br>5<br>5<br>5<br>106<br>5                                                                                                                                                                                                                                                              | ug/kg<br>ug/kg<br>ug/kg<br>ug/kg<br>ug/kg<br>ug/kg<br>ug/kg | 03/04/24<br>03/04/24<br>03/04/24<br>03/04/24<br>03/04/24<br>03/04/24                                     | 03/04/24<br>03/04/24<br>03/04/24<br>03/04/24<br>03/04/24<br>03/04/24                                     |
| Bromobenzene Bromochloromethane Bromodichloromethane Bromoform Bromomethane 2-Butanone eert-Butyl alcohol sec-Butylbenzene n-Butylbenzene sert-Butylbenzene dert-Butylbenzene eert-Butylbenzene sert-Butylbenzene sert-Butylbenzene sert-Butylbenzene sert-Butylbenzene sert-Butylbenzene sert-Butylbenzene sert-Butylbenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ND N       | 5<br>5<br>5<br>5<br>106<br>5<br>5                                                                                                                                                                                                                                                              | ug/kg<br>ug/kg<br>ug/kg<br>ug/kg<br>ug/kg<br>ug/kg          | 03/04/24<br>03/04/24<br>03/04/24<br>03/04/24<br>03/04/24                                                 | 03/04/24<br>03/04/24<br>03/04/24<br>03/04/24<br>03/04/24                                                 |
| Bromochloromethane Bromodichloromethane Bromoform Bromomethane 2-Butanone eert-Butyl alcohol sec-Butylbenzene n-Butylbenzene sert-Butylbenzene eert-Butylbenzene eert-Butylbenzene Secton Disulfide                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ND            | 5<br>5<br>5<br>106<br>5<br>5                                                                                                                                                                                                                                                                   | ug/kg<br>ug/kg<br>ug/kg<br>ug/kg<br>ug/kg<br>ug/kg          | 03/04/24<br>03/04/24<br>03/04/24<br>03/04/24<br>03/04/24                                                 | 03/04/24<br>03/04/24<br>03/04/24<br>03/04/24                                                             |
| Bromodichloromethane Bromoform Bromomethane 2-Butanone sert-Butyl alcohol sec-Butylbenzene n-Butylbenzene sert-Butylbenzene Methyl t-butyl ether (MTBE) Carbon Disulfide                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ND ND ND ND ND ND ND ND ND                     | 5<br>5<br>5<br>106<br>5<br>5                                                                                                                                                                                                                                                                   | ug/kg<br>ug/kg<br>ug/kg<br>ug/kg<br>ug/kg                   | 03/04/24<br>03/04/24<br>03/04/24<br>03/04/24                                                             | 03/04/24<br>03/04/24<br>03/04/24<br>03/04/24                                                             |
| Bromoform Bromomethane 2-Butanone cert-Butyl alcohol sec-Butylbenzene n-Butylbenzene cert-Butylbenzene Methyl t-butyl ether (MTBE) Carbon Disulfide                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ND<br>ND<br>ND<br>ND<br>ND<br>ND               | 5<br>5<br>106<br>5<br>5                                                                                                                                                                                                                                                                        | ug/kg<br>ug/kg<br>ug/kg<br>ug/kg                            | 03/04/24<br>03/04/24<br>03/04/24                                                                         | 03/04/24<br>03/04/24<br>03/04/24                                                                         |
| Bromomethane 2-Butanone cert-Butyl alcohol sec-Butylbenzene n-Butylbenzene cert-Butylbenzene Methyl t-butyl ether (MTBE) Carbon Disulfide                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ND<br>ND<br>ND<br>ND<br>ND                     | 5<br>106<br>5<br>5                                                                                                                                                                                                                                                                             | ug/kg<br>ug/kg<br>ug/kg                                     | 03/04/24<br>03/04/24                                                                                     | 03/04/24<br>03/04/24                                                                                     |
| 2-Butanone cert-Butyl alcohol sec-Butylbenzene n-Butylbenzene cert-Butylbenzene Methyl t-butyl ether (MTBE) Carbon Disulfide                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ND<br>ND<br>ND<br>ND                           | 106<br>5<br>5                                                                                                                                                                                                                                                                                  | ug/kg<br>ug/kg                                              | 03/04/24                                                                                                 | 03/04/24                                                                                                 |
| cert-Butyl alcohol<br>sec-Butylbenzene<br>n-Butylbenzene<br>cert-Butylbenzene<br>Methyl t-butyl ether (MTBE)<br>Carbon Disulfide                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ND<br>ND<br>ND<br>ND                           | 5<br>5                                                                                                                                                                                                                                                                                         | ug/kg                                                       |                                                                                                          |                                                                                                          |
| sec-Butylbenzene<br>n-Butylbenzene<br>tert-Butylbenzene<br>Methyl t-butyl ether (MTBE)<br>Carbon Disulfide                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ND<br>ND<br>ND                                 | 5                                                                                                                                                                                                                                                                                              |                                                             | 03/04/24                                                                                                 | 03/04/24                                                                                                 |
| n-Butylbenzene<br>cert-Butylbenzene<br>Methyl t-butyl ether (MTBE)<br>Carbon Disulfide                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ND<br>ND                                       |                                                                                                                                                                                                                                                                                                | ug/kg                                                       |                                                                                                          |                                                                                                          |
| cert-Butylbenzene<br>Methyl t-butyl ether (MTBE)<br>Carbon Disulfide                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ND                                             | 5                                                                                                                                                                                                                                                                                              |                                                             | 03/04/24                                                                                                 | 03/04/24                                                                                                 |
| Methyl t-butyl ether (MTBE)<br>Carbon Disulfide                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                |                                                                                                                                                                                                                                                                                                | ug/kg                                                       | 03/04/24                                                                                                 | 03/04/24                                                                                                 |
| Carbon Disulfide                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ND                                             | 5                                                                                                                                                                                                                                                                                              | ug/kg                                                       | 03/04/24                                                                                                 | 03/04/24                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ND                                             | 5                                                                                                                                                                                                                                                                                              | ug/kg                                                       | 03/04/24                                                                                                 | 03/04/24                                                                                                 |
| Carbon Tatrachlarida                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ND                                             | 5                                                                                                                                                                                                                                                                                              | ug/kg                                                       | 03/04/24                                                                                                 | 03/04/24                                                                                                 |
| Carbon retrachionae                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ND                                             | 5                                                                                                                                                                                                                                                                                              | ug/kg                                                       | 03/04/24                                                                                                 | 03/04/24                                                                                                 |
| Chlorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ND                                             | 5                                                                                                                                                                                                                                                                                              | ug/kg                                                       | 03/04/24                                                                                                 | 03/04/24                                                                                                 |
| Chloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ND                                             | 5                                                                                                                                                                                                                                                                                              | ug/kg                                                       | 03/04/24                                                                                                 | 03/04/24                                                                                                 |
| Chloroform                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ND                                             | 5                                                                                                                                                                                                                                                                                              | ug/kg                                                       | 03/04/24                                                                                                 | 03/04/24                                                                                                 |
| Chloromethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ND                                             | 5                                                                                                                                                                                                                                                                                              | ug/kg                                                       | 03/04/24                                                                                                 | 03/04/24                                                                                                 |
| 1-Chlorotoluene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ND                                             | 5                                                                                                                                                                                                                                                                                              | ug/kg                                                       | 03/04/24                                                                                                 | 03/04/24                                                                                                 |
| 2-Chlorotoluene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ND                                             | 5                                                                                                                                                                                                                                                                                              | ug/kg                                                       | 03/04/24                                                                                                 | 03/04/24                                                                                                 |
| ,2-Dibromo-3-chloropropane (DBCP)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ND                                             | 5                                                                                                                                                                                                                                                                                              | ug/kg                                                       | 03/04/24                                                                                                 | 03/04/24                                                                                                 |
| Dibromochloromethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ND                                             | 5                                                                                                                                                                                                                                                                                              | ug/kg                                                       | 03/04/24                                                                                                 | 03/04/24                                                                                                 |
| ,2-Dibromoethane (EDB)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ND                                             | 5                                                                                                                                                                                                                                                                                              | ug/kg                                                       | 03/04/24                                                                                                 | 03/04/24                                                                                                 |
| Dibromomethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ND                                             | 5                                                                                                                                                                                                                                                                                              | ug/kg                                                       | 03/04/24                                                                                                 | 03/04/24                                                                                                 |
| 1,2-Dichlorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ND                                             | 5                                                                                                                                                                                                                                                                                              | ug/kg                                                       | 03/04/24                                                                                                 | 03/04/24                                                                                                 |
| .,3-Dichlorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ND                                             | 5                                                                                                                                                                                                                                                                                              | ug/kg                                                       | 03/04/24                                                                                                 | 03/04/24                                                                                                 |
| 1,4-Dichlorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ND                                             | 5                                                                                                                                                                                                                                                                                              | ug/kg                                                       | 03/04/24                                                                                                 | 03/04/24                                                                                                 |
| .,1-Dichloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ND                                             | 5                                                                                                                                                                                                                                                                                              | ug/kg                                                       | 03/04/24                                                                                                 | 03/04/24                                                                                                 |
| .,2-Dichloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ND                                             | 5                                                                                                                                                                                                                                                                                              | ug/kg                                                       | 03/04/24                                                                                                 | 03/04/24                                                                                                 |
| L,2 Dichloroethene, Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ND                                             | 5                                                                                                                                                                                                                                                                                              | ug/kg                                                       | 03/04/24                                                                                                 | 03/04/24                                                                                                 |
| rans-1,2-Dichloroethene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ND                                             | 5                                                                                                                                                                                                                                                                                              | ug/kg                                                       | 03/04/24                                                                                                 | 03/04/24                                                                                                 |
| cis-1,2-Dichloroethene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ND                                             | 5                                                                                                                                                                                                                                                                                              | ug/kg                                                       | 03/04/24                                                                                                 | 03/04/24                                                                                                 |
| 1,1-Dichloroethene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ND                                             | 5                                                                                                                                                                                                                                                                                              | ug/kg                                                       | 03/04/24                                                                                                 | 03/04/24                                                                                                 |
| I,2-Dichloropropane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ND                                             | 5                                                                                                                                                                                                                                                                                              | ug/kg                                                       | 03/04/24                                                                                                 | 03/04/24                                                                                                 |
| ,2-Dichloropropane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ND                                             | 5                                                                                                                                                                                                                                                                                              | ug/kg                                                       | 03/04/24                                                                                                 | 03/04/24                                                                                                 |
| cis-1,3-Dichloropropene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ND                                             | 5                                                                                                                                                                                                                                                                                              | ug/kg                                                       | 03/04/24                                                                                                 | 03/04/24                                                                                                 |
| trans-1,3-Dichloropropene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ND                                             | 5                                                                                                                                                                                                                                                                                              | ug/kg                                                       | 03/04/24                                                                                                 | 03/04/24                                                                                                 |
| 1,1-Dichloropropene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ND                                             | 5                                                                                                                                                                                                                                                                                              | ug/kg                                                       | 03/04/24                                                                                                 | 03/04/24                                                                                                 |
| 1,3-Dichloropropene (cis + trans)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ND                                             | 5                                                                                                                                                                                                                                                                                              | ug/kg                                                       | 03/04/24                                                                                                 | 03/04/24                                                                                                 |
| Diethyl ether                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ND                                             | 5                                                                                                                                                                                                                                                                                              | ug/kg                                                       | 03/04/24                                                                                                 | 03/04/24                                                                                                 |
| 1,4-Dioxane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ND                                             | 106                                                                                                                                                                                                                                                                                            | ug/kg                                                       | 03/04/24                                                                                                 | 03/04/24                                                                                                 |
| Ethylbenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ND                                             | 5                                                                                                                                                                                                                                                                                              | ug/kg                                                       | 03/04/24                                                                                                 | 03/04/24                                                                                                 |
| Hexachlorobutadiene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ND                                             | 5                                                                                                                                                                                                                                                                                              | ug/kg<br>ug/kg                                              | 03/04/24                                                                                                 | 03/04/24                                                                                                 |
| 2-Hexanone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ND                                             | 106                                                                                                                                                                                                                                                                                            | ug/kg<br>ug/kg                                              | 03/04/24                                                                                                 | 03/04/24                                                                                                 |
| [sopropylbenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ND                                             | 5                                                                                                                                                                                                                                                                                              | ug/kg<br>ug/kg                                              | 03/04/24                                                                                                 | 03/04/24                                                                                                 |
| p-Isopropyltoluene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ND                                             | 5                                                                                                                                                                                                                                                                                              | ug/kg<br>ug/kg                                              | 03/04/24                                                                                                 | 03/04 Pag                                                                                                |

# Results: Volatile Organic Compounds 8260C (5035-LL) (Continued)

Sample: B-103 0-6' (Continued)

Lab Number: 4B26010-02 (Soil)

| Analyte                   | Result    | Qual | Reporting<br>Limit | Units | Date Prepared | Date Analyzed |
|---------------------------|-----------|------|--------------------|-------|---------------|---------------|
| Methylene Chloride        | ND        |      | 5                  | ug/kg | 03/04/24      | 03/04/24      |
| 4-Methyl-2-pentanone      | ND        |      | 106                | ug/kg | 03/04/24      | 03/04/24      |
| Naphthalene               | ND        |      | 5                  | ug/kg | 03/04/24      | 03/04/24      |
| n-Propylbenzene           | ND        |      | 5                  | ug/kg | 03/04/24      | 03/04/24      |
| Styrene                   | ND        |      | 5                  | ug/kg | 03/04/24      | 03/04/24      |
| 1,1,1,2-Tetrachloroethane | ND        |      | 5                  | ug/kg | 03/04/24      | 03/04/24      |
| Tetrachloroethene         | ND        |      | 5                  | ug/kg | 03/04/24      | 03/04/24      |
| Tetrahydrofuran           | ND        |      | 5                  | ug/kg | 03/04/24      | 03/04/24      |
| Toluene                   | ND        |      | 5                  | ug/kg | 03/04/24      | 03/04/24      |
| 1,2,4-Trichlorobenzene    | ND        |      | 5                  | ug/kg | 03/04/24      | 03/04/24      |
| 1,2,3-Trichlorobenzene    | ND        |      | 5                  | ug/kg | 03/04/24      | 03/04/24      |
| 1,1,2-Trichloroethane     | ND        |      | 5                  | ug/kg | 03/04/24      | 03/04/24      |
| 1,1,1-Trichloroethane     | ND        |      | 5                  | ug/kg | 03/04/24      | 03/04/24      |
| Trichloroethene           | ND        |      | 5                  | ug/kg | 03/04/24      | 03/04/24      |
| 1,2,3-Trichloropropane    | ND        |      | 5                  | ug/kg | 03/04/24      | 03/04/24      |
| 1,3,5-Trimethylbenzene    | ND        |      | 5                  | ug/kg | 03/04/24      | 03/04/24      |
| 1,2,4-Trimethylbenzene    | ND        |      | 5                  | ug/kg | 03/04/24      | 03/04/24      |
| Vinyl Chloride            | ND        |      | 5                  | ug/kg | 03/04/24      | 03/04/24      |
| o-Xylene                  | ND        |      | 5                  | ug/kg | 03/04/24      | 03/04/24      |
| m&p-Xylene                | ND        |      | 11                 | ug/kg | 03/04/24      | 03/04/24      |
| Total xylenes             | ND        |      | 5                  | ug/kg | 03/04/24      | 03/04/24      |
| 1,1,2,2-Tetrachloroethane | ND        |      | 5                  | ug/kg | 03/04/24      | 03/04/24      |
| tert-Amyl methyl ether    | ND        |      | 5                  | ug/kg | 03/04/24      | 03/04/24      |
| 1,3-Dichloropropane       | ND        |      | 5                  | ug/kg | 03/04/24      | 03/04/24      |
| Ethyl tert-butyl ether    | ND        |      | 5                  | ug/kg | 03/04/24      | 03/04/24      |
| Diisopropyl ether         | ND        |      | 5                  | ug/kg | 03/04/24      | 03/04/24      |
| Trichlorofluoromethane    | ND        |      | 5                  | ug/kg | 03/04/24      | 03/04/24      |
| Dichlorodifluoromethane   | ND        |      | 5                  | ug/kg | 03/04/24      | 03/04/24      |
| Surrogate(s)              | Recovery% |      | Limits             |       |               |               |
| 4-Bromofluorobenzene      | 99.1%     |      | 70-130             | )     | 03/04/24      | 03/04/24      |
| 1,2-Dichloroethane-d4     | 106%      |      | 70-130             | )     | 03/04/24      | 03/04/24      |
| Toluene-d8                | 98.5%     |      | 70-130             | )     | 03/04/24      | 03/04/24      |

## **Results: Volatile Organic Compounds 8260C (5035-LL)**

Sample: B-113 2-4'

Lab Number: 4B26010-03 (Soil)

| Analyte                            | Result   | Reporting<br>Qual Limit | Units          | Date Prepared | Date Analyzed       |
|------------------------------------|----------|-------------------------|----------------|---------------|---------------------|
| Alialyte                           | Result   | Quai Lillit             | Units          | Date Prepared | Date Analyzed       |
| Acetone                            | ND       | 823                     | ug/kg          | 03/05/24      | 03/05/24            |
| Benzene                            | ND       | 6                       | ug/kg          | 03/05/24      | 03/05/24            |
| Bromobenzene                       | ND       | 6                       | ug/kg          | 03/05/24      | 03/05/24            |
| Bromochloromethane                 | ND       | 6                       | ug/kg          | 03/05/24      | 03/05/24            |
| Bromodichloromethane               | ND       | 6                       | ug/kg          | 03/05/24      | 03/05/24            |
| Bromoform                          | ND       | 6                       | ug/kg          | 03/05/24      | 03/05/24            |
| Bromomethane                       | ND       | 6                       | ug/kg          | 03/05/24      | 03/05/24            |
| 2-Butanone                         | ND       | 118                     | ug/kg          | 03/05/24      | 03/05/24            |
| tert-Butyl alcohol                 | ND       | 6                       | ug/kg          | 03/05/24      | 03/05/24            |
| sec-Butylbenzene                   | ND       | 6                       | ug/kg          | 03/05/24      | 03/05/24            |
| n-Butylbenzene                     | ND       | 6                       | ug/kg          | 03/05/24      | 03/05/24            |
| tert-Butylbenzene                  | ND       | 6                       | ug/kg          | 03/05/24      | 03/05/24            |
| Methyl t-butyl ether (MTBE)        | ND       | 6                       | ug/kg          | 03/05/24      | 03/05/24            |
| Carbon Disulfide                   | ND       | 6                       | ug/kg          | 03/05/24      | 03/05/24            |
| Carbon Tetrachloride               | ND       | 6                       | ug/kg          | 03/05/24      | 03/05/24            |
| Chlorobenzene                      | ND       | 6                       | ug/kg          | 03/05/24      | 03/05/24            |
| Chloroethane                       | ND       | 6                       | ug/kg          | 03/05/24      | 03/05/24            |
| Chloroform                         | ND       | 6                       | ug/kg          | 03/05/24      | 03/05/24            |
| Chloromethane                      | ND       | 6                       | ug/kg          | 03/05/24      | 03/05/24            |
| 4-Chlorotoluene                    | ND       | 6                       | ug/kg          | 03/05/24      | 03/05/24            |
| 2-Chlorotoluene                    | ND       | 6                       | ug/kg          | 03/05/24      | 03/05/24            |
| 1,2-Dibromo-3-chloropropane (DBCP) | ND       | 6                       | ug/kg          | 03/05/24      | 03/05/24            |
| Dibromochloromethane               | ND       | 6                       | ug/kg          | 03/05/24      | 03/05/24            |
| 1,2-Dibromoethane (EDB)            | ND       | 6                       | ug/kg          | 03/05/24      | 03/05/24            |
| Dibromomethane                     | ND       | 6                       | ug/kg          | 03/05/24      | 03/05/24            |
| 1,2-Dichlorobenzene                | ND       | 6                       | ug/kg          | 03/05/24      | 03/05/24            |
| 1,3-Dichlorobenzene                | ND       | 6                       | ug/kg          | 03/05/24      | 03/05/24            |
| 1,4-Dichlorobenzene                | ND       | 6                       | ug/kg          | 03/05/24      | 03/05/24            |
| 1,1-Dichloroethane                 | ND       | 6                       | ug/kg          | 03/05/24      | 03/05/24            |
| 1,2-Dichloroethane                 | ND       | 6                       | ug/kg          | 03/05/24      | 03/05/24            |
| 1,2 Dichloroethene, Total          | ND<br>ND | 6                       | ug/kg          | 03/05/24      | 03/05/24            |
| trans-1,2-Dichloroethene           | ND<br>ND | 6                       | ug/kg<br>ug/kg | 03/05/24      | 03/05/24            |
| cis-1,2-Dichloroethene             | ND<br>ND | 6                       | ug/kg<br>ug/kg | 03/05/24      | 03/05/24            |
| 1,1-Dichloroethene                 |          | 6                       |                |               | 03/05/24            |
|                                    | ND<br>ND | 6                       | ug/kg          | 03/05/24      |                     |
| 1,2-Dichloropropane                | ND       |                         | ug/kg          | 03/05/24      | 03/05/24            |
| 2,2-Dichloropropane                | ND       | 6                       | ug/kg          | 03/05/24      | 03/05/24            |
| cis-1,3-Dichloropropene            | ND       | 6                       | ug/kg          | 03/05/24      | 03/05/24            |
| trans-1,3-Dichloropropene          | ND       | 6                       | ug/kg          | 03/05/24      | 03/05/24            |
| 1,1-Dichloropropene                | ND       | 6                       | ug/kg          | 03/05/24      | 03/05/24            |
| 1,3-Dichloropropene (cis + trans)  | ND       | 6                       | ug/kg          | 03/05/24      | 03/05/24            |
| Diethyl ether                      | ND       | 6                       | ug/kg          | 03/05/24      | 03/05/24            |
| 1,4-Dioxane                        | ND       | 118                     | ug/kg          | 03/05/24      | 03/05/24            |
| Ethylbenzene                       | ND       | 6                       | ug/kg          | 03/05/24      | 03/05/24            |
| Hexachlorobutadiene                | ND       | 6                       | ug/kg          | 03/05/24      | 03/05/24            |
| 2-Hexanone                         | ND       | 118                     | ug/kg          | 03/05/24      | 03/05/24            |
| Isopropylbenzene                   | ND       | 6                       | ug/kg          | 03/05/24      | 03/05/24            |
| p-Isopropyltoluene                 | ND       | 6                       | ug/kg          | 03/05/24      | <sup>03/05</sup> Pa |

# Results: Volatile Organic Compounds 8260C (5035-LL) (Continued)

Sample: B-113 2-4' (Continued)

Lab Number: 4B26010-03 (Soil)

| Analyte                   | Result    | Qual | Reporting<br>Limit | Units | Date Prepared | Date Analyzed |
|---------------------------|-----------|------|--------------------|-------|---------------|---------------|
| Methylene Chloride        | ND        |      | 6                  | ug/kg | 03/05/24      | 03/05/24      |
| 4-Methyl-2-pentanone      | ND        |      | 118                | ug/kg | 03/05/24      | 03/05/24      |
| Naphthalene               | ND        |      | 6                  | ug/kg | 03/05/24      | 03/05/24      |
| n-Propylbenzene           | ND        |      | 6                  | ug/kg | 03/05/24      | 03/05/24      |
| Styrene                   | ND        |      | 6                  | ug/kg | 03/05/24      | 03/05/24      |
| 1,1,1,2-Tetrachloroethane | ND        |      | 6                  | ug/kg | 03/05/24      | 03/05/24      |
| Tetrachloroethene         | ND        |      | 6                  | ug/kg | 03/05/24      | 03/05/24      |
| Tetrahydrofuran           | ND        |      | 6                  | ug/kg | 03/05/24      | 03/05/24      |
| Toluene                   | ND        |      | 6                  | ug/kg | 03/05/24      | 03/05/24      |
| 1,2,4-Trichlorobenzene    | ND        |      | 6                  | ug/kg | 03/05/24      | 03/05/24      |
| 1,2,3-Trichlorobenzene    | ND        |      | 6                  | ug/kg | 03/05/24      | 03/05/24      |
| 1,1,2-Trichloroethane     | ND        |      | 6                  | ug/kg | 03/05/24      | 03/05/24      |
| 1,1,1-Trichloroethane     | ND        |      | 6                  | ug/kg | 03/05/24      | 03/05/24      |
| Trichloroethene           | ND        |      | 6                  | ug/kg | 03/05/24      | 03/05/24      |
| 1,2,3-Trichloropropane    | ND        |      | 6                  | ug/kg | 03/05/24      | 03/05/24      |
| 1,3,5-Trimethylbenzene    | ND        |      | 6                  | ug/kg | 03/05/24      | 03/05/24      |
| 1,2,4-Trimethylbenzene    | ND        |      | 6                  | ug/kg | 03/05/24      | 03/05/24      |
| Vinyl Chloride            | ND        |      | 6                  | ug/kg | 03/05/24      | 03/05/24      |
| o-Xylene                  | ND        |      | 6                  | ug/kg | 03/05/24      | 03/05/24      |
| m&p-Xylene                | ND        |      | 12                 | ug/kg | 03/05/24      | 03/05/24      |
| Total xylenes             | ND        |      | 6                  | ug/kg | 03/05/24      | 03/05/24      |
| 1,1,2,2-Tetrachloroethane | ND        |      | 6                  | ug/kg | 03/05/24      | 03/05/24      |
| tert-Amyl methyl ether    | ND        |      | 6                  | ug/kg | 03/05/24      | 03/05/24      |
| 1,3-Dichloropropane       | ND        |      | 6                  | ug/kg | 03/05/24      | 03/05/24      |
| Ethyl tert-butyl ether    | ND        |      | 6                  | ug/kg | 03/05/24      | 03/05/24      |
| Diisopropyl ether         | ND        |      | 6                  | ug/kg | 03/05/24      | 03/05/24      |
| Trichlorofluoromethane    | ND        |      | 6                  | ug/kg | 03/05/24      | 03/05/24      |
| Dichlorodifluoromethane   | ND        |      | 6                  | ug/kg | 03/05/24      | 03/05/24      |
| Surrogate(s)              | Recovery% |      | Limits             |       |               |               |
| 4-Bromofluorobenzene      | 99.7%     |      | 70-130             | )     | 03/05/24      | 03/05/24      |
| 1,2-Dichloroethane-d4     | 101%      |      | 70-130             | )     | 03/05/24      | 03/05/24      |
| Toluene-d8                | 96.0%     |      | 70-130             | )     | 03/05/24      | 03/05/24      |

## **Results: Volatile Organic Compounds 8260C (5035-LL)**

Sample: B-112 2-6'

Lab Number: 4B26010-04 (Soil)

| cetone                                              |          |        |                |                      |                      |
|-----------------------------------------------------|----------|--------|----------------|----------------------|----------------------|
|                                                     | ND       | 137    | ug/kg          | 03/04/24             | 03/04/24             |
| Benzene                                             | ND       | 7      | ug/kg          | 03/04/24             | 03/04/24             |
| Bromobenzene                                        | ND       | 7      | ug/kg          | 03/04/24             | 03/04/24             |
| Bromochloromethane                                  | ND       | 7      | ug/kg          | 03/04/24             | 03/04/24             |
| Bromodichloromethane                                | ND       | 7      | ug/kg          | 03/04/24             | 03/04/24             |
| Bromoform                                           | ND       | 7      | ug/kg          | 03/04/24             | 03/04/24             |
| Bromomethane                                        | ND       | 7      | ug/kg          | 03/04/24             | 03/04/24             |
| -Butanone                                           | ND       | 137    | ug/kg          | 03/04/24             | 03/04/24             |
| ert-Butyl alcohol                                   | ND       | 7      | ug/kg          | 03/04/24             | 03/04/24             |
| ec-Butylbenzene                                     | ND       | 7      | ug/kg          | 03/04/24             | 03/04/24             |
| i-Butylbenzene                                      | ND       | 7      | ug/kg          | 03/04/24             | 03/04/24             |
| ert-Butylbenzene                                    | ND       | 7      | ug/kg          | 03/04/24             | 03/04/24             |
| lethyl t-butyl ether (MTBE)                         | ND       | 7      | ug/kg          | 03/04/24             | 03/04/24             |
| Carbon Disulfide                                    | ND       | 7      | ug/kg          | 03/04/24             | 03/04/24             |
| Carbon Tetrachloride                                | ND       | 7      | ug/kg          | 03/04/24             | 03/04/24             |
| Chlorobenzene                                       | ND       | 7      | ug/kg          | 03/04/24             | 03/04/24             |
| Chloroethane                                        | ND       | 7      | ug/kg          | 03/04/24             | 03/04/24             |
| Chloroform                                          | ND       | 7      | ug/kg          | 03/04/24             | 03/04/24             |
| Chloromethane                                       | ND       | 7      | ug/kg          | 03/04/24             | 03/04/24             |
| -Chlorotoluene                                      | ND       | 7      | ug/kg          | 03/04/24             | 03/04/24             |
| -Chlorotoluene                                      | ND       | 7      | ug/kg          | 03/04/24             | 03/04/24             |
| ,2-Dibromo-3-chloropropane (DBCP)                   | ND       | 7      | ug/kg          | 03/04/24             | 03/04/24             |
| Dibromochloromethane                                | ND       | 7      | ug/kg          | 03/04/24             | 03/04/24             |
| ,2-Dibromoethane (EDB)                              | ND       | 7      | ug/kg          | 03/04/24             | 03/04/24             |
| Dibromomethane                                      | ND       | 7      | ug/kg          | 03/04/24             | 03/04/24             |
| ,2-Dichlorobenzene                                  | ND       | 7      | ug/kg          | 03/04/24             | 03/04/24             |
| ,3-Dichlorobenzene                                  | ND       | 7      | ug/kg          | 03/04/24             | 03/04/24             |
| ,,4-Dichlorobenzene                                 | ND<br>ND | 7      | ug/kg          | 03/04/24             | 03/04/24             |
| ,1-Dichloroethane                                   | ND<br>ND | 7      | ug/kg          | 03/04/24             | 03/04/24             |
| ,2-Dichloroethane                                   | ND<br>ND | 7      | ug/kg          | 03/04/24             | 03/04/24             |
| •                                                   |          | 7      |                |                      |                      |
| ,2 Dichloroethene, Total<br>rans-1,2-Dichloroethene | ND       | 7      | ug/kg          | 03/04/24<br>03/04/24 | 03/04/24<br>03/04/24 |
| ·                                                   | ND       | 7      | ug/kg          |                      |                      |
| is-1,2-Dichloroethene                               | ND       |        | ug/kg          | 03/04/24             | 03/04/24             |
| ,1-Dichloroethene                                   | ND       | 7      | ug/kg          | 03/04/24             | 03/04/24             |
| ,,2-Dichloropropane                                 | ND       | 7      | ug/kg          | 03/04/24             | 03/04/24             |
| 2,2-Dichloropropane                                 | ND       | 7      | ug/kg          | 03/04/24             | 03/04/24             |
| is-1,3-Dichloropropene                              | ND       | 7      | ug/kg          | 03/04/24             | 03/04/24             |
| rans-1,3-Dichloropropene                            | ND       | 7      | ug/kg          | 03/04/24             | 03/04/24             |
| ,1-Dichloropropene                                  | ND       | 7      | ug/kg          | 03/04/24             | 03/04/24             |
| ,3-Dichloropropene (cis + trans)                    | ND       | 7      | ug/kg<br>"     | 03/04/24             | 03/04/24             |
| Diethyl ether                                       | ND       | 7      | ug/kg<br>"     | 03/04/24             | 03/04/24             |
| ,4-Dioxane                                          | ND       | 137    | ug/kg<br>"     | 03/04/24             | 03/04/24             |
| ithylbenzene                                        | ND       | 7      | ug/kg<br>      | 03/04/24             | 03/04/24             |
| lexachlorobutadiene<br>                             | ND       | 7      | ug/kg<br>      | 03/04/24             | 03/04/24             |
| -Hexanone<br>                                       | ND       | 137    | ug/kg<br>      | 03/04/24             | 03/04/24             |
| sopropylbenzene                                     | ND<br>ND | 7<br>7 | ug/kg<br>ug/kg | 03/04/24<br>03/04/24 | 03/04/24<br>03/04 D  |

# Results: Volatile Organic Compounds 8260C (5035-LL) (Continued)

Sample: B-112 2-6' (Continued)

Lab Number: 4B26010-04 (Soil)

| Analyte                   | Result    | Qual | Reporting<br>Limit | Units | Date Prepared | Date Analyzed |
|---------------------------|-----------|------|--------------------|-------|---------------|---------------|
| Methylene Chloride        | ND        |      | 7                  | ug/kg | 03/04/24      | 03/04/24      |
| 4-Methyl-2-pentanone      | ND        |      | 137                | ug/kg | 03/04/24      | 03/04/24      |
| Naphthalene               | ND        |      | 7                  | ug/kg | 03/04/24      | 03/04/24      |
| n-Propylbenzene           | ND        |      | 7                  | ug/kg | 03/04/24      | 03/04/24      |
| Styrene                   | ND        |      | 7                  | ug/kg | 03/04/24      | 03/04/24      |
| 1,1,1,2-Tetrachloroethane | ND        |      | 7                  | ug/kg | 03/04/24      | 03/04/24      |
| Tetrachloroethene         | ND        |      | 7                  | ug/kg | 03/04/24      | 03/04/24      |
| Tetrahydrofuran           | ND        |      | 7                  | ug/kg | 03/04/24      | 03/04/24      |
| Toluene                   | ND        |      | 7                  | ug/kg | 03/04/24      | 03/04/24      |
| 1,2,4-Trichlorobenzene    | ND        |      | 7                  | ug/kg | 03/04/24      | 03/04/24      |
| 1,2,3-Trichlorobenzene    | ND        |      | 7                  | ug/kg | 03/04/24      | 03/04/24      |
| 1,1,2-Trichloroethane     | ND        |      | 7                  | ug/kg | 03/04/24      | 03/04/24      |
| 1,1,1-Trichloroethane     | ND        |      | 7                  | ug/kg | 03/04/24      | 03/04/24      |
| Trichloroethene           | ND        |      | 7                  | ug/kg | 03/04/24      | 03/04/24      |
| 1,2,3-Trichloropropane    | ND        |      | 7                  | ug/kg | 03/04/24      | 03/04/24      |
| 1,3,5-Trimethylbenzene    | ND        |      | 7                  | ug/kg | 03/04/24      | 03/04/24      |
| 1,2,4-Trimethylbenzene    | ND        |      | 7                  | ug/kg | 03/04/24      | 03/04/24      |
| Vinyl Chloride            | ND        |      | 7                  | ug/kg | 03/04/24      | 03/04/24      |
| o-Xylene                  | ND        |      | 7                  | ug/kg | 03/04/24      | 03/04/24      |
| m&p-Xylene                | ND        |      | 14                 | ug/kg | 03/04/24      | 03/04/24      |
| Total xylenes             | ND        |      | 7                  | ug/kg | 03/04/24      | 03/04/24      |
| 1,1,2,2-Tetrachloroethane | ND        |      | 7                  | ug/kg | 03/04/24      | 03/04/24      |
| tert-Amyl methyl ether    | ND        |      | 7                  | ug/kg | 03/04/24      | 03/04/24      |
| 1,3-Dichloropropane       | ND        |      | 7                  | ug/kg | 03/04/24      | 03/04/24      |
| Ethyl tert-butyl ether    | ND        |      | 7                  | ug/kg | 03/04/24      | 03/04/24      |
| Diisopropyl ether         | ND        |      | 7                  | ug/kg | 03/04/24      | 03/04/24      |
| Trichlorofluoromethane    | ND        |      | 7                  | ug/kg | 03/04/24      | 03/04/24      |
| Dichlorodifluoromethane   | ND        |      | 7                  | ug/kg | 03/04/24      | 03/04/24      |
| Surrogate(s)              | Recovery% |      | Limits             |       |               |               |
| 4-Bromofluorobenzene      | 99.4%     |      | 70-130             | )     | 03/04/24      | 03/04/24      |
| 1,2-Dichloroethane-d4     | 105%      |      | 70-130             | )     | 03/04/24      | 03/04/24      |
| Toluene-d8                | 97.8%     |      | 70-130             | )     | 03/04/24      | 03/04/24      |

# **Results: Semivolatile organic compounds**

Sample: TP-6

Lab Number: 4B26010-01 (Soil)

|                             | _           | Reporting |                |               |                     |
|-----------------------------|-------------|-----------|----------------|---------------|---------------------|
| Analyte                     | Result Qual | Limit     | Units          | Date Prepared | Date Analyzed       |
| 1,2,4-Trichlorobenzene      | ND          | 163       | ug/kg          | 02/28/24      | 02/29/24            |
| 1,2-Dichlorobenzene         | ND          | 163       | ug/kg          | 02/28/24      | 02/29/24            |
| 1,3-Dichlorobenzene         | ND          | 163       | ug/kg          | 02/28/24      | 02/29/24            |
| 1,4-Dichlorobenzene         | ND          | 163       | ug/kg          | 02/28/24      | 02/29/24            |
| Phenol                      | ND          | 163       | ug/kg          | 02/28/24      | 02/29/24            |
| 2,4,5-Trichlorophenol       | ND          | 163       | ug/kg          | 02/28/24      | 02/29/24            |
| 2,4,6-Trichlorophenol       | ND          | 163       | ug/kg          | 02/28/24      | 02/29/24            |
| 2,4-Dichlorophenol          | ND          | 163       | ug/kg          | 02/28/24      | 02/29/24            |
| 2,4-Dimethylphenol          | ND          | 413       | ug/kg          | 02/28/24      | 02/29/24            |
| 2,4-Dinitrophenol           | ND          | 413       | ug/kg          | 02/28/24      | 02/29/24            |
| 2,4-Dinitrotoluene          | ND          | 163       | ug/kg          | 02/28/24      | 02/29/24            |
| 2,6-Dinitrotoluene          | ND          | 163       | ug/kg          | 02/28/24      | 02/29/24            |
| 2-Chloronaphthalene         | ND          | 163       | ug/kg          | 02/28/24      | 02/29/24            |
| 2-Chlorophenol              | ND          | 163       | ug/kg          | 02/28/24      | 02/29/24            |
| 2-Methylnaphthalene         | ND          | 163       | ug/kg          | 02/28/24      | 02/29/24            |
| Vitrobenzene                | ND          | 163       | ug/kg          | 02/28/24      | 02/29/24            |
| 2-Methylphenol              | ND          | 163       | ug/kg          | 02/28/24      | 02/29/24            |
| 2-Nitroaniline              | ND          | 163       | ug/kg          | 02/28/24      | 02/29/24            |
| 2-Nitrophenol               | ND          | 413       | ug/kg          | 02/28/24      | 02/29/24            |
| 3,3'-Dichlorobenzidine      | ND          | 413       | ug/kg          | 02/28/24      | 02/29/24            |
| 3-Nitroaniline              | ND          | 163       | ug/kg          | 02/28/24      | 02/29/24            |
| ,6-Dinitro-2-methylphenol   | ND          | 413       | ug/kg          | 02/28/24      | 02/29/24            |
| 1-Bromophenyl phenyl ether  | ND          | 163       | ug/kg          | 02/28/24      | 02/29/24            |
| -Chloro-3-methylphenol      | ND          | 163       | ug/kg          | 02/28/24      | 02/29/24            |
| 1-Chloroaniline             | ND          | 163       | ug/kg          | 02/28/24      | 02/29/24            |
| 1-Chlorophenyl phenyl ether | ND          | 163       | ug/kg<br>ug/kg | 02/28/24      | 02/29/24            |
| I-Nitroaniline              | ND          | 163       | ug/kg<br>ug/kg | 02/28/24      | 02/29/24            |
| I-Nitrophenol               | ND          | 413       | ug/kg<br>ug/kg | 02/28/24      | 02/29/24            |
| Acenaphthene                |             | 163       | ug/kg<br>ug/kg | 02/28/24      | 02/29/24            |
| ·                           | ND          |           |                |               |                     |
| Acenaphthylene              | ND          | 163       | ug/kg          | 02/28/24      | 02/29/24            |
| Aniline                     | ND<br>ND    | 163       | ug/kg          | 02/28/24      | 02/29/24            |
| Anthracene                  | ND          | 163       | ug/kg          | 02/28/24      | 02/29/24            |
| Benzo(a)anthracene          | ND          | 163       | ug/kg          | 02/28/24      | 02/29/24            |
| Senzo(a)pyrene              | ND          | 163       | ug/kg          | 02/28/24      | 02/29/24            |
| enzo(b)fluoranthene         | ND          | 163       | ug/kg          | 02/28/24      | 02/29/24            |
| Benzo(g,h,i)perylene        | ND          | 163       | ug/kg<br>"     | 02/28/24      | 02/29/24            |
| Benzo(k)fluoranthene        | ND          | 163       | ug/kg<br>"     | 02/28/24      | 02/29/24            |
| Benzoic acid                | ND          | 1250      | ug/kg<br>      | 02/28/24      | 02/29/24            |
| liphenyl                    | ND          | 25        | ug/kg          | 02/28/24      | 02/29/24            |
| is(2-chloroethoxy)methane   | ND          | 163       | ug/kg          | 02/28/24      | 02/29/24            |
| Bis(2-chloroethyl)ether     | ND          | 163       | ug/kg          | 02/28/24      | 02/29/24            |
| Bis(2-chloroisopropyl)ether | ND          | 163       | ug/kg          | 02/28/24      | 02/29/24            |
| Bis(2-ethylhexyl)phthalate  | ND          | 501       | ug/kg          | 02/28/24      | 02/29/24            |
| Butyl benzyl phthalate      | ND          | 163       | ug/kg          | 02/28/24      | 02/29/24            |
| Chrysene                    | ND          | 163       | ug/kg          | 02/28/24      | 02/29/24            |
| Di-n-octyl phthalate        | ND          | 250       | ug/kg          | 02/28/24      | 02/29/24            |
| Dibenz(a,h)anthracene       | ND          | 163       | ug/kg          | 02/28/24      | <sup>02/29</sup> Pa |

# **Results: Semivolatile organic compounds (Continued)**

Sample: TP-6 (Continued) Lab Number: 4B26010-01 (Soil)

| Reporting                 |           |      |       |       |               |               |  |  |
|---------------------------|-----------|------|-------|-------|---------------|---------------|--|--|
| Analyte                   | Result    | Qual | Limit | Units | Date Prepared | Date Analyzed |  |  |
| Dibenzofuran              | ND        |      | 163   | ug/kg | 02/28/24      | 02/29/24      |  |  |
| Diethyl phthalate         | ND        |      | 163   | ug/kg | 02/28/24      | 02/29/24      |  |  |
| Dimethyl phthalate        | ND        |      | 413   | ug/kg | 02/28/24      | 02/29/24      |  |  |
| Di-n-butyl phthalate      | ND        |      | 250   | ug/kg | 02/28/24      | 02/29/24      |  |  |
| Fluoranthene              | 208       |      | 163   | ug/kg | 02/28/24      | 02/29/24      |  |  |
| Fluorene                  | ND        |      | 163   | ug/kg | 02/28/24      | 02/29/24      |  |  |
| Hexachlorobenzene         | ND        |      | 163   | ug/kg | 02/28/24      | 02/29/24      |  |  |
| Hexachlorobutadiene       | ND        |      | 163   | ug/kg | 02/28/24      | 02/29/24      |  |  |
| Hexachlorocyclopentadiene | ND        |      | 413   | ug/kg | 02/28/24      | 02/29/24      |  |  |
| Hexachloroethane          | ND        |      | 163   | ug/kg | 02/28/24      | 02/29/24      |  |  |
| Indeno(1,2,3-cd)pyrene    | ND        |      | 163   | ug/kg | 02/28/24      | 02/29/24      |  |  |
| Isophorone                | ND        |      | 163   | ug/kg | 02/28/24      | 02/29/24      |  |  |
| Naphthalene               | ND        |      | 163   | ug/kg | 02/28/24      | 02/29/24      |  |  |
| N-Nitrosodimethylamine    | ND        |      | 163   | ug/kg | 02/28/24      | 02/29/24      |  |  |
| N-Nitrosodi-n-propylamine | ND        |      | 163   | ug/kg | 02/28/24      | 02/29/24      |  |  |
| N-Nitrosodiphenylamine    | ND        |      | 163   | ug/kg | 02/28/24      | 02/29/24      |  |  |
| Pentachlorophenol         | ND        |      | 413   | ug/kg | 02/28/24      | 02/29/24      |  |  |
| Phenanthrene              | ND        |      | 163   | ug/kg | 02/28/24      | 02/29/24      |  |  |
| Pyrene                    | 240       |      | 163   | ug/kg | 02/28/24      | 02/29/24      |  |  |
| m&p-Cresol                | ND        |      | 326   | ug/kg | 02/28/24      | 02/29/24      |  |  |
| Pyridine                  | ND        |      | 163   | ug/kg | 02/28/24      | 02/29/24      |  |  |
| Azobenzene                | ND        |      | 163   | ug/kg | 02/28/24      | 02/29/24      |  |  |
| Total Dichlorobenzene     | ND        |      | 163   | ug/kg | 02/28/24      | 02/29/24      |  |  |
| Surrogate(s)              | Recovery% |      | Limit | S     |               |               |  |  |
| Nitrobenzene-d5           | 55.7%     |      | 30-12 | 6     | 02/28/24      | 02/29/24      |  |  |
| p-Terphenyl-d14           | 90.1%     |      | 47-13 | 0     | 02/28/24      | 02/29/24      |  |  |
| 2-Fluorobiphenyl          | 50.1%     |      | 34-13 | 0     | 02/28/24      | 02/29/24      |  |  |
| Phenol-d6                 | 53.2%     |      | 30-13 | 0     | 02/28/24      | 02/29/24      |  |  |
| 2,4,6-Tribromophenol      | 52.1%     |      | 30-13 | 0     | 02/28/24      | 02/29/24      |  |  |
| 2-Fluorophenol            | 60.9%     |      | 30-13 | 0     | 02/28/24      | 02/29/24      |  |  |

# **Results: Semivolatile organic compounds**

Sample: B-103 0-6'

Lab Number: 4B26010-02 (Soil)

|                                  |             | Reporting  |                |               |                     |
|----------------------------------|-------------|------------|----------------|---------------|---------------------|
| Analyte                          | Result Qual | Limit      | Units          | Date Prepared | Date Analyzed       |
| 1,2,4-Trichlorobenzene           | ND          | 150        | ug/kg          | 02/28/24      | 02/29/24            |
| 1,2-Dichlorobenzene              | ND          | 150        | ug/kg          | 02/28/24      | 02/29/24            |
| 1,3-Dichlorobenzene              | ND          | 150        | ug/kg          | 02/28/24      | 02/29/24            |
| 1,4-Dichlorobenzene              | ND          | 150        | ug/kg          | 02/28/24      | 02/29/24            |
| Phenol                           | ND          | 150        | ug/kg          | 02/28/24      | 02/29/24            |
| 2,4,5-Trichlorophenol            | ND          | 150        | ug/kg          | 02/28/24      | 02/29/24            |
| 2,4,6-Trichlorophenol            | ND          | 150        | ug/kg          | 02/28/24      | 02/29/24            |
| 2,4-Dichlorophenol               | ND          | 150        | ug/kg          | 02/28/24      | 02/29/24            |
| 2,4-Dimethylphenol               | ND          | 380        | ug/kg          | 02/28/24      | 02/29/24            |
| 2,4-Dinitrophenol                | ND          | 380        | ug/kg          | 02/28/24      | 02/29/24            |
| 2,4-Dinitrotoluene               | ND          | 150        | ug/kg          | 02/28/24      | 02/29/24            |
| 2,6-Dinitrotoluene               | ND          | 150        | ug/kg          | 02/28/24      | 02/29/24            |
| 2-Chloronaphthalene              | ND          | 150        | ug/kg          | 02/28/24      | 02/29/24            |
| 2-Chlorophenol                   | ND          | 150        | ug/kg          | 02/28/24      | 02/29/24            |
| 2-Methylnaphthalene              | ND          | 150        | ug/kg          | 02/28/24      | 02/29/24            |
| Nitrobenzene                     | ND          | 150        | ug/kg          | 02/28/24      | 02/29/24            |
| 2-Methylphenol                   | ND          | 150        | ug/kg          | 02/28/24      | 02/29/24            |
| 2-Nitroaniline                   | ND          | 150        | ug/kg          | 02/28/24      | 02/29/24            |
| 2-Nitrophenol                    | ND          | 380        | ug/kg          | 02/28/24      | 02/29/24            |
| 3,3'-Dichlorobenzidine           | ND          | 380        | ug/kg          | 02/28/24      | 02/29/24            |
| 3-Nitroaniline                   | ND          | 150        | ug/kg          | 02/28/24      | 02/29/24            |
| 4,6-Dinitro-2-methylphenol       | ND          | 380        | ug/kg          | 02/28/24      | 02/29/24            |
| 4-Bromophenyl phenyl ether       | ND          | 150        | ug/kg          | 02/28/24      | 02/29/24            |
| 4-Chloro-3-methylphenol          | ND          | 150        | ug/kg          | 02/28/24      | 02/29/24            |
| 4-Chloroaniline                  | ND          | 150        | ug/kg          | 02/28/24      | 02/29/24            |
| 4-Chlorophenyl phenyl ether      | ND<br>ND    | 150        | ug/kg<br>ug/kg | 02/28/24      | 02/29/24            |
| 4-Nitroaniline                   | ND<br>ND    | 150        | ug/kg<br>ug/kg | 02/28/24      | 02/29/24            |
| 4-Nitrophenol                    | ND<br>ND    | 380        | ug/kg<br>ug/kg | 02/28/24      | 02/29/24            |
| ·                                |             | 150        | ug/kg<br>ug/kg | 02/28/24      | 02/29/24            |
| Acenaphthene                     | ND          | 150        | ug/kg<br>ug/kg | 02/28/24      | 02/29/24            |
| Acenaphthylene                   | ND          |            |                |               |                     |
| Aniline                          | ND<br>ND    | 150<br>150 | ug/kg          | 02/28/24      | 02/29/24            |
| Anthracene<br>Ronzo(a)anthracene | ND<br>ND    | 150<br>150 | ug/kg          | 02/28/24      | 02/29/24            |
| Benzo(a)anthracene               | ND          | 150        | ug/kg          | 02/28/24      | 02/29/24            |
| Benzo(a)pyrene                   | ND          | 150        | ug/kg          | 02/28/24      | 02/29/24            |
| Benzo(b)fluoranthene             | ND          | 150        | ug/kg          | 02/28/24      | 02/29/24            |
| Benzo(g,h,i)perylene             | ND          | 150        | ug/kg          | 02/28/24      | 02/29/24            |
| Benzo(k)fluoranthene             | ND          | 150        | ug/kg          | 02/28/24      | 02/29/24            |
| Benzoic acid                     | ND          | 1150       | ug/kg          | 02/28/24      | 02/29/24            |
| iphenyl                          | ND          | 23         | ug/kg<br>      | 02/28/24      | 02/29/24            |
| Bis(2-chloroethoxy)methane       | ND          | 150        | ug/kg<br>      | 02/28/24      | 02/29/24            |
| Bis(2-chloroethyl)ether          | ND          | 150        | ug/kg<br>      | 02/28/24      | 02/29/24            |
| Bis(2-chloroisopropyl)ether      | ND          | 150        | ug/kg          | 02/28/24      | 02/29/24            |
| Bis(2-ethylhexyl)phthalate       | ND          | 460        | ug/kg          | 02/28/24      | 02/29/24            |
| Butyl benzyl phthalate           | ND          | 150        | ug/kg          | 02/28/24      | 02/29/24            |
| Chrysene                         | ND          | 150        | ug/kg          | 02/28/24      | 02/29/24            |
| Di-n-octyl phthalate             | ND          | 230        | ug/kg          | 02/28/24      | 02/29/24            |
| Dibenz(a,h)anthracene            | ND          | 150        | ug/kg          | 02/28/24      | <sup>02/29</sup> Pa |

# **Results: Semivolatile organic compounds (Continued)**

Sample: B-103 0-6' (Continued)

Lab Number: 4B26010-02 (Soil)

| Reporting                 |           |      |        |       |               |               |  |  |  |
|---------------------------|-----------|------|--------|-------|---------------|---------------|--|--|--|
| Analyte                   | Result    | Qual | Limit  | Units | Date Prepared | Date Analyzed |  |  |  |
| Dibenzofuran              | ND        |      | 150    | ug/kg | 02/28/24      | 02/29/24      |  |  |  |
| Diethyl phthalate         | ND        |      | 150    | ug/kg | 02/28/24      | 02/29/24      |  |  |  |
| Dimethyl phthalate        | ND        |      | 380    | ug/kg | 02/28/24      | 02/29/24      |  |  |  |
| Di-n-butyl phthalate      | ND        |      | 230    | ug/kg | 02/28/24      | 02/29/24      |  |  |  |
| Fluoranthene              | ND        |      | 150    | ug/kg | 02/28/24      | 02/29/24      |  |  |  |
| Fluorene                  | ND        |      | 150    | ug/kg | 02/28/24      | 02/29/24      |  |  |  |
| Hexachlorobenzene         | ND        |      | 150    | ug/kg | 02/28/24      | 02/29/24      |  |  |  |
| Hexachlorobutadiene       | ND        |      | 150    | ug/kg | 02/28/24      | 02/29/24      |  |  |  |
| Hexachlorocyclopentadiene | ND        |      | 380    | ug/kg | 02/28/24      | 02/29/24      |  |  |  |
| Hexachloroethane          | ND        |      | 150    | ug/kg | 02/28/24      | 02/29/24      |  |  |  |
| Indeno(1,2,3-cd)pyrene    | ND        |      | 150    | ug/kg | 02/28/24      | 02/29/24      |  |  |  |
| Isophorone                | ND        |      | 150    | ug/kg | 02/28/24      | 02/29/24      |  |  |  |
| Naphthalene               | ND        |      | 150    | ug/kg | 02/28/24      | 02/29/24      |  |  |  |
| N-Nitrosodimethylamine    | ND        |      | 150    | ug/kg | 02/28/24      | 02/29/24      |  |  |  |
| N-Nitrosodi-n-propylamine | ND        |      | 150    | ug/kg | 02/28/24      | 02/29/24      |  |  |  |
| N-Nitrosodiphenylamine    | ND        |      | 150    | ug/kg | 02/28/24      | 02/29/24      |  |  |  |
| Pentachlorophenol         | ND        |      | 380    | ug/kg | 02/28/24      | 02/29/24      |  |  |  |
| Phenanthrene              | ND        |      | 150    | ug/kg | 02/28/24      | 02/29/24      |  |  |  |
| Pyrene                    | ND        |      | 150    | ug/kg | 02/28/24      | 02/29/24      |  |  |  |
| m&p-Cresol                | ND        |      | 299    | ug/kg | 02/28/24      | 02/29/24      |  |  |  |
| Pyridine                  | ND        |      | 150    | ug/kg | 02/28/24      | 02/29/24      |  |  |  |
| Azobenzene                | ND        |      | 150    | ug/kg | 02/28/24      | 02/29/24      |  |  |  |
| Total Dichlorobenzene     | ND        |      | 150    | ug/kg | 02/28/24      | 02/29/24      |  |  |  |
| Surrogate(s)              | Recovery% |      | Limits | 5     |               |               |  |  |  |
| Nitrobenzene-d5           | 55.0%     |      | 30-12  | 5     | 02/28/24      | 02/29/24      |  |  |  |
| p-Terphenyl-d14           | 80.8%     |      | 47-13  | 9     | 02/28/24      | 02/29/24      |  |  |  |
| 2-Fluorobiphenyl          | 50.9%     |      | 34-13  | 9     | 02/28/24      | 02/29/24      |  |  |  |
| Phenol-d6                 | 53.2%     |      | 30-13  | 9     | 02/28/24      | 02/29/24      |  |  |  |
| 2,4,6-Tribromophenol      | 51.6%     |      | 30-13  | 9     | 02/28/24      | 02/29/24      |  |  |  |
| 2-Fluorophenol            | 61.9%     |      | 30-13  | 9     | 02/28/24      | 02/29/24      |  |  |  |

# **Results: Semivolatile organic compounds**

Sample: B-113 2-4'

Lab Number: 4B26010-03 (Soil)

| Analyte                     | Result   | Qual | Reporting<br>Limit | Units          | Date Prepared | Date Analyzed                |
|-----------------------------|----------|------|--------------------|----------------|---------------|------------------------------|
| 1,2,4-Trichlorobenzene      | ND       |      | 154                | ug/kg          | 02/28/24      | 02/29/24                     |
| 1,2-Dichlorobenzene         | ND       |      | 154                | ug/kg          | 02/28/24      | 02/29/24                     |
| 1,3-Dichlorobenzene         | ND       |      | 154                | ug/kg          | 02/28/24      | 02/29/24                     |
| 1,4-Dichlorobenzene         | ND       |      | 154                | ug/kg          | 02/28/24      | 02/29/24                     |
| Phenol                      | ND       |      | 154                | ug/kg          | 02/28/24      | 02/29/24                     |
| 2,4,5-Trichlorophenol       | ND       |      | 154                | ug/kg          | 02/28/24      | 02/29/24                     |
| 2,4,6-Trichlorophenol       | ND       |      | 154                | ug/kg          | 02/28/24      | 02/29/24                     |
| 2,4-Dichlorophenol          | ND       |      | 154                | ug/kg          | 02/28/24      | 02/29/24                     |
| 2,4-Dimethylphenol          | ND       |      | 391                | ug/kg          | 02/28/24      | 02/29/24                     |
| 2,4-Dinitrophenol           | ND       |      | 391                | ug/kg          | 02/28/24      | 02/29/24                     |
| 2,4-Dinitrotoluene          | ND       |      | 154                | ug/kg          | 02/28/24      | 02/29/24                     |
| 2,6-Dinitrotoluene          | ND       |      | 154                | ug/kg          | 02/28/24      | 02/29/24                     |
| 2-Chloronaphthalene         | ND       |      | 154                | ug/kg          | 02/28/24      | 02/29/24                     |
| 2-Chlorophenol              | ND       |      | 154                | ug/kg          | 02/28/24      | 02/29/24                     |
| 2-Methylnaphthalene         | ND       |      | 154                | ug/kg          | 02/28/24      | 02/29/24                     |
| Nitrobenzene                | ND       |      | 154                | ug/kg          | 02/28/24      | 02/29/24                     |
| 2-Methylphenol              | ND       |      | 154                | ug/kg          | 02/28/24      | 02/29/24                     |
| 2-Nitroaniline              | ND       |      | 154                | ug/kg          | 02/28/24      | 02/29/24                     |
| 2-Nitrophenol               | ND       |      | 391                | ug/kg          | 02/28/24      | 02/29/24                     |
| 3,3'-Dichlorobenzidine      | ND       |      | 391                | ug/kg          | 02/28/24      | 02/29/24                     |
| 3-Nitroaniline              | ND       |      | 154                | ug/kg          | 02/28/24      | 02/29/24                     |
| 4,6-Dinitro-2-methylphenol  | ND       |      | 391                | ug/kg          | 02/28/24      | 02/29/24                     |
| 4-Bromophenyl phenyl ether  | ND       |      | 154                | ug/kg          | 02/28/24      | 02/29/24                     |
| 4-Chloro-3-methylphenol     | ND       |      | 154                | ug/kg          | 02/28/24      | 02/29/24                     |
| 4-Chloroaniline             | ND       |      | 154                | ug/kg          | 02/28/24      | 02/29/24                     |
| 4-Chlorophenyl phenyl ether | ND       |      | 154                | ug/kg          | 02/28/24      | 02/29/24                     |
| 4-Nitroaniline              | ND       |      | 154                | ug/kg          | 02/28/24      | 02/29/24                     |
| 4-Nitrophenol               | ND       |      | 391                | ug/kg          | 02/28/24      | 02/29/24                     |
| Acenaphthene                | ND       |      | 154                | ug/kg          | 02/28/24      | 02/29/24                     |
| Acenaphthylene              | ND       |      | 154                | ug/kg          | 02/28/24      | 02/29/24                     |
| Aniline                     | ND       |      | 154                | ug/kg          | 02/28/24      | 02/29/24                     |
| Anthracene                  | ND       |      | 154                | ug/kg          | 02/28/24      | 02/29/24                     |
| Benzo(a)anthracene          | ND       |      | 154                | ug/kg          | 02/28/24      | 02/29/24                     |
| Benzo(a)pyrene              | ND       |      | 154                | ug/kg          | 02/28/24      | 02/29/24                     |
| Benzo(b)fluoranthene        | ND       |      | 154                | ug/kg          | 02/28/24      | 02/29/24                     |
| Benzo(g,h,i)perylene        | ND       |      | 154                | ug/kg          | 02/28/24      | 02/29/24                     |
| Benzo(k)fluoranthene        | ND       |      | 154                | ug/kg<br>ug/kg | 02/28/24      | 02/29/24                     |
| Benzoic acid                | ND       |      | 1180               | ug/kg          | 02/28/24      | 02/29/24                     |
| Biphenyl                    | ND       |      | 24                 | ug/kg          | 02/28/24      | 02/29/24                     |
| Bis(2-chloroethoxy)methane  | ND       |      | 154                | ug/kg<br>ug/kg | 02/28/24      | 02/29/24                     |
| Bis(2-chloroethyl)ether     | ND       |      | 154                | ug/kg<br>ug/kg | 02/28/24      | 02/29/24                     |
| Bis(2-chloroisopropyl)ether | ND<br>ND |      | 154                | ug/kg<br>ug/kg | 02/28/24      | 02/29/24                     |
| Bis(2-ethylhexyl)phthalate  | ND<br>ND |      | 474                | ug/kg<br>ug/kg | 02/28/24      | 02/29/24                     |
| Butyl benzyl phthalate      | ND<br>ND |      | 154                | ug/kg<br>ug/kg | 02/28/24      | 02/29/24                     |
| Chrysene                    |          |      | 154                | ug/kg<br>ug/kg | 02/28/24      | 02/29/24                     |
| Di-n-octyl phthalate        | ND<br>ND |      | 237                |                | 02/28/24      | 02/29/24                     |
| Dibenz(a,h)anthracene       | ND<br>ND |      | 237<br>154         | ug/kg          | 02/28/24      | 02/29/24<br>02/2 <b>9</b> De |

Page 31 of 68

# **Results: Semivolatile organic compounds (Continued)**

Sample: B-113 2-4' (Continued)

Lab Number: 4B26010-03 (Soil)

| Analyte                   | Result    | Qual | Reporting<br>Limit | Units | Date Prepared | Date Analyzed |
|---------------------------|-----------|------|--------------------|-------|---------------|---------------|
| Dibenzofuran              | ND        |      | 154                | ug/kg | 02/28/24      | 02/29/24      |
| Diethyl phthalate         | ND        |      | 154                | ug/kg | 02/28/24      | 02/29/24      |
| Dimethyl phthalate        | ND        |      | 391                | ug/kg | 02/28/24      | 02/29/24      |
| Di-n-butyl phthalate      | ND        |      | 237                | ug/kg | 02/28/24      | 02/29/24      |
| Fluoranthene              | ND        |      | 154                | ug/kg | 02/28/24      | 02/29/24      |
| Fluorene                  | ND        |      | 154                | ug/kg | 02/28/24      | 02/29/24      |
| Hexachlorobenzene         | ND        |      | 154                | ug/kg | 02/28/24      | 02/29/24      |
| Hexachlorobutadiene       | ND        |      | 154                | ug/kg | 02/28/24      | 02/29/24      |
| Hexachlorocyclopentadiene | ND        |      | 391                | ug/kg | 02/28/24      | 02/29/24      |
| Hexachloroethane          | ND        |      | 154                | ug/kg | 02/28/24      | 02/29/24      |
| Indeno(1,2,3-cd)pyrene    | ND        |      | 154                | ug/kg | 02/28/24      | 02/29/24      |
| Isophorone                | ND        |      | 154                | ug/kg | 02/28/24      | 02/29/24      |
| Naphthalene               | ND        |      | 154                | ug/kg | 02/28/24      | 02/29/24      |
| N-Nitrosodimethylamine    | ND        |      | 154                | ug/kg | 02/28/24      | 02/29/24      |
| N-Nitrosodi-n-propylamine | ND        |      | 154                | ug/kg | 02/28/24      | 02/29/24      |
| N-Nitrosodiphenylamine    | ND        |      | 154                | ug/kg | 02/28/24      | 02/29/24      |
| Pentachlorophenol         | ND        |      | 391                | ug/kg | 02/28/24      | 02/29/24      |
| Phenanthrene              | ND        |      | 154                | ug/kg | 02/28/24      | 02/29/24      |
| Pyrene                    | ND        |      | 154                | ug/kg | 02/28/24      | 02/29/24      |
| m&p-Cresol                | ND        |      | 308                | ug/kg | 02/28/24      | 02/29/24      |
| Pyridine                  | ND        |      | 154                | ug/kg | 02/28/24      | 02/29/24      |
| Azobenzene                | ND        |      | 154                | ug/kg | 02/28/24      | 02/29/24      |
| Total Dichlorobenzene     | ND        |      | 154                | ug/kg | 02/28/24      | 02/29/24      |
| Surrogate(s)              | Recovery% |      | Limits             |       |               |               |
| Nitrobenzene-d5           | 55.6%     |      | 30-126             | ;     | 02/28/24      | 02/29/24      |
| p-Terphenyl-d14           | 76.7%     |      | 47-130             | )     | 02/28/24      | 02/29/24      |
| 2-Fluorobiphenyl          | 48.1%     |      | 34-130             | ,     | 02/28/24      | 02/29/24      |
| Phenol-d6                 | 47.2%     |      | 30-130             | )     | 02/28/24      | 02/29/24      |
| 2,4,6-Tribromophenol      | 51.8%     |      | 30-130             | ,     | 02/28/24      | 02/29/24      |
| 2-Fluorophenol            | 56.6%     |      | 30-130             | )     | 02/28/24      | 02/29/24      |

# **Results: Semivolatile organic compounds**

Sample: B-112 2-6'

Lab Number: 4B26010-04 (Soil)

| nalyte                     | Result   | Qual Limit | Units          | Date Prepared                         | Date Analyzed        |
|----------------------------|----------|------------|----------------|---------------------------------------|----------------------|
| 2.4 Trichlorobor           | ND       | 142        | na llee        | · · · · · · · · · · · · · · · · · · · | <u> </u>             |
| ,2,4-Trichlorobenzene      | ND       | 143<br>143 | ug/kg<br>ug/kg | 02/28/24                              | 02/29/24             |
| ,2-Dichlorobenzene         | ND       | 143        |                | 02/28/24                              | 02/29/24             |
| ,3-Dichlorobenzene         | ND       |            | ug/kg          | 02/28/24                              | 02/29/24             |
| ,4-Dichlorobenzene         | ND       | 143        | ug/kg          | 02/28/24                              | 02/29/24             |
| henol                      | ND       | 143        | ug/kg          | 02/28/24                              | 02/29/24             |
| ,4,5-Trichlorophenol       | ND       | 143        | ug/kg<br>"     | 02/28/24                              | 02/29/24             |
| ,4,6-Trichlorophenol       | ND       | 143        | ug/kg<br>"     | 02/28/24                              | 02/29/24             |
| ,4-Dichlorophenol          | ND       | 143        | ug/kg<br>      | 02/28/24                              | 02/29/24             |
| ,4-Dimethylphenol          | ND       | 363        | ug/kg<br>      | 02/28/24                              | 02/29/24             |
| ,4-Dinitrophenol           | ND       | 363        | ug/kg          | 02/28/24                              | 02/29/24             |
| ,4-Dinitrotoluene          | ND       | 143        | ug/kg          | 02/28/24                              | 02/29/24             |
| ,6-Dinitrotoluene          | ND       | 143        | ug/kg          | 02/28/24                              | 02/29/24             |
| -Chloronaphthalene         | ND       | 143        | ug/kg          | 02/28/24                              | 02/29/24             |
| -Chlorophenol              | ND       | 143        | ug/kg          | 02/28/24                              | 02/29/24             |
| -Methylnaphthalene         | ND       | 143        | ug/kg          | 02/28/24                              | 02/29/24             |
| itrobenzene                | ND       | 143        | ug/kg          | 02/28/24                              | 02/29/24             |
| -Methylphenol              | ND       | 143        | ug/kg          | 02/28/24                              | 02/29/24             |
| -Nitroaniline              | ND       | 143        | ug/kg          | 02/28/24                              | 02/29/24             |
| -Nitrophenol               | ND       | 363        | ug/kg          | 02/28/24                              | 02/29/24             |
| ,3'-Dichlorobenzidine      | ND       | 363        | ug/kg          | 02/28/24                              | 02/29/24             |
| -Nitroaniline              | ND       | 143        | ug/kg          | 02/28/24                              | 02/29/24             |
| ,6-Dinitro-2-methylphenol  | ND       | 363        | ug/kg          | 02/28/24                              | 02/29/24             |
| -Bromophenyl phenyl ether  | ND       | 143        | ug/kg          | 02/28/24                              | 02/29/24             |
| -Chloro-3-methylphenol     | ND       | 143        | ug/kg          | 02/28/24                              | 02/29/24             |
| -Chloroaniline             | ND       | 143        | ug/kg          | 02/28/24                              | 02/29/24             |
| -Chlorophenyl phenyl ether | ND       | 143        | ug/kg          | 02/28/24                              | 02/29/24             |
| -Nitroaniline              | ND       | 143        | ug/kg          | 02/28/24                              | 02/29/24             |
| -Nitrophenol               | ND       | 363        | ug/kg          | 02/28/24                              | 02/29/24             |
| cenaphthene                | ND       | 143        | ug/kg          | 02/28/24                              | 02/29/24             |
| cenaphthylene              | ND       | 143        | ug/kg          | 02/28/24                              | 02/29/24             |
| niline                     | ND       | 143        | ug/kg          | 02/28/24                              | 02/29/24             |
| nthracene                  | ND       | 143        | ug/kg          | 02/28/24                              | 02/29/24             |
| enzo(a)anthracene          | ND       | 143        | ug/kg          | 02/28/24                              | 02/29/24             |
| enzo(a)pyrene              | ND       | 143        | ug/kg          | 02/28/24                              | 02/29/24             |
| enzo(b)fluoranthene        | ND       | 143        | ug/kg          | 02/28/24                              | 02/29/24             |
| enzo(g,h,i)perylene        | ND       | 143        | ug/kg          | 02/28/24                              | 02/29/24             |
| enzo(k)fluoranthene        | ND       | 143        | ug/kg          | 02/28/24                              | 02/29/24             |
| enzoic acid                | ND       | 1100       | ug/kg          | 02/28/24                              | 02/29/24             |
| iphenyl                    | ND<br>ND | 22         | ug/kg          | 02/28/24                              | 02/29/24             |
| is(2-chloroethoxy)methane  | ND<br>ND | 143        | ug/kg<br>ug/kg | 02/28/24                              | 02/29/24             |
| is(2-chloroethyl)ether     | ND<br>ND | 143        | ug/kg<br>ug/kg | 02/28/24                              | 02/29/24             |
| is(2-chloroisopropyl)ether | ND<br>ND | 143        | ug/kg<br>ug/kg | 02/28/24                              | 02/29/24             |
|                            |          |            |                |                                       |                      |
| is(2-ethylhexyl)phthalate  | ND       | 440        | ug/kg          | 02/28/24                              | 02/29/24             |
| utyl benzyl phthalate      | ND       | 143        | ug/kg          | 02/28/24                              | 02/29/24             |
| hrysene                    | ND       | 143<br>220 | ug/kg<br>ug/kg | 02/28/24<br>02/28/24                  | 02/29/24<br>02/29/24 |
| i-n-octyl phthalate        | ND       |            |                |                                       |                      |

# **Results: Semivolatile organic compounds (Continued)**

Sample: B-112 2-6' (Continued)

Lab Number: 4B26010-04 (Soil)

| Reporting                 |           |      |       |       |               |               |  |  |  |
|---------------------------|-----------|------|-------|-------|---------------|---------------|--|--|--|
| Analyte                   | Result    | Qual | Limit | Units | Date Prepared | Date Analyzed |  |  |  |
| Dibenzofuran              | ND        |      | 143   | ug/kg | 02/28/24      | 02/29/24      |  |  |  |
| Diethyl phthalate         | ND        |      | 143   | ug/kg | 02/28/24      | 02/29/24      |  |  |  |
| Dimethyl phthalate        | ND        |      | 363   | ug/kg | 02/28/24      | 02/29/24      |  |  |  |
| Di-n-butyl phthalate      | ND        |      | 220   | ug/kg | 02/28/24      | 02/29/24      |  |  |  |
| Fluoranthene              | ND        |      | 143   | ug/kg | 02/28/24      | 02/29/24      |  |  |  |
| Fluorene                  | ND        |      | 143   | ug/kg | 02/28/24      | 02/29/24      |  |  |  |
| Hexachlorobenzene         | ND        |      | 143   | ug/kg | 02/28/24      | 02/29/24      |  |  |  |
| Hexachlorobutadiene       | ND        |      | 143   | ug/kg | 02/28/24      | 02/29/24      |  |  |  |
| Hexachlorocyclopentadiene | ND        |      | 363   | ug/kg | 02/28/24      | 02/29/24      |  |  |  |
| Hexachloroethane          | ND        |      | 143   | ug/kg | 02/28/24      | 02/29/24      |  |  |  |
| Indeno(1,2,3-cd)pyrene    | ND        |      | 143   | ug/kg | 02/28/24      | 02/29/24      |  |  |  |
| Isophorone                | ND        |      | 143   | ug/kg | 02/28/24      | 02/29/24      |  |  |  |
| Naphthalene               | ND        |      | 143   | ug/kg | 02/28/24      | 02/29/24      |  |  |  |
| N-Nitrosodimethylamine    | ND        |      | 143   | ug/kg | 02/28/24      | 02/29/24      |  |  |  |
| N-Nitrosodi-n-propylamine | ND        |      | 143   | ug/kg | 02/28/24      | 02/29/24      |  |  |  |
| N-Nitrosodiphenylamine    | ND        |      | 143   | ug/kg | 02/28/24      | 02/29/24      |  |  |  |
| Pentachlorophenol         | ND        |      | 363   | ug/kg | 02/28/24      | 02/29/24      |  |  |  |
| Phenanthrene              | ND        |      | 143   | ug/kg | 02/28/24      | 02/29/24      |  |  |  |
| Pyrene                    | ND        |      | 143   | ug/kg | 02/28/24      | 02/29/24      |  |  |  |
| m&p-Cresol                | ND        |      | 286   | ug/kg | 02/28/24      | 02/29/24      |  |  |  |
| Pyridine                  | ND        |      | 143   | ug/kg | 02/28/24      | 02/29/24      |  |  |  |
| Azobenzene                | ND        |      | 143   | ug/kg | 02/28/24      | 02/29/24      |  |  |  |
| Total Dichlorobenzene     | ND        |      | 143   | ug/kg | 02/28/24      | 02/29/24      |  |  |  |
| Surrogate(s)              | Recovery% |      | Limit | S     |               |               |  |  |  |
| Nitrobenzene-d5           | 61.5%     |      | 30-12 | 6     | 02/28/24      | 02/29/24      |  |  |  |
| p-Terphenyl-d14           | 86.8%     |      | 47-13 | 0     | 02/28/24      | 02/29/24      |  |  |  |
| 2-Fluorobiphenyl          | 53.5%     |      | 34-13 | 0     | 02/28/24      | 02/29/24      |  |  |  |
| Phenol-d6                 | 57.5%     |      | 30-13 | 0     | 02/28/24      | 02/29/24      |  |  |  |
| 2,4,6-Tribromophenol      | 56.2%     |      | 30-13 | 0     | 02/28/24      | 02/29/24      |  |  |  |
| 2-Fluorophenol            | 64.5%     |      | 30-13 | 0     | 02/28/24      | 02/29/24      |  |  |  |
|                           |           |      |       |       |               |               |  |  |  |

# **Results: Polychlorinated Biphenyls (PCBs)**

Sample: TP-6

Lab Number: 4B26010-01 (Soil)

|                                      |           |      | Reporting |       |               |               |
|--------------------------------------|-----------|------|-----------|-------|---------------|---------------|
| Analyte                              | Result    | Qual | Limit     | Units | Date Prepared | Date Analyzed |
| Aroclor-1016                         | ND        |      | 82        | ug/kg | 02/28/24      | 03/01/24      |
| Aroclor-1221                         | ND        |      | 82        | ug/kg | 02/28/24      | 03/01/24      |
| Aroclor-1232                         | ND        |      | 82        | ug/kg | 02/28/24      | 03/01/24      |
| Aroclor-1242                         | ND        |      | 82        | ug/kg | 02/28/24      | 03/01/24      |
| Aroclor-1248                         | ND        |      | 82        | ug/kg | 02/28/24      | 03/01/24      |
| Aroclor-1254                         | ND        |      | 82        | ug/kg | 02/28/24      | 03/01/24      |
| Aroclor-1260                         | ND        |      | 82        | ug/kg | 02/28/24      | 03/01/24      |
| Aroclor-1262                         | ND        |      | 82        | ug/kg | 02/28/24      | 03/01/24      |
| Aroclor-1268                         | ND        |      | 82        | ug/kg | 02/28/24      | 03/01/24      |
| PCBs (Total)                         | ND        |      | 82        | ug/kg | 02/28/24      | 03/01/24      |
| Surrogate(s)                         | Recovery% |      | Limit     | S     |               |               |
| 2,4,5,6-Tetrachloro-m-xylene (TCMX ) | 61.6%     |      | 36.2-1    | 30    | 02/28/24      | 03/01/24      |
| Decachlorobiphenyl (DCBP)            | 52.0%     |      | 43.3-1.   | 30    | 02/28/24      | 03/01/24      |

## **Results: Polychlorinated Biphenyls (PCBs)**

Sample: B-103 0-6'

Lab Number: 4B26010-02 (Soil)

|                                      |           |      | Reporting |       |               |               |
|--------------------------------------|-----------|------|-----------|-------|---------------|---------------|
| Analyte                              | Result    | Qual | Limit     | Units | Date Prepared | Date Analyzed |
| Aroclor-1016                         | ND        |      | 75        | ug/kg | 02/28/24      | 03/01/24      |
| Aroclor-1221                         | ND        |      | 75        | ug/kg | 02/28/24      | 03/01/24      |
| Aroclor-1232                         | ND        |      | 75        | ug/kg | 02/28/24      | 03/01/24      |
| Aroclor-1242                         | ND        |      | 75        | ug/kg | 02/28/24      | 03/01/24      |
| Aroclor-1248                         | ND        |      | 75        | ug/kg | 02/28/24      | 03/01/24      |
| Aroclor-1254                         | ND        |      | 75        | ug/kg | 02/28/24      | 03/01/24      |
| Aroclor-1260                         | ND        |      | 75        | ug/kg | 02/28/24      | 03/01/24      |
| Aroclor-1262                         | ND        |      | 75        | ug/kg | 02/28/24      | 03/01/24      |
| Aroclor-1268                         | ND        |      | 75        | ug/kg | 02/28/24      | 03/01/24      |
| PCBs (Total)                         | ND        |      | 75        | ug/kg | 02/28/24      | 03/01/24      |
| Surrogate(s)                         | Recovery% |      | Limit     | S     |               |               |
| 2,4,5,6-Tetrachloro-m-xylene (TCMX ) | 61.9%     |      | 36.2-1    | 30    | 02/28/24      | 03/01/24      |
| Decachlorobiphenyl (DCBP)            | 50.3%     |      | 43.3-1    | 30    | 02/28/24      | 03/01/24      |

## **Results: Polychlorinated Biphenyls (PCBs)**

Sample: B-113 2-4'

Lab Number: 4B26010-03 (Soil)

|                                      |           |      | Reporting |       |               |               |
|--------------------------------------|-----------|------|-----------|-------|---------------|---------------|
| Analyte                              | Result    | Qual | Limit     | Units | Date Prepared | Date Analyzed |
| Aroclor-1016                         | ND        |      | 76        | ug/kg | 02/28/24      | 03/02/24      |
| Aroclor-1221                         | ND        |      | 76        | ug/kg | 02/28/24      | 03/02/24      |
| Aroclor-1232                         | ND        |      | 76        | ug/kg | 02/28/24      | 03/02/24      |
| Aroclor-1242                         | ND        |      | 76        | ug/kg | 02/28/24      | 03/02/24      |
| Aroclor-1248                         | ND        |      | 76        | ug/kg | 02/28/24      | 03/02/24      |
| Aroclor-1254                         | ND        |      | 76        | ug/kg | 02/28/24      | 03/02/24      |
| Aroclor-1260                         | ND        |      | 76        | ug/kg | 02/28/24      | 03/02/24      |
| Aroclor-1262                         | ND        |      | 76        | ug/kg | 02/28/24      | 03/02/24      |
| Aroclor-1268                         | ND        |      | 76        | ug/kg | 02/28/24      | 03/02/24      |
| PCBs (Total)                         | ND        |      | 76        | ug/kg | 02/28/24      | 03/02/24      |
| Surrogate(s)                         | Recovery% |      | Limit     | s<br> |               |               |
| 2,4,5,6-Tetrachloro-m-xylene (TCMX ) | 56.4%     |      | 36.2-1.   | 30    | 02/28/24      | 03/02/24      |
| Decachlorobiphenyl (DCBP)            | 48.0%     |      | 43.3-1.   | 30    | 02/28/24      | 03/02/24      |

## **Results: Polychlorinated Biphenyls (PCBs)**

Sample: B-112 2-6'

Lab Number: 4B26010-04 (Soil)

|                                      |           |      | Reporting |       |               |               |
|--------------------------------------|-----------|------|-----------|-------|---------------|---------------|
| Analyte                              | Result    | Qual | Limit     | Units | Date Prepared | Date Analyzed |
| Aroclor-1016                         | ND        |      | 72        | ug/kg | 02/28/24      | 03/01/24      |
| Aroclor-1221                         | ND        |      | 72        | ug/kg | 02/28/24      | 03/01/24      |
| Aroclor-1232                         | ND        |      | 72        | ug/kg | 02/28/24      | 03/01/24      |
| Aroclor-1242                         | ND        |      | 72        | ug/kg | 02/28/24      | 03/01/24      |
| Aroclor-1248                         | ND        |      | 72        | ug/kg | 02/28/24      | 03/01/24      |
| Aroclor-1254                         | ND        |      | 72        | ug/kg | 02/28/24      | 03/01/24      |
| Aroclor-1260                         | ND        |      | 72        | ug/kg | 02/28/24      | 03/01/24      |
| Aroclor-1262                         | ND        |      | 72        | ug/kg | 02/28/24      | 03/01/24      |
| Aroclor-1268                         | ND        |      | 72        | ug/kg | 02/28/24      | 03/01/24      |
| PCBs (Total)                         | ND        |      | 72        | ug/kg | 02/28/24      | 03/01/24      |
| Surrogate(s)                         | Recovery% |      | Limit     | :s    |               |               |
| 2,4,5,6-Tetrachloro-m-xylene (TCMX ) | 65.0%     |      | 36.2-1    | 30    | 02/28/24      | 03/01/24      |
| Decachlorobiphenyl (DCBP)            | 58.9%     |      | 43.3-1    | 30    | 02/28/24      | 03/01/24      |

## **Results: Total Petroleum Hydrocarbons**

Sample: TP-6

Lab Number: 4B26010-01 (Soil)

|                              |           |      | Reporting |       |               |               |
|------------------------------|-----------|------|-----------|-------|---------------|---------------|
| Analyte                      | Result    | Qual | Limit     | Units | Date Prepared | Date Analyzed |
| Total Petroleum Hydrocarbons | ND        |      | 33        | mg/kg | 02/28/24      | 02/28/24      |
| Surrogate(s)                 | Recovery% |      | Limit     | :s    |               |               |
| Chlorooctadecane             | 96.4%     |      | 50-13     | 30    | 02/28/24      | 02/28/24      |

## **Results: Total Petroleum Hydrocarbons**

Sample: B-103 0-6'

Lab Number: 4B26010-02 (Soil)

|                              |           |      | Reporting |       |               |               |
|------------------------------|-----------|------|-----------|-------|---------------|---------------|
| Analyte                      | Result    | Qual | Limit     | Units | Date Prepared | Date Analyzed |
| Total Petroleum Hydrocarbons | ND        |      | 30        | mg/kg | 02/28/24      | 02/28/24      |
| Surrogate(s)                 | Recovery% |      | Limit     | :S    |               |               |
| Chlorooctadecane             | 107%      |      | 50-13     | 20    | 02/28/24      | 02/28/24      |

## **Results: Total Petroleum Hydrocarbons**

Sample: B-113 2-4'

Lab Number: 4B26010-03 (Soil)

|                              |                |      | Reporting |       |               |               |
|------------------------------|----------------|------|-----------|-------|---------------|---------------|
| Analyte                      | Result         | Qual | Limit     | Units | Date Prepared | Date Analyzed |
| Total Petroleum Hydrocarbons | ND             |      | 31        | mg/kg | 02/28/24      | 02/28/24      |
| Surrogate(s)                 | Recovery%      |      | Limit     | ts    |               |               |
| Chlorooctadecane             | <i>81 00</i> 6 |      | 50-13     | 30    | 02/28/24      | 02/28/24      |

## **Results: Total Petroleum Hydrocarbons**

Sample: B-112 2-6'

Lab Number: 4B26010-04 (Soil)

|                              |           |      | Reporting |       |               |               |
|------------------------------|-----------|------|-----------|-------|---------------|---------------|
| Analyte                      | Result    | Qual | Limit     | Units | Date Prepared | Date Analyzed |
| Total Petroleum Hydrocarbons | ND        |      | 28        | mg/kg | 02/28/24      | 02/28/24      |
| Surrogate(s)                 | Recovery% |      | Limit     | :S    |               |               |
| Chlorooctadecane             | 84.7%     |      | 50-13     | 20    | 02/28/24      | 02/28/24      |

## **Quality Control**

#### **General Chemistry**

| Analyte                       | Result     | Qual       | Reporting<br>Limit | Units     | Spike<br>Level | Source<br>Result | %REC    | %REC<br>Limits | RPD   | RPD<br>Limit |
|-------------------------------|------------|------------|--------------------|-----------|----------------|------------------|---------|----------------|-------|--------------|
| Batch: B4B1194 - Flashpoint-E | PA 1010A-M | od         |                    |           |                |                  |         |                |       |              |
| LCS (B4B1194-BS1)             |            |            |                    |           | Prepared 8     | & Analyzed: 0    | 2/28/24 |                |       |              |
| Flashpoint                    | 80         |            | 70                 | degrees F | 80.0           |                  | 100     | 90-110         |       |              |
| Duplicate (B4B1194-DUP1)      | S          | ource: 4B2 | 22012-01           |           | Prepared 8     | & Analyzed: 0    | 2/28/24 |                |       |              |
| Flashpoint                    | > 200      |            | 70                 | degrees F |                | ND               |         |                |       | 20           |
| Batch: B4B1197 - Conductivity |            |            |                    |           |                |                  |         |                |       |              |
| Blank (B4B1197-BLK1)          |            |            |                    |           | Prepared 8     | & Analyzed: 0    | 2/28/24 |                |       |              |
| Specific Conductance          | ND         |            | 2.0                | uS/cm     |                |                  |         |                |       |              |
| Duplicate (B4B1197-DUP1)      | S          | ource: 4B2 | 23014-01           |           | Prepared 8     | & Analyzed: 0    | 2/28/24 |                |       |              |
| Specific Conductance          | 258        |            | 2.0                | uS/cm     |                | 258              |         |                | 0.00  | 200          |
| Batch: B4B1200 - pH           |            |            |                    |           |                |                  |         |                |       |              |
| LCS (B4B1200-BS1)             |            |            |                    |           | Prepared 8     | & Analyzed: 0    | 2/28/24 |                |       |              |
| рН                            | 7.1        |            |                    | SU        | 7.00           | •                | 101     | 0-200          |       |              |
| LCS (B4B1200-BS2)             |            |            |                    |           | Prepared 8     | & Analyzed: 0    | 2/28/24 |                |       |              |
| рН                            | 7.1        |            |                    | SU        | 7.00           |                  | 101     | 0-200          |       |              |
| Duplicate (B4B1200-DUP1)      | S          | ource: 4B2 | 23046-06           |           | Prepared 8     | & Analyzed: 0    | 2/28/24 |                |       |              |
| pH                            | 6.8        |            |                    | SU        |                | 6.8              |         |                | 0.587 | 200          |
| Batch: B4C0033 - Flashpoint-E | PA 1010A-M | od         |                    |           |                |                  |         |                |       |              |
| LCS (B4C0033-BS1)             |            |            |                    |           | Prepared 8     | & Analyzed: 0    | 3/01/24 |                |       |              |
| Flashpoint                    | 83         |            | 70                 | degrees F | 80.0           | ,                | 104     | 90-110         |       |              |

|                            |        |      |           | Control |       |        |      |        |     |       |
|----------------------------|--------|------|-----------|---------|-------|--------|------|--------|-----|-------|
| General Chemistry (Continu | ed)    |      |           |         |       |        |      |        |     |       |
|                            |        |      | Reporting |         | Spike | Source |      | %REC   |     | RPD   |
| Analyte                    | Result | Qual | Limit     | Units   | Level | Result | %REC | Limits | RPD | Limit |

|                                                          |         |            |                    | Control   |                |                  |                 |                |     |              |
|----------------------------------------------------------|---------|------------|--------------------|-----------|----------------|------------------|-----------------|----------------|-----|--------------|
| Reactivity                                               |         |            |                    |           |                |                  |                 |                |     |              |
| Analyte                                                  | Result  | Qual       | Reporting<br>Limit | Units     | Spike<br>Level | Source<br>Result | %REC            | %REC<br>Limits | RPD | RPD<br>Limit |
| Batch: B4B1244 - Reactivity Blank (B4B1244-BLK1)         |         |            |                    |           | Prepared 8     | & Analyzed: 0    | 2/29/24         |                |     |              |
| Sulfide                                                  | ND      |            | 0.1                | mg/kg     |                |                  |                 |                |     |              |
| Blank (B4B1244-BLK2)<br>Sulfide                          | ND      |            | 0.1                | mg/kg     | Prepared 8     | & Analyzed: 0    | 2/29/24         |                |     |              |
| LCS (B4B1244-BS1)<br>Sulfide                             | 3.6     |            | 0.1                | mg/kg     | Prepared 8     | & Analyzed: 0    | 2/29/24<br>90.0 | 90-110         |     |              |
| LCS (B4B1244-BS2)<br>Sulfide                             | 3.7     |            | 0.1                | mg/kg     | Prepared 8     | & Analyzed: 0    | 2/29/24<br>91.5 | 90-110         |     |              |
| Duplicate (B4B1244-DUP1) Sulfide                         | S<br>ND | Source: 4B | 23045-01<br>0.1    | mg/kg dry | Prepared 8     | & Analyzed: 0    | 2/29/24         |                |     | 20           |
| Matrix Spike (B4B1244-MS1)                               |         | Source: 4B |                    |           | •              | & Analyzed: 0    |                 |                |     |              |
| Sulfide                                                  | 4.5     |            | 0.1                | mg/kg dry | 4.59           | ND               | 98.5            | 80-120         |     |              |
| Batch: B4B1245 - Reactivity Blank (B4B1245-BLK1) Cyanide | ND      |            | 0.2                | mg/kg     | Prepared 8     | & Analyzed: 0    | 2/29/24         |                |     |              |
| Blank (B4B1245-BLK2)<br>Cyanide                          | ND      |            | 0.2                | mg/kg     | Prepared 8     | & Analyzed: 0    | 2/29/24         |                |     |              |
| Duplicate (B4B1245-DUP1) Cyanide                         | S<br>ND | Source: 4B | 23045-01<br>0.2    | mg/kg dry | Prepared 8     | & Analyzed: 0    | 2/29/24         |                |     | 20           |

|                         |                 |      | Quality<br>(Conti |       |              |               |             |        |     |       |
|-------------------------|-----------------|------|-------------------|-------|--------------|---------------|-------------|--------|-----|-------|
| Total Metals            |                 |      |                   |       |              |               |             |        |     |       |
|                         |                 |      | Reporting         |       | Spike        | Source        |             | %REC   |     | RPD   |
| Analyte                 | Result          | Qual | Limit             | Units | Level        | Result        | %REC        | Limits | RPD | Limit |
| Batch: B4B1103 - Metals | Digestion Soils |      |                   |       |              |               |             |        |     |       |
| Blank (B4B1103-BLK1)    | -               |      |                   | Pr    | epared: 02/2 | 27/24 Analyze | d: 03/01/24 |        |     |       |
| Antimony                | ND              |      | 0.66              | mg/kg |              |               |             |        |     |       |
| Beryllium               | ND              |      | 0.33              | mg/kg |              |               |             |        |     |       |
| Arsenic                 | ND              |      | 1.00              | mg/kg |              |               |             |        |     |       |
| Cadmium                 | ND              |      | 0.50              | mg/kg |              |               |             |        |     |       |
| Chromium                | ND              |      | 0.50              | mg/kg |              |               |             |        |     |       |
| Nickel                  | ND              |      | 0.50              | mg/kg |              |               |             |        |     |       |
| Lead                    | ND              |      | 0.50              | mg/kg |              |               |             |        |     |       |
| Silver                  | ND              |      | 1.00              | mg/kg |              |               |             |        |     |       |
| Zinc                    | ND              |      | 2.0               | mg/kg |              |               |             |        |     |       |
| Barium                  | ND              |      | 0.33              | mg/kg |              |               |             |        |     |       |
| Vanadium                | ND              |      | 0.33              | mg/kg |              |               |             |        |     |       |
| Selenium                | ND              |      | 1.00              | mg/kg |              |               |             |        |     |       |
| Thallium                | ND              |      | 0.33              | mg/kg |              |               |             |        |     |       |
|                         | 110             |      | 0.55              |       |              | 77/24 A       | 1- 02/04/24 |        |     |       |
| Blank (B4B1103-BLK2)    | ND              |      | 0.66              | mg/kg | epared: 02/2 | 27/24 Analyze | a: 03/04/24 |        |     |       |
| Antimony                |                 |      |                   | mg/kg |              |               |             |        |     |       |
| Beryllium               | ND              |      | 0.33              | mg/kg |              |               |             |        |     |       |
| Lead                    | ND              |      | 0.50              |       |              |               |             |        |     |       |
| Silver                  | ND              |      | 1.00              | mg/kg |              |               |             |        |     |       |
| Cadmium                 | ND              |      | 0.50              | mg/kg |              |               |             |        |     |       |
| Nickel                  | ND              |      | 0.50              | mg/kg |              |               |             |        |     |       |
| Zinc                    | ND              |      | 2.0               | mg/kg |              |               |             |        |     |       |
| Chromium                | ND              |      | 0.50              | mg/kg |              |               |             |        |     |       |
| Arsenic                 | ND              |      | 1.00              | mg/kg |              |               |             |        |     |       |
| Selenium                | ND              |      | 1.00              | mg/kg |              |               |             |        |     |       |
| Thallium                | ND              |      | 0.33              | mg/kg |              |               |             |        |     |       |
| LCS (B4B1103-BS1)       |                 |      |                   | Pr    | epared: 02/2 | 27/24 Analyze | d: 03/01/24 |        |     |       |
| Beryllium               | 20.1            |      | 0.33              | mg/kg | 20.0         |               | 101         | 85-115 |     |       |
| Zinc                    | 93.9            |      | 2.0               | mg/kg | 100          |               | 93.9        | 85-115 |     |       |
| Cadmium                 | 93.4            |      | 0.50              | mg/kg | 100          |               | 93.4        | 85-115 |     |       |
| Chromium                | 94.5            |      | 0.50              | mg/kg | 100          |               | 94.5        | 85-115 |     |       |
| Nickel                  | 93.9            |      | 0.50              | mg/kg | 100          |               | 93.9        | 85-112 |     |       |
| Lead                    | 97.3            |      | 0.50              | mg/kg | 100          |               | 97.3        | 85-115 |     |       |
| Antimony                | 91.8            |      | 0.66              | mg/kg | 100          |               | 91.8        | 85-115 |     |       |
| Selenium                | 19.9            |      | 1.00              | mg/kg | 20.0         |               | 99.4        | 85-115 |     |       |
| Vanadium                | 101             |      | 0.33              | mg/kg | 100          |               | 101         | 85-115 |     |       |
| Barium                  | 94.2            |      | 0.33              | mg/kg | 100          |               | 94.2        | 85-115 |     |       |
| Arsenic                 | 21.1            |      | 1.00              | mg/kg | 20.0         |               | 105         | 85-115 |     |       |
| Silver                  | 37.7            |      | 1.00              | mg/kg | 40.0         |               | 94.2        | 85-115 |     |       |
| Thallium                | 90.9            |      | 0.33              | mg/kg | 100          |               | 90.9        | 85-115 |     |       |

|                                  |             |             |                    | Control   |                |                  |              |                |        |              |
|----------------------------------|-------------|-------------|--------------------|-----------|----------------|------------------|--------------|----------------|--------|--------------|
| Total Metals (Continued)         |             |             |                    |           |                |                  |              |                |        |              |
| Analyte                          | Result      | Qual        | Reporting<br>Limit | Units     | Spike<br>Level | Source<br>Result | %REC         | %REC<br>Limits | RPD    | RPD<br>Limit |
| Batch: B4B1103 - Metals Digestio | on Soils (C | ontinue     | ed)                |           |                |                  |              |                |        |              |
| Matrix Spike (B4B1103-MS1)       | -<br>S      | Source: 4B2 | 26010-01           | Pre       | epared: 02/2   | 27/24 Analyze    | ed: 03/01/24 |                |        |              |
| Beryllium                        | 30.1        |             | 0.50               | mg/kg dry | 30.0           | ND               | 100          | 75-125         |        |              |
| Arsenic                          | 40.7        |             | 1.50               | mg/kg dry | 30.0           | 10.5             | 100          | 75-125         |        |              |
| Barium                           | 159         |             | 0.50               | mg/kg dry | 150            | 32.5             | 84.2         | 75-125         |        |              |
| Cadmium                          | 134         |             | 0.75               | mg/kg dry | 150            | 3.42             | 86.8         | 75-125         |        |              |
| Chromium                         | 146         |             | 0.75               | mg/kg dry | 150            | 13.7             | 88.5         | 75-125         |        |              |
| Nickel                           | 142         |             | 0.75               | mg/kg dry | 150            | 9.11             | 88.4         | 75-125         |        |              |
| Silver                           | 54.1        |             | 1.50               | mg/kg dry | 60.0           | ND               | 90.2         | 75-125         |        |              |
| Lead                             | 169         |             | 0.75               | mg/kg dry | 150            | 38.7             | 86.9         | 75-125         |        |              |
| Selenium                         | 23.6        |             | 1.50               | mg/kg dry | 30.0           | ND               | 78.7         | 75-125         |        |              |
| Vanadium                         | 163         |             | 0.50               | mg/kg dry | 150            | 21.4             | 94.3         | 75-125         |        |              |
| Zinc                             | 179         |             | 3.0                | mg/kg dry | 150            | 48.6             | 86.7         | 75-125         |        |              |
| Thallium                         | 123         |             | 0.50               | mg/kg dry | 150            | ND               | 81.9         | 75-125         |        |              |
| Matrix Spike Dup (B4B1103-MSD1)  | S           | Source: 4B2 | 26010-01           | Pre       | epared: 02/2   | 27/24 Analyze    | ed: 03/01/24 |                |        |              |
| Arsenic                          | 38.6        |             | 1.40               | mg/kg dry | 28.0           | 10.5             | 100          | 75-125         | 0.0916 | 20           |
| Chromium                         | 139         |             | 0.70               | mg/kg dry | 140            | 13.7             | 89.1         | 75-125         | 5.54   | 20           |
| Vanadium                         | 155         |             | 0.46               | mg/kg dry | 140            | 21.4             | 95.6         | 75-125         | 4.76   | 20           |
| Silver                           | 48.3        |             | 1.40               | mg/kg dry | 56.0           | ND               | 86.3         | 75-125         | 4.41   | 20           |
| Lead                             | 164         |             | 0.70               | mg/kg dry | 140            | 38.7             | 89.3         | 75-125         | 3.24   | 20           |
| Barium                           | 153         |             | 0.46               | mg/kg dry | 140            | 32.5             | 85.9         | 75-125         | 3.91   | 20           |
| Nickel                           | 133         |             | 0.70               | mg/kg dry | 140            | 9.11             | 88.6         | 75-125         | 6.22   | 20           |
| Cadmium                          | 126         |             | 0.70               | mg/kg dry | 140            | 3.42             | 87.7         | 75-125         | 5.68   | 20           |
| Selenium                         | 21.2        |             | 1.40               | mg/kg dry | 28.0           | ND               | 75.8         | 75-125         | 3.75   | 20           |
| Beryllium                        | 28.7        |             | 0.46               | mg/kg dry | 28.0           | ND               | 102          | 75-125         | 4.82   | 20           |
|                                  |             |             |                    |           |                |                  |              |                |        |              |

mg/kg dry

mg/kg dry

140

140

48.6

ND

2.8

0.46

171

117

Zinc

Thallium

87.1

83.3

75-125

75-125

4.59

5.15

20

20

|                                 |           |             |           | Control   |            |               |         |        |      |       |
|---------------------------------|-----------|-------------|-----------|-----------|------------|---------------|---------|--------|------|-------|
| Total Metals (Continued)        |           |             |           |           |            |               |         |        |      |       |
|                                 |           |             | Reporting |           | Spike      | Source        |         | %REC   |      | RPD   |
| Analyte                         | Result    | Qual        | Limit     | Units     | Level      | Result        | %REC    | Limits | RPD  | Limit |
| Batch: B4B1185 - Metals Cold-Va | por Mercu | iry         |           |           |            |               |         |        |      |       |
| Blank (B4B1185-BLK1)            | -         | -           |           |           | Prepared 8 | & Analyzed: 0 | 2/28/24 |        |      |       |
| Mercury                         | ND        |             | 0.100     | mg/kg     |            |               |         |        |      |       |
| Blank (B4B1185-BLK2)            |           |             |           |           | Prepared 8 | & Analyzed: 0 | 2/28/24 |        |      |       |
| Mercury                         | ND        |             | 0.100     | mg/kg     |            |               |         |        |      |       |
| LCS (B4B1185-BS1)               |           |             |           |           | Prepared 8 | & Analyzed: 0 | 2/28/24 |        |      |       |
| Mercury                         | 0.504     |             | 0.100     | mg/kg     | 0.500      |               | 101     | 93-114 |      |       |
| LCS (B4B1185-BS2)               |           |             |           |           | Prepared 8 | & Analyzed: 0 | 2/28/24 |        |      |       |
| Mercury                         | 0.504     |             | 0.100     | mg/kg     | 0.500      |               | 101     | 93-114 |      |       |
| LCS Dup (B4B1185-BSD1)          |           |             |           |           | Prepared 8 | & Analyzed: 0 | 2/28/24 |        |      |       |
| Mercury                         | 0.513     |             | 0.100     | mg/kg     | 0.500      |               | 103     | 93-114 | 1.92 | 200   |
| LCS Dup (B4B1185-BSD2)          |           |             |           |           | Prepared 8 | & Analyzed: 0 | 2/28/24 |        |      |       |
| Mercury                         | 0.513     |             | 0.100     | mg/kg     | 0.500      |               | 103     | 93-114 | 1.92 | 200   |
| Matrix Spike (B4B1185-MS1)      | 9         | Source: 4B2 | 26010-01  |           | Prepared 8 | & Analyzed: 0 | 2/28/24 |        |      |       |
| Mercury                         | 0.716     |             | 0.126     | mg/kg dry | 0.630      | 0.129         | 93.1    | 80-120 |      |       |
| Matrix Spike (B4B1185-MS2)      | 9         | Source: 4B2 | 27039-02  |           | Prepared 8 | & Analyzed: 0 | 2/28/24 |        |      |       |
| Mercury                         | 0.564     |             | 0.094     | mg/kg dry | 0.469      | 0.135         | 91.3    | 80-120 |      |       |
| Matrix Spike (B4B1185-MS3)      | 9         | Source: 4B2 | 27003-01  |           | Prepared 8 | & Analyzed: 0 | 2/28/24 |        |      |       |
| Mercury                         | 0.649     |             | 0.098     | mg/kg dry | 0.489      | 0.125         | 107     | 80-120 |      |       |
| Matrix Spike Dup (B4B1185-MSD1) | 9         | Source: 4B2 | 26010-01  |           | Prepared 8 | & Analyzed: 0 | 2/28/24 |        |      |       |
|                                 | 0.600     |             | 0.445     |           |            | 0.430         | 00.0    | 00.400 |      |       |

0.115 mg/kg dry 0.577 0.129 96.8 80-120

0.688

Mercury

4.01

20

|                                 |           |            |           | Control   |            |               |         |        |      |       |
|---------------------------------|-----------|------------|-----------|-----------|------------|---------------|---------|--------|------|-------|
| Total Metals (Continued)        |           |            |           |           |            |               |         |        |      |       |
|                                 |           |            | Reporting |           | Spike      | Source        |         | %REC   |      | RPD   |
| Analyte                         | Result    | Qual       | Limit     | Units     | Level      | Result        | %REC    | Limits | RPD  | Limit |
| Batch: B4B1185 - Metals Cold-Va | por Mercu | ry (Con    | ntinued)  |           |            |               |         |        |      |       |
| Matrix Spike Dup (B4B1185-MSD2) | -         | Source: 4B | 27039-02  |           | Prepared 8 | & Analyzed: 0 | 2/28/24 |        |      |       |
| Mercury                         | 0.576     |            | 0.093     | mg/kg dry | 0.465      | 0.135         | 94.7    | 80-120 | 2.10 | 20    |

### Volatile Organic Compounds 8260C (5035-LL)

| Analyte                            | Result Qu | Reporting<br>al Limit | Units          | Spike<br>Level | Source<br>Result | %REC    | %REC<br>Limits | RPD  | RPI<br>Limi |
|------------------------------------|-----------|-----------------------|----------------|----------------|------------------|---------|----------------|------|-------------|
| Batch: B4C0126 - EPA 5035          |           |                       |                |                |                  |         |                |      |             |
| Blank (B4C0126-BLK1)               |           |                       |                | Prepared 8     | & Analyzed: 0    | 3/04/24 |                |      |             |
| Acetone                            | ND        | 5                     | ug/kg          | •              | ,                |         |                |      |             |
| Benzene                            | ND        | 5                     | ug/kg          |                |                  |         |                |      |             |
| Bromobenzene                       | ND        | 5                     | ug/kg          |                |                  |         |                |      |             |
| Bromochloromethane                 | ND        | 5                     | ug/kg          |                |                  |         |                |      |             |
| Bromodichloromethane               | ND        | 5                     | ug/kg          |                |                  |         |                |      |             |
| Bromoform                          | ND        | 5                     | ug/kg          |                |                  |         |                |      |             |
| Bromomethane                       | ND        | 5                     | ug/kg          |                |                  |         |                |      |             |
| 2-Butanone                         | ND        | 5                     | ug/kg          |                |                  |         |                |      |             |
| tert-Butyl alcohol                 | ND        | 5                     | ug/kg          |                |                  |         |                |      |             |
| sec-Butylbenzene                   | ND        | 5                     | ug/kg          |                |                  |         |                |      |             |
| n-Butylbenzene                     | ND        | 5                     | ug/kg          |                |                  |         |                |      |             |
| tert-Butylbenzene                  | ND        | 5                     | ug/kg          |                |                  |         |                |      |             |
| Methyl t-butyl ether (MTBE)        | ND        | 5                     | ug/kg          |                |                  |         |                |      |             |
| Carbon Disulfide                   | ND        | 5                     | ug/kg          |                |                  |         |                |      |             |
| Carbon Tetrachloride               | ND        | 5                     | ug/kg          |                |                  |         |                |      |             |
| Chlorobenzene                      | ND        | 5                     | ug/kg          |                |                  |         |                |      |             |
| Chloroethane                       | ND<br>ND  | 5                     | ug/kg          |                |                  |         |                |      |             |
|                                    |           | 5                     |                |                |                  |         |                |      |             |
| Chloroform                         | ND        |                       | ug/kg          |                |                  |         |                |      |             |
| Chloromethane                      | ND        | 5                     | ug/kg          |                |                  |         |                |      |             |
| 4-Chlorotoluene                    | ND        | 5                     | ug/kg          |                |                  |         |                |      |             |
| 2-Chlorotoluene                    | ND        | 5                     | ug/kg          |                |                  |         |                |      |             |
| 1,2-Dibromo-3-chloropropane (DBCP) | ND        | 5                     | ug/kg          |                |                  |         |                |      |             |
| Dibromochloromethane               | ND        | 5                     | ug/kg          |                |                  |         |                |      |             |
| 1,2-Dibromoethane (EDB)            | ND        | 5                     | ug/kg          |                |                  |         |                |      |             |
| Dibromomethane                     | ND        | 5                     | ug/kg          |                |                  |         |                |      |             |
| 1,2-Dichlorobenzene                | ND        | 5                     | ug/kg          |                |                  |         |                |      |             |
| 1,3-Dichlorobenzene                | ND        | 5                     | ug/kg          |                |                  |         |                |      |             |
| 1,4-Dichlorobenzene                | ND        | 5                     | ug/kg          |                |                  |         |                |      |             |
| 1,1-Dichloroethane                 | ND        | 5                     | ug/kg          |                |                  |         |                |      |             |
| 1,2-Dichloroethane                 | ND        | 5                     | ug/kg          |                |                  |         |                |      |             |
| 1,2 Dichloroethene, Total          | ND        | 5                     | ug/kg          |                |                  |         |                |      |             |
| trans-1,2-Dichloroethene           | ND        | 5                     | ug/kg          |                |                  |         |                |      |             |
| cis-1,2-Dichloroethene             | ND        | 5                     | ug/kg          |                |                  |         |                |      |             |
| 1,1-Dichloroethene                 | ND        | 5                     | ug/kg          |                |                  |         |                |      |             |
| 1,2-Dichloropropane                | ND        | 5                     | ug/kg          |                |                  |         |                |      |             |
| 2,2-Dichloropropane                | ND        | 5                     | ug/kg          |                |                  |         |                |      |             |
| cis-1,3-Dichloropropene            | ND        | 5                     | ug/kg          |                |                  |         |                |      |             |
| trans-1,3-Dichloropropene          | ND        | 5                     | ug/kg          |                |                  |         |                |      |             |
| 1,1-Dichloropropene                | ND        | 5                     | ug/kg          |                |                  |         |                |      |             |
| 1,3-Dichloropropene (cis + trans)  | ND        | 5                     | ug/kg          |                |                  |         |                |      |             |
| Diethyl ether                      | ND        | 5                     | ug/kg          |                |                  |         |                |      |             |
| 1,4-Dioxane                        | ND        | 100                   | ug/kg          |                |                  |         |                |      |             |
| Ethylbenzene                       | ND        | 5                     | ug/kg          |                |                  |         |                |      |             |
| Hexachlorobutadiene                | ND        | 5                     | ug/kg          |                |                  |         |                |      |             |
| 2-Hexanone                         | ND        | 5                     | ug/kg          |                |                  |         |                |      |             |
| Isopropylbenzene                   | ND        | 5                     | ug/kg          |                |                  |         |                |      |             |
| p-Isopropyltoluene                 | ND        | 5                     | ug/kg          |                |                  |         |                |      |             |
| Methylene Chloride                 | ND        | 5                     | ug/kg          |                |                  |         |                |      |             |
| 4-Methyl-2-pentanone               | ND<br>ND  | 5                     | ug/kg<br>ug/kg |                |                  |         |                |      |             |
|                                    | ND<br>ND  | 5<br>5                | ug/kg<br>ug/kg |                |                  |         |                |      |             |
| Naphthalene                        |           |                       |                |                |                  |         |                |      |             |
| n-Propylbenzene                    | ND        | 5                     | ug/kg          |                |                  |         |                |      |             |
| Styrene                            | ND        | 5                     | ug/kg          |                |                  |         |                |      |             |
| 1,1,1,2-Tetrachloroethane          | ND        | 5                     | ug/kg          |                |                  |         |                |      |             |
| Tetrachloroethene                  | ND        | 5                     | ug/kg          |                |                  |         |                |      |             |
| Tetrahydrofuran                    | ND        | 5                     | ug/kg          |                |                  |         |                |      |             |
| Toluene                            | ND        | 5                     | ug/kg          |                |                  |         |                |      |             |
| 1,2,4-Trichlorobenzene             | ND        | 5                     | ug/kg          |                |                  |         |                | Page |             |

# **Quality Control**

(Continued)

## Volatile Organic Compounds 8260C (5035-LL) (Continued)

| Analyte                            | Result    | Qual | Reporting<br>Limit | Units          | Spike<br>Level | Source<br>Result | %REC         | %REC<br>Limits   | RPD | RPE<br>Limi |
|------------------------------------|-----------|------|--------------------|----------------|----------------|------------------|--------------|------------------|-----|-------------|
| Batch: B4C0126 - EPA 5035 (C       | ontinued) |      |                    |                |                |                  |              |                  |     |             |
| Blank (B4C0126-BLK1)               |           |      |                    |                | Prepared 8     | & Analyzed: 0    | 3/04/24      |                  |     |             |
| 1,2,3-Trichlorobenzene             | ND        |      | 5                  | ug/kg          | •              |                  |              |                  |     |             |
| 1,1,2-Trichloroethane              | ND        |      | 5                  | ug/kg          |                |                  |              |                  |     |             |
| 1,1,1-Trichloroethane              | ND        |      | 5                  | ug/kg          |                |                  |              |                  |     |             |
| Trichloroethene                    | ND        |      | 5                  | ug/kg          |                |                  |              |                  |     |             |
| 1,2,3-Trichloropropane             | ND        |      | 5                  | ug/kg          |                |                  |              |                  |     |             |
| 1,3,5-Trimethylbenzene             | ND        |      | 5                  | ug/kg          |                |                  |              |                  |     |             |
| 1,2,4-Trimethylbenzene             | ND        |      | 5                  | ug/kg          |                |                  |              |                  |     |             |
| Vinyl Chloride                     | ND        |      | 5                  | ug/kg          |                |                  |              |                  |     |             |
| o-Xylene                           | ND        |      | 5                  | ug/kg          |                |                  |              |                  |     |             |
| m&p-Xylene                         | ND<br>ND  |      | 10                 | ug/kg          |                |                  |              |                  |     |             |
|                                    |           |      | 5                  | ug/kg<br>ug/kg |                |                  |              |                  |     |             |
| Total xylenes                      | ND        |      |                    |                |                |                  |              |                  |     |             |
| 1,1,2,2-Tetrachloroethane          | ND        |      | 5                  | ug/kg          |                |                  |              |                  |     |             |
| tert-Amyl methyl ether             | ND        |      | 5                  | ug/kg          |                |                  |              |                  |     |             |
| 1,3-Dichloropropane                | ND        |      | 5                  | ug/kg          |                |                  |              |                  |     |             |
| Ethyl tert-butyl ether             | ND        |      | 5                  | ug/kg          |                |                  |              |                  |     |             |
| Diisopropyl ether                  | ND        |      | 5                  | ug/kg          |                |                  |              |                  |     |             |
| Trichlorofluoromethane             | ND        |      | 5                  | ug/kg          |                |                  |              |                  |     |             |
| Dichlorodifluoromethane            | ND        |      | 5                  | ug/kg          |                |                  |              |                  |     |             |
| Surrogate: 4-Bromofluorobenzene    |           |      | 49.0               | ug/kg          | 50.0           |                  | 98.0         | 70-130           |     |             |
| Surrogate: 1,2-Dichloroethane-d4   |           |      | 49.8               | ug/kg          | 50.0           |                  | 99.6         | 70-130           |     |             |
| Surrogate: Toluene-d8              |           |      | 47.7               | ug/kg          | <i>50.0</i>    |                  | 95.4         | 70-130           |     |             |
|                                    |           |      | 17.7               |                |                | 2 4 1 1 0        |              | 70 130           |     |             |
| LCS (B4C0126-BS1)                  |           |      | _                  |                | -              | & Analyzed: 0    |              |                  |     |             |
| Acetone                            | 42        |      | 5                  | ug/kg          | 50.0           |                  | 83.1         | 50-150           |     |             |
| Benzene                            | 46        |      | 5                  | ug/kg          | 50.0           |                  | 91.8         | 70-130           |     |             |
| Bromobenzene                       | 43        |      | 5                  | ug/kg          | 50.0           |                  | 86.4         | 70-130           |     |             |
| Bromochloromethane                 | 45        |      | 5                  | ug/kg          | 50.0           |                  | 90.1         | 70-130           |     |             |
| Bromodichloromethane               | 44        |      | 5                  | ug/kg          | 50.0           |                  | 87.4         | 70-130           |     |             |
| Bromoform                          | 47        |      | 5                  | ug/kg          | 50.0           |                  | 93.3         | 70-130           |     |             |
| Bromomethane                       | 48        |      | 5                  | ug/kg          | 50.0           |                  | 95.0         | 50-150           |     |             |
| 2-Butanone                         | 43        |      | 5                  | ug/kg          | 50.0           |                  | 85.6         | 50-150           |     |             |
| tert-Butyl alcohol                 | 41        |      | 5                  | ug/kg          | 50.0           |                  | 82.5         | 70-130           |     |             |
| sec-Butylbenzene                   | 45        |      | 5                  | ug/kg          | 50.0           |                  | 89.8         | 70-130           |     |             |
| n-Butylbenzene                     | 46        |      | 5                  | ug/kg          | 50.0           |                  | 92.4         | 70-130           |     |             |
| tert-Butylbenzene                  | 45        |      | 5                  | ug/kg          | 50.0           |                  | 90.1         | 70-130           |     |             |
| Methyl t-butyl ether (MTBE)        | 39        |      | 5                  | ug/kg          | 50.0           |                  | 77.2         | 70-130           |     |             |
| Carbon Disulfide                   | 32        |      | 5                  | ug/kg          | 50.0           |                  | 64.0         | 50-150           |     |             |
| Carbon Tetrachloride               | 46        |      | 5                  | ug/kg          | 50.0           |                  | 93.0         | 70-130           |     |             |
| Chlorobenzene                      | 41        |      | 5                  | ug/kg<br>ug/kg | 50.0           |                  | 93.0<br>82.2 | 70-130<br>70-130 |     |             |
|                                    |           |      | 5                  |                |                |                  |              |                  |     |             |
| Chloroform                         | 37        |      |                    | ug/kg          | 50.0           |                  | 74.5         | 50-150<br>70-130 |     |             |
| Chloroform                         | 43        |      | 5                  | ug/kg          | 50.0           |                  | 86.8         | 70-130           |     |             |
| Chloromethane                      | 37        |      | 5                  | ug/kg          | 50.0           |                  | 74.1         | 50-150           |     |             |
| 4-Chlorotoluene                    | 44        |      | 5                  | ug/kg          | 50.0           |                  | 87.4         | 70-130           |     |             |
| 2-Chlorotoluene                    | 40        |      | 5                  | ug/kg          | 50.0           |                  | 80.6         | 70-130           |     |             |
| 1,2-Dibromo-3-chloropropane (DBCP) | 46        |      | 5                  | ug/kg          | 50.0           |                  | 92.5         | 70-130           |     |             |
| Dibromochloromethane               | 45        |      | 5                  | ug/kg          | 50.0           |                  | 90.8         | 70-130           |     |             |
| 1,2-Dibromoethane (EDB)            | 45        |      | 5                  | ug/kg          | 50.0           |                  | 90.1         | 70-130           |     |             |
| Dibromomethane                     | 46        |      | 5                  | ug/kg          | 50.0           |                  | 92.1         | 60-140           |     |             |
| 1,2-Dichlorobenzene                | 43        |      | 5                  | ug/kg          | 50.0           |                  | 85.1         | 70-130           |     |             |
| 1,3-Dichlorobenzene                | 44        |      | 5                  | ug/kg          | 50.0           |                  | 87.2         | 70-130           |     |             |
| 1,4-Dichlorobenzene                | 43        |      | 5                  | ug/kg          | 50.0           |                  | 85.7         | 70-130           |     |             |
| 1,1-Dichloroethane                 | 43        |      | 5                  | ug/kg          | 50.0           |                  | 86.1         | 70-130           |     |             |
| 1,2-Dichloroethane                 | 46        |      | 5                  | ug/kg          | 50.0           |                  | 92.3         | 70-130           |     |             |
| trans-1,2-Dichloroethene           | 44        |      | 5                  | ug/kg          | 50.0           |                  | 87.4         | 70-130           |     |             |
| cis-1,2-Dichloroethene             | 44        |      | 5                  | ug/kg          | 50.0           |                  | 87.7         | 70-130           |     |             |
| 1,1-Dichloroethene                 | 33        |      | 5                  | ug/kg          | 50.0           |                  | 65.7         | 70-130<br>70-130 |     |             |
| TIT DICHIOLOGUICIE                 | 33        |      | J                  | ~g/ng          | 50.0           |                  | 05./         | \ 0-T20          |     |             |

Page 51 of 68

## Volatile Organic Compounds 8260C (5035-LL) (Continued)

|                                  |             |      | Reporting |                | Spike      | Source        |            | %REC             |     | RPD   |
|----------------------------------|-------------|------|-----------|----------------|------------|---------------|------------|------------------|-----|-------|
| Analyte                          | Result      | Qual | Limit     | Units          | Level      | Result        | %REC       | Limits           | RPD | Limit |
| Batch: B4C0126 - EPA 5035        | (Continued) |      |           |                |            |               |            |                  |     |       |
| LCS (B4C0126-BS1)                |             |      |           |                | Prepared 8 | & Analyzed: 0 | 3/04/24    |                  |     |       |
| 2,2-Dichloropropane              | 48          |      | 5         | ug/kg          | 50.0       |               | 95.1       | 70-130           |     |       |
| cis-1,3-Dichloropropene          | 44          |      | 5         | ug/kg          | 50.0       |               | 87.5       | 70-130           |     |       |
| trans-1,3-Dichloropropene        | 48          |      | 5         | ug/kg          | 50.0       |               | 95.2       | 70-130           |     |       |
| 1,1-Dichloropropene              | 45          |      | 5         | ug/kg          | 50.0       |               | 89.5       | 70-130           |     |       |
| Diethyl ether                    | 35          |      | 5         | ug/kg          | 50.0       |               | 70.4       | 60-140           |     |       |
| 1,4-Dioxane                      | 222         |      | 100       | ug/kg          | 250        |               | 88.7       | 0-200            |     |       |
| Ethylbenzene                     | 45          |      | 5         | ug/kg          | 50.0       |               | 90.0       | 70-130           |     |       |
| Hexachlorobutadiene              | 52          |      | 5         | ug/kg          | 50.0       |               | 103        | 70-130           |     |       |
| 2-Hexanone                       | 42          |      | 5         | ug/kg          | 50.0       |               | 83.3       | 50-150           |     |       |
| Isopropylbenzene                 | 45          |      | 5         | ug/kg          | 50.0       |               | 89.0       | 70-130           |     |       |
| p-Isopropyltoluene               | 45          |      | 5         | ug/kg          | 50.0       |               | 90.6       | 70-130           |     |       |
| Methylene Chloride               | 42          |      | 5         | ug/kg          | 50.0       |               | 84.8       | 60-140           |     |       |
| 4-Methyl-2-pentanone             | 45          |      | 5         | ug/kg          | 50.0       |               | 89.5       | 50-150           |     |       |
| Naphthalene                      | 50          |      | 5         | ug/kg          | 50.0       |               | 100        | 70-130           |     |       |
| n-Propylbenzene                  | 45          |      | 5         | ug/kg          | 50.0       |               | 90.5       | 70-130           |     |       |
| Styrene                          | 43          |      | 5         | ug/kg          | 50.0       |               | 86.1       | 70-130           |     |       |
| 1,1,1,2-Tetrachloroethane        | 44          |      | 5         | ug/kg          | 50.0       |               | 87.5       | 70-130           |     |       |
| Tetrachloroethene                | 47          |      | 5         | ug/kg          | 50.0       |               | 93.1       | 70-130           |     |       |
| Tetrahydrofuran                  | 47          |      | 5         | ug/kg          | 50.0       |               | 93.2       | 50-150           |     |       |
| Toluene                          | 49          |      | 5         | ug/kg          | 50.0       |               | 98.4       | 70-130           |     |       |
| 1,2,4-Trichlorobenzene           | 49          |      | 5         | ug/kg          | 50.0       |               | 97.0       | 70-130           |     |       |
| 1,2,3-Trichlorobenzene           | 50          |      | 5         | ug/kg          | 50.0       |               | 99.1       | 70-130           |     |       |
| 1,1,2-Trichloroethane            | 42          |      | 5         | ug/kg          | 50.0       |               | 84.8       | 70-130           |     |       |
| 1,1,1-Trichloroethane            | 44          |      | 5         | ug/kg          | 50.0       |               | 88.8       | 70-130           |     |       |
| Trichloroethene                  | 44          |      | 5         | ug/kg          | 50.0       |               | 88.6       | 70-130           |     |       |
| 1,2,3-Trichloropropane           | 42          |      | 5         | ug/kg          | 50.0       |               | 83.6       | 70-130           |     |       |
| 1,3,5-Trimethylbenzene           | 45          |      | 5         | ug/kg          | 50.0       |               | 90.3       | 70-130           |     |       |
| 1,2,4-Trimethylbenzene           | 48          |      | 5         | ug/kg          | 50.0       |               | 96.8       | 70-130           |     |       |
| Vinyl Chloride                   | 39          |      | 5         | ug/kg          | 50.0       |               | 78.7       | 50-150           |     |       |
| o-Xylene                         | 46          |      | 5         | ug/kg          | 50.0       |               | 91.5       | 70-130           |     |       |
| m&p-Xylene                       | 90          |      | 10        | ug/kg          | 100        |               | 89.8       | 70-130           |     |       |
| 1,1,2,2-Tetrachloroethane        | 42          |      | 5         | ug/kg          | 50.0       |               | 84.7       | 70-130           |     |       |
| tert-Amyl methyl ether           | 41          |      | 5         | ug/kg          | 50.0       |               | 83.0       | 70-130           |     |       |
| 1,3-Dichloropropane              | 45          |      | 5         | ug/kg          | 50.0       |               | 89.2       | 70-130           |     |       |
| Ethyl tert-butyl ether           | 41          |      | 5         | ug/kg          | 50.0       |               | 81.5       | 70-130           |     |       |
| Trichlorofluoromethane           | 43          |      | 5         | ug/kg          | 50.0       |               | 86.8       | 50-150           |     |       |
| Dichlorodifluoromethane          | 50          |      | 5         | ug/kg          | 50.0       |               | 100        | 50-150           |     |       |
|                                  |             |      |           | ug/kg          |            |               |            |                  |     |       |
| Surrogate: 4-Bromofluorobenzene  |             |      | 51.6      | ug/kg<br>ug/kg | 50.0       |               | 103<br>100 | 70-130<br>70-130 |     |       |
| Surrogate: 1,2-Dichloroethane-d4 |             |      | 54.6      |                | 50.0       |               | 109<br>107 | 70-130           |     |       |
| Surrogate: Toluene-d8            |             |      | 53.5      | ug/kg          | 50.0       |               | 107        | 70-130           |     |       |

## Volatile Organic Compounds 8260C (5035-LL) (Continued)

| Analyte                            | Result Qua | Reporting<br>I Limit | Units          | Spike<br>Level | Source<br>Result %REC | %REC<br>Limits | RPD  | RPI<br>Limi |
|------------------------------------|------------|----------------------|----------------|----------------|-----------------------|----------------|------|-------------|
| Batch: B4C0126 - EPA 5035 (C       | Continued) |                      |                |                |                       |                |      |             |
| LCS Dup (B4C0126-BSD1)             |            |                      |                | Prepared 8     | & Analyzed: 03/04/24  |                |      |             |
| Acetone                            | 29         | 5                    | ug/kg          | 50.0           | 58.9                  | 50-150         | 34.2 | 30          |
| Benzene                            | 53         | 5                    | ug/kg          | 50.0           | 106                   | 70-130         | 14.4 | 20          |
| Bromobenzene                       | 49         | 5                    | ug/kg          | 50.0           | 98.4                  | 70-130         | 13.0 | 20          |
| Bromochloromethane                 | 52         | 5                    | ug/kg          | 50.0           | 104                   | 70-130         | 14.3 | 20          |
| Bromodichloromethane               | 51         | 5                    | ug/kg          | 50.0           | 102                   | 70-130         | 15.0 | 20          |
| Bromoform                          | 53         | 5                    | ug/kg          | 50.0           | 107                   | 70-130         | 13.3 | 20          |
| Bromomethane                       | 60         | 5                    | ug/kg          | 50.0           | 120                   | 50-150         | 23.0 | 30          |
| 2-Butanone                         | 35         | 5                    | ug/kg          | 50.0           | 70.0                  | 50-150         | 19.9 | 30          |
| tert-Butyl alcohol                 | 39         | 5                    | ug/kg          | 50.0           | 78.2                  | 70-130         | 5.35 | 20          |
| sec-Butylbenzene                   | 51         | 5                    | ug/kg          | 50.0           | 101                   | 70-130         | 12.2 | 20          |
| n-Butylbenzene                     | 53         | 5                    | ug/kg          | 50.0           | 106                   | 70-130         | 14.0 | 20          |
| tert-Butylbenzene                  | 52         | 5                    | ug/kg          | 50.0           | 104                   | 70-130         | 14.1 | 20          |
| Methyl t-butyl ether (MTBE)        | 43         | 5                    | ug/kg          | 50.0           | 86.0                  | 70-130         | 10.7 | 20          |
| Carbon Disulfide                   | 37         | 5                    | ug/kg          | 50.0           | 73.9                  | 50-150         | 14.3 | 40          |
| Carbon Tetrachloride               | 54         | 5                    | ug/kg          | 50.0           | 108                   | 70-130         | 14.6 | 20          |
| Chlorobenzene                      | 48         | 5                    | ug/kg          | 50.0           | 95.5                  | 70-130         | 15.0 | 20          |
| Chloroethane                       | 43         | 5                    | ug/kg          | 50.0           | 86.9                  | 50-150         | 15.3 | 3           |
| Chloroform                         | 50         | 5                    | ug/kg          | 50.0           | 100                   | 70-130         | 14.3 | 2           |
| Chloromethane                      | 44         | 5                    | ug/kg          | 50.0           | 87.1                  | 50-150         | 16.2 | 3           |
| 4-Chlorotoluene                    | 44         | 5                    | ug/kg          | 50.0           | 88.5                  | 70-130         | 1.25 | 2           |
| 2-Chlorotoluene                    | 46         | 5                    | ug/kg          | 50.0           | 91.3                  | 70-130         | 12.5 | 2           |
| 1,2-Dibromo-3-chloropropane (DBCP) | 52         | 5                    | ug/kg          | 50.0           | 104                   | 70-130         | 12.2 | 2           |
| Dibromochloromethane               | 52         | 5                    | ug/kg          | 50.0           | 104                   | 70-130         | 13.4 | 2           |
| 1,2-Dibromoethane (EDB)            | 51         | 5                    | ug/kg          | 50.0           | 101                   | 70-130         | 11.7 | 2           |
| Dibromomethane                     | 51         | 5                    | ug/kg          | 50.0           | 102                   | 60-140         | 10.3 | 3           |
| 1,2-Dichlorobenzene                | 49         | 5                    | ug/kg          | 50.0           | 98.7                  | 70-130         | 14.8 | 2           |
| 1,3-Dichlorobenzene                | 49         | 5                    | ug/kg          | 50.0           | 98.2                  | 70-130         | 11.9 | 2           |
| 1,4-Dichlorobenzene                | 49         | 5                    | ug/kg          | 50.0           | 99.0                  | 70-130         | 14.3 | 2           |
| 1,1-Dichloroethane                 | 50         | 5                    | ug/kg          | 50.0           | 100                   | 70-130         | 14.9 | 2           |
| 1,2-Dichloroethane                 | 52         | 5                    | ug/kg          | 50.0           | 105                   | 70-130         | 12.8 | 2           |
| trans-1,2-Dichloroethene           | 50         | 5                    | ug/kg          | 50.0           | 101                   | 70-130         | 14.2 | 2           |
| cis-1,2-Dichloroethene             | 49         | 5                    | ug/kg          | 50.0           | 97.9                  | 70-130         | 11.0 | 2           |
| 1,1-Dichloroethene                 | 38         | 5                    | ug/kg          | 50.0           | 76.2                  | 70-130         | 14.8 | 2           |
| 1,2-Dichloropropane                | 49         | 5                    | ug/kg          | 50.0           | 98.8                  | 70-130         | 13.3 | 2           |
| 2,2-Dichloropropane                | 54         | 5                    | ug/kg          | 50.0           | 109                   | 70-130         | 13.2 | 2           |
| cis-1,3-Dichloropropene            | 51         | 5                    | ug/kg          | 50.0           | 103                   | 70-130         | 15.2 | 2           |
| trans-1,3-Dichloropropene          | 54         | 5                    | ug/kg          | 50.0           | 102                   | 70-130         |      |             |
|                                    |            |                      | ug/kg<br>ug/kg |                |                       |                | 13.0 | 2           |
| 1,1-Dichloropropene                | 52         | 5                    |                | 50.0           | 104                   | 70-130         | 15.1 | 2           |
| Diethyl ether                      | 39         | 5                    | ug/kg          | 50.0           | 77.5                  | 60-140         | 9.68 | 3           |
| 1,4-Dioxane                        | 240        | 100                  | ug/kg          | 250            | 95.8                  | 0-200          | 7.69 | 5           |
| Ethylbenzene                       | 53         | 5                    | ug/kg          | 50.0           | 105                   | 70-130         | 15.8 | 2           |
| Hexachlorobutadiene                | 59         | 5                    | ug/kg          | 50.0           | 117                   | 70-130         | 12.8 | 2           |
| 2-Hexanone                         | 36         | 5                    | ug/kg          | 50.0           | 71.0                  | 50-150         | 15.9 | 2           |
| Isopropylbenzene                   | 51         | 5                    | ug/kg          | 50.0           | 101                   | 70-130         | 13.0 | 2           |
| p-Isopropyltoluene                 | 52         | 5                    | ug/kg          | 50.0           | 103                   | 70-130         | 13.2 | 2           |
| Methylene Chloride                 | 48         | 5                    | ug/kg          | 50.0           | 96.6                  | 60-140         | 13.1 | 3           |
| 4-Methyl-2-pentanone               | 47         | 5                    | ug/kg          | 50.0           | 93.0                  | 50-150         | 3.83 | 2           |
| Naphthalene                        | 57         | 5                    | ug/kg          | 50.0           | 115                   | 70-130         | 13.2 | 2           |
| n-Propylbenzene                    | 51         | 5                    | ug/kg          | 50.0           | 102                   | 70-130         | 12.2 | 2           |
| Styrene                            | 50         | 5                    | ug/kg          | 50.0           | 99.4                  | 70-130         | 14.4 | 2           |
| 1,1,1,2-Tetrachloroethane          | 51         | 5                    | ug/kg          | 50.0           | 102                   | 70-130         | 15.1 | 2           |
| Tetrachloroethene                  | 53         | 5                    | ug/kg          | 50.0           | 106                   | 70-130         | 12.7 | 2           |
| Tetrahydrofuran                    | 50         | 5                    | ug/kg          | 50.0           | 100                   | 50-150         | 7.34 | 4           |
| Toluene                            | 56         | 5                    | ug/kg          | 50.0           | 111                   | 70-130         | 12.1 | 2           |
| 1,2,4-Trichlorobenzene             | 56         | 5                    | ug/kg          | 50.0           | 112                   | 70-130         | 14.3 | 2           |
| 1,2,3-Trichlorobenzene             | 57         | 5                    | ug/kg          | 50.0           | 114                   | 70-130         | 14.1 | 2           |
| 1,1,2-Trichloroethane              | 52         | 5                    | ug/kg          | 50.0           | 104                   | 70-130         | Page |             |

## Volatile Organic Compounds 8260C (5035-LL) (Continued)

| Analyte                            | Result Qu  | Reporting<br>al Limit | Units          | Spike<br>Level | Source<br>Result | %REC       | %REC<br>Limits | RPD  | RPI<br>Lim |
|------------------------------------|------------|-----------------------|----------------|----------------|------------------|------------|----------------|------|------------|
| Batch: B4C0126 - EPA 5035 (G       | Continued) |                       |                |                |                  |            |                |      |            |
| LCS Dup (B4C0126-BSD1)             |            |                       |                | Prepared       | & Analyzed: 0    | 3/04/24    |                |      |            |
| 1,1,1-Trichloroethane              | 51         | 5                     | ug/kg          | 50.0           |                  | 101        | 70-130         | 13.0 | 20         |
| Trichloroethene                    | 49         | 5                     | ug/kg          | 50.0           |                  | 98.7       | 70-130         | 10.7 | 20         |
| 1,2,3-Trichloropropane             | 46         | 5                     | ug/kg          | 50.0           |                  | 92.0       | 70-130         | 9.54 | 20         |
| 1,3,5-Trimethylbenzene             | 51         | 5                     | ug/kg          | 50.0           |                  | 102        | 70-130         | 12.2 | 20         |
| 1,2,4-Trimethylbenzene             | 55         | 5                     | ug/kg          | 50.0           |                  | 110        | 70-130         | 12.5 | 20         |
| Vinyl Chloride                     | 46         | 5                     | ug/kg          | 50.0           |                  | 92.3       | 50-150         | 16.0 | 30         |
| o-Xylene                           | 53         | 5                     | ug/kg          | 50.0           |                  | 106        | 70-130         | 14.7 | 20         |
| m&p-Xylene                         | 103        | 10                    | ug/kg          | 100            |                  | 103        | 70-130         | 14.2 | 20         |
| 1,1,2,2-Tetrachloroethane          | 48         | 5                     | ug/kg          | 50.0           |                  | 95.2       | 70-130         | 11.6 | 20         |
| tert-Amyl methyl ether             | 47         | 5                     | ug/kg          | 50.0           |                  | 93.6       | 70-130         | 12.1 | 20         |
| 1,3-Dichloropropane                | 51         | 5                     | ug/kg          | 50.0           |                  | 102        | 70-130         | 13.4 | 2          |
| Ethyl tert-butyl ether             | 46         | 5                     | ug/kg          | 50.0           |                  | 92.8       | 70-130         | 13.0 | 2          |
| Trichlorofluoromethane             | 50         | 5                     | ug/kg          | 50.0           |                  | 100        | 50-150         | 14.3 | 2          |
| Dichlorodifluoromethane            | 59         | 5                     | ug/kg          | 50.0           |                  | 118        | 50-150         | 16.3 | 3          |
|                                    |            |                       |                |                |                  |            |                |      |            |
| Surrogate: 4-Bromofluorobenzene    |            | 51.2                  | ug/kg          | 50.0           |                  | 102        | 70-130         |      |            |
| Surrogate: 1,2-Dichloroethane-d4   |            | 52.5                  | ug/kg          | 50.0           |                  | 105        | 70-130         |      |            |
| Surrogate: Toluene-d8              |            | 53.0                  | ug/kg          | 50.0           |                  | 106        | 70-130         |      |            |
| Batch: B4C0189 - EPA 5035          |            |                       |                |                |                  | 2 (05 (2 ) |                |      |            |
| Blank (B4C0189-BLK1)               |            |                       | n              | Prepared       | & Analyzed: 0    | 3/05/24    |                |      |            |
| Acetone                            | ND         | 5                     | ug/kg          |                |                  |            |                |      |            |
| Benzene                            | ND         | 5                     | ug/kg          |                |                  |            |                |      |            |
| Bromobenzene                       | ND         | 5                     | ug/kg          |                |                  |            |                |      |            |
| Bromochloromethane                 | ND         | 5                     | ug/kg          |                |                  |            |                |      |            |
| Bromodichloromethane               | ND         | 5                     | ug/kg          |                |                  |            |                |      |            |
| Bromoform                          | ND         | 5                     | ug/kg          |                |                  |            |                |      |            |
| Bromomethane                       | ND         | 5                     | ug/kg          |                |                  |            |                |      |            |
| 2-Butanone                         | ND         | 5                     | ug/kg          |                |                  |            |                |      |            |
| tert-Butyl alcohol                 | ND         | 5                     | ug/kg          |                |                  |            |                |      |            |
| sec-Butylbenzene                   | ND         | 5                     | ug/kg          |                |                  |            |                |      |            |
| n-Butylbenzene                     | ND         | 5                     | ug/kg          |                |                  |            |                |      |            |
| tert-Butylbenzene                  | ND         | 5                     | ug/kg          |                |                  |            |                |      |            |
| Methyl t-butyl ether (MTBE)        | ND         | 5                     | ug/kg          |                |                  |            |                |      |            |
| Carbon Disulfide                   | ND         | 5                     | ug/kg          |                |                  |            |                |      |            |
| Carbon Tetrachloride               | ND         | 5                     | ug/kg          |                |                  |            |                |      |            |
| Chlorobenzene                      | ND         | 5                     | ug/kg          |                |                  |            |                |      |            |
| Chloroethane                       | ND         | 5                     | ug/kg          |                |                  |            |                |      |            |
| Chloroform                         | ND         | 5                     | ug/kg          |                |                  |            |                |      |            |
| Chloromethane                      | ND         | 5                     | ug/kg          |                |                  |            |                |      |            |
| 4-Chlorotoluene                    | ND         | 5                     | ug/kg          |                |                  |            |                |      |            |
| 2-Chlorotoluene                    | ND<br>ND   | 5                     | ug/kg<br>ug/kg |                |                  |            |                |      |            |
|                                    | ND<br>ND   | 5                     | ug/kg<br>ug/kg |                |                  |            |                |      |            |
| 1,2-Dibromo-3-chloropropane (DBCP) |            |                       | ug/kg<br>ug/kg |                |                  |            |                |      |            |
| Dibromochloromethane               | ND<br>ND   | 5                     |                |                |                  |            |                |      |            |
| 1,2-Dibromoethane (EDB)            | ND         | 5                     | ug/kg          |                |                  |            |                |      |            |
| Dibromomethane                     | ND         | 5                     | ug/kg          |                |                  |            |                |      |            |
| 1,2-Dichlorobenzene                | ND         | 5                     | ug/kg          |                |                  |            |                |      |            |
| 1,3-Dichlorobenzene                | ND         | 5                     | ug/kg          |                |                  |            |                |      |            |
| 1,4-Dichlorobenzene                | ND         | 5                     | ug/kg          |                |                  |            |                |      |            |
| 1,1-Dichloroethane                 | ND         | 5                     | ug/kg          |                |                  |            |                |      |            |
| 1,2-Dichloroethane                 | ND         | 5                     | ug/kg          |                |                  |            |                |      |            |
| 1,2 Dichloroethene, Total          | ND         | 5                     | ug/kg          |                |                  |            |                |      |            |
| trans-1,2-Dichloroethene           | ND         | 5                     | ug/kg          |                |                  |            |                |      |            |
| cis-1,2-Dichloroethene             | ND         | 5                     | ug/kg          |                |                  |            |                |      |            |
| 1,1-Dichloroethene                 | ND         | 5                     | ug/kg          |                |                  |            |                |      |            |
| 1,2-Dichloropropane                | ND         | 5                     | ug/kg          |                |                  |            |                |      |            |
| 2.2 Diable                         | ND         | 5                     | ug/kg          |                |                  |            |                |      |            |
| 2,2-Dichloropropane                | 110        | 3                     | ~9,9           |                |                  |            |                |      |            |

# Quality Control

(Continued)

## Volatile Organic Compounds 8260C (5035-LL) (Continued)

|                                   |            |      | Reporting |       | Spike      | Source        |         | %REC   |     | RPD   |
|-----------------------------------|------------|------|-----------|-------|------------|---------------|---------|--------|-----|-------|
| Analyte                           | Result     | Qual | Limit     | Units | Level      | Result        | %REC    | Limits | RPD | Limit |
| Batch: B4C0189 - EPA 5035 (       | Continued) |      |           |       |            |               |         |        |     |       |
| Blank (B4C0189-BLK1)              |            |      |           |       | Prepared 8 | & Analyzed: 0 | 3/05/24 |        |     |       |
| trans-1,3-Dichloropropene         | ND         |      | 5         | ug/kg |            |               |         |        |     |       |
| 1,1-Dichloropropene               | ND         |      | 5         | ug/kg |            |               |         |        |     |       |
| 1,3-Dichloropropene (cis + trans) | ND         |      | 5         | ug/kg |            |               |         |        |     |       |
| Diethyl ether                     | ND         |      | 5         | ug/kg |            |               |         |        |     |       |
| 1,4-Dioxane                       | ND         |      | 100       | ug/kg |            |               |         |        |     |       |
| Ethylbenzene                      | ND         |      | 5         | ug/kg |            |               |         |        |     |       |
| Hexachlorobutadiene               | ND         |      | 5         | ug/kg |            |               |         |        |     |       |
| 2-Hexanone                        | ND         |      | 5         | ug/kg |            |               |         |        |     |       |
| Isopropylbenzene                  | ND         |      | 5         | ug/kg |            |               |         |        |     |       |
| p-Isopropyltoluene                | ND         |      | 5         | ug/kg |            |               |         |        |     |       |
| Methylene Chloride                | ND         |      | 5         | ug/kg |            |               |         |        |     |       |
| 4-Methyl-2-pentanone              | ND         |      | 5         | ug/kg |            |               |         |        |     |       |
| Naphthalene                       | ND         |      | 5         | ug/kg |            |               |         |        |     |       |
| n-Propylbenzene                   | ND         |      | 5         | ug/kg |            |               |         |        |     |       |
| Styrene                           | ND         |      | 5         | ug/kg |            |               |         |        |     |       |
| 1,1,1,2-Tetrachloroethane         | ND         |      | 5         | ug/kg |            |               |         |        |     |       |
| Tetrachloroethene                 | ND         |      | 5         | ug/kg |            |               |         |        |     |       |
| Tetrahydrofuran                   | ND         |      | 5         | ug/kg |            |               |         |        |     |       |
| Toluene                           | ND         |      | 5         | ug/kg |            |               |         |        |     |       |
| 1,2,4-Trichlorobenzene            | ND         |      | 5         | ug/kg |            |               |         |        |     |       |
| 1,2,3-Trichlorobenzene            | ND         |      | 5         | ug/kg |            |               |         |        |     |       |
| 1,1,2-Trichloroethane             | ND         |      | 5         | ug/kg |            |               |         |        |     |       |
| 1,1,1-Trichloroethane             | ND         |      | 5         | ug/kg |            |               |         |        |     |       |
| Trichloroethene                   | ND         |      | 5         | ug/kg |            |               |         |        |     |       |
| 1,2,3-Trichloropropane            | ND         |      | 5         | ug/kg |            |               |         |        |     |       |
| 1,3,5-Trimethylbenzene            | ND         |      | 5         | ug/kg |            |               |         |        |     |       |
| 1,2,4-Trimethylbenzene            | ND         |      | 5         | ug/kg |            |               |         |        |     |       |
| Vinyl Chloride                    | ND         |      | 5         | ug/kg |            |               |         |        |     |       |
| o-Xylene                          | ND         |      | 5         | ug/kg |            |               |         |        |     |       |
| m&p-Xylene                        | ND         |      | 10        | ug/kg |            |               |         |        |     |       |
| Total xylenes                     | ND         |      | 5         | ug/kg |            |               |         |        |     |       |
| 1,1,2,2-Tetrachloroethane         | ND         |      | 5         | ug/kg |            |               |         |        |     |       |
| tert-Amyl methyl ether            | ND<br>ND   |      | 5         | ug/kg |            |               |         |        |     |       |
| 1,3-Dichloropropane               | ND<br>ND   |      | 5         | ug/kg |            |               |         |        |     |       |
| Ethyl tert-butyl ether            | ND<br>ND   |      | 5         | ug/kg |            |               |         |        |     |       |
| Diisopropyl ether                 | ND<br>ND   |      | 5         | ug/kg |            |               |         |        |     |       |
| Trichlorofluoromethane            | ND<br>ND   |      | 5         | ug/kg |            |               |         |        |     |       |
| Dichlorodifluoromethane           | ND<br>ND   |      | 5         | ug/kg |            |               |         |        |     |       |
|                                   |            |      |           |       |            |               |         |        |     |       |
| Surrogate: 4-Bromofluorobenzene   |            |      | 50.8      | ug/kg | 50.0       |               | 102     | 70-130 |     |       |
| Surrogate: 1,2-Dichloroethane-d4  |            |      | 49.9      | ug/kg | 50.0       |               | 99.8    | 70-130 |     |       |
| Surrogate: Toluene-d8             |            |      | 48.4      | ug/kg | 50.0       |               | 96.8    | 70-130 |     |       |

# Quality Control

(Continued)

## Volatile Organic Compounds 8260C (5035-LL) (Continued)

| Analyte                            | Result Qua | Reporting<br>Limit | Units          | Spike<br>Level | Source<br>Result | %REC    | %REC<br>Limits   | RPD | RPD<br>Limi |
|------------------------------------|------------|--------------------|----------------|----------------|------------------|---------|------------------|-----|-------------|
| Batch: B4C0189 - EPA 5035 (C       | Continued) |                    |                |                |                  |         |                  |     |             |
| LCS (B4C0189-BS1)                  |            |                    |                | Prepared 8     | & Analyzed: 03   | 3/05/24 |                  |     |             |
| Acetone                            | 49         | 5                  | ug/kg          | 50.0           |                  | 97.2    | 50-150           |     |             |
| Benzene                            | 52         | 5                  | ug/kg          | 50.0           |                  | 104     | 70-130           |     |             |
| Bromobenzene                       | 54         | 5                  | ug/kg          | 50.0           |                  | 108     | 70-130           |     |             |
| Bromochloromethane                 | 51         | 5                  | ug/kg          | 50.0           |                  | 103     | 70-130           |     |             |
| Bromodichloromethane               | 54         | 5                  | ug/kg          | 50.0           |                  | 107     | 70-130           |     |             |
| Bromoform                          | 49         | 5                  | ug/kg          | 50.0           |                  | 98.7    | 70-130           |     |             |
| Bromomethane                       | 26         | 5                  | ug/kg          | 50.0           |                  | 52.4    | 50-150           |     |             |
| 2-Butanone                         | 47         | 5                  | ug/kg          | 50.0           |                  | 93.0    | 50-150           |     |             |
| tert-Butyl alcohol                 | 53         | 5                  | ug/kg          | 50.0           |                  | 105     | 70-130           |     |             |
| sec-Butylbenzene                   | 56         | 5                  | ug/kg          | 50.0           |                  | 112     | 70-130           |     |             |
| n-Butylbenzene                     | 60         | 5                  | ug/kg          | 50.0           |                  | 119     | 70-130           |     |             |
| tert-Butylbenzene                  | 56         | 5                  | ug/kg          | 50.0           |                  | 113     | 70-130           |     |             |
| Methyl t-butyl ether (MTBE)        | 49         | 5                  | ug/kg          | 50.0           |                  | 97.2    | 70-130           |     |             |
| Carbon Disulfide                   | 46         | 5                  | ug/kg          | 50.0           |                  | 92.8    | 50-150           |     |             |
| Carbon Tetrachloride               | 54         | 5                  | ug/kg          | 50.0           |                  |         | 70-130           |     |             |
|                                    |            | 5<br>5             | ug/kg<br>ug/kg |                |                  | 108     |                  |     |             |
| Chloropthana                       | 53<br>38   | 5                  | ug/kg<br>ug/kg | 50.0           |                  | 105     | 70-130<br>F0 1F0 |     |             |
| Chloroethane                       |            |                    |                | 50.0           |                  | 76.5    | 50-150           |     |             |
| Chloroform                         | 51         | 5                  | ug/kg          | 50.0           |                  | 102     | 70-130           |     |             |
| Chloromethane                      | 42         | 5                  | ug/kg          | 50.0           |                  | 84.9    | 50-150           |     |             |
| 4-Chlorotoluene                    | 54         | 5                  | ug/kg          | 50.0           |                  | 108     | 70-130           |     |             |
| 2-Chlorotoluene                    | 50         | 5                  | ug/kg          | 50.0           |                  | 101     | 70-130           |     |             |
| 1,2-Dibromo-3-chloropropane (DBCP) | 47         | 5                  | ug/kg          | 50.0           |                  | 93.9    | 70-130           |     |             |
| Dibromochloromethane               | 49         | 5                  | ug/kg          | 50.0           |                  | 97.3    | 70-130           |     |             |
| 1,2-Dibromoethane (EDB)            | 47         | 5                  | ug/kg          | 50.0           |                  | 93.8    | 70-130           |     |             |
| Dibromomethane                     | 51         | 5                  | ug/kg          | 50.0           |                  | 103     | 60-140           |     |             |
| 1,2-Dichlorobenzene                | 51         | 5                  | ug/kg          | 50.0           |                  | 102     | 70-130           |     |             |
| 1,3-Dichlorobenzene                | 55         | 5                  | ug/kg          | 50.0           |                  | 109     | 70-130           |     |             |
| 1,4-Dichlorobenzene                | 50         | 5                  | ug/kg          | 50.0           |                  | 99.1    | 70-130           |     |             |
| 1,1-Dichloroethane                 | 50         | 5                  | ug/kg          | 50.0           |                  | 99.0    | 70-130           |     |             |
| 1,2-Dichloroethane                 | 55         | 5                  | ug/kg          | 50.0           |                  | 109     | 70-130           |     |             |
| trans-1,2-Dichloroethene           | 50         | 5                  | ug/kg          | 50.0           |                  | 99.8    | 70-130           |     |             |
| cis-1,2-Dichloroethene             | 52         | 5                  | ug/kg          | 50.0           |                  | 104     | 70-130           |     |             |
| 1,1-Dichloroethene                 | 46         | 5                  | ug/kg          | 50.0           |                  | 92.6    | 70-130           |     |             |
| 1,2-Dichloropropane                | 55         | 5                  | ug/kg          | 50.0           |                  | 109     | 70-130           |     |             |
| 2,2-Dichloropropane                | 55         | 5                  | ug/kg          | 50.0           |                  | 109     | 70-130           |     |             |
| cis-1,3-Dichloropropene            | 51         | 5                  | ug/kg          | 50.0           |                  | 103     | 70-130           |     |             |
| trans-1,3-Dichloropropene          | 50         | 5                  | ug/kg          | 50.0           |                  | 99.1    | 70-130           |     |             |
| 1,1-Dichloropropene                | 47         | 5                  | ug/kg          | 50.0           |                  | 93.7    | 70-130           |     |             |
| Diethyl ether                      | 46         | 5                  | ug/kg          | 50.0           |                  | 92.2    | 60-140           |     |             |
|                                    |            |                    |                |                |                  |         |                  |     |             |
| 1,4-Dioxane                        | 238        | 100                | ug/kg          | 250            |                  | 95.3    | 0-200            |     |             |
| Ethylbenzene                       | 57         | 5                  | ug/kg          | 50.0           |                  | 113     | 70-130           |     |             |
| Hexachlorobutadiene                | 59         | 5                  | ug/kg          | 50.0           |                  | 118     | 70-130           |     |             |
| 2-Hexanone                         | 44         | 5                  | ug/kg          | 50.0           |                  | 87.9    | 50-150           |     |             |
| Isopropylbenzene                   | 55         | 5                  | ug/kg          | 50.0           |                  | 110     | 70-130           |     |             |
| p-Isopropyltoluene                 | 58         | 5                  | ug/kg          | 50.0           |                  | 115     | 70-130           |     |             |
| Methylene Chloride                 | 56         | 5                  | ug/kg          | 50.0           |                  | 111     | 60-140           |     |             |
| 4-Methyl-2-pentanone               | 45         | 5                  | ug/kg          | 50.0           |                  | 90.3    | 50-150           |     |             |
| Naphthalene                        | 42         | 5                  | ug/kg          | 50.0           |                  | 83.1    | 70-130           |     |             |
| n-Propylbenzene                    | 57         | 5                  | ug/kg          | 50.0           |                  | 115     | 70-130           |     |             |
| Styrene                            | 56         | 5                  | ug/kg          | 50.0           |                  | 112     | 70-130           |     |             |
| 1,1,1,2-Tetrachloroethane          | 56         | 5                  | ug/kg          | 50.0           |                  | 113     | 70-130           |     |             |
| Tetrachloroethene                  | 52         | 5                  | ug/kg          | 50.0           |                  | 104     | 70-130           |     |             |
| Tetrahydrofuran                    | 46         | 5                  | ug/kg          | 50.0           |                  | 91.9    | 50-150           |     |             |
| Toluene                            | 51         | 5                  | ug/kg          | 50.0           |                  | 102     | 70-130           |     |             |
| 1,2,4-Trichlorobenzene             | 47         | 5                  | ug/kg          | 50.0           |                  | 94.4    | 70-130           |     |             |
| 1,2,3-Trichlorobenzene             | 41         | 5                  | ug/kg          | 50.0           |                  | 81.4    | 70-130           |     |             |
| 1,1,2-Trichloroethane              | 50         | 5                  | ug/kg          | 50.0           |                  | 99.8    | 70-130           |     |             |

## Volatile Organic Compounds 8260C (5035-LL) (Continued)

| Analyte                            | Result Qua | Reporting<br>I Limit | Units          | Spike<br>Level | Source<br>Result | %REC  | %REC<br>Limits   | RPD    | RPC<br>Limi |
|------------------------------------|------------|----------------------|----------------|----------------|------------------|-------|------------------|--------|-------------|
| Batch: B4C0189 - EPA 5035 (C       | Continued) |                      |                |                |                  |       |                  |        |             |
| LCS (B4C0189-BS1)                  |            |                      |                | Prepared 8     | & Analyzed: 03/  | 05/24 |                  |        |             |
| 1,1,1-Trichloroethane              | 52         | 5                    | ug/kg          | 50.0           |                  | 104   | 70-130           |        |             |
| Trichloroethene                    | 51         | 5                    | ug/kg          | 50.0           |                  | 102   | 70-130           |        |             |
| 1,2,3-Trichloropropane             | 51         | 5                    | ug/kg          | 50.0           |                  | 102   | 70-130           |        |             |
| 1,3,5-Trimethylbenzene             | 56         | 5                    | ug/kg          | 50.0           |                  | 113   | 70-130           |        |             |
| 1,2,4-Trimethylbenzene             | 60         | 5                    | ug/kg          | 50.0           |                  | 120   | 70-130           |        |             |
| Vinyl Chloride                     | 38         | 5                    | ug/kg          | 50.0           |                  | 76.1  | 50-150           |        |             |
| o-Xylene                           | 58         | 5                    | ug/kg          | 50.0           |                  | 116   | 70-130           |        |             |
| m&p-Xylene                         | 113        | 10                   | ug/kg          | 100            |                  | 113   | 70-130           |        |             |
| 1,1,2,2-Tetrachloroethane          | 51         | 5                    | ug/kg          | 50.0           |                  | 102   | 70-130           |        |             |
| tert-Amyl methyl ether             | 48         | 5                    | ug/kg          | 50.0           |                  | 95.3  | 70-130           |        |             |
| 1,3-Dichloropropane                | 51         | 5                    | ug/kg          | 50.0           |                  | 103   | 70-130           |        |             |
| Ethyl tert-butyl ether             | 47         | 5                    | ug/kg          | 50.0           |                  | 94.2  | 70-130           |        |             |
| Trichlorofluoromethane             | 45         | 5                    | ug/kg          | 50.0           |                  | 90.0  | 50-150           |        |             |
| Dichlorodifluoromethane            | 49         | 5                    | ug/kg          | 50.0           |                  | 97.2  | 50-150           |        |             |
| Currogatos A Promoflyorobonzono    |            |                      | ua/ka          | E0.0           |                  | 100   | 70 120           |        |             |
| Surrogate: 4-Bromofluorobenzene    |            |                      | ug/kg<br>ug/kg | 50.0           |                  | 108   | 70-130           |        |             |
| Surrogate: 1,2-Dichloroethane-d4   |            | <i>50.6</i>          |                | 50.0           |                  | 101   | 70-130           |        |             |
| Surrogate: Toluene-d8              |            | 49.7                 | ug/kg          | 50.0           |                  | 99.4  | 70-130           |        |             |
| .CS Dup (B4C0189-BSD1)             |            |                      |                | Prepared 8     | & Analyzed: 03/  | 05/24 |                  |        |             |
| Acetone                            | 48         | 5                    | ug/kg          | 50.0           |                  | 95.8  | 50-150           | 1.41   | 30          |
| Benzene                            | 52         | 5                    | ug/kg          | 50.0           |                  | 105   | 70-130           | 1.15   | 20          |
| Bromobenzene                       | 55         | 5                    | ug/kg          | 50.0           |                  | 109   | 70-130           | 0.810  | 20          |
| Bromochloromethane                 | 52         | 5                    | ug/kg          | 50.0           |                  | 104   | 70-130           | 1.29   | 20          |
| Bromodichloromethane               | 55         | 5                    | ug/kg          | 50.0           |                  | 109   | 70-130           | 1.87   | 20          |
| Bromoform                          | 50         | 5                    | ug/kg          | 50.0           |                  | 100   | 70-130           | 1.61   | 20          |
| Bromomethane                       | 34         | 5                    | ug/kg          | 50.0           |                  | 68.9  | 50-150           | 27.2   | 30          |
| 2-Butanone                         | 46         | 5                    | ug/kg          | 50.0           |                  | 91.5  | 50-150           | 1.63   | 30          |
| tert-Butyl alcohol                 | 48         | 5                    | ug/kg          | 50.0           |                  | 95.7  | 70-130           | 9.44   | 20          |
| sec-Butylbenzene                   | 56         | 5                    | ug/kg          | 50.0           |                  | 112   | 70-130           | 0.571  | 20          |
| n-Butylbenzene                     | 60         | 5                    | ug/kg          | 50.0           |                  | 119   | 70-130           | 0.218  | 20          |
| tert-Butylbenzene                  | 57         | 5                    | ug/kg          | 50.0           |                  | 113   | 70-130           | 0.530  | 20          |
| Methyl t-butyl ether (MTBE)        | 50         | 5                    | ug/kg          | 50.0           |                  | 99.6  | 70-130           | 2.50   | 20          |
| Carbon Disulfide                   | 46         | 5                    | ug/kg          | 50.0           |                  | 92.4  | 50-150           | 0.389  | 40          |
| Carbon Tetrachloride               | 56         | 5                    | ug/kg          | 50.0           |                  | 111   | 70-130           | 2.84   | 20          |
| Chlorobenzene                      | 53         | 5                    | ug/kg          | 50.0           |                  | 107   | 70-130           | 1.46   | 20          |
| Chloroethane                       | 40         | 5                    | ug/kg          | 50.0           |                  | 79.3  | 50-150           | 3.52   | 30          |
| Chloroform                         | 52         | 5                    | ug/kg          | 50.0           |                  | 105   | 70-130           | 3.08   | 20          |
| Chloromethane                      | 43         | 5                    | ug/kg          | 50.0           |                  | 85.6  | 50-150           | 0.845  | 30          |
| 4-Chlorotoluene                    | 54         | 5                    | ug/kg          | 50.0           |                  | 108   | 70-130           | 0.185  | 20          |
| 2-Chlorotoluene                    | 50         | 5                    | ug/kg          | 50.0           |                  | 101   | 70-130           | 0.00   | 20          |
| 1,2-Dibromo-3-chloropropane (DBCP) | 50         | 5                    | ug/kg          | 50.0           |                  | 99.6  | 70-130           | 5.81   | 20          |
| Dibromochloromethane               | 50         | 5                    | ug/kg          | 50.0           |                  | 99.9  | 70-130           | 2.62   | 20          |
| 1,2-Dibromoethane (EDB)            | 48         | 5                    | ug/kg          | 50.0           |                  | 95.8  | 70-130           | 2.17   | 20          |
| Dibromomethane                     | 51         | 5                    | ug/kg          | 50.0           |                  | 103   | 60-140           | 0.0585 | 30          |
| 1,2-Dichlorobenzene                | 53         | 5                    | ug/kg          | 50.0           |                  | 105   | 70-130           | 2.74   | 20          |
| 1,3-Dichlorobenzene                | 55         | 5                    | ug/kg          | 50.0           |                  | 110   | 70-130           | 0.639  | 20          |
| 1,4-Dichlorobenzene                | 51         | 5                    | ug/kg          | 50.0           |                  | 102   | 70-130           | 3.37   | 20          |
| 1,1-Dichloroethane                 | 51         | 5                    | ug/kg          | 50.0           |                  | 102   | 70-130           | 2.61   | 20          |
| 1,2-Dichloroethane                 | 55         | 5                    | ug/kg          | 50.0           |                  | 110   | 70-130           | 0.384  | 20          |
| trans-1,2-Dichloroethene           | 50         | 5                    | ug/kg          | 50.0           |                  | 99.8  | 70-130           | 0.0601 | 20          |
| cis-1,2-Dichloroethene             | 52         | 5                    | ug/kg<br>ug/kg | 50.0           |                  | 105   | 70-130           | 1.07   | 20          |
| ·                                  | 52<br>47   | 5                    | ug/kg<br>ug/kg | 50.0<br>50.0   |                  | 94.5  | 70-130<br>70-130 | 2.05   | 20          |
| 1,1-Dichloroethene                 |            |                      | ug/kg<br>ug/kg |                |                  |       |                  |        |             |
| 1,2-Dichloropropane                | 55         | 5                    |                | 50.0           |                  | 110   | 70-130           | 1.13   | 20          |
| 2,2-Dichloropropane                | 55         | 5                    | ug/kg          | 50.0           |                  | 110   | 70-130           | 1.02   | 20          |
| cis-1,3-Dichloropropene            | 52         | 5                    | ug/kg          | 50.0           |                  | 105   | 70-130           | 1.99   | 20          |
| trans-1,3-Dichloropropene          | 50         | 5                    | ug/kg          | 50.0           |                  | 101   | 70-130           | 1.84   | 20          |

Page 57 of 68

## Volatile Organic Compounds 8260C (5035-LL) (Continued)

|                                  |            |      | Reporting |       | Spike      | Source         |         | %REC   |        | RPD   |
|----------------------------------|------------|------|-----------|-------|------------|----------------|---------|--------|--------|-------|
| Analyte                          | Result     | Qual | Limit     | Units | Level      | Result         | %REC    | Limits | RPD    | Limit |
| Batch: B4C0189 - EPA 5035 (      | Continued) |      |           |       |            |                |         |        |        |       |
| LCS Dup (B4C0189-BSD1)           |            |      |           |       | Prepared 8 | & Analyzed: 03 | 3/05/24 |        |        |       |
| Diethyl ether                    | 46         |      | 5         | ug/kg | 50.0       |                | 92.9    | 60-140 | 0.735  | 30    |
| 1,4-Dioxane                      | 246        |      | 100       | ug/kg | 250        |                | 98.6    | 0-200  | 3.43   | 50    |
| Ethylbenzene                     | 57         |      | 5         | ug/kg | 50.0       |                | 114     | 70-130 | 0.475  | 20    |
| Hexachlorobutadiene              | 60         |      | 5         | ug/kg | 50.0       |                | 120     | 70-130 | 1.84   | 20    |
| 2-Hexanone                       | 43         |      | 5         | ug/kg | 50.0       |                | 86.6    | 50-150 | 1.51   | 20    |
| Isopropylbenzene                 | 55         |      | 5         | ug/kg | 50.0       |                | 110     | 70-130 | 0.00   | 20    |
| p-Isopropyltoluene               | 58         |      | 5         | ug/kg | 50.0       |                | 117     | 70-130 | 1.29   | 20    |
| Methylene Chloride               | 56         |      | 5         | ug/kg | 50.0       |                | 112     | 60-140 | 0.682  | 30    |
| 4-Methyl-2-pentanone             | 46         |      | 5         | ug/kg | 50.0       |                | 91.6    | 50-150 | 1.41   | 20    |
| Naphthalene                      | 45         |      | 5         | ug/kg | 50.0       |                | 91.0    | 70-130 | 9.03   | 20    |
| n-Propylbenzene                  | 57         |      | 5         | ug/kg | 50.0       |                | 114     | 70-130 | 0.0699 | 20    |
| Styrene                          | 55         |      | 5         | ug/kg | 50.0       |                | 111     | 70-130 | 0.503  | 20    |
| 1,1,1,2-Tetrachloroethane        | 57         |      | 5         | ug/kg | 50.0       |                | 114     | 70-130 | 1.48   | 20    |
| Tetrachloroethene                | 54         |      | 5         | ug/kg | 50.0       |                | 107     | 70-130 | 3.30   | 20    |
| Tetrahydrofuran                  | 49         |      | 5         | ug/kg | 50.0       |                | 98.7    | 50-150 | 7.13   | 40    |
| Toluene                          | 51         |      | 5         | ug/kg | 50.0       |                | 103     | 70-130 | 0.800  | 20    |
| 1,2,4-Trichlorobenzene           | 53         |      | 5         | ug/kg | 50.0       |                | 106     | 70-130 | 11.8   | 20    |
| 1,2,3-Trichlorobenzene           | 52         |      | 5         | ug/kg | 50.0       |                | 105     | 70-130 | 24.9   | 20    |
| 1,1,2-Trichloroethane            | 45         |      | 5         | ug/kg | 50.0       |                | 90.4    | 70-130 | 9.93   | 20    |
| 1,1,1-Trichloroethane            | 53         |      | 5         | ug/kg | 50.0       |                | 106     | 70-130 | 2.00   | 20    |
| Trichloroethene                  | 53         |      | 5         | ug/kg | 50.0       |                | 107     | 70-130 | 4.50   | 20    |
| 1,2,3-Trichloropropane           | 52         |      | 5         | ug/kg | 50.0       |                | 104     | 70-130 | 1.48   | 20    |
| 1,3,5-Trimethylbenzene           | 57         |      | 5         | ug/kg | 50.0       |                | 113     | 70-130 | 0.655  | 20    |
| 1,2,4-Trimethylbenzene           | 60         |      | 5         | ug/kg | 50.0       |                | 120     | 70-130 | 0.0501 | 20    |
| Vinyl Chloride                   | 40         |      | 5         | ug/kg | 50.0       |                | 79.2    | 50-150 | 4.07   | 30    |
| o-Xylene                         | 58         |      | 5         | ug/kg | 50.0       |                | 115     | 70-130 | 0.467  | 20    |
| m&p-Xylene                       | 113        |      | 10        | ug/kg | 100        |                | 113     | 70-130 | 0.0265 | 20    |
| 1,1,2,2-Tetrachloroethane        | 50         |      | 5         | ug/kg | 50.0       |                | 100     | 70-130 | 2.29   | 20    |
| tert-Amyl methyl ether           | 48         |      | 5         | ug/kg | 50.0       |                | 96.3    | 70-130 | 1.00   | 20    |
| 1,3-Dichloropropane              | 52         |      | 5         | ug/kg | 50.0       |                | 104     | 70-130 | 1.14   | 20    |
| Ethyl tert-butyl ether           | 49         |      | 5         | ug/kg | 50.0       |                | 98.2    | 70-130 | 4.16   | 20    |
| Trichlorofluoromethane           | 45         |      | 5         | ug/kg | 50.0       |                | 90.8    | 50-150 | 0.863  | 20    |
| Dichlorodifluoromethane          | 50         |      | 5         | ug/kg | 50.0       |                | 99.1    | 50-150 | 2.00   | 30    |
| Surrogate: 4-Bromofluorobenzene  |            |      | 52.3      | ug/kg | 50.0       |                | 105     | 70-130 |        |       |
| Surrogate: 1,2-Dichloroethane-d4 |            |      | 49.9      | ug/kg | 50.0       |                | 99.8    | 70-130 |        |       |
| Surrogate: Toluene-d8            |            |      | 49.7      | ug/kg | 50.0       |                | 99.4    | 70-130 |        |       |

# Quality Control

#### (Continued)

### Semivolatile organic compounds

| Analyte                             | Result Qual         | Reporting<br>Limit | Units          | Spike<br>Level | Source<br>Result | %REC         | %REC<br>Limits | RPD  | RPD<br>Limi |
|-------------------------------------|---------------------|--------------------|----------------|----------------|------------------|--------------|----------------|------|-------------|
|                                     |                     |                    |                |                |                  |              |                |      |             |
| Batch: B4B1213 - 1_Semivo.          | latiles Extractions |                    | Б              |                | 00/24 Amali ma   | 4. 02/20/24  |                |      |             |
| Blank (B4B1213-BLK1)                | ND                  | 120                |                | reparea: 02/2  | 28/24 Analyze    | ea: U2/29/24 |                |      |             |
| 1,2,4-Trichlorobenzene              | ND                  | 129                | ug/kg          |                |                  |              |                |      |             |
| 1,2-Dichlorobenzene                 | ND                  | 129                | ug/kg          |                |                  |              |                |      |             |
| 1,3-Dichlorobenzene                 | ND                  | 129                | ug/kg          |                |                  |              |                |      |             |
| 1,4-Dichlorobenzene                 | ND                  | 129                | ug/kg          |                |                  |              |                |      |             |
| Phenol                              | ND                  | 129                | ug/kg          |                |                  |              |                |      |             |
| 2,4,5-Trichlorophenol               | ND                  | 129                | ug/kg          |                |                  |              |                |      |             |
| 2,4,6-Trichlorophenol               | ND                  | 129                | ug/kg          |                |                  |              |                |      |             |
| 2,4-Dichlorophenol                  | ND                  | 129                | ug/kg          |                |                  |              |                |      |             |
| 2,4-Dimethylphenol                  | ND                  | 328                | ug/kg          |                |                  |              |                |      |             |
| 2,4-Dinitrophenol                   | ND                  | 328                | ug/kg          |                |                  |              |                |      |             |
| 2,4-Dinitrotoluene                  | ND                  | 129                | ug/kg          |                |                  |              |                |      |             |
| 2,6-Dinitrotoluene                  | ND                  | 129                | ug/kg          |                |                  |              |                |      |             |
| 2-Chloronaphthalene                 | ND                  | 129                | ug/kg          |                |                  |              |                |      |             |
| 2-Chlorophenol                      | ND                  | 129                | ug/kg          |                |                  |              |                |      |             |
| 2-Methylnaphthalene                 | ND                  | 129                | ug/kg          |                |                  |              |                |      |             |
| Nitrobenzene                        | ND                  | 129                | ug/kg          |                |                  |              |                |      |             |
| 2-Methylphenol                      | ND                  | 129                | ug/kg          |                |                  |              |                |      |             |
| 2-Nitroaniline                      | ND                  | 129                | ug/kg          |                |                  |              |                |      |             |
| 2-Nitrophenol                       | ND                  | 328                | ug/kg          |                |                  |              |                |      |             |
| 3,3'-Dichlorobenzidine              | ND                  | 328                | ug/kg          |                |                  |              |                |      |             |
| 3-Nitroaniline                      | ND                  | 129                | ug/kg          |                |                  |              |                |      |             |
| 4,6-Dinitro-2-methylphenol          | ND                  | 328                | ug/kg          |                |                  |              |                |      |             |
| 4-Bromophenyl phenyl ether          | ND                  | 129                | ug/kg          |                |                  |              |                |      |             |
| 4-Chloro-3-methylphenol             | ND                  | 129                | ug/kg          |                |                  |              |                |      |             |
| 4-Chloroaniline                     | ND                  | 129                | ug/kg          |                |                  |              |                |      |             |
| 4-Chlorophenyl phenyl ether         | ND                  | 129                | ug/kg          |                |                  |              |                |      |             |
| 4-Nitroaniline                      | ND                  | 129                | ug/kg          |                |                  |              |                |      |             |
| 4-Nitrophenol                       | ND                  | 328                | ug/kg          |                |                  |              |                |      |             |
| Acenaphthene                        | ND                  | 129                | ug/kg          |                |                  |              |                |      |             |
| Acenaphthylene                      | ND                  | 129                | ug/kg          |                |                  |              |                |      |             |
| Aniline                             | ND                  | 129                | ug/kg          |                |                  |              |                |      |             |
| Anthracene                          | ND                  | 129                | ug/kg<br>ug/kg |                |                  |              |                |      |             |
|                                     | ND<br>ND            | 129                | ug/kg<br>ug/kg |                |                  |              |                |      |             |
| Benzo(a)anthracene                  |                     |                    | ug/kg<br>ug/kg |                |                  |              |                |      |             |
| Benzo(a)pyrene Benzo(b)fluoranthene | ND                  | 129                |                |                |                  |              |                |      |             |
|                                     | ND                  | 129                | ug/kg          |                |                  |              |                |      |             |
| Benzo(g,h,i)perylene                | ND                  | 129                | ug/kg          |                |                  |              |                |      |             |
| Benzo(k)fluoranthene                | ND                  | 129                | ug/kg          |                |                  |              |                |      |             |
| Benzoic acid                        | ND                  | 993                | ug/kg          |                |                  |              |                |      |             |
| Biphenyl                            | ND                  | 20                 | ug/kg          |                |                  |              |                |      |             |
| Bis(2-chloroethoxy)methane          | ND                  | 129                | ug/kg          |                |                  |              |                |      |             |
| Bis(2-chloroethyl)ether             | ND                  | 129                | ug/kg          |                |                  |              |                |      |             |
| Bis(2-chloroisopropyl)ether         | ND                  | 129                | ug/kg          |                |                  |              |                |      |             |
| Bis(2-ethylhexyl)phthalate          | ND                  | 397                | ug/kg          |                |                  |              |                |      |             |
| Butyl benzyl phthalate              | ND                  | 129                | ug/kg          |                |                  |              |                |      |             |
| Chrysene                            | ND                  | 129                | ug/kg          |                |                  |              |                |      |             |
| Di-n-octyl phthalate                | ND                  | 199                | ug/kg          |                |                  |              |                |      |             |
| Dibenz(a,h)anthracene               | ND                  | 129                | ug/kg          |                |                  |              |                |      |             |
| Dibenzofuran                        | ND                  | 129                | ug/kg          |                |                  |              |                |      |             |
| Diethyl phthalate                   | ND                  | 129                | ug/kg          |                |                  |              |                |      |             |
| Dimethyl phthalate                  | ND                  | 328                | ug/kg          |                |                  |              |                |      |             |
| Di-n-butyl phthalate                | ND                  | 199                | ug/kg          |                |                  |              |                |      |             |
| Fluoranthene                        | ND                  | 129                | ug/kg          |                |                  |              |                |      |             |
| Fluorene                            | ND                  | 129                | ug/kg          |                |                  |              |                |      |             |
| Hexachlorobenzene                   | ND                  | 129                | ug/kg          |                |                  |              |                |      |             |
| Hexachlorobutadiene                 | ND                  | 129                | ug/kg          |                |                  |              |                |      |             |
| Hexachlorocyclopentadiene           | ND                  | 328                | ug/kg          |                |                  |              |                |      |             |
| Hexachloroethane                    | ND                  | 129                | ug/kg          |                |                  |              |                | Page |             |

# Quality Control (Continued)

#### Semivolatile organic compounds (Continued)

| Analyte                             | Result            | Qual    | Reporting<br>Limit | Units          | Spike<br>Level | Source<br>Result | %REC        | %REC<br>Limits   | RPD | RPI<br>Lim |
|-------------------------------------|-------------------|---------|--------------------|----------------|----------------|------------------|-------------|------------------|-----|------------|
| Batch: B4B1213 - 1_Semivola         | atiles Extraction | ıs (Con | ntinued)           |                |                |                  |             |                  |     |            |
| Blank (B4B1213-BLK1)                |                   | (       |                    | Pr             | enared: 02/2   | 8/24 Analyze     | d· 02/29/24 |                  |     |            |
| Indeno(1,2,3-cd)pyrene              | ND                |         | 129                | ug/kg          | cparcar oz/z   | 0/21 /11/01/20   | 02,23,21    |                  |     |            |
| Isophorone                          | ND                |         | 129                | ug/kg          |                |                  |             |                  |     |            |
| Naphthalene                         | ND                |         | 129                | ug/kg          |                |                  |             |                  |     |            |
| N-Nitrosodimethylamine              | ND                |         | 129                | ug/kg          |                |                  |             |                  |     |            |
| N-Nitrosodi-n-propylamine           | ND                |         | 129                | ug/kg          |                |                  |             |                  |     |            |
| N-Nitrosodiphenylamine              | ND                |         | 129                | ug/kg          |                |                  |             |                  |     |            |
| Pentachlorophenol                   | ND                |         | 328                | ug/kg          |                |                  |             |                  |     |            |
| Phenanthrene                        | ND                |         | 129                | ug/kg          |                |                  |             |                  |     |            |
| Pyrene                              | ND                |         | 129                | ug/kg          |                |                  |             |                  |     |            |
| •                                   |                   |         |                    | ug/kg          |                |                  |             |                  |     |            |
| m&p-Cresol                          | ND                |         | 258                |                |                |                  |             |                  |     |            |
| Pyridine                            | ND                |         | 129                | ug/kg          |                |                  |             |                  |     |            |
| Azobenzene<br>Total Dichlorobonzone | ND<br>ND          |         | 129<br>129         | ug/kg<br>ug/kg |                |                  |             |                  |     |            |
| Total Dichlorobenzene               |                   |         |                    |                |                |                  |             |                  |     |            |
| Surrogate: Nitrobenzene-d5          |                   |         | 3910<br>5220       | ug/kg<br>ug/kg | 6620<br>6620   |                  | 59.0        | 30-126<br>47-130 |     |            |
| Surrogate: p-Terphenyl-d14          |                   |         | <i>5220</i>        | ug/kg          | 6620           |                  | 78.8        | 47-130           |     |            |
| Surrogate: 2-Fluorobiphenyl         |                   |         | 3410<br>3720       | ug/kg          | 6620<br>6620   |                  | 51.5        | 34-130<br>20-120 |     |            |
| Surrogate: Phenol-d6                |                   |         | <i>3720</i>        | ug/kg          | 6620           |                  | 56.2        | 30-130           |     |            |
| Surrogate: 2,4,6-Tribromophenol     |                   |         | 3230               | ug/kg          | 6620           |                  | 48.8        | <i>30-130</i>    |     |            |
| Surrogate: 2-Fluorophenol           |                   |         | 3980               | ug/kg          | 6620           | 0/24 4           | 60.1        | 30-130           |     |            |
| LCS (B4B1213-BS1)                   | 2200              |         | 420                |                | -              | 8/24 Analyze     |             | 40.430           |     |            |
| 1,2,4-Trichlorobenzene              | 2280              |         | 129                | ug/kg          | 3310           |                  | 68.7        | 40-130           |     |            |
| 1,2-Dichlorobenzene                 | 3110              |         | 129                | ug/kg          | 3310           |                  | 94.0        | 40-130           |     |            |
| 1,3-Dichlorobenzene                 | 2990              |         | 129                | ug/kg          | 3310           |                  | 90.2        | 40-130           |     |            |
| 1,4-Dichlorobenzene                 | 2650              |         | 129                | ug/kg          | 3310           |                  | 79.9        | 40-130           |     |            |
| Phenol                              | 3350              |         | 129                | ug/kg          | 3310           |                  | 101         | 40-130           |     |            |
| 2,4,5-Trichlorophenol               | 2470              |         | 129                | ug/kg          | 3310           |                  | 74.5        | 40-130           |     |            |
| 2,4,6-Trichlorophenol               | 2660              |         | 129                | ug/kg          | 3310           |                  | 80.3        | 40-130           |     |            |
| 2,4-Dichlorophenol                  | 2670              |         | 129                | ug/kg          | 3310           |                  | 80.7        | 40-130           |     |            |
| 2,4-Dimethylphenol                  | 2640              |         | 328                | ug/kg          | 3310           |                  | 79.8        | 40-130           |     |            |
| 2,4-Dinitrophenol                   | 2190              |         | 328                | ug/kg          | 3310           |                  | 66.3        | 15-140           |     |            |
| 2,4-Dinitrotoluene                  | 2580              |         | 129                | ug/kg          | 3310           |                  | 78.0        | 40-130           |     |            |
| 2,6-Dinitrotoluene                  | 2680              |         | 129                | ug/kg          | 3310           |                  | 80.9        | 40-130           |     |            |
| 2-Chloronaphthalene                 | 2640              |         | 129                | ug/kg          | 3310           |                  | 79.7        | 40-130           |     |            |
| 2-Chlorophenol                      | 3130              |         | 129                | ug/kg          | 3310           |                  | 94.5        | 40-130           |     |            |
| 2-Methylnaphthalene                 | 2310              |         | 129                | ug/kg          | 3310           |                  | 69.6        | 40-130           |     |            |
| Nitrobenzene                        | 2840              |         | 129                | ug/kg          | 3310           |                  | 85.7        | 40-130           |     |            |
| 2-Methylphenol                      | 2560              |         | 129                | ug/kg          | 3310           |                  | 77.2        | 40-130           |     |            |
| 2-Nitroaniline                      | 2570              |         | 129                | ug/kg          | 3310           |                  | 77.8        | 40-130           |     |            |
| 2-Nitrophenol                       | 2700              |         | 328                | ug/kg          | 3310           |                  | 81.4        | 40-130           |     |            |
| 3-Nitroaniline                      | 2530              |         | 129                | ug/kg          | 3310           |                  | 76.3        | 40-130           |     |            |
| 4,6-Dinitro-2-methylphenol          | 2240              |         | 328                | ug/kg          | 3310           |                  | 67.7        | 30-130           |     |            |
| 4-Bromophenyl phenyl ether          | 2050              |         | 129                | ug/kg          | 3310           |                  | 61.9        | 40-130           |     |            |
| 4-Chloro-3-methylphenol             | 2280              |         | 129                | ug/kg          | 3310           |                  | 68.8        | 40-130           |     |            |
| 4-Chlorophenyl phenyl ether         | 2220              |         | 129                | ug/kg          | 3310           |                  | 67.1        | 40-130           |     |            |
| 4-Nitroaniline                      | 2680              |         | 129                | ug/kg          | 3310           |                  | 80.9        | 40-130           |     |            |
| 4-Nitrophenol                       | 2360              |         | 328                | ug/kg          | 3310           |                  | 71.4        | 40-130           |     |            |
| Acenaphthene                        | 2210              |         | 129                | ug/kg          | 3310           |                  | 66.6        | 40-130           |     |            |
| Acenaphthylene                      | 2610              |         | 129                | ug/kg          | 3310           |                  | 78.8        | 40-130           |     |            |
| Anthracene                          | 2940              |         | 129                | ug/kg          | 3310           |                  | 88.8        | 40-130           |     |            |
| Benzo(a)anthracene                  | 2650              |         | 129                | ug/kg          | 3310           |                  | 79.9        | 40-130           |     |            |
| Benzo(a)pyrene                      | 2770              |         | 129                | ug/kg          | 3310           |                  | 83.5        | 40-130           |     |            |
| Benzo(b)fluoranthene                | 2950              |         | 129                | ug/kg          | 3310           |                  | 89.0        | 40-130           |     |            |
| Benzo(g,h,i)perylene                | 2500              |         | 129                | ug/kg          | 3310           |                  | 75.4        | 40-130           |     |            |
| Benzo(k)fluoranthene                | 3090              |         | 129                | ug/kg          | 3310           |                  | 93.2        | 40-130           |     |            |
| Biphenyl                            | 626               |         | 20                 | ug/kg          | 828            |                  | 75.7        | 40-130           |     |            |
|                                     |                   |         |                    |                |                |                  |             |                  |     |            |

Page 60 of 68

# Quality Control (Continued)

#### Semivolatile organic compounds (Continued)

|                                 |                 |         | Reporting |       | Spike         | Source        |             | %REC          |     | RPD  |
|---------------------------------|-----------------|---------|-----------|-------|---------------|---------------|-------------|---------------|-----|------|
| Analyte                         | Result          | Qual    | Limit     | Units | Level         | Result        | %REC        | Limits        | RPD | Limi |
| Batch: B4B1213 - 1_Semivola     | tiles Extractio | ons (Co | ntinued)  |       |               |               |             |               |     |      |
| LCS (B4B1213-BS1)               |                 |         |           | Pr    | repared: 02/2 | 18/24 Analyze | d: 02/29/24 |               |     |      |
| Bis(2-chloroethyl)ether         | 3100            |         | 129       | ug/kg | 3310          |               | 93.5        | 40-130        |     |      |
| Bis(2-chloroisopropyl)ether     | 3600            |         | 129       | ug/kg | 3310          |               | 109         | 40-130        |     |      |
| Bis(2-ethylhexyl)phthalate      | 2960            |         | 397       | ug/kg | 3310          |               | 89.3        | 40-130        |     |      |
| Butyl benzyl phthalate          | 2870            |         | 129       | ug/kg | 3310          |               | 86.8        | 40-130        |     |      |
| Chrysene                        | 2860            |         | 129       | ug/kg | 3310          |               | 86.3        | 40-130        |     |      |
| Di-n-octyl phthalate            | 2150            |         | 199       | ug/kg | 3310          |               | 64.9        | 40-130        |     |      |
| Dibenz(a,h)anthracene           | 2490            |         | 129       | ug/kg | 3310          |               | 75.3        | 40-130        |     |      |
| Dibenzofuran                    | 2570            |         | 129       | ug/kg | 3310          |               | 77.6        | 40-130        |     |      |
| Diethyl phthalate               | 2730            |         | 129       | ug/kg | 3310          |               | 82.5        | 40-130        |     |      |
| Dimethyl phthalate              | 2500            |         | 328       | ug/kg | 3310          |               | 75.5        | 40-130        |     |      |
| Di-n-butyl phthalate            | 3200            |         | 199       | ug/kg | 3310          |               | 96.6        | 40-130        |     |      |
| Fluoranthene                    | 2990            |         | 129       | ug/kg | 3310          |               | 90.3        | 40-130        |     |      |
| Fluorene                        | 2510            |         | 129       | ug/kg | 3310          |               | 75.7        | 40-130        |     |      |
| Hexachlorobenzene               | 2570            |         | 129       | ug/kg | 3310          |               | 77.7        | 40-130        |     |      |
| Hexachlorobutadiene             | 2580            |         | 129       | ug/kg | 3310          |               | 78.0        | 40-130        |     |      |
| Hexachlorocyclopentadiene       | 2530            |         | 328       | ug/kg | 3310          |               | 76.3        | 40-130        |     |      |
| Hexachloroethane                | 2970            |         | 129       | ug/kg | 3310          |               | 89.7        | 40-130        |     |      |
| Indeno(1,2,3-cd)pyrene          | 2600            |         | 129       | ug/kg | 3310          |               | 78.5        | 40-130        |     |      |
| Isophorone                      | 3010            |         | 129       | ug/kg | 3310          |               | 90.8        | 40-130        |     |      |
| Naphthalene                     | 2360            |         | 129       | ug/kg | 3310          |               | 71.2        | 40-130        |     |      |
| N-Nitrosodimethylamine          | 2890            |         | 129       | ug/kg | 3310          |               | 87.4        | 40-130        |     |      |
| N-Nitrosodi-n-propylamine       | 2830            |         | 129       | ug/kg | 3310          |               | 85.5        | 40-130        |     |      |
| N-Nitrosodiphenylamine          | 2750            |         | 129       | ug/kg | 3310          |               | 82.9        | 40-130        |     |      |
| Pentachlorophenol               | 2410            |         | 328       | ug/kg | 3310          |               | 72.8        | 15-140        |     |      |
| Phenanthrene                    | 3070            |         | 129       | ug/kg | 3310          |               | 92.6        | 40-130        |     |      |
| Pyrene                          | 3010            |         | 129       | ug/kg | 3310          |               | 91.0        | 40-130        |     |      |
| m&p-Cresol                      | 2500            |         | 258       | ug/kg | 3310          |               | 75.5        | 40-130        |     |      |
| Surrogate: Nitrobenzene-d5      |                 |         | 4160      | ug/kg | 6620          |               | 62.8        | 30-126        |     |      |
| Surrogate: p-Terphenyl-d14      |                 |         | 5200      | ug/kg | 6620          |               | 78.6        | 47-130        |     |      |
| Surrogate: 2-Fluorobiphenyl     |                 |         | 3730      | ug/kg | 6620          |               | 56.3        | <i>34-130</i> |     |      |
| Surrogate: Phenol-d6            |                 |         | 4630      | ug/kg | 6620          |               | 70.0        | 30-130        |     |      |
| Surrogate: 2,4,6-Tribromophenol |                 |         | 3910      | ug/kg | 6620          |               | 59.0        | 30-130        |     |      |
| Surrogate: 2-Fluorophenol       |                 |         | 5100      | ug/kg | 6620          |               | 77.0        | 30-130        |     |      |

# Quality Control

#### (Continued)

### Semivolatile organic compounds (Continued)

| Analyte                       | Result           | Reporting Qual Limit | Units          | Spike<br>Level | Source<br>Result | %REC         | %REC<br>Limits   | RPD          | RPI<br>Lim |
|-------------------------------|------------------|----------------------|----------------|----------------|------------------|--------------|------------------|--------------|------------|
|                               |                  |                      |                | 20101          |                  | ,,,,,        |                  |              |            |
| Batch: B4B1213 - 1_Semivolat  | tiles Extraction | s (Continued)        |                | ronarod: 02/   | 00/24 Amak       | .d. 02/01/24 |                  |              |            |
| LCS Dup (B4B1213-BSD1)        | 2270             | 120                  |                | •              | 28/24 Analyze    |              | 40.420           | 0.0074       | 20         |
| 1,2,4-Trichlorobenzene        | 2270             | 129                  | ug/kg          | 3310           |                  | 68.7         | 40-130           | 0.0874       | 30         |
| 1,2-Dichlorobenzene           | 2550             | 129                  | ug/kg          | 3310           |                  | 77.0         | 40-130           | 19.9         | 3          |
| 1,3-Dichlorobenzene           | 2480             | 129                  | ug/kg          | 3310           |                  | 75.0         | 40-130           | 18.4         | 3          |
| 1,4-Dichlorobenzene           | 2260             | 129                  | ug/kg          | 3310           |                  | 68.4         | 40-130           | 15.5         | 3          |
| Phenol                        | 2680             | 129                  | ug/kg          | 3310           |                  | 81.0         | 40-130           | 22.3         | 3          |
| 2,4,5-Trichlorophenol         | 2640             | 129                  | ug/kg          | 3310           |                  | 79.6         | 40-130           | 6.67         | 3          |
| 2,4,6-Trichlorophenol         | 2540             | 129                  | ug/kg          | 3310           |                  | 76.6         | 40-130           | 4.71         | 3          |
| 2,4-Dichlorophenol            | 2640             | 129                  | ug/kg          | 3310           |                  | 79.8         | 40-130           | 1.07         | 3          |
| 2,4-Dimethylphenol            | 2420             | 328                  | ug/kg          | 3310           |                  | 73.1         | 40-130           | 8.87         | 3          |
| 2,4-Dinitrophenol             | 2130             | 328                  | ug/kg          | 3310           |                  | 64.2         | 15-140           | 3.13         | 3          |
| 2,4-Dinitrotoluene            | 2740             | 129                  | ug/kg          | 3310           |                  | 82.7         | 40-130           | 5.87         | 3          |
| 2,6-Dinitrotoluene            | 2730             | 129                  | ug/kg          | 3310           |                  | 82.3         | 40-130           | 1.76         | 3          |
| 2-Chloronaphthalene           | 2740             | 129                  | ug/kg          | 3310           |                  | 82.8         | 40-130           | 3.82         | 3          |
| 2-Chlorophenol                | 2630             | 129                  | ug/kg          | 3310           |                  | 79.3         | 40-130           | 17.4         | 3          |
| 2-Methylnaphthalene           | 2250             | 129                  | ug/kg          | 3310           |                  | 67.9         | 40-130           | 2.50         | 3          |
| Nitrobenzene                  | 2800             | 129                  | ug/kg          | 3310           |                  | 84.5         | 40-130           | 1.41         | 3          |
| 2-Methylphenol                | 2170             | 129                  | ug/kg          | 3310           |                  | 65.6         | 40-130           | 16.3         | 3          |
| 2-Nitroaniline                | 2600             | 129                  | ug/kg          | 3310           |                  | 78.5         | 40-130           | 0.973        | 3          |
| 2-Nitrophenol                 | 2540             | 328                  | ug/kg          | 3310           |                  | 76.8         | 40-130           | 5.89         | 3          |
| 3-Nitroaniline                | 2660             | 129                  | ug/kg          | 3310           |                  | 80.5         | 40-130           | 5.31         | 3          |
| 4,6-Dinitro-2-methylphenol    | 2700             | 328                  | ug/kg          | 3310           |                  | 81.5         | 30-130           | 18.5         | 3          |
| 4-Bromophenyl phenyl ether    | 2240             | 129                  | ug/kg          | 3310           |                  | 67.6         | 40-130           | 8.81         | 3          |
| 4-Chloro-3-methylphenol       | 2220             | 129                  | ug/kg          | 3310           |                  | 66.9         | 40-130           | 2.80         | 3          |
| 4-Chlorophenyl phenyl ether   | 2260             | 129                  | ug/kg          | 3310           |                  | 68.4         | 40-130           | 1.92         | 3          |
| 4-Nitroaniline                | 1970             | 129                  | ug/kg          | 3310           |                  | 59.5         | 40-130           | 30.5         | 3          |
| 4-Nitrophenol                 | 2680             | 328                  | ug/kg          | 3310           |                  | 80.9         | 40-130           | 12.4         | 3          |
| Acenaphthene                  | 2220             | 129                  | ug/kg          | 3310           |                  | 67.1         | 40-130           | 0.688        | 3          |
| Acenaphthylene                | 2690             | 129                  | ug/kg          | 3310           |                  | 81.3         | 40-130           | 3.10         | 3          |
| Anthracene                    | 3050             | 129                  | ug/kg          | 3310           |                  | 92.1         | 40-130           | 3.58         | 3          |
| Benzo(a)anthracene            | 2670             | 129                  | ug/kg          | 3310           |                  | 80.5         | 40-130           | 0.773        | 3          |
| Benzo(a)pyrene                | 2920             | 129                  | ug/kg          | 3310           |                  | 88.2         | 40-130           | 5.43         | 3          |
| Benzo(b)fluoranthene          | 3050             | 129                  | ug/kg          | 3310           |                  | 92.0         | 40-130           | 3.27         | 3          |
| Benzo(q,h,i)perylene          | 2800             | 129                  | ug/kg          | 3310           |                  | 84.5         | 40-130           | 11.4         | 3          |
| Benzo(k)fluoranthene          | 3270             | 129                  | ug/kg          | 3310           |                  | 98.8         | 40-130           | 5.83         | 3          |
| Biphenyl                      | 663              | 20                   | ug/kg          | 828            |                  | 80.1         | 40-130           | 5.65         | 3          |
| Bis(2-chloroethoxy)methane    | 2890             | 129                  | ug/kg          | 3310           |                  | 87.3         | 40-130           | 0.643        | 3          |
| Bis(2-chloroethyl)ether       | 2740             | 129                  | ug/kg<br>ug/kg | 3310           |                  | 82.8         | 40-130           | 12.1         | 3          |
| Bis(2-chloroisopropyl)ether   | 3070             | 129                  | ug/kg<br>ug/kg | 3310           |                  | 92.8         | 40-130           | 15.9         | 3          |
| Bis(2-ethylhexyl)phthalate    | 3030             | 397                  | ug/kg<br>ug/kg | 3310           |                  | 92.6         | 40-130           | 2.30         | 3          |
| Butyl benzyl phthalate        | 2900             | 129                  | ug/kg<br>ug/kg | 3310           |                  | 91.4<br>87.5 | 40-130           | 0.895        | 3          |
|                               | 2930             | 129                  | ug/kg<br>ug/kg | 3310           |                  |              |                  | 2.63         | 3          |
| Chrysene Di-n-octyl phthalate | 2930<br>3290     | 129                  | ug/kg<br>ug/kg | 3310           |                  | 88.6<br>99.4 | 40-130<br>40-130 | 2.63<br>42.1 |            |
| Dibenz(a,h)anthracene         | 3290<br>2610     | 199<br>129           | ug/kg<br>ug/kg | 3310           |                  |              |                  |              | 3          |
|                               |                  |                      | ug/kg<br>ug/kg |                |                  | 78.8<br>92.1 | 40-130<br>40-130 | 4.46<br>5.66 |            |
| Dibenzofuran                  | 2720             | 129                  |                | 3310           |                  | 82.1         | 40-130           | 5.66         | 3          |
| Diethyl phthalate             | 2830             | 129                  | ug/kg          | 3310           |                  | 85.6<br>78.0 | 40-130           | 3.64         | 3          |
| Dimethyl phthalate            | 2580             | 328                  | ug/kg          | 3310           |                  | 78.0         | 40-130           | 3.23         | 3          |
| Di-n-butyl phthalate          | 3310             | 199                  | ug/kg          | 3310           |                  | 99.9         | 40-130           | 3.38         | 3          |
| Fluoranthene                  | 3080             | 129                  | ug/kg          | 3310           |                  | 93.0         | 40-130           | 2.92         | 3          |
| Fluorene                      | 2640             | 129                  | ug/kg          | 3310           |                  | 79.8         | 40-130           | 5.28         | 3          |
| Hexachlorobenzene             | 2790             | 129                  | ug/kg          | 3310           |                  | 84.1         | 40-130           | 8.01         | 3          |
| Hexachlorobutadiene           | 2510             | 129                  | ug/kg          | 3310           |                  | 75.8         | 40-130           | 2.76         | 3          |
| Hexachlorocyclopentadiene     | 2640             | 328                  | ug/kg          | 3310           |                  | 79.8         | 40-130           | 4.46         | 3          |
| Hexachloroethane              | 2460             | 129                  | ug/kg          | 3310           |                  | 74.3         | 40-130           | 18.8         | 3          |
| Indeno(1,2,3-cd)pyrene        | 2730             | 129                  | ug/kg          | 3310           |                  | 82.3         | 40-130           | 4.68         | 3          |
| Isophorone                    | 2960             | 129                  | ug/kg          | 3310           |                  | 89.3         | 40-130           | 1.75         | 3          |
| Naphthalene                   | 2400             | 129                  | ug/kg          | 3310           |                  | 72.5         | 40-130           | 1.84         | 3          |
| N-Nitrosodimethylamine        | 2060             | 129                  | ug/kg          | 3310           |                  | 62.3         | 40-130           | Page         |            |

Page 62 of 68

# Quality Control (Continued)

#### Semivolatile organic compounds (Continued)

|                                 |                  |         | Reporting   |       | Spike        | Source       |             | %REC   |      | RPD   |
|---------------------------------|------------------|---------|-------------|-------|--------------|--------------|-------------|--------|------|-------|
| Analyte                         | Result           | Qual    | Limit       | Units | Level        | Result       | %REC        | Limits | RPD  | Limit |
| Batch: B4B1213 - 1_Semivola     | ntiles Extractio | ons (Co | ntinued)    |       |              |              |             |        |      |       |
| LCS Dup (B4B1213-BSD1)          |                  |         |             | Pr    | epared: 02/2 | 8/24 Analyze | d: 03/01/24 |        |      |       |
| N-Nitrosodi-n-propylamine       | 2530             |         | 129         | ug/kg | 3310         |              | 76.3        | 40-130 | 11.4 | 30    |
| N-Nitrosodiphenylamine          | 2890             |         | 129         | ug/kg | 3310         |              | 87.4        | 40-130 | 5.24 | 30    |
| Pentachlorophenol               | 2620             |         | 328         | ug/kg | 3310         |              | 79.3        | 15-140 | 8.44 | 30    |
| Phenanthrene                    | 3230             |         | 129         | ug/kg | 3310         |              | 97.5        | 40-130 | 5.11 | 30    |
| Pyrene                          | 3050             |         | 129         | ug/kg | 3310         |              | 92.1        | 40-130 | 1.20 | 30    |
| m&p-Cresol                      | 2270             |         | 258         | ug/kg | 3310         |              | 68.5        | 40-130 | 9.73 | 30    |
| Surrogate: Nitrobenzene-d5      |                  |         | 4090        | ug/kg | 6620         |              | 61.8        | 30-126 |      |       |
| Surrogate: p-Terphenyl-d14      |                  |         | 5160        | ug/kg | 6620         |              | 77.9        | 47-130 |      |       |
| Surrogate: 2-Fluorobiphenyl     |                  |         | <i>3750</i> | ug/kg | 6620         |              | <i>56.7</i> | 34-130 |      |       |
| Surrogate: Phenol-d6            |                  |         | 3870        | ug/kg | 6620         |              | 58.5        | 30-130 |      |       |
| Surrogate: 2,4,6-Tribromophenol |                  |         | 4140        | ug/kg | 6620         |              | 62.6        | 30-130 |      |       |
| Surrogate: 2-Fluorophenol       |                  |         | 4220        | ug/kg | 6620         |              | 63.8        | 30-130 |      |       |

# Quality Control (Continued)

#### Polychlorinated Biphenyls (PCBs)

|                                                   |              |      | Reporting |       | Spike        | Source        |             | %REC     |      | RPD   |
|---------------------------------------------------|--------------|------|-----------|-------|--------------|---------------|-------------|----------|------|-------|
| Analyte                                           | Result       | Qual | Limit     | Units | Level        | Result        | %REC        | Limits   | RPD  | Limit |
| Batch: B4B1201 - 1_Semivolatil                    | es Extractio | ons  |           |       |              |               |             |          |      |       |
| Blank (B4B1201-BLK1)                              |              |      |           | Pr    | epared: 02/2 | 28/24 Analyze | d: 03/01/24 |          |      |       |
| Aroclor-1016                                      | ND           |      | 66        | ug/kg |              |               |             |          |      |       |
| Aroclor-1221                                      | ND           |      | 66        | ug/kg |              |               |             |          |      |       |
| Aroclor-1232                                      | ND           |      | 66        | ug/kg |              |               |             |          |      |       |
| Aroclor-1242                                      | ND           |      | 66        | ug/kg |              |               |             |          |      |       |
| Aroclor-1248                                      | ND           |      | 66        | ug/kg |              |               |             |          |      |       |
| Aroclor-1254                                      | ND           |      | 66        | ug/kg |              |               |             |          |      |       |
| Aroclor-1260                                      | ND           |      | 66        | ug/kg |              |               |             |          |      |       |
| Aroclor-1262                                      | ND           |      | 66        | ug/kg |              |               |             |          |      |       |
| Aroclor-1268                                      | ND           |      | 66        | ug/kg |              |               |             |          |      |       |
| PCBs (Total)                                      | ND           |      | 66        | ug/kg |              |               |             |          |      |       |
| Surrogate: 2,4,5,6-Tetrachloro-m-xylene<br>(TCMX) |              |      | 8.58      | ug/kg | 13.3         |               | 64.4        | 36.2-130 |      |       |
| Surrogate: Decachlorobiphenyl (DCBP)              |              |      | 7.12      | ug/kg | 13.3         |               | 53.4        | 43.3-130 |      |       |
| LCS (B4B1201-BS1)                                 |              |      |           | Pr    | epared: 02/2 | 28/24 Analyze | d: 03/01/24 |          |      |       |
| Aroclor-1016                                      | 156          |      | 66        | ug/kg | 167          |               | 93.8        | 58.2-125 |      |       |
| Aroclor-1260                                      | 170          |      | 66        | ug/kg | 167          |               | 102         | 65.5-130 |      |       |
| Surrogate: 2,4,5,6-Tetrachloro-m-xylene<br>(TCMX) |              |      | 9.00      | ug/kg | 13.3         |               | 67.5        | 36.2-130 |      |       |
| Surrogate: Decachlorobiphenyl (DCBP)              |              |      | 6.98      | ug/kg | 13.3         |               | 52.4        | 43.3-130 |      |       |
| LCS Dup (B4B1201-BSD1)                            |              |      |           | Pr    | epared: 02/2 | 28/24 Analyze | d: 03/01/24 |          |      |       |
| Aroclor-1016                                      | 170          |      | 66        | ug/kg | 167          |               | 102         | 58.2-125 | 8.40 | 20    |
| Aroclor-1260                                      | 193          |      | 66        | ug/kg | 167          |               | 116         | 65.5-130 | 12.9 | 20    |
| Surrogate: 2,4,5,6-Tetrachloro-m-xylene<br>(TCMX) |              |      | 9.58      | ug/kg | 13.3         |               | 71.9        | 36.2-130 |      |       |
| Surrogate: Decachlorobiphenyl (DCBP)              |              |      | 7.76      | ug/kg | 13.3         |               | 58.2        | 43.3-130 |      |       |

|                                                                                                 |        |      |                    | Control |                |                  |         |                |      |              |
|-------------------------------------------------------------------------------------------------|--------|------|--------------------|---------|----------------|------------------|---------|----------------|------|--------------|
| Total Petroleum Hydrocarbons                                                                    | S      |      |                    |         |                |                  |         |                |      |              |
| Analyte                                                                                         | Result | Qual | Reporting<br>Limit | Units   | Spike<br>Level | Source<br>Result | %REC    | %REC<br>Limits | RPD  | RPD<br>Limit |
| Batch: B4B1186 - 1_Semivolatiles Extractions Blank (B4B1186-BLK1) Prepared & Analyzed: 02/28/24 |        |      |                    |         |                |                  |         |                |      |              |
| Total Petroleum Hydrocarbons                                                                    | ND     |      | 27                 | mg/kg   |                |                  |         |                |      |              |
| Surrogate: Chlorooctadecane                                                                     |        |      | 9.08               | mg/kg   | 8.33           |                  | 109     | 50-130         |      |              |
| LCS (B4B1186-BS1)                                                                               |        |      |                    |         | Prepared 8     | & Analyzed: 0    | 2/28/24 |                |      |              |
| Total Petroleum Hydrocarbons                                                                    | 583    |      | 27                 | mg/kg   | 667            |                  | 87.5    | 44.7-125       |      |              |
| Surrogate: Chlorooctadecane                                                                     |        |      | 9.39               | mg/kg   | 8.33           |                  | 113     | 50-130         |      |              |
| LCS Dup (B4B1186-BSD1)                                                                          |        |      |                    |         | Prepared 8     | & Analyzed: 0    | 2/28/24 |                |      |              |
| Total Petroleum Hydrocarbons                                                                    | 551    |      | 27                 | mg/kg   | 667            |                  | 82.6    | 44.7-125       | 5.71 | 30           |
| Surrogate: Chlorooctadecane                                                                     |        |      | 9.05               | mg/kg   | 8.33           |                  | 109     | 50-130         |      |              |

#### **Notes and Definitions**

| <u>Item</u> | Definition                                            |
|-------------|-------------------------------------------------------|
| Wet         | Sample results reported on a wet weight basis.        |
| ND          | Analyte NOT DETECTED at or above the reporting limit. |

#### NEW ENGLAND TESTING LABORATORY, IN

59 Greenhill Street West Warwick, RI 02893 1-888-863-8522



1/s in FREEZR

PROJ. NO. PROJECT NAME/LOCATION 3096 MAYNARD CLIENT LURD ENV. INC ACOMODO RTella C LORDEN.com NO. SOLL REPORT TO: INVOICE TO: REMARKS CONTAINERS COMP DATE TIME SAMPLE I.D. Asma 10:30 3 3 Date/Time Received by: (Signature) Laboratory Remarks: Special Instructions: Temp. received: List Specific Detection Limit Requirements: Cooled Relinquished by: (Signature) Beceived by: (5) Relinquished by Received for boratory by: (Signature) Date/Time Turnaround (Business Days)

\*\*Netlab subcontracts the following tests: Radiologicals, Radon, Asbestos, UCMRs, Perchlorate, Bromate, Bromide, Sieve, Salmonella, Carbamates, CT ETPH

|                                                                                                                                                                                                                                                                                     | MassDEP Analytical Protocol Certification Form                                                                                                                                                                                     |                             |                                                   |                              |                                                     |                                  |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|---------------------------------------------------|------------------------------|-----------------------------------------------------|----------------------------------|--|--|--|
| Labo                                                                                                                                                                                                                                                                                | ratory Na                                                                                                                                                                                                                          | ıme: New England            | d Testing Laboratory                              | , Inc.                       | Project #: 3096                                     |                                  |  |  |  |
| Project Location: Maynard RTN:                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                    |                             |                                                   |                              |                                                     |                                  |  |  |  |
|                                                                                                                                                                                                                                                                                     | Form pro<br>B26010                                                                                                                                                                                                                 | ovides certification        | ons for the followin                              | g data set: list Lab         | oratory Sample ID N                                 | lumber(s):                       |  |  |  |
| Matrio                                                                                                                                                                                                                                                                              | ces: 🗆 Gi                                                                                                                                                                                                                          | roundwater/Surfac           | ce Water ⊠ Soil/Se                                | diment   Drinking            | y Water □ Air □ Oth                                 | er:                              |  |  |  |
| CAM                                                                                                                                                                                                                                                                                 | Protoco                                                                                                                                                                                                                            | ol (check all that a        | apply below):                                     |                              |                                                     |                                  |  |  |  |
| 8260 CAM                                                                                                                                                                                                                                                                            | VOC<br>II A ⊠                                                                                                                                                                                                                      | 7470/7471 Hg<br>CAM III B ⊠ | MassDEP VPH<br>(GC/PID/FID)<br>CAM IV A □         | 8082 PCB<br>CAM V A 🗵        | 9014 Total<br>Cyanide/PAC<br>CAM VI A □             | 6860 Perchlorate<br>CAM VIII B □ |  |  |  |
|                                                                                                                                                                                                                                                                                     | SVOC<br>II B ⊠                                                                                                                                                                                                                     | 7010 Metals<br>CAM III C □  | MassDEP VPH<br>(GC/MS)<br>CAM IV C □              | 8081 Pesticides<br>CAM V B   | 7196 Hex Cr<br>CAM VI B                             | MassDEP APH<br>CAM IX A □        |  |  |  |
|                                                                                                                                                                                                                                                                                     | Metals<br>III A ⊠                                                                                                                                                                                                                  | 6020 Metals<br>CAM III D □  | MassDEP EPH<br>CAM IV B □                         | 8151 Herbicides<br>CAM V C □ | 8330 Explosives<br>CAM VIII A                       | TO-15 VOC<br>CAM IX B □          |  |  |  |
| A                                                                                                                                                                                                                                                                                   | Affirmativ                                                                                                                                                                                                                         | e Responses to              | Questions A throug                                | gh F are required t          | for "Presumptive Ce                                 | rtainty" status                  |  |  |  |
| A                                                                                                                                                                                                                                                                                   | Were all samples received in a condition consistent with those described on the Chain-of-Custody, properly preserved (including temperature) in the field or laboratory, and prepared/analyzed within method holding times?   □ No |                             |                                                   |                              |                                                     |                                  |  |  |  |
| В                                                                                                                                                                                                                                                                                   | Were the analytical method(s) and all associated QC requirements specified in the selected CAM protocol(s) followed?   □ Yes □ No                                                                                                  |                             |                                                   |                              |                                                     |                                  |  |  |  |
| С                                                                                                                                                                                                                                                                                   | Were all required corrective actions and analytical response actions specified in the selected CAM protocol(s) implemented for all identified performance standard non-conformances?   ☑ Yes ☐ No                                  |                             |                                                   |                              |                                                     |                                  |  |  |  |
| D                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                    | Assurance and C             |                                                   |                              | specified in CAM VII A<br>ition and Reporting c     |                                  |  |  |  |
| E                                                                                                                                                                                                                                                                                   | <ul><li>a. VPH, modificat</li></ul>                                                                                                                                                                                                | ion(s)? (Refer to th        |                                                   | for a list of significant    |                                                     | t □ Yes □ No                     |  |  |  |
| F                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                    |                             |                                                   |                              | -conformances identified<br>Questions A through E)? |                                  |  |  |  |
| Res                                                                                                                                                                                                                                                                                 | sponses                                                                                                                                                                                                                            | to Questions G,             | H and I below are re                              | equired for "Presu           | mptive Certainty" st                                | atus                             |  |  |  |
| G                                                                                                                                                                                                                                                                                   | Were the protocol(                                                                                                                                                                                                                 |                             | or below all CAM repor                            | ting limits specified in     | the selected CAM                                    | ⊠ Yes □ No¹                      |  |  |  |
|                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                    |                             | ve "Presumptive Certain<br>s described in 310 CMR |                              | cessarily meet the data of SC-07-350.               | ısability and                    |  |  |  |
| Н                                                                                                                                                                                                                                                                                   | Were all                                                                                                                                                                                                                           | QC performance st           | andards specified in th                           | ne CAM protocol(s) ac        | chieved?                                            | ✓ Yes □ No¹                      |  |  |  |
| I                                                                                                                                                                                                                                                                                   | Were res                                                                                                                                                                                                                           | sults reported for the      | e complete analyte list                           | specified in the select      | ted CAM protocol(s)?                                | ⊠ Yes □ No¹                      |  |  |  |
| ¹All r                                                                                                                                                                                                                                                                              | negative re                                                                                                                                                                                                                        | esponses must be            | addressed in an attac                             | ched laboratory narra        | ative.                                              |                                  |  |  |  |
| I, the undersigned, attest under the pains and penalties of perjury that, based upon my personal inquiry of those responsible for obtaining the information, the material contained in this analytical report is, to the best of my knowledge and belief, is accurate and complete. |                                                                                                                                                                                                                                    |                             |                                                   |                              |                                                     |                                  |  |  |  |
| Sign                                                                                                                                                                                                                                                                                | Signature: Position: Laboratory Director                                                                                                                                                                                           |                             |                                                   |                              |                                                     |                                  |  |  |  |
| Print                                                                                                                                                                                                                                                                               | ted Name                                                                                                                                                                                                                           | : Richard Warila            |                                                   | — Date:                      | 3/6/2024                                            |                                  |  |  |  |

Page 68 of 68



#### REPORT OF ANALYTICAL RESULTS

NETLAB Work Order Number: 4B27035 Client Project: 3096 - Maynard

Report Date: 05-March-2024

Prepared for:

Ralph Tella Lord Environmental, Inc. 1506 Providence Highway, Suite 30 Norwood, MA 02062

> Richard Warila, Laboratory Director New England Testing Laboratory, Inc. 59 Greenhill Street West Warwick, RI 02893 rich.warila@newenglandtesting.com

## Samples Submitted:

The samples listed below were submitted to New England Testing Laboratory on 02/27/24. The group of samples appearing in this report was assigned an internal identification number (case number) for laboratory information management purposes. The client's designations for the individual samples, along with our case numbers, are used to identify the samples in this report. This report of analytical results pertains only to the sample(s) provided to us by the client which are indicated on the custody record. The case number for this sample submission is 4B27035. Custody records are included in this report.

| Lab ID     | Sample     | Matrix | Date Sampled | Date Received |
|------------|------------|--------|--------------|---------------|
| 4B27035-01 | B-108 2-4' | Soil   | 02/27/2024   | 02/27/2024    |
| 4B27035-02 | B-118 2-4' | Soil   | 02/27/2024   | 02/27/2024    |

## Request for Analysis

At the client's request, the analyses presented in the following table were performed on the samples submitted.

### B-108 2-4' (Lab Number: 4B27035-01)

|                                | <u>Method</u>     |
|--------------------------------|-------------------|
| Antimony                       | EPA 6010C         |
| Arsenic                        | EPA 6010C         |
| Barium                         | EPA 6010C         |
| Beryllium                      | EPA 6010C         |
| Cadmium                        | EPA 6010C         |
| Chromium                       | EPA 6010C         |
| Flashpoint                     | EPA 1010A-Mod     |
| Lead                           | EPA 6010C         |
| Mercury                        | EPA 7471B         |
| Nickel                         | EPA 6010C         |
| PCBs                           | EPA 8082A         |
| рН                             | SM4500-H-B (11)   |
| Reactive Cyanide               | NETL Internal     |
| Reactive Sulfide               | NETL Internal     |
| Selenium                       | EPA 6010C         |
| Semivolatile Organic Compounds | EPA 8270D         |
| Silver                         | EPA 6010C         |
| Specific Conductance           | SM2510 - Modified |
| Thallium                       | EPA 6010C         |
| Total Petroleum Hydrocarbons   | EPA-8100-mod      |
| Vanadium                       | EPA 6010C         |
| Volatile Organic Compounds     | EPA 8260C         |
| Zinc                           | EPA 6010C         |

### B-118 2-4' (Lab Number: 4B27035-02)

|                                | <u>Method</u>     |
|--------------------------------|-------------------|
| Antimony                       | EPA 6010C         |
| Arsenic                        | EPA 6010C         |
| Barium                         | EPA 6010C         |
| Beryllium                      | EPA 6010C         |
| Cadmium                        | EPA 6010C         |
| Chromium                       | EPA 6010C         |
| Flashpoint                     | EPA 1010A-Mod     |
| Lead                           | EPA 6010C         |
| Mercury                        | EPA 7471B         |
| Nickel                         | EPA 6010C         |
| PCBs                           | EPA 8082A         |
| pH                             | SM4500-H-B (11)   |
| Reactive Cyanide               | NETL Internal     |
| Reactive Sulfide               | NETL Internal     |
| Selenium                       | EPA 6010C         |
| Semivolatile Organic Compounds | EPA 8270D         |
| Silver                         | EPA 6010C         |
| Specific Conductance           | SM2510 - Modified |
| Thallium                       | EPA 6010C         |
| Total Petroleum Hydrocarbons   | EPA-8100-mod      |
| Vanadium                       | EPA 6010C         |
| Volatile Organic Compounds     | EPA 8260C         |
| Zinc                           | EPA 6010C         |

#### **Method References**

Reactive Cyanide, Standard Operating Procedure 407, New England Testing Laboratory Inc.

Reactive Sulfide, Standard Operating Procedure 426, New England Testing Laboratory Inc.

Standard Methods for the Examination of Water and Wastewater, 20th Edition, APHA/ AWWA-WPCF, 1998

Test Methods for Evaluating Solid Waste, Physical/Chemical Methods, SW846, USEPA

#### **Case Narrative**

#### Sample Receipt:

The samples associated with this work order were received in appropriately cooled and preserved containers. The chain of custody was adequately completed and corresponded to the samples submitted.

Exceptions: None

#### **Analysis:**

All samples were prepared and analyzed within method specified holding times and according to NETLAB's documented standard operating procedures. The results for the associated calibration, method blank and laboratory control sample (LCS) were within method specified quality control requirements and allowances. Results for all soil samples, unless otherwise indicated, are reported on a dry weight basis.

Exceptions: None

## **Results: General Chemistry**

Sample: B-108 2-4'

|                      |        |      | Reporting |           |               |               |
|----------------------|--------|------|-----------|-----------|---------------|---------------|
| Analyte              | Result | Qual | Limit     | Units     | Date Prepared | Date Analyzed |
| Flashpoint           | > 200  |      | 70        | degrees F | 03/01/24      | 03/01/24      |
| рН                   | 8.1    |      |           | SU        | 02/28/24      | 02/28/24      |
| Specific Conductance | 13.7   |      | 2.0       | uS/cm     | 02/28/24      | 02/28/24      |

## **Results: General Chemistry**

Sample: B-118 2-4'

|                      |        |      | Reporting |           |               |               |
|----------------------|--------|------|-----------|-----------|---------------|---------------|
| Analyte              | Result | Qual | Limit     | Units     | Date Prepared | Date Analyzed |
| Flashpoint           | > 200  |      | 70        | degrees F | 03/01/24      | 03/01/24      |
| рН                   | 7.1    |      |           | SU        | 02/28/24      | 02/28/24      |
| Specific Conductance | 296    |      | 2.0       | uS/cm     | 02/28/24      | 02/28/24      |

**Results: Reactivity** 

Sample: B-108 2-4'

|                  |        |      | Reporting |       |               |               |
|------------------|--------|------|-----------|-------|---------------|---------------|
| Analyte          | Result | Qual | Limit     | Units | Date Prepared | Date Analyzed |
| Reactive Cyanide | ND     |      | 0.2       | mg/kg | 02/29/24      | 02/29/24      |
| Reactive Sulfide | ND     |      | 0.1       | ma/ka | 02/29/24      | 02/29/24      |

**Results: Reactivity** 

Sample: B-118 2-4'

|                  |        |      | Reporting |       |               |               |
|------------------|--------|------|-----------|-------|---------------|---------------|
| Analyte          | Result | Qual | Limit     | Units | Date Prepared | Date Analyzed |
| Reactive Cyanide | ND     |      | 0.2       | mg/kg | 02/29/24      | 02/29/24      |
| Reactive Sulfide | ND     |      | 0.1       | ma/ka | 02/29/24      | 02/29/24      |

#### **Results: Total Metals**

Sample: B-108 2-4'

| Reporting |        |      |       |       |               |               |  |  |
|-----------|--------|------|-------|-------|---------------|---------------|--|--|
| Analyte   | Result | Qual | Limit | Units | Date Prepared | Date Analyzed |  |  |
| Antimony  | ND     |      | 0.81  | mg/kg | 02/28/24      | 03/04/24      |  |  |
| Arsenic   | 8.77   |      | 1.22  | mg/kg | 02/28/24      | 03/04/24      |  |  |
| Barium    | 29.1   |      | 0.40  | mg/kg | 02/28/24      | 03/04/24      |  |  |
| Beryllium | ND     |      | 0.40  | mg/kg | 02/28/24      | 03/04/24      |  |  |
| Cadmium   | 2.43   |      | 0.61  | mg/kg | 02/28/24      | 03/04/24      |  |  |
| Chromium  | 10.6   |      | 0.61  | mg/kg | 02/28/24      | 03/04/24      |  |  |
| Lead      | 3.35   |      | 0.61  | mg/kg | 02/28/24      | 03/04/24      |  |  |
| Mercury   | ND     |      | 0.104 | mg/kg | 02/28/24      | 02/28/24      |  |  |
| Nickel    | 6.35   |      | 0.61  | mg/kg | 02/28/24      | 03/04/24      |  |  |
| Selenium  | ND     |      | 1.22  | mg/kg | 02/28/24      | 03/04/24      |  |  |
| Silver    | ND     |      | 1.22  | mg/kg | 02/28/24      | 03/04/24      |  |  |
| Vanadium  | 12.4   |      | 0.40  | mg/kg | 02/28/24      | 03/04/24      |  |  |
| Zinc      | 16.7   |      | 2.4   | mg/kg | 02/28/24      | 03/04/24      |  |  |
| Thallium  | ND     |      | 0.40  | mg/kg | 02/28/24      | 03/04/24      |  |  |
|           |        |      |       |       |               |               |  |  |

#### **Results: Total Metals**

Sample: B-118 2-4' Lab Number: 4B27035-02 (Soil)

|           |        |      | Reporting |       |               |               |
|-----------|--------|------|-----------|-------|---------------|---------------|
| Analyte   | Result | Qual | Limit     | Units | Date Prepared | Date Analyzed |
| Antimony  | ND     |      | 0.77      | mg/kg | 02/28/24      | 03/04/24      |
| Arsenic   | 6.64   |      | 1.17      | mg/kg | 02/28/24      | 03/04/24      |
| Barium    | 55.4   |      | 0.39      | mg/kg | 02/28/24      | 03/04/24      |
| Beryllium | ND     |      | 0.39      | mg/kg | 02/28/24      | 03/04/24      |
| Cadmium   | 4.49   |      | 0.58      | mg/kg | 02/28/24      | 03/04/24      |
| Chromium  | 22.8   |      | 0.58      | mg/kg | 02/28/24      | 03/04/24      |
| Lead      | 5.70   |      | 0.58      | mg/kg | 02/28/24      | 03/04/24      |
| Mercury   | ND     |      | 0.090     | mg/kg | 02/28/24      | 02/28/24      |
| Nickel    | 13.7   |      | 0.58      | mg/kg | 02/28/24      | 03/04/24      |
| Selenium  | ND     |      | 1.17      | mg/kg | 02/28/24      | 03/04/24      |
| Silver    | ND     |      | 1.17      | mg/kg | 02/28/24      | 03/04/24      |
| Vanadium  | 26.1   |      | 0.39      | mg/kg | 02/28/24      | 03/04/24      |
| Zinc      | 24.6   |      | 2.3       | mg/kg | 02/28/24      | 03/04/24      |
| Thallium  | ND     |      | 0.39      | mg/kg | 02/28/24      | 03/04/24      |

## **Results: Volatile Organic Compounds 8260C (5035-LL)**

Sample: B-108 2-4'

|                                            |          | Reporting  |                |               |                         |
|--------------------------------------------|----------|------------|----------------|---------------|-------------------------|
| Analyte                                    | Result   | Qual Limit | Units          | Date Prepared | Date Analyzed           |
| Acetone                                    | ND       | 93         | ug/kg          | 02/29/24      | 02/29/24                |
| Benzene                                    | ND       | 5          | ug/kg          | 02/29/24      | 02/29/24                |
| Bromobenzene                               | ND       | 5          | ug/kg          | 02/29/24      | 02/29/24                |
| Bromochloromethane                         | ND       | 5          | ug/kg          | 02/29/24      | 02/29/24                |
| Bromodichloromethane                       | ND       | 5          | ug/kg          | 02/29/24      | 02/29/24                |
| Bromoform                                  | ND       | 5          | ug/kg          | 02/29/24      | 02/29/24                |
| Bromomethane                               | ND       | 5          | ug/kg          | 02/29/24      | 02/29/24                |
| 2-Butanone                                 | ND       | 93         | ug/kg          | 02/29/24      | 02/29/24                |
| tert-Butyl alcohol                         | ND       | 5          | ug/kg          | 02/29/24      | 02/29/24                |
| sec-Butylbenzene                           | ND       | 5          | ug/kg          | 02/29/24      | 02/29/24                |
| n-Butylbenzene                             | ND       | 5          | ug/kg          | 02/29/24      | 02/29/24                |
| tert-Butylbenzene                          | ND       | 5          | ug/kg          | 02/29/24      | 02/29/24                |
| Methyl t-butyl ether (MTBE)                | ND       | 5          | ug/kg          | 02/29/24      | 02/29/24                |
| Carbon Disulfide                           | ND       | 5          | ug/kg          | 02/29/24      | 02/29/24                |
| Carbon Tetrachloride                       | ND       | 5          | ug/kg          | 02/29/24      | 02/29/24                |
| Chlorobenzene                              | ND       | 5          | ug/kg          | 02/29/24      | 02/29/24                |
| Chloroethane                               | ND       | 5          | ug/kg          | 02/29/24      | 02/29/24                |
| Chloroform                                 | ND       | 5          | ug/kg          | 02/29/24      | 02/29/24                |
| Chloromethane                              | ND       | 5          | ug/kg          | 02/29/24      | 02/29/24                |
| 4-Chlorotoluene                            | ND       | 5          | ug/kg          | 02/29/24      | 02/29/24                |
| 2-Chlorotoluene                            | ND       | 5          | ug/kg          | 02/29/24      | 02/29/24                |
| 1,2-Dibromo-3-chloropropane (DBCP)         | ND       | 5          | ug/kg          | 02/29/24      | 02/29/24                |
| Dibromochloromethane                       | ND       | 5          | ug/kg          | 02/29/24      | 02/29/24                |
| 1,2-Dibromoethane (EDB)                    | ND       | 5          | ug/kg          | 02/29/24      | 02/29/24                |
| Dibromomethane                             | ND       | 5          | ug/kg          | 02/29/24      | 02/29/24                |
| 1,2-Dichlorobenzene                        | ND       | 5          | ug/kg          | 02/29/24      | 02/29/24                |
| 1,3-Dichlorobenzene                        | ND       | 5          | ug/kg          | 02/29/24      | 02/29/24                |
| 1,4-Dichlorobenzene                        | ND       | 5          | ug/kg          | 02/29/24      | 02/29/24                |
| 1,1-Dichloroethane                         | ND<br>ND | 5          | ug/kg          | 02/29/24      | 02/29/24                |
| 1,2-Dichloroethane                         | ND<br>ND | 5          | ug/kg          | 02/29/24      | 02/29/24                |
| 1,2 Dichloroethene, Total                  | ND<br>ND | 5          | ug/kg          | 02/29/24      | 02/29/24                |
| trans-1,2-Dichloroethene                   | ND<br>ND | 5          | ug/kg          | 02/29/24      | 02/29/24                |
| cis-1,2-Dichloroethene                     | ND<br>ND | 5          |                | 02/29/24      | 02/29/24                |
| 1,1-Dichloroethene                         | ND<br>ND | 5          | ug/kg          | 02/29/24      | 02/29/24                |
| 1,1-Dichloropropane                        | ND<br>ND | 5          | ug/kg<br>ug/kg | 02/29/24      | 02/29/24                |
| 1,2-Dicnioropropane<br>2,2-Dichloropropane |          | 5          |                | 02/29/24      | 02/29/24                |
|                                            | ND<br>ND |            | ug/kg          |               |                         |
| cis-1,3-Dichloropropene                    | ND       | 5          | ug/kg          | 02/29/24      | 02/29/24                |
| trans-1,3-Dichloropropene                  | ND       | 5          | ug/kg          | 02/29/24      | 02/29/24                |
| 1,1-Dichloropropene                        | ND       | 5          | ug/kg          | 02/29/24      | 02/29/24                |
| 1,3-Dichloropropene (cis + trans)          | ND       | 5          | ug/kg          | 02/29/24      | 02/29/24                |
| Diethyl ether                              | ND       | 5          | ug/kg          | 02/29/24      | 02/29/24                |
| 1,4-Dioxane                                | ND       | 93         | ug/kg          | 02/29/24      | 02/29/24                |
| Ethylbenzene                               | ND       | 5          | ug/kg          | 02/29/24      | 02/29/24                |
| Hexachlorobutadiene                        | ND       | 5          | ug/kg          | 02/29/24      | 02/29/24                |
| 2-Hexanone                                 | ND       | 93         | ug/kg<br>"     | 02/29/24      | 02/29/24                |
| Isopropylbenzene                           | ND       | 5          | ug/kg          | 02/29/24      | 02/29/24                |
| p-Isopropyltoluene                         | ND       | 5          | ug/kg          | 02/29/24      | <sup>02/29</sup> Page 1 |

# Results: Volatile Organic Compounds 8260C (5035-LL) (Continued)

Sample: B-108 2-4' (Continued)

| Analyte                   | Result    | Qual | Reporting<br>Limit | Units | Date Prepared | Date Analyzed |
|---------------------------|-----------|------|--------------------|-------|---------------|---------------|
| Methylene Chloride        | ND        |      | 5                  | ug/kg | 02/29/24      | 02/29/24      |
| 4-Methyl-2-pentanone      | ND        |      | 93                 | ug/kg | 02/29/24      | 02/29/24      |
| Naphthalene               | ND        |      | 5                  | ug/kg | 02/29/24      | 02/29/24      |
| n-Propylbenzene           | ND        |      | 5                  | ug/kg | 02/29/24      | 02/29/24      |
| Styrene                   | ND        |      | 5                  | ug/kg | 02/29/24      | 02/29/24      |
| 1,1,1,2-Tetrachloroethane | ND        |      | 5                  | ug/kg | 02/29/24      | 02/29/24      |
| Tetrachloroethene         | ND        |      | 5                  | ug/kg | 02/29/24      | 02/29/24      |
| Tetrahydrofuran           | ND        |      | 5                  | ug/kg | 02/29/24      | 02/29/24      |
| Toluene                   | ND        |      | 5                  | ug/kg | 02/29/24      | 02/29/24      |
| 1,2,4-Trichlorobenzene    | ND        |      | 5                  | ug/kg | 02/29/24      | 02/29/24      |
| 1,2,3-Trichlorobenzene    | ND        |      | 5                  | ug/kg | 02/29/24      | 02/29/24      |
| 1,1,2-Trichloroethane     | ND        |      | 5                  | ug/kg | 02/29/24      | 02/29/24      |
| 1,1,1-Trichloroethane     | ND        |      | 5                  | ug/kg | 02/29/24      | 02/29/24      |
| Trichloroethene           | ND        |      | 5                  | ug/kg | 02/29/24      | 02/29/24      |
| 1,2,3-Trichloropropane    | ND        |      | 5                  | ug/kg | 02/29/24      | 02/29/24      |
| 1,3,5-Trimethylbenzene    | ND        |      | 5                  | ug/kg | 02/29/24      | 02/29/24      |
| 1,2,4-Trimethylbenzene    | ND        |      | 5                  | ug/kg | 02/29/24      | 02/29/24      |
| Vinyl Chloride            | ND        |      | 5                  | ug/kg | 02/29/24      | 02/29/24      |
| o-Xylene                  | ND        |      | 5                  | ug/kg | 02/29/24      | 02/29/24      |
| m&p-Xylene                | ND        |      | 9                  | ug/kg | 02/29/24      | 02/29/24      |
| Total xylenes             | ND        |      | 5                  | ug/kg | 02/29/24      | 02/29/24      |
| 1,1,2,2-Tetrachloroethane | ND        |      | 5                  | ug/kg | 02/29/24      | 02/29/24      |
| tert-Amyl methyl ether    | ND        |      | 5                  | ug/kg | 02/29/24      | 02/29/24      |
| 1,3-Dichloropropane       | ND        |      | 5                  | ug/kg | 02/29/24      | 02/29/24      |
| Ethyl tert-butyl ether    | ND        |      | 5                  | ug/kg | 02/29/24      | 02/29/24      |
| Diisopropyl ether         | ND        |      | 5                  | ug/kg | 02/29/24      | 02/29/24      |
| Trichlorofluoromethane    | ND        |      | 5                  | ug/kg | 02/29/24      | 02/29/24      |
| Dichlorodifluoromethane   | ND        |      | 5                  | ug/kg | 02/29/24      | 02/29/24      |
| Surrogate(s)              | Recovery% |      | Limits             |       |               |               |
| 4-Bromofluorobenzene      | 96.3%     |      | 70-130             | )     | 02/29/24      | 02/29/24      |
| 1,2-Dichloroethane-d4     | 104%      |      | 70-130             | )     | 02/29/24      | 02/29/24      |
| Toluene-d8                | 103%      |      | 70-130             | )     | 02/29/24      | 02/29/24      |

## **Results: Volatile Organic Compounds 8260C (5035-LL)**

Sample: B-118 2-4'

|                                    |          | Reporting  |                |               |                     |
|------------------------------------|----------|------------|----------------|---------------|---------------------|
| Analyte                            | Result   | Qual Limit | Units          | Date Prepared | Date Analyzed       |
| Acetone                            | ND       | 92         | ug/kg          | 02/29/24      | 02/29/24            |
| Benzene                            | ND       | 5          | ug/kg          | 02/29/24      | 02/29/24            |
| Bromobenzene                       | ND       | 5          | ug/kg          | 02/29/24      | 02/29/24            |
| Bromochloromethane                 | ND       | 5          | ug/kg          | 02/29/24      | 02/29/24            |
| Bromodichloromethane               | ND       | 5          | ug/kg          | 02/29/24      | 02/29/24            |
| Bromoform                          | ND       | 5          | ug/kg          | 02/29/24      | 02/29/24            |
| Bromomethane                       | ND       | 5          | ug/kg          | 02/29/24      | 02/29/24            |
| 2-Butanone                         | ND       | 92         | ug/kg          | 02/29/24      | 02/29/24            |
| tert-Butyl alcohol                 | ND       | 5          | ug/kg          | 02/29/24      | 02/29/24            |
| sec-Butylbenzene                   | ND       | 5          | ug/kg          | 02/29/24      | 02/29/24            |
| n-Butylbenzene                     | ND       | 5          | ug/kg          | 02/29/24      | 02/29/24            |
| tert-Butylbenzene                  | ND       | 5          | ug/kg          | 02/29/24      | 02/29/24            |
| Methyl t-butyl ether (MTBE)        | ND       | 5          | ug/kg          | 02/29/24      | 02/29/24            |
| Carbon Disulfide                   | ND       | 5          | ug/kg          | 02/29/24      | 02/29/24            |
| Carbon Tetrachloride               | ND       | 5          | ug/kg          | 02/29/24      | 02/29/24            |
| Chlorobenzene                      | ND       | 5          | ug/kg          | 02/29/24      | 02/29/24            |
| Chloroethane                       | ND       | 5          | ug/kg          | 02/29/24      | 02/29/24            |
| Chloroform                         | ND       | 5          | ug/kg          | 02/29/24      | 02/29/24            |
| Chloromethane                      | ND       | 5          | ug/kg          | 02/29/24      | 02/29/24            |
| 4-Chlorotoluene                    | ND       | 5          | ug/kg          | 02/29/24      | 02/29/24            |
| 2-Chlorotoluene                    | ND       | 5          | ug/kg          | 02/29/24      | 02/29/24            |
| 1,2-Dibromo-3-chloropropane (DBCP) | ND       | 5          | ug/kg          | 02/29/24      | 02/29/24            |
| Dibromochloromethane               | ND       | 5          | ug/kg          | 02/29/24      | 02/29/24            |
| 1,2-Dibromoethane (EDB)            | ND       | 5          | ug/kg          | 02/29/24      | 02/29/24            |
| Dibromomethane                     | ND       | 5          | ug/kg          | 02/29/24      | 02/29/24            |
| 1,2-Dichlorobenzene                | ND       | 5          | ug/kg          | 02/29/24      | 02/29/24            |
| 1,3-Dichlorobenzene                | ND<br>ND | 5          | ug/kg<br>ug/kg | 02/29/24      | 02/29/24            |
| 1,4-Dichlorobenzene                |          | 5          | ug/kg<br>ug/kg |               | 02/29/24            |
|                                    | ND       | 5          | ug/kg<br>ug/kg | 02/29/24      | 02/29/24            |
| 1,1-Dichloroethane                 | ND       |            |                | 02/29/24      |                     |
| 1,2-Dichloroethane                 | ND       | 5          | ug/kg          | 02/29/24      | 02/29/24            |
| 1,2 Dichloroethene, Total          | ND       | 5          | ug/kg          | 02/29/24      | 02/29/24            |
| trans-1,2-Dichloroethene           | ND       | 5          | ug/kg          | 02/29/24      | 02/29/24            |
| cis-1,2-Dichloroethene             | ND       | 5          | ug/kg          | 02/29/24      | 02/29/24            |
| 1,1-Dichloroethene                 | ND       | 5          | ug/kg          | 02/29/24      | 02/29/24            |
| 1,2-Dichloropropane                | ND       | 5          | ug/kg          | 02/29/24      | 02/29/24            |
| 2,2-Dichloropropane                | ND       | 5          | ug/kg          | 02/29/24      | 02/29/24            |
| cis-1,3-Dichloropropene            | ND       | 5          | ug/kg          | 02/29/24      | 02/29/24            |
| trans-1,3-Dichloropropene          | ND       | 5          | ug/kg          | 02/29/24      | 02/29/24            |
| 1,1-Dichloropropene                | ND       | 5          | ug/kg          | 02/29/24      | 02/29/24            |
| 1,3-Dichloropropene (cis + trans)  | ND       | 5          | ug/kg          | 02/29/24      | 02/29/24            |
| Diethyl ether                      | ND       | 5          | ug/kg          | 02/29/24      | 02/29/24            |
| 1,4-Dioxane                        | ND       | 92         | ug/kg<br>      | 02/29/24      | 02/29/24            |
| Ethylbenzene                       | ND       | 5          | ug/kg          | 02/29/24      | 02/29/24            |
| Hexachlorobutadiene                | ND       | 5          | ug/kg          | 02/29/24      | 02/29/24            |
| 2-Hexanone                         | ND       | 92         | ug/kg          | 02/29/24      | 02/29/24            |
| Isopropylbenzene                   | ND       | 5          | ug/kg          | 02/29/24      | 02/29/24            |
| p-Isopropyltoluene                 | ND       | 5          | ug/kg          | 02/29/24      | <sup>02/29</sup> Pa |

# Results: Volatile Organic Compounds 8260C (5035-LL) (Continued)

Sample: B-118 2-4' (Continued)

| Analyte                   | Result    | Qual | Reporting<br>Limit | Units | Date Prepared | Date Analyzed |
|---------------------------|-----------|------|--------------------|-------|---------------|---------------|
| Methylene Chloride        | ND        |      | 5                  | ug/kg | 02/29/24      | 02/29/24      |
| 4-Methyl-2-pentanone      | ND        |      | 92                 | ug/kg | 02/29/24      | 02/29/24      |
| Naphthalene               | ND        |      | 5                  | ug/kg | 02/29/24      | 02/29/24      |
| n-Propylbenzene           | ND        |      | 5                  | ug/kg | 02/29/24      | 02/29/24      |
| Styrene                   | ND        |      | 5                  | ug/kg | 02/29/24      | 02/29/24      |
| 1,1,1,2-Tetrachloroethane | ND        |      | 5                  | ug/kg | 02/29/24      | 02/29/24      |
| Tetrachloroethene         | ND        |      | 5                  | ug/kg | 02/29/24      | 02/29/24      |
| Tetrahydrofuran           | ND        |      | 5                  | ug/kg | 02/29/24      | 02/29/24      |
| Toluene                   | ND        |      | 5                  | ug/kg | 02/29/24      | 02/29/24      |
| 1,2,4-Trichlorobenzene    | ND        |      | 5                  | ug/kg | 02/29/24      | 02/29/24      |
| 1,2,3-Trichlorobenzene    | ND        |      | 5                  | ug/kg | 02/29/24      | 02/29/24      |
| 1,1,2-Trichloroethane     | ND        |      | 5                  | ug/kg | 02/29/24      | 02/29/24      |
| 1,1,1-Trichloroethane     | ND        |      | 5                  | ug/kg | 02/29/24      | 02/29/24      |
| Trichloroethene           | ND        |      | 5                  | ug/kg | 02/29/24      | 02/29/24      |
| 1,2,3-Trichloropropane    | ND        |      | 5                  | ug/kg | 02/29/24      | 02/29/24      |
| 1,3,5-Trimethylbenzene    | ND        |      | 5                  | ug/kg | 02/29/24      | 02/29/24      |
| 1,2,4-Trimethylbenzene    | ND        |      | 5                  | ug/kg | 02/29/24      | 02/29/24      |
| Vinyl Chloride            | ND        |      | 5                  | ug/kg | 02/29/24      | 02/29/24      |
| o-Xylene                  | ND        |      | 5                  | ug/kg | 02/29/24      | 02/29/24      |
| m&p-Xylene                | ND        |      | 9                  | ug/kg | 02/29/24      | 02/29/24      |
| Total xylenes             | ND        |      | 5                  | ug/kg | 02/29/24      | 02/29/24      |
| 1,1,2,2-Tetrachloroethane | ND        |      | 5                  | ug/kg | 02/29/24      | 02/29/24      |
| tert-Amyl methyl ether    | ND        |      | 5                  | ug/kg | 02/29/24      | 02/29/24      |
| 1,3-Dichloropropane       | ND        |      | 5                  | ug/kg | 02/29/24      | 02/29/24      |
| Ethyl tert-butyl ether    | ND        |      | 5                  | ug/kg | 02/29/24      | 02/29/24      |
| Diisopropyl ether         | ND        |      | 5                  | ug/kg | 02/29/24      | 02/29/24      |
| Trichlorofluoromethane    | ND        |      | 5                  | ug/kg | 02/29/24      | 02/29/24      |
| Dichlorodifluoromethane   | ND        |      | 5                  | ug/kg | 02/29/24      | 02/29/24      |
| Surrogate(s)              | Recovery% |      | Limits             |       |               |               |
| 4-Bromofluorobenzene      | 96.5%     |      | 70-130             | )     | 02/29/24      | 02/29/24      |
| 1,2-Dichloroethane-d4     | 104%      |      | 70-130             | )     | 02/29/24      | 02/29/24      |
| Toluene-d8                | 102%      |      | 70-130             | )     | 02/29/24      | 02/29/24      |

# **Results: Semivolatile organic compounds**

Sample: B-108 2-4'

| nalyte                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Result Qu | al Limit | Units     | Date Prepared | Date Analyzed |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|----------|-----------|---------------|---------------|
| •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |           |          |           | · ·           | <u> </u>      |
| 2,4-Trichlorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ND        | 141      | ug/kg     | 02/28/24      | 03/01/24      |
| 2-Dichlorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ND        | 141      | ug/kg     | 02/28/24      | 03/01/24      |
| 3-Dichlorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ND        | 141      | ug/kg     | 02/28/24      | 03/01/24      |
| 4-Dichlorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ND        | 141      | ug/kg     | 02/28/24      | 03/01/24      |
| nenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ND        | 141      | ug/kg     | 02/28/24      | 03/01/24      |
| 4,5-Trichlorophenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ND        | 141      | ug/kg     | 02/28/24      | 03/01/24      |
| 4,6-Trichlorophenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ND        | 141      | ug/kg     | 02/28/24      | 03/01/24      |
| 4-Dichlorophenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ND        | 141      | ug/kg     | 02/28/24      | 03/01/24      |
| 4-Dimethylphenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ND        | 357      | ug/kg<br> | 02/28/24      | 03/01/24      |
| 4-Dinitrophenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ND        | 357      | ug/kg     | 02/28/24      | 03/01/24      |
| 4-Dinitrotoluene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ND        | 141      | ug/kg     | 02/28/24      | 03/01/24      |
| 6-Dinitrotoluene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ND        | 141      | ug/kg     | 02/28/24      | 03/01/24      |
| Chloronaphthalene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ND        | 141      | ug/kg     | 02/28/24      | 03/01/24      |
| Chlorophenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ND        | 141      | ug/kg     | 02/28/24      | 03/01/24      |
| Methylnaphthalene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ND        | 141      | ug/kg     | 02/28/24      | 03/01/24      |
| trobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ND        | 141      | ug/kg     | 02/28/24      | 03/01/24      |
| Methylphenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ND        | 141      | ug/kg     | 02/28/24      | 03/01/24      |
| Nitroaniline                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ND        | 141      | ug/kg     | 02/28/24      | 03/01/24      |
| Nitrophenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ND        | 357      | ug/kg     | 02/28/24      | 03/01/24      |
| 3'-Dichlorobenzidine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ND        | 357      | ug/kg     | 02/28/24      | 03/01/24      |
| Nitroaniline                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ND        | 141      | ug/kg     | 02/28/24      | 03/01/24      |
| 6-Dinitro-2-methylphenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ND        | 357      | ug/kg     | 02/28/24      | 03/01/24      |
| Bromophenyl phenyl ether                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ND        | 141      | ug/kg     | 02/28/24      | 03/01/24      |
| Chloro-3-methylphenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ND        | 141      | ug/kg     | 02/28/24      | 03/01/24      |
| Chloroaniline                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ND        | 141      | ug/kg     | 02/28/24      | 03/01/24      |
| Chlorophenyl phenyl ether                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ND        | 141      | ug/kg     | 02/28/24      | 03/01/24      |
| Nitroaniline                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ND        | 141      | ug/kg     | 02/28/24      | 03/01/24      |
| Nitrophenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ND        | 357      | ug/kg     | 02/28/24      | 03/01/24      |
| cenaphthene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ND        | 141      | ug/kg     | 02/28/24      | 03/01/24      |
| cenaphthylene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ND        | 141      | ug/kg     | 02/28/24      | 03/01/24      |
| niline                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ND        | 141      | ug/kg     | 02/28/24      | 03/01/24      |
| nthracene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ND        | 141      | ug/kg     | 02/28/24      | 03/01/24      |
| enzo(a)anthracene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ND        | 141      | ug/kg     | 02/28/24      | 03/01/24      |
| enzo(a)pyrene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ND        | 141      | ug/kg     | 02/28/24      | 03/01/24      |
| enzo(b)fluoranthene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ND        | 141      | ug/kg     | 02/28/24      | 03/01/24      |
| enzo(g,h,i)perylene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ND        | 141      | ug/kg     | 02/28/24      | 03/01/24      |
| enzo(k)fluoranthene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ND        | 141      | ug/kg     | 02/28/24      | 03/01/24      |
| enzoic acid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ND        | 1080     | ug/kg     | 02/28/24      | 03/01/24      |
| phenyl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ND        | 22       | ug/kg     | 02/28/24      | 03/01/24      |
| s(2-chloroethoxy)methane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ND        | 141      | ug/kg     | 02/28/24      | 03/01/24      |
| s(2-chloroethyl)ether                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ND        | 141      | ug/kg     | 02/28/24      | 03/01/24      |
| s(2-chloroisopropyl)ether                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ND        | 141      | ug/kg     | 02/28/24      | 03/01/24      |
| s(2-ethylhexyl)phthalate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ND        | 433      | ug/kg     | 02/28/24      | 03/01/24      |
| utyl benzyl phthalate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ND        | 141      | ug/kg     | 02/28/24      | 03/01/24      |
| nrysene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ND        | 141      | ug/kg     | 02/28/24      | 03/01/24      |
| in your circle in you | ND        | 217      | ug/kg     | 02/28/24      | 03/01/24      |
| July printing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 110       | 21/      | 49/ NG    | 02,20,21      | 55/01/27      |

# **Results: Semivolatile organic compounds (Continued)**

Sample: B-108 2-4' (Continued)

| Dibenzofuran   ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Reporting                 |           |      |       |       |               |               |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|-----------|------|-------|-------|---------------|---------------|--|--|--|
| Diethyl phthalate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Analyte                   | Result    | Qual | Limit | Units | Date Prepared | Date Analyzed |  |  |  |
| Dimethyl phthalate         ND         357         ug/kg         02/28/24         03/01/24           Din-butyl phthalate         ND         217         ug/kg         02/28/24         03/01/24           Fluoranthene         ND         141         ug/kg         02/28/24         03/01/24           Fluorene         ND         141         ug/kg         02/28/24         03/01/24           Hexachloroberace         ND         141         ug/kg         02/28/24         03/01/24           Hexachlorocyclopentadiene         ND         357         ug/kg         02/28/24         03/01/24           Hexachlorocyclopentadiene         ND         357         ug/kg         02/28/24         03/01/24           Hexachlorocyclopentadiene         ND         357         ug/kg         02/28/24         03/01/24           Hexachlorocyclopentadiene         ND         141         ug/kg         02/28/24         03/01/24           Hexachlorocyclopentadiene         ND         141         ug/kg         02/28/24         03/01/24           Indenot1,2,3-cd)pyrene         ND         141         ug/kg         02/28/24         03/01/24           Naphthalene         ND         141         ug/kg         02/28/24         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Dibenzofuran              | ND        |      | 141   | ug/kg | 02/28/24      | 03/01/24      |  |  |  |
| Di-n-butyl phthalate   ND   217   ug/kg   02/28/24   03/01/24     Fluoranthene   ND   141   ug/kg   02/28/24   03/01/24     Fluorene   ND   141   ug/kg   02/28/24   03/01/24     Fluorene   ND   141   ug/kg   02/28/24   03/01/24     Hexachlorobutadiene   ND   141   ug/kg   02/28/24   03/01/24     Hexachlorocyclopentadiene   ND   141   ug/kg   02/28/24   03/01/24     Hexachlorocyclopentadiene   ND   357   ug/kg   02/28/24   03/01/24     Hexachlorocyclopentadiene   ND   357   ug/kg   02/28/24   03/01/24     Hexachlorocyclopentadiene   ND   141   ug/kg   02/28/24   03/01/24     Hexachlorocyclopentadiene   ND   141   ug/kg   02/28/24   03/01/24     Hexachlorocyclopentadiene   ND   141   ug/kg   02/28/24   03/01/24     Indeno(1,2,3-cd)pyrene   ND   141   ug/kg   02/28/24   03/01/24     Naphthalene   ND   141   ug/kg   02/28/24   03/01/24     Pentachlorophenol   ND   357   ug/kg   02/28/24   03/01/24     Pentachlorophenol   ND   357   ug/kg   02/28/24   03/01/24     Phenanthrene   ND   141   ug/kg   02/28/24   03/01/24     Pyrene   ND   141   ug/kg   02/28/24   03/01/24       | Diethyl phthalate         | ND        |      | 141   | ug/kg | 02/28/24      | 03/01/24      |  |  |  |
| Fluoranthene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Dimethyl phthalate        | ND        |      | 357   | ug/kg | 02/28/24      | 03/01/24      |  |  |  |
| Fluorene   ND   141   ug/kg   02/28/24   03/01/24   Hexachlorobenzene   ND   141   ug/kg   02/28/24   03/01/24   Hexachlorobutadiene   ND   141   ug/kg   02/28/24   03/01/24   Hexachlorocyclopentadiene   ND   141   ug/kg   02/28/24   03/01/24   Hexachlorocyclopentadiene   ND   357   ug/kg   02/28/24   03/01/24   Hexachlorocyclopentadiene   ND   141   ug/kg   02/28/24   03/01/24   Hexachlorocyclopentadiene   ND   141   ug/kg   02/28/24   03/01/24   Indeno(1,2,3-cd)pyrene   ND   141   ug/kg   02/28/24   03/01/24   Isophorone   ND   141   ug/kg   02/28/24   03/01/24   Isophorone   ND   141   ug/kg   02/28/24   03/01/24   Naphthalene   ND   141   ug/kg   02/28/24     | Di-n-butyl phthalate      | ND        |      | 217   | ug/kg | 02/28/24      | 03/01/24      |  |  |  |
| Hexachlorobenzene   ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Fluoranthene              | ND        |      | 141   | ug/kg | 02/28/24      | 03/01/24      |  |  |  |
| Hexachlorobutadiene   ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Fluorene                  | ND        |      | 141   | ug/kg | 02/28/24      | 03/01/24      |  |  |  |
| Hexachlorocyclopentadiene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Hexachlorobenzene         | ND        |      | 141   | ug/kg | 02/28/24      | 03/01/24      |  |  |  |
| Hexachloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Hexachlorobutadiene       | ND        |      | 141   | ug/kg | 02/28/24      | 03/01/24      |  |  |  |
| Indeno(1,2,3-cd)pyrene         ND         141         ug/kg         02/28/24         03/01/24           Isophorone         ND         141         ug/kg         02/28/24         03/01/24           Naphthalene         ND         141         ug/kg         02/28/24         03/01/24           N-Nitrosodimethylamine         ND         141         ug/kg         02/28/24         03/01/24           N-Nitrosodiphenylamine         ND         141         ug/kg         02/28/24         03/01/24           N-Nitrosodiphenylamine         ND         141         ug/kg         02/28/24         03/01/24           N-Nitrosodiphenylamine         ND         141         ug/kg         02/28/24         03/01/24           Pentachlorophenol         ND         357         ug/kg         02/28/24         03/01/24           Phenanthrene         ND         141         ug/kg         02/28/24         03/01/24           Pyrene         ND         141         ug/kg         02/28/24         03/01/24           Pyridine         ND         141         ug/kg         02/28/24         03/01/24           Azobenzene         ND         141         ug/kg         02/28/24         03/01/24           Sur                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Hexachlorocyclopentadiene | ND        |      | 357   | ug/kg | 02/28/24      | 03/01/24      |  |  |  |
| Isophorone         ND         141         ug/kg         02/28/24         03/01/24           Naphthalene         ND         141         ug/kg         02/28/24         03/01/24           N-Nitrosodimethylamine         ND         141         ug/kg         02/28/24         03/01/24           N-Nitrosodimethylamine         ND         141         ug/kg         02/28/24         03/01/24           N-Nitrosodiphenylamine         ND         141         ug/kg         02/28/24         03/01/24           Pentachlorophenol         ND         357         ug/kg         02/28/24         03/01/24           Phenanthrene         ND         141         ug/kg         02/28/24         03/01/24           Pyrene         ND         141         ug/kg         02/28/24         03/01/24           m&p-Cresol         ND         141         ug/kg         02/28/24         03/01/24           Pyridine         ND         141         ug/kg         02/28/24         03/01/24           Azobenzene         ND         141         ug/kg         02/28/24         03/01/24           Total Dichlorobenzene         ND         141         ug/kg         02/28/24         03/01/24           P-Terphenyl-d14<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Hexachloroethane          | ND        |      | 141   | ug/kg | 02/28/24      | 03/01/24      |  |  |  |
| Naphthalene         ND         141         ug/kg         02/28/24         03/01/24           N-Nitrosodimethylamine         ND         141         ug/kg         02/28/24         03/01/24           N-Nitrosodi-n-propylamine         ND         141         ug/kg         02/28/24         03/01/24           N-Nitrosodiphenylamine         ND         141         ug/kg         02/28/24         03/01/24           Pentachlorophenol         ND         357         ug/kg         02/28/24         03/01/24           Pentachlorophenol         ND         357         ug/kg         02/28/24         03/01/24           Phenanthrene         ND         141         ug/kg         02/28/24         03/01/24           Pyrene         ND         141         ug/kg         02/28/24         03/01/24           Pyridine         ND         141         ug/kg         02/28/24         03/01/24           Azobenzene         ND         141         ug/kg         02/28/24         03/01/24           Total Dichlorobenzene         ND         141         ug/kg         02/28/24         03/01/24           Surrogate(s)         Recovery%         Limits         Limits           N/trobenzene-d5         65.2%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Indeno(1,2,3-cd)pyrene    | ND        |      | 141   | ug/kg | 02/28/24      | 03/01/24      |  |  |  |
| N-Nitrosodimethylamine ND 141 ug/kg 02/28/24 03/01/24 N-Nitrosodi-n-propylamine ND 141 ug/kg 02/28/24 03/01/24 N-Nitrosodiphenylamine ND 141 ug/kg 02/28/24 03/01/24 N-Nitrosodiphenylamine ND 141 ug/kg 02/28/24 03/01/24 Pentachlorophenol ND 357 ug/kg 02/28/24 03/01/24 Phenanthrene ND 141 ug/kg 02/28/24 03/01/24 Pyrene ND 141 ug/kg 02/28/24 03/01/24 Pyrene ND 141 ug/kg 02/28/24 03/01/24 Pyrene ND 141 ug/kg 02/28/24 03/01/24 Pyridine ND 141 ug/kg 02/28/24 03/01/24 Portachlorobenzene ND 141 ug/kg 02/28/24 03/01/24 Pyridine N | Isophorone                | ND        |      | 141   | ug/kg | 02/28/24      | 03/01/24      |  |  |  |
| N-Nitrosodi-n-propylamine ND 141 Ug/kg 02/28/24 03/01/24 N-Nitrosodiphenylamine ND 141 Ug/kg 02/28/24 03/01/24 Pentachlorophenol ND 357 Ug/kg 02/28/24 03/01/24 Pentachlorophenol ND 357 Ug/kg 02/28/24 03/01/24 Phenanthrene ND 141 Ug/kg 02/28/24 03/01/24 Pyrene ND 141 Ug/kg 02/28/24 03/01/24 Pyrene ND 141 Ug/kg 02/28/24 03/01/24 Pyrene ND 141 Ug/kg 02/28/24 03/01/24 Pyridine ND 141 Ug/kg 02/28/24 03/01/24 Pyridine ND 141 Ug/kg 02/28/24 03/01/24 Pyridine ND 141 Ug/kg 02/28/24 03/01/24 Portial Dichlorobenzene ND 141 Ug/kg 02/28/24 03/01/24 Pyridine ND 141 Ug/kg 02 | Naphthalene               | ND        |      | 141   | ug/kg | 02/28/24      | 03/01/24      |  |  |  |
| N-Nitrosodiphenylamine ND 141 ug/kg 02/28/24 03/01/24 Pentachlorophenol ND 357 ug/kg 02/28/24 03/01/24 Phenanthrene ND 141 ug/kg 02/28/24 03/01/24 Pyrene ND 141 ug/kg 02/28/24 03/01/24 Pyrene ND 141 ug/kg 02/28/24 03/01/24 Pyrene ND 141 ug/kg 02/28/24 03/01/24 Pyridine ND 141 ug/kg 02/28/24 03/01/24 Pyridine ND 141 ug/kg 02/28/24 03/01/24 Azobenzene ND 141 ug/kg 02/28/24 03/01/24 Total Dichlorobenzene ND 141 ug/kg 02/28/24 03/01/24  Surrogate(s) Recovery% Limits  Nitrobenzene-d5 65.2% 30-126 02/28/24 03/01/24  P-Terphenyl-d14 93.4% 47-130 02/28/24 03/01/24 2-Fluorobiphenyl 58.2% 34-130 02/28/24 03/01/24 Phenol-d6 59.7% 30-130 02/28/24 03/01/24 24,6-Tribromophenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | N-Nitrosodimethylamine    | ND        |      | 141   | ug/kg | 02/28/24      | 03/01/24      |  |  |  |
| Pentachlorophenol         ND         357         ug/kg         02/28/24         03/01/24           Phenanthrene         ND         141         ug/kg         02/28/24         03/01/24           Pyrene         ND         141         ug/kg         02/28/24         03/01/24           m&p-Cresol         ND         282         ug/kg         02/28/24         03/01/24           Pyridine         ND         141         ug/kg         02/28/24         03/01/24           Azobenzene         ND         141         ug/kg         02/28/24         03/01/24           Total Dichlorobenzene         ND         141         ug/kg         02/28/24         03/01/24           Surrogate(s)         Recovery%         Limits         Limits           Nitrobenzene-d5         65.2%         30-126         02/28/24         03/01/24           p-Terphenyl-d14         93.4%         47-130         02/28/24         03/01/24           2-Fluorobiphenyl         58.2%         34-130         02/28/24         03/01/24           Phenol-d6         59.7%         30-130         02/28/24         03/01/24           2,4,6-Tribromophenol         55.4%         30-130         02/28/24         03/01/24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | N-Nitrosodi-n-propylamine | ND        |      | 141   | ug/kg | 02/28/24      | 03/01/24      |  |  |  |
| Phenanthrene         ND         141         ug/kg         02/28/24         03/01/24           Pyrene         ND         141         ug/kg         02/28/24         03/01/24           m&p-Cresol         ND         282         ug/kg         02/28/24         03/01/24           Pyridine         ND         141         ug/kg         02/28/24         03/01/24           Azobenzene         ND         141         ug/kg         02/28/24         03/01/24           Total Dichlorobenzene         ND         141         ug/kg         02/28/24         03/01/24           Surrogate(s)         Recovery%         Limits           Nitrobenzene-d5         65.2%         30-126         02/28/24         03/01/24           p-Terphenyl-d14         93.4%         47-130         02/28/24         03/01/24           2-Fluorobiphenyl         58.2%         34-130         02/28/24         03/01/24           Phenol-d6         59.7%         30-130         02/28/24         03/01/24           2,4,6-Tribromophenol         55.4%         30-130         02/28/24         03/01/24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | N-Nitrosodiphenylamine    | ND        |      | 141   | ug/kg | 02/28/24      | 03/01/24      |  |  |  |
| Pyrene         ND         141         ug/kg         02/28/24         03/01/24           m&p-Cresol         ND         282         ug/kg         02/28/24         03/01/24           Pyridine         ND         141         ug/kg         02/28/24         03/01/24           Azobenzene         ND         141         ug/kg         02/28/24         03/01/24           Total Dichlorobenzene         ND         141         ug/kg         02/28/24         03/01/24           Surrogate(s)         Recovery%         Limits         Limits           Nitrobenzene-d5         65.2%         30-126         02/28/24         03/01/24           p-Terphenyl-d14         93.4%         47-130         02/28/24         03/01/24           2-Fluorobiphenyl         58.2%         34-130         02/28/24         03/01/24           Phenol-d6         59.7%         30-130         02/28/24         03/01/24           2,4,6-Tribromophenol         55.4%         30-130         02/28/24         03/01/24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Pentachlorophenol         | ND        |      | 357   | ug/kg | 02/28/24      | 03/01/24      |  |  |  |
| m&p-Cresol         ND         282         ug/kg         02/28/24         03/01/24           Pyridine         ND         141         ug/kg         02/28/24         03/01/24           Azobenzene         ND         141         ug/kg         02/28/24         03/01/24           Total Dichlorobenzene         ND         141         ug/kg         02/28/24         03/01/24           Surrogate(s)         Recovery%         Limits           Nitrobenzene-d5         65.2%         30-126         02/28/24         03/01/24           p-Terphenyl-d14         93.4%         47-130         02/28/24         03/01/24           2-Fluorobiphenyl         58.2%         34-130         02/28/24         03/01/24           Phenol-d6         59.7%         30-130         02/28/24         03/01/24           2,4,6-Tribromophenol         55.4%         30-130         02/28/24         03/01/24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Phenanthrene              | ND        |      | 141   | ug/kg | 02/28/24      | 03/01/24      |  |  |  |
| Pyridine         ND         141         ug/kg         02/28/24         03/01/24           Azobenzene         ND         141         ug/kg         02/28/24         03/01/24           Total Dichlorobenzene         ND         141         ug/kg         02/28/24         03/01/24           Surrogate(s)         Recovery%         Limits           Nitrobenzene-d5         65.2%         30-126         02/28/24         03/01/24           p-Terphenyl-d14         93.4%         47-130         02/28/24         03/01/24           2-Fluorobiphenyl         58.2%         34-130         02/28/24         03/01/24           Phenol-d6         59.7%         30-130         02/28/24         03/01/24           2,4,6-Tribromophenol         55.4%         30-130         02/28/24         03/01/24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Pyrene                    | ND        |      | 141   | ug/kg | 02/28/24      | 03/01/24      |  |  |  |
| Azobenzene         ND         141         ug/kg         02/28/24         03/01/24           Total Dichlorobenzene         ND         141         ug/kg         02/28/24         03/01/24           Surrogate(s)         Recovery%         Limits           Nitrobenzene-d5         65.2%         30-126         02/28/24         03/01/24           p-Terphenyl-d14         93.4%         47-130         02/28/24         03/01/24           2-Fluorobiphenyl         58.2%         34-130         02/28/24         03/01/24           Phenol-d6         59.7%         30-130         02/28/24         03/01/24           2,4,6-Tribromophenol         55.4%         30-130         02/28/24         03/01/24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | m&p-Cresol                | ND        |      | 282   | ug/kg | 02/28/24      | 03/01/24      |  |  |  |
| Total Dichlorobenzene         ND         141         ug/kg         02/28/24         03/01/24           Surrogate(s)         Recovery%         Limits           Nitrobenzene-d5         65.2%         30-126         02/28/24         03/01/24           p-Terphenyl-d14         93.4%         47-130         02/28/24         03/01/24           2-Fluorobiphenyl         58.2%         34-130         02/28/24         03/01/24           Phenol-d6         59.7%         30-130         02/28/24         03/01/24           2,4,6-Tribromophenol         55.4%         30-130         02/28/24         03/01/24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Pyridine                  | ND        |      | 141   | ug/kg | 02/28/24      | 03/01/24      |  |  |  |
| Surrogate(s)         Recovery%         Limits           Nitrobenzene-d5         65.2%         30-126         02/28/24         03/01/24           p-Terphenyl-d14         93.4%         47-130         02/28/24         03/01/24           2-Fluorobiphenyl         58.2%         34-130         02/28/24         03/01/24           Phenol-d6         59.7%         30-130         02/28/24         03/01/24           2,4,6-Tribromophenol         55.4%         30-130         02/28/24         03/01/24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Azobenzene                | ND        |      | 141   | ug/kg | 02/28/24      | 03/01/24      |  |  |  |
| Nitrobenzene-d5     65.2%     30-126     02/28/24     03/01/24       p-Terphenyl-d14     93.4%     47-130     02/28/24     03/01/24       2-Fluorobiphenyl     58.2%     34-130     02/28/24     03/01/24       Phenol-d6     59.7%     30-130     02/28/24     03/01/24       2,4,6-Tribromophenol     55.4%     30-130     02/28/24     03/01/24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Total Dichlorobenzene     | ND        |      | 141   | ug/kg | 02/28/24      | 03/01/24      |  |  |  |
| p-Terphenyl-d14       93.4%       47-130       02/28/24       03/01/24         2-Fluorobiphenyl       58.2%       34-130       02/28/24       03/01/24         Phenol-d6       59.7%       30-130       02/28/24       03/01/24         2,4,6-Tribromophenol       55.4%       30-130       02/28/24       03/01/24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Surrogate(s)              | Recovery% |      | Limit | S     |               |               |  |  |  |
| 2-Fluorobiphenyl     58.2%     34-130     02/28/24     03/01/24       Phenol-d6     59.7%     30-130     02/28/24     03/01/24       2,4,6-Tribromophenol     55.4%     30-130     02/28/24     03/01/24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Nitrobenzene-d5           | 65.2%     |      | 30-12 | 6     | 02/28/24      | 03/01/24      |  |  |  |
| Phenol-d6         59.7%         30-130         02/28/24         03/01/24           2,4,6-Tribromophenol         55.4%         30-130         02/28/24         03/01/24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | p-Terphenyl-d14           | 93.4%     |      | 47-13 | 0     | 02/28/24      | 03/01/24      |  |  |  |
| 2,4,6-Tribromophenol 55.4% 30-130 02/28/24 03/01/24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2-Fluorobiphenyl          | 58.2%     |      | 34-13 | 0     | 02/28/24      | 03/01/24      |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Phenol-d6                 | 59.7%     |      | 30-13 | 0     | 02/28/24      | 03/01/24      |  |  |  |
| 2-Fluorophenol 68.8% 30-130 02/28/24 03/01/24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2,4,6-Tribromophenol      | 55.4%     |      | 30-13 | 0     | 02/28/24      | 03/01/24      |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2-Fluorophenol            | 68.8%     |      | 30-13 | 0     | 02/28/24      | 03/01/24      |  |  |  |

# **Results: Semivolatile organic compounds**

Sample: B-118 2-4'

| Analyte                                     | Result   | - | orting<br>mit Units | Date Prepared | Date Analyz |
|---------------------------------------------|----------|---|---------------------|---------------|-------------|
| 1,2,4-Trichlorobenzene                      | ND       | 1 | 37 ug/kg            | 02/28/24      | 03/01/24    |
| 1,2-Dichlorobenzene                         | ND       | 1 | 37 ug/kg            | 02/28/24      | 03/01/24    |
| 1,3-Dichlorobenzene                         | ND       | 1 | 37 ug/kg            | 02/28/24      | 03/01/24    |
| 1,4-Dichlorobenzene                         | ND       | 1 | 37 ug/kg            | 02/28/24      | 03/01/24    |
| Phenol                                      | ND       | 1 | 37 ug/kg            | 02/28/24      | 03/01/24    |
| 2,4,5-Trichlorophenol                       | ND       | 1 | 37 ug/kg            | 02/28/24      | 03/01/24    |
| 2,4,6-Trichlorophenol                       | ND       | 1 | 37 ug/kg            | 02/28/24      | 03/01/24    |
| 2,4-Dichlorophenol                          | ND       | 1 | 37 ug/kg            | 02/28/24      | 03/01/24    |
| 2,4-Dimethylphenol                          | ND       | 3 | 48 ug/kg            | 02/28/24      | 03/01/24    |
| 2,4-Dinitrophenol                           | ND       | 3 | 48 ug/kg            | 02/28/24      | 03/01/24    |
| 2,4-Dinitrotoluene                          | ND       | 1 | 37 ug/kg            | 02/28/24      | 03/01/24    |
| 2,6-Dinitrotoluene                          | ND       | 1 | 37 ug/kg            | 02/28/24      | 03/01/24    |
| 2-Chloronaphthalene                         | ND       | 1 | 37 ug/kg            | 02/28/24      | 03/01/24    |
| 2-Chlorophenol                              | ND       |   | 37 ug/kg            | 02/28/24      | 03/01/24    |
| 2-Methylnaphthalene                         | ND       |   | 37 ug/kg            | 02/28/24      | 03/01/24    |
| Nitrobenzene                                | ND       |   | 37 ug/kg            | 02/28/24      | 03/01/24    |
| 2-Methylphenol                              | ND       |   | 37 ug/kg            | 02/28/24      | 03/01/24    |
| 2-Nitroaniline                              | ND       |   | 37 ug/kg            | 02/28/24      | 03/01/24    |
| 2-Nitrophenol                               | ND       |   | 48 ug/kg            | 02/28/24      | 03/01/24    |
| 3,3'-Dichlorobenzidine                      | ND       |   | 48 ug/kg            | 02/28/24      | 03/01/24    |
| 3-Nitroaniline                              | ND       |   | 37 ug/kg            | 02/28/24      | 03/01/24    |
| 4,6-Dinitro-2-methylphenol                  | ND       |   | 48 ug/kg            | 02/28/24      | 03/01/24    |
| 4-Bromophenyl phenyl ether                  | ND       |   | 37 ug/kg            | 02/28/24      | 03/01/24    |
| 4-Chloro-3-methylphenol                     | ND       |   | 37 ug/kg            | 02/28/24      | 03/01/24    |
| 4-Chloroaniline                             | ND       |   | 37 ug/kg            | 02/28/24      | 03/01/24    |
| 4-Chlorophenyl phenyl ether                 | ND       |   | 37 ug/kg            | 02/28/24      | 03/01/24    |
| 4-Nitroaniline                              | ND       |   | 37 ug/kg            | 02/28/24      | 03/01/24    |
| 4-Nitrophenol                               | ND<br>ND |   | 48 ug/kg            | 02/28/24      | 03/01/24    |
| Acenaphthene                                | ND<br>ND |   | 37 ug/kg            | 02/28/24      | 03/01/24    |
| Acenaphthylene                              | ND<br>ND |   | 37 ug/kg            | 02/28/24      | 03/01/24    |
| Aniline                                     |          |   |                     | 02/28/24      | 03/01/24    |
| Anthracene                                  | ND<br>ND |   |                     | 02/28/24      | 03/01/24    |
|                                             | ND<br>ND |   |                     | 02/28/24      | 03/01/24    |
| Benzo(a)anthracene<br>Benzo(a)pyrene        | ND<br>ND |   |                     | 02/28/24      | 03/01/24    |
| Benzo(a)pyrene<br>Benzo(b)fluoranthene      | ND<br>ND |   |                     | 02/28/24      | 03/01/24    |
| Benzo(b)nuorantnene<br>Benzo(g,h,i)perylene | ND<br>ND |   |                     |               |             |
|                                             | ND<br>ND |   |                     | 02/28/24      | 03/01/24    |
| Benzo(k)fluoranthene                        | ND       |   | 37 ug/kg            | 02/28/24      | 03/01/24    |
| Benzoic acid                                | ND       |   | 050 ug/kg           | 02/28/24      | 03/01/24    |
| Biphenyl                                    | ND       |   | 21 ug/kg            | 02/28/24      | 03/01/24    |
| Bis(2-chloroethoxy)methane                  | ND       |   | 37 ug/kg            | 02/28/24      | 03/01/24    |
| Bis(2-chloroethyl)ether                     | ND       |   | 37 ug/kg            | 02/28/24      | 03/01/24    |
| Bis(2-chloroisopropyl)ether                 | ND       |   | 37 ug/kg            | 02/28/24      | 03/01/24    |
| Bis(2-ethylhexyl)phthalate                  | ND       |   | 22 ug/kg            | 02/28/24      | 03/01/24    |
| Butyl benzyl phthalate                      | ND       |   | 37 ug/kg            | 02/28/24      | 03/01/24    |
| Chrysene                                    | ND       |   | 37 ug/kg            | 02/28/24      | 03/01/24    |
| Di-n-octyl phthalate                        | ND       |   | 11 ug/kg            | 02/28/24      | 03/01/24    |
| Dibenz(a,h)anthracene                       | ND       | 1 | 37 ug/kg            | 02/28/24      | 03/0        |

# **Results: Semivolatile organic compounds (Continued)**

Sample: B-118 2-4' (Continued)

| Reporting                 |           |      |              |       |               |               |  |  |  |  |
|---------------------------|-----------|------|--------------|-------|---------------|---------------|--|--|--|--|
| Analyte                   | Result    | Qual | Limit        | Units | Date Prepared | Date Analyzed |  |  |  |  |
| Dibenzofuran              | ND        |      | 137          | ug/kg | 02/28/24      | 03/01/24      |  |  |  |  |
| Diethyl phthalate         | ND        |      | 137          | ug/kg | 02/28/24      | 03/01/24      |  |  |  |  |
| Dimethyl phthalate        | ND        |      | 348          | ug/kg | 02/28/24      | 03/01/24      |  |  |  |  |
| Di-n-butyl phthalate      | ND        |      | 211          | ug/kg | 02/28/24      | 03/01/24      |  |  |  |  |
| Fluoranthene              | ND        |      | 137          | ug/kg | 02/28/24      | 03/01/24      |  |  |  |  |
| Fluorene                  | ND        |      | 137          | ug/kg | 02/28/24      | 03/01/24      |  |  |  |  |
| Hexachlorobenzene         | ND        |      | 137          | ug/kg | 02/28/24      | 03/01/24      |  |  |  |  |
| Hexachlorobutadiene       | ND        |      | 137          | ug/kg | 02/28/24      | 03/01/24      |  |  |  |  |
| Hexachlorocyclopentadiene | ND        |      | 348          | ug/kg | 02/28/24      | 03/01/24      |  |  |  |  |
| Hexachloroethane          | ND        |      | 137          | ug/kg | 02/28/24      | 03/01/24      |  |  |  |  |
| Indeno(1,2,3-cd)pyrene    | ND        |      | 137          | ug/kg | 02/28/24      | 03/01/24      |  |  |  |  |
| Isophorone                | ND        |      | 137          | ug/kg | 02/28/24      | 03/01/24      |  |  |  |  |
| Naphthalene               | ND        |      | 137          | ug/kg | 02/28/24      | 03/01/24      |  |  |  |  |
| N-Nitrosodimethylamine    | ND        |      | 137          | ug/kg | 02/28/24      | 03/01/24      |  |  |  |  |
| N-Nitrosodi-n-propylamine | ND        |      | 137          | ug/kg | 02/28/24      | 03/01/24      |  |  |  |  |
| N-Nitrosodiphenylamine    | ND        |      | 137          | ug/kg | 02/28/24      | 03/01/24      |  |  |  |  |
| Pentachlorophenol         | ND        |      | 348          | ug/kg | 02/28/24      | 03/01/24      |  |  |  |  |
| Phenanthrene              | ND        |      | 137          | ug/kg | 02/28/24      | 03/01/24      |  |  |  |  |
| Pyrene                    | ND        |      | 137          | ug/kg | 02/28/24      | 03/01/24      |  |  |  |  |
| m&p-Cresol                | ND        |      | 274          | ug/kg | 02/28/24      | 03/01/24      |  |  |  |  |
| Pyridine                  | ND        |      | 137          | ug/kg | 02/28/24      | 03/01/24      |  |  |  |  |
| Azobenzene                | ND        |      | 137          | ug/kg | 02/28/24      | 03/01/24      |  |  |  |  |
| Total Dichlorobenzene     | ND        |      | 137          | ug/kg | 02/28/24      | 03/01/24      |  |  |  |  |
| Surrogate(s)              | Recovery% |      | Limit        | S     |               |               |  |  |  |  |
| Nitrobenzene-d5           | 65.2%     |      | <i>30-12</i> | 6     | 02/28/24      | 03/01/24      |  |  |  |  |
| p-Terphenyl-d14           | 101%      |      | 47-13        | 0     | 02/28/24      | 03/01/24      |  |  |  |  |
| 2-Fluorobiphenyl          | 61.6%     |      | 34-13        | 0     | 02/28/24      | 03/01/24      |  |  |  |  |
| Phenol-d6                 | 68.4%     |      | 30-13        | 0     | 02/28/24      | 03/01/24      |  |  |  |  |
| 2,4,6-Tribromophenol      | 62.5%     |      | 30-13        | 0     | 02/28/24      | 03/01/24      |  |  |  |  |
| 2-Fluorophenol            | 75.7%     |      | 30-13        | 0     | 02/28/24      | 03/01/24      |  |  |  |  |

# **Results: Polychlorinated Biphenyls (PCBs)**

Sample: B-108 2-4'

| Reporting                            |           |      |        |       |               |               |  |  |  |  |
|--------------------------------------|-----------|------|--------|-------|---------------|---------------|--|--|--|--|
| Analyte                              | Result    | Qual | Limit  | Units | Date Prepared | Date Analyzed |  |  |  |  |
| Aroclor-1016                         | ND        |      | 71     | ug/kg | 02/29/24      | 03/05/24      |  |  |  |  |
| Aroclor-1221                         | ND        |      | 71     | ug/kg | 02/29/24      | 03/05/24      |  |  |  |  |
| Aroclor-1232                         | ND        |      | 71     | ug/kg | 02/29/24      | 03/05/24      |  |  |  |  |
| Aroclor-1242                         | ND        |      | 71     | ug/kg | 02/29/24      | 03/05/24      |  |  |  |  |
| Aroclor-1248                         | ND        |      | 71     | ug/kg | 02/29/24      | 03/05/24      |  |  |  |  |
| Aroclor-1254                         | ND        |      | 71     | ug/kg | 02/29/24      | 03/05/24      |  |  |  |  |
| Aroclor-1260                         | ND        |      | 71     | ug/kg | 02/29/24      | 03/05/24      |  |  |  |  |
| Aroclor-1262                         | ND        |      | 71     | ug/kg | 02/29/24      | 03/05/24      |  |  |  |  |
| Aroclor-1268                         | ND        |      | 71     | ug/kg | 02/29/24      | 03/05/24      |  |  |  |  |
| PCBs (Total)                         | ND        |      | 71     | ug/kg | 02/29/24      | 03/05/24      |  |  |  |  |
| Surrogate(s)                         | Recovery% |      | Limit  | S     |               |               |  |  |  |  |
| 2,4,5,6-Tetrachloro-m-xylene (TCMX ) | 39.5%     |      | 36.2-1 | 30    | 02/29/24      | 03/05/24      |  |  |  |  |
| Decachlorobiphenyl (DCBP)            | 45.1%     |      | 43.3-1 | 30    | 02/29/24      | 03/05/24      |  |  |  |  |

## **Results: Polychlorinated Biphenyls (PCBs)**

Sample: B-118 2-4'

|                                      |           |      | Reporting |       |               |               |
|--------------------------------------|-----------|------|-----------|-------|---------------|---------------|
| Analyte                              | Result    | Qual | Limit     | Units | Date Prepared | Date Analyzed |
| Aroclor-1016                         | ND        |      | 69        | ug/kg | 02/29/24      | 03/05/24      |
| Aroclor-1221                         | ND        |      | 69        | ug/kg | 02/29/24      | 03/05/24      |
| Aroclor-1232                         | ND        |      | 69        | ug/kg | 02/29/24      | 03/05/24      |
| Aroclor-1242                         | ND        |      | 69        | ug/kg | 02/29/24      | 03/05/24      |
| Aroclor-1248                         | ND        |      | 69        | ug/kg | 02/29/24      | 03/05/24      |
| Aroclor-1254                         | ND        |      | 69        | ug/kg | 02/29/24      | 03/05/24      |
| Aroclor-1260                         | ND        |      | 69        | ug/kg | 02/29/24      | 03/05/24      |
| Aroclor-1262                         | ND        |      | 69        | ug/kg | 02/29/24      | 03/05/24      |
| Aroclor-1268                         | ND        |      | 69        | ug/kg | 02/29/24      | 03/05/24      |
| PCBs (Total)                         | ND        |      | 69        | ug/kg | 02/29/24      | 03/05/24      |
| Surrogate(s)                         | Recovery% |      | Limit     | s<br> |               |               |
| 2,4,5,6-Tetrachloro-m-xylene (TCMX ) | 69.6%     |      | 36.2-1.   | 30    | 02/29/24      | 03/05/24      |
| Decachlorobiphenyl (DCBP)            | 49.0%     |      | 43.3-1.   | 30    | 02/29/24      | 03/05/24      |

## **Results: Total Petroleum Hydrocarbons**

Sample: B-108 2-4'

|                              |           |      | Reporting |       |               |               |
|------------------------------|-----------|------|-----------|-------|---------------|---------------|
| Analyte                      | Result    | Qual | Limit     | Units | Date Prepared | Date Analyzed |
| Total Petroleum Hydrocarbons | ND        |      | 29        | mg/kg | 02/28/24      | 02/28/24      |
| Surrogate(s)                 | Recovery% |      | Limit     | ts    |               |               |
| Chlorooctadecane             | 05 20%    |      | 50-1      | 30    | 02/28/24      | 02/28/24      |

## **Results: Total Petroleum Hydrocarbons**

Sample: B-118 2-4'

|                              |           |      | Reporting |       |               |               |
|------------------------------|-----------|------|-----------|-------|---------------|---------------|
| Analyte                      | Result    | Qual | Limit     | Units | Date Prepared | Date Analyzed |
| Total Petroleum Hydrocarbons | ND        |      | 28        | mg/kg | 02/28/24      | 02/28/24      |
| Surrogate(s)                 | Recovery% |      | Limit     | ts    |               |               |
| Chlorooctadecane             | 57 10%    |      | 50-1      | 30    | 02/28/24      | 02/28/24      |

## **Quality Control**

## General Chemistry

| Analyte                        | Result     | Qual       | Reporting<br>Limit | Units     | Spike<br>Level                | Source<br>Result | %REC    | %REC<br>Limits | RPD   | RPD<br>Limit |
|--------------------------------|------------|------------|--------------------|-----------|-------------------------------|------------------|---------|----------------|-------|--------------|
| Batch: B4B1197 - Conductivity  |            |            |                    |           |                               |                  |         |                |       |              |
| Blank (B4B1197-BLK1)           |            |            |                    |           | Prepared 8                    | & Analyzed: 0    | 2/28/24 |                |       |              |
| Specific Conductance           | ND         |            | 2.0                | uS/cm     |                               |                  |         |                |       |              |
| Duplicate (B4B1197-DUP1)       | S          | ource: 4B2 | 23014-01           |           | Prepared 8                    | & Analyzed: 0    | 2/28/24 |                |       |              |
| Specific Conductance           | 258        |            | 2.0                | uS/cm     |                               | 258              |         |                | 0.00  | 200          |
| Batch: B4B1200 - pH            |            |            |                    |           |                               |                  |         |                |       |              |
| LCS (B4B1200-BS1)              |            |            |                    |           | Prepared 8                    | & Analyzed: 0    | 2/28/24 |                |       |              |
| рН                             | 7.1        |            |                    | SU        | 7.00                          |                  | 101     | 0-200          |       |              |
| LCS (B4B1200-BS2)              |            |            |                    |           | Prepared 8                    | & Analyzed: 0    | 2/28/24 |                |       |              |
| рН                             | 7.1        |            |                    | SU        | 7.00                          |                  | 101     | 0-200          |       |              |
| Duplicate (B4B1200-DUP1)       | S          | ource: 4B2 | 23046-06           |           | Prepared 8                    |                  |         |                |       |              |
| рН                             | 6.8        |            |                    | SU        |                               | 6.8              |         |                | 0.587 | 200          |
| Batch: B4C0033 - Flashpoint-El | PA 1010A-M | od         |                    |           |                               |                  |         |                |       |              |
| LCS (B4C0033-BS1)              |            |            |                    |           | Prepared 8                    | & Analyzed: 0    | 3/01/24 |                |       |              |
| Flashpoint                     | 83         |            | 70                 | degrees F | 80.0                          | •                | 104     | 90-110         |       |              |
| Duplicate (B4C0033-DUP1)       | S          | ource: 4B2 | 26010-04           |           | Prepared & Analyzed: 03/01/24 |                  |         |                |       |              |
| Flashpoint                     | > 200      |            | 70                 | degrees F |                               | ND               |         |                |       | 20           |

|                                                          |         |            |                    | / Control |                                     |                     |                           |                |     |              |
|----------------------------------------------------------|---------|------------|--------------------|-----------|-------------------------------------|---------------------|---------------------------|----------------|-----|--------------|
| Reactivity                                               |         |            |                    |           |                                     |                     |                           |                |     |              |
| Analyte                                                  | Result  | Qual       | Reporting<br>Limit | Units     | Spike<br>Level                      | Source<br>Result    | %REC                      | %REC<br>Limits | RPD | RPD<br>Limit |
| Batch: B4B1244 - Reactivity                              |         |            |                    |           |                                     |                     |                           |                |     |              |
| Blank (B4B1244-BLK1)<br>Sulfide                          | ND      |            | 0.1                | mg/kg     | Prepared 8                          | & Analyzed: 0       | 2/29/24                   |                |     |              |
| Blank (B4B1244-BLK2)<br>Sulfide                          | ND      |            | 0.1                | mg/kg     | Prepared 8                          | & Analyzed: 0       | 2/29/24                   |                |     |              |
| LCS (B4B1244-BS1)<br>Sulfide                             | 3.6     |            | 0.1                | mg/kg     | Prepared 8                          | & Analyzed: 0       | 2/29/24<br>90.0           | 90-110         |     |              |
| LCS (B4B1244-BS2)                                        |         |            |                    |           | •                                   | & Analyzed: 0       |                           |                |     |              |
| Sulfide                                                  | 3.7     |            | 0.1                | mg/kg     | 4.00                                |                     | 91.5                      | 90-110         |     |              |
| <b>Duplicate (B4B1244-DUP1)</b> Sulfide                  | ND S    | Source: 4B | 23045-01<br>0.1    | mg/kg dry | Prepared & Analyzed: 02/29/24<br>ND |                     |                           |                |     | 20           |
| Matrix Spike (B4B1244-MS1)                               | 9       | Source: 4B | 23045-01           |           | Prepared 8                          | & Analyzed: 0       | 2/29/24                   |                |     |              |
| Sulfide                                                  | 4.5     |            | 0.1                | mg/kg dry | 4.59                                | ND                  | 98.5                      | 80-120         |     |              |
| Batch: B4B1245 - Reactivity Blank (B4B1245-BLK1) Cyanide | ND      |            | 0.2                | mg/kg     | Prepared 8                          | & Analyzed: 0       | 2/29/24                   |                |     |              |
|                                                          | UD      |            | 0.2                | mg/kg     | Duamanad                            | ) A                 | 2/20/24                   |                |     |              |
| Blank (B4B1245-BLK2)<br>Cyanide                          | ND      |            | 0.2                | mg/kg     | rrepared 8                          | & Analyzed: 0       | <i>2</i>   <i>2</i> 9  24 |                |     |              |
| Duplicate (B4B1245-DUP1) Cyanide                         | S<br>ND | Source: 4B | 23045-01<br>0.2    | mg/kg dry | Prepared 8                          | & Analyzed: 0<br>ND | 2/29/24                   |                |     | 20           |

|                            |               |      | Quality<br>(Conti |       |              |               |              |        |     |       |  |  |  |
|----------------------------|---------------|------|-------------------|-------|--------------|---------------|--------------|--------|-----|-------|--|--|--|
| otal Metals                |               |      |                   |       |              |               |              |        |     |       |  |  |  |
|                            |               |      | Reporting         |       | Spike        | Source        |              | %REC   |     | RPD   |  |  |  |
| Analyte                    | Result        | Qual | Limit             | Units | Level        | Result        | %REC         | Limits | RPD | Limit |  |  |  |
| Batch: B4B1180 - Metals Di | gestion Soils |      |                   |       |              |               |              |        |     |       |  |  |  |
| Blank (B4B1180-BLK1)       |               |      |                   | Pr    | epared: 02/2 | 28/24 Analyze | ed: 03/01/24 |        |     |       |  |  |  |
| Beryllium                  | ND            |      | 0.33              | mg/kg |              |               |              |        |     |       |  |  |  |
| Chromium                   | ND            |      | 0.50              | mg/kg |              |               |              |        |     |       |  |  |  |
| Antimony                   | ND            |      | 0.66              | mg/kg |              |               |              |        |     |       |  |  |  |
| Cadmium                    | ND            |      | 0.50              | mg/kg |              |               |              |        |     |       |  |  |  |
| Selenium                   | ND            |      | 1.00              | mg/kg |              |               |              |        |     |       |  |  |  |
| Nickel                     | ND            |      | 0.50              | mg/kg |              |               |              |        |     |       |  |  |  |
| Lead                       | ND            |      | 0.50              | mg/kg |              |               |              |        |     |       |  |  |  |
| Vanadium                   | ND            |      | 0.33              | mg/kg |              |               |              |        |     |       |  |  |  |
| Silver                     | ND            |      | 1.00              | mg/kg |              |               |              |        |     |       |  |  |  |
| Barium                     | ND            |      | 0.33              | mg/kg |              |               |              |        |     |       |  |  |  |
| Zinc                       | ND            |      | 2.0               | mg/kg |              |               |              |        |     |       |  |  |  |
| Arsenic                    | ND            |      | 1.00              | mg/kg |              |               |              |        |     |       |  |  |  |
| Thallium                   | ND            |      | 0.33              | mg/kg |              |               |              |        |     |       |  |  |  |
| LCS (B4B1180-BS1)          |               |      |                   | Pr    | epared: 02/2 | 18/24 Analyze | ed: 03/01/24 |        |     |       |  |  |  |
| Barium                     | 86.2          |      | 0.33              | mg/kg | 100          |               | 86.2         | 85-115 |     |       |  |  |  |
| Arsenic                    | 18.7          |      | 1.00              | mg/kg | 20.0         |               | 93.5         | 85-115 |     |       |  |  |  |
| Cadmium                    | 85.7          |      | 0.50              | mg/kg | 100          |               | 85.7         | 85-115 |     |       |  |  |  |
| Chromium                   | 86.8          |      | 0.50              | mg/kg | 100          |               | 86.8         | 85-115 |     |       |  |  |  |
| Beryllium                  | 18.1          |      | 0.33              | mg/kg | 20.0         |               | 90.7         | 85-115 |     |       |  |  |  |
| Lead                       | 93.7          |      | 0.50              | mg/kg | 100          |               | 93.7         | 85-115 |     |       |  |  |  |
| Antimony                   | 97.4          |      | 0.66              | mg/kg | 100          |               | 97.4         | 85-115 |     |       |  |  |  |
| Selenium                   | 18.4          |      | 1.00              | mg/kg | 20.0         |               | 92.2         | 85-115 |     |       |  |  |  |
| Silver                     | 43.3          |      | 1.00              | mg/kg | 40.0         |               | 108          | 85-115 |     |       |  |  |  |
| Vanadium                   | 95.1          |      | 0.33              | mg/kg | 100          |               | 95.1         | 85-115 |     |       |  |  |  |
| Zinc                       | 85.3          |      | 2.0               | mg/kg | 100          |               | 85.3         | 85-115 |     |       |  |  |  |
| Nickel                     | 86.3          |      | 0.50              | mg/kg | 100          |               | 86.3         | 85-112 |     |       |  |  |  |
| Thallium                   | 90.9          |      | 0.33              | mg/kg | 100          |               | 90.9         | 85-115 |     |       |  |  |  |

|                                 |            |             | -                  | Control   |                |                  |         |                |      |              |
|---------------------------------|------------|-------------|--------------------|-----------|----------------|------------------|---------|----------------|------|--------------|
| Total Metals (Continued)        |            |             |                    |           |                |                  |         |                |      |              |
| Analyte                         | Result     | Qual        | Reporting<br>Limit | Units     | Spike<br>Level | Source<br>Result | %REC    | %REC<br>Limits | RPD  | RPD<br>Limit |
| Batch: B4B1185 - Metals Cold-Va | apor Mercu | ry          |                    |           |                |                  |         |                |      |              |
| Blank (B4B1185-BLK1)            |            | _           |                    |           | Prepared 8     | & Analyzed: 02   | 2/28/24 |                |      |              |
| Mercury                         | ND         |             | 0.100              | mg/kg     |                |                  |         |                |      |              |
| Blank (B4B1185-BLK2)            |            |             |                    |           | Prepared 8     | & Analyzed: 02   | 2/28/24 |                |      |              |
| Mercury                         | ND         |             | 0.100              | mg/kg     |                |                  |         |                |      |              |
| LCS (B4B1185-BS1)               |            |             |                    |           | Prepared 8     | & Analyzed: 02   | 2/28/24 |                |      |              |
| Mercury                         | 0.504      |             | 0.100              | mg/kg     | 0.500          |                  | 101     | 93-114         |      |              |
| LCS (B4B1185-BS2)               |            |             |                    |           | Prepared 8     | & Analyzed: 02   | 2/28/24 |                |      |              |
| Mercury                         | 0.504      |             | 0.100              | mg/kg     | 0.500          |                  | 101     | 93-114         |      |              |
| LCS Dup (B4B1185-BSD1)          |            |             |                    |           | Prepared 8     | & Analyzed: 02   | 2/28/24 |                |      |              |
| Mercury                         | 0.513      |             | 0.100              | mg/kg     | 0.500          |                  | 103     | 93-114         | 1.92 | 200          |
| LCS Dup (B4B1185-BSD2)          |            |             |                    |           | Prepared 8     | & Analyzed: 02   | 2/28/24 |                |      |              |
| Mercury                         | 0.513      |             | 0.100              | mg/kg     | 0.500          |                  | 103     | 93-114         | 1.92 | 200          |
| Matrix Spike (B4B1185-MS1)      | S          | Source: 4B2 | 6010-01            |           | Prepared 8     | & Analyzed: 02   | 2/28/24 |                |      |              |
| Mercury                         | 0.716      |             | 0.126              | mg/kg dry | 0.630          | 0.129            | 93.1    | 80-120         |      |              |
| Matrix Spike (B4B1185-MS2)      | S          | Source: 4B2 | 7039-02            |           | Prepared 8     | & Analyzed: 02   | 2/28/24 |                |      |              |
| Mercury                         | 0.564      |             | 0.094              | mg/kg dry | 0.469          | 0.135            | 91.3    | 80-120         |      |              |
| Matrix Spike (B4B1185-MS3)      | S          | Source: 4B2 | 7003-01            |           | Prepared 8     | & Analyzed: 02   | 2/28/24 |                |      |              |
| Mercury                         | 0.649      |             | 0.098              | mg/kg dry | 0.489          | 0.125            | 107     | 80-120         |      |              |
| Matrix Spike Dup (B4B1185-MSD1) | S          | Source: 4B2 | 6010-01            |           | Prepared 8     | & Analyzed: 02   | 2/28/24 |                |      |              |
| Mercury                         | 0.688      |             | 0.115              | mg/kg dry | 0.577          | 0.129            | 96.8    | 80-120         | 4.01 | 20           |
|                                 |            |             |                    |           |                |                  |         |                |      |              |

|                                 |           |             |           | Control   |          |               |         |        |      |       |
|---------------------------------|-----------|-------------|-----------|-----------|----------|---------------|---------|--------|------|-------|
| Total Metals (Continued)        |           |             |           |           |          |               |         |        |      |       |
|                                 |           |             | Reporting |           | Spike    | Source        |         | %REC   |      | RPD   |
| Analyte                         | Result    | Qual        | Limit     | Units     | Level    | Result        | %REC    | Limits | RPD  | Limit |
| Batch: B4B1185 - Metals Cold-Va | por Mercu | ry (Con     | tinued)   |           |          |               |         |        |      |       |
| Matrix Spike Dup (B4B1185-MSD2) | 9         | Source: 4B2 | 27039-02  |           | Prepared | & Analyzed: 0 | 2/28/24 |        |      |       |
| Mercury                         | 0.576     |             | 0.093     | mg/kg dry | 0.465    | 0.135         | 94.7    | 80-120 | 2.10 | 20    |

### Volatile Organic Compounds 8260C (5035-LL)

| Analyte                            | Result   | Qual | Reporting<br>Limit | Units          | Spike<br>Level | Source<br>Result | %REC    | %REC<br>Limits | RPD | RPD<br>Limi |
|------------------------------------|----------|------|--------------------|----------------|----------------|------------------|---------|----------------|-----|-------------|
| Batch: B4C0015 - EPA 5035          |          |      |                    |                |                |                  |         |                |     |             |
| Blank (B4C0015-BLK1)               |          |      |                    |                | Prepared 8     | & Analyzed: 0    | 2/29/24 |                |     |             |
| Acetone                            | ND       |      | 5                  | ug/kg          |                |                  |         |                |     |             |
| Benzene                            | ND       |      | 5                  | ug/kg          |                |                  |         |                |     |             |
| Bromobenzene                       | ND       |      | 5                  | ug/kg          |                |                  |         |                |     |             |
| Bromochloromethane                 | ND       |      | 5                  | ug/kg          |                |                  |         |                |     |             |
| Bromodichloromethane               | ND       |      | 5                  | ug/kg          |                |                  |         |                |     |             |
| Bromoform                          | ND       |      | 5                  | ug/kg          |                |                  |         |                |     |             |
| Bromomethane                       | ND       |      | 5                  | ug/kg          |                |                  |         |                |     |             |
| 2-Butanone                         | ND<br>ND |      | 5                  | ug/kg<br>ug/kg |                |                  |         |                |     |             |
|                                    |          |      | 5                  | ug/kg<br>ug/kg |                |                  |         |                |     |             |
| tert-Butyl alcohol                 | ND       |      |                    |                |                |                  |         |                |     |             |
| sec-Butylbenzene                   | ND       |      | 5                  | ug/kg          |                |                  |         |                |     |             |
| n-Butylbenzene                     | ND       |      | 5                  | ug/kg          |                |                  |         |                |     |             |
| tert-Butylbenzene                  | ND       |      | 5                  | ug/kg          |                |                  |         |                |     |             |
| Methyl t-butyl ether (MTBE)        | ND       |      | 5                  | ug/kg          |                |                  |         |                |     |             |
| Carbon Disulfide                   | ND       |      | 5                  | ug/kg          |                |                  |         |                |     |             |
| Carbon Tetrachloride               | ND       |      | 5                  | ug/kg          |                |                  |         |                |     |             |
| Chlorobenzene                      | ND       |      | 5                  | ug/kg          |                |                  |         |                |     |             |
| Chloroethane                       | ND       |      | 5                  | ug/kg          |                |                  |         |                |     |             |
| Chloroform                         | ND       |      | 5                  | ug/kg          |                |                  |         |                |     |             |
| Chloromethane                      | ND       |      | 5                  | ug/kg          |                |                  |         |                |     |             |
| 4-Chlorotoluene                    | ND       |      | 5                  | ug/kg          |                |                  |         |                |     |             |
| 2-Chlorotoluene                    | ND       |      | 5                  | ug/kg          |                |                  |         |                |     |             |
| 1,2-Dibromo-3-chloropropane (DBCP) | ND       |      | 5                  | ug/kg          |                |                  |         |                |     |             |
| Dibromochloromethane               | ND       |      | 5                  | ug/kg          |                |                  |         |                |     |             |
| 1,2-Dibromoethane (EDB)            | ND<br>ND |      | 5                  | ug/kg          |                |                  |         |                |     |             |
|                                    |          |      |                    |                |                |                  |         |                |     |             |
| Dibromomethane                     | ND       |      | 5                  | ug/kg          |                |                  |         |                |     |             |
| 1,2-Dichlorobenzene                | ND       |      | 5                  | ug/kg          |                |                  |         |                |     |             |
| 1,3-Dichlorobenzene                | ND       |      | 5                  | ug/kg          |                |                  |         |                |     |             |
| 1,4-Dichlorobenzene                | ND       |      | 5                  | ug/kg          |                |                  |         |                |     |             |
| 1,1-Dichloroethane                 | ND       |      | 5                  | ug/kg          |                |                  |         |                |     |             |
| 1,2-Dichloroethane                 | ND       |      | 5                  | ug/kg          |                |                  |         |                |     |             |
| trans-1,2-Dichloroethene           | ND       |      | 5                  | ug/kg          |                |                  |         |                |     |             |
| 1,2 Dichloroethene, Total          | ND       |      | 5                  | ug/kg          |                |                  |         |                |     |             |
| cis-1,2-Dichloroethene             | ND       |      | 5                  | ug/kg          |                |                  |         |                |     |             |
| 1,1-Dichloroethene                 | ND       |      | 5                  | ug/kg          |                |                  |         |                |     |             |
| 1,2-Dichloropropane                | ND       |      | 5                  | ug/kg          |                |                  |         |                |     |             |
| 2,2-Dichloropropane                | ND       |      | 5                  | ug/kg          |                |                  |         |                |     |             |
| cis-1,3-Dichloropropene            | ND       |      | 5                  | ug/kg          |                |                  |         |                |     |             |
| trans-1,3-Dichloropropene          | ND       |      | 5                  | ug/kg          |                |                  |         |                |     |             |
| 1,1-Dichloropropene                | ND       |      | 5                  | ug/kg          |                |                  |         |                |     |             |
| 1,3-Dichloropropene (cis + trans)  | ND<br>ND |      | 5                  | ug/kg<br>ug/kg |                |                  |         |                |     |             |
|                                    |          |      |                    |                |                |                  |         |                |     |             |
| Diethyl ether                      | ND       |      | 5                  | ug/kg          |                |                  |         |                |     |             |
| 1,4-Dioxane                        | ND       |      | 100                | ug/kg          |                |                  |         |                |     |             |
| Ethylbenzene                       | ND       |      | 5                  | ug/kg          |                |                  |         |                |     |             |
| Hexachlorobutadiene                | ND       |      | 5                  | ug/kg          |                |                  |         |                |     |             |
| 2-Hexanone                         | ND       |      | 5                  | ug/kg          |                |                  |         |                |     |             |
| Isopropylbenzene                   | ND       |      | 5                  | ug/kg          |                |                  |         |                |     |             |
| p-Isopropyltoluene                 | ND       |      | 5                  | ug/kg          |                |                  |         |                |     |             |
| Methylene Chloride                 | ND       |      | 5                  | ug/kg          |                |                  |         |                |     |             |
| 4-Methyl-2-pentanone               | ND       |      | 5                  | ug/kg          |                |                  |         |                |     |             |
| Naphthalene                        | ND       |      | 5                  | ug/kg          |                |                  |         |                |     |             |
| n-Propylbenzene                    | ND       |      | 5                  | ug/kg          |                |                  |         |                |     |             |
| Styrene                            | ND       |      | 5                  | ug/kg          |                |                  |         |                |     |             |
| 1,1,1,2-Tetrachloroethane          | ND       |      | 5                  | ug/kg          |                |                  |         |                |     |             |
| Tetrachloroethene                  | ND       |      | 5                  | ug/kg          |                |                  |         |                |     |             |
| Tetrahydrofuran                    | ND<br>ND |      | 5                  | ug/kg          |                |                  |         |                |     |             |
| Toluene                            | ND<br>ND |      | 5                  | ug/kg<br>ug/kg |                |                  |         |                |     |             |
| TOTALCTIC                          | שמו      |      | 3                  | ug/kg          |                |                  |         |                |     |             |

### **Quality Control**

(Continued)

### Volatile Organic Compounds 8260C (5035-LL) (Continued)

| Analyte                            | Result    | Qual | Reporting<br>Limit | Units          | Spike<br>Level | Source<br>Result | %REC    | %REC<br>Limits   | RPD | RPD<br>Limi |
|------------------------------------|-----------|------|--------------------|----------------|----------------|------------------|---------|------------------|-----|-------------|
| Batch: B4C0015 - EPA 5035 (C       | ontinued) |      |                    |                |                |                  |         |                  |     |             |
| Blank (B4C0015-BLK1)               |           |      |                    |                | Prepared 8     | & Analyzed: 0    | 2/29/24 |                  |     |             |
| 1,2,3-Trichlorobenzene             | ND        |      | 5                  | ug/kg          | •              |                  |         |                  |     |             |
| 1,1,2-Trichloroethane              | ND        |      | 5                  | ug/kg          |                |                  |         |                  |     |             |
| 1,1,1-Trichloroethane              | ND        |      | 5                  | ug/kg          |                |                  |         |                  |     |             |
| Trichloroethene                    | ND        |      | 5                  | ug/kg          |                |                  |         |                  |     |             |
| 1,2,3-Trichloropropane             | ND        |      | 5                  | ug/kg          |                |                  |         |                  |     |             |
| 1,3,5-Trimethylbenzene             | ND        |      | 5                  | ug/kg          |                |                  |         |                  |     |             |
| 1,2,4-Trimethylbenzene             | ND        |      | 5                  | ug/kg          |                |                  |         |                  |     |             |
| Vinyl Chloride                     | ND        |      | 5                  | ug/kg          |                |                  |         |                  |     |             |
| o-Xylene                           | ND        |      | 5                  | ug/kg          |                |                  |         |                  |     |             |
| m&p-Xylene                         | ND<br>ND  |      | 10                 | ug/kg          |                |                  |         |                  |     |             |
|                                    | ND<br>ND  |      | 5                  | ug/kg          |                |                  |         |                  |     |             |
| Total xylenes                      |           |      |                    | ug/kg<br>ug/kg |                |                  |         |                  |     |             |
| 1,1,2,2-Tetrachloroethane          | ND        |      | 5                  |                |                |                  |         |                  |     |             |
| tert-Amyl methyl ether             | ND        |      | 5                  | ug/kg          |                |                  |         |                  |     |             |
| 1,3-Dichloropropane                | ND        |      | 5                  | ug/kg          |                |                  |         |                  |     |             |
| Ethyl tert-butyl ether             | ND        |      | 5                  | ug/kg          |                |                  |         |                  |     |             |
| Diisopropyl ether                  | ND        |      | 5                  | ug/kg          |                |                  |         |                  |     |             |
| Trichlorofluoromethane             | ND        |      | 5                  | ug/kg          |                |                  |         |                  |     |             |
| Dichlorodifluoromethane            | ND        |      | 5                  | ug/kg          |                |                  |         |                  |     |             |
| Surrogate: 4-Bromofluorobenzene    |           |      | 48.9               | ug/kg          | 50.0           |                  | 97.8    | 70-130           |     |             |
| Surrogate: 1,2-Dichloroethane-d4   |           |      | 49.9               | ug/kg          | 50.0           |                  | 99.7    | 70-130           |     |             |
| Surrogate: Toluene-d8              |           |      | 60.6               | ug/kg          | 50.0           |                  | 121     | 70-130           |     |             |
|                                    |           |      |                    |                |                | & Analyzed: 0    |         |                  |     |             |
| LCS (B4C0015-BS1)                  | 20        |      | 5                  | ug/kg          | -              | x Analyzeu: U    |         | FO 1FO           |     |             |
| Acetone                            | 38        |      |                    |                | 50.0           |                  | 76.4    | 50-150           |     |             |
| Benzene                            | 50        |      | 5                  | ug/kg          | 50.0           |                  | 100     | 70-130           |     |             |
| Bromobenzene                       | 48        |      | 5                  | ug/kg          | 50.0           |                  | 95.7    | 70-130           |     |             |
| Bromochloromethane                 | 53        |      | 5                  | ug/kg          | 50.0           |                  | 105     | 70-130           |     |             |
| Bromodichloromethane               | 52        |      | 5                  | ug/kg          | 50.0           |                  | 105     | 70-130           |     |             |
| Bromoform                          | 49        |      | 5                  | ug/kg          | 50.0           |                  | 98.9    | 70-130           |     |             |
| Bromomethane                       | 51        |      | 5                  | ug/kg          | 50.0           |                  | 102     | 50-150           |     |             |
| 2-Butanone                         | 41        |      | 5                  | ug/kg          | 50.0           |                  | 82.3    | 50-150           |     |             |
| tert-Butyl alcohol                 | 42        |      | 5                  | ug/kg          | 50.0           |                  | 84.0    | 70-130           |     |             |
| sec-Butylbenzene                   | 51        |      | 5                  | ug/kg          | 50.0           |                  | 102     | 70-130           |     |             |
| n-Butylbenzene                     | 49        |      | 5                  | ug/kg          | 50.0           |                  | 98.5    | 70-130           |     |             |
| tert-Butylbenzene                  | 51        |      | 5                  | ug/kg          | 50.0           |                  | 102     | 70-130           |     |             |
| Methyl t-butyl ether (MTBE)        | 41        |      | 5                  | ug/kg          | 50.0           |                  | 81.6    | 70-130           |     |             |
| Carbon Disulfide                   | 40        |      | 5                  | ug/kg          | 50.0           |                  | 79.5    | 50-150           |     |             |
| Carbon Tetrachloride               | 53        |      | 5                  | ug/kg          | 50.0           |                  | 105     | 70-130           |     |             |
| Chlorobenzene                      | 46        |      | 5                  | ug/kg          | 50.0           |                  | 93.0    | 70-130           |     |             |
| Chloroethane                       | 38        |      | 5                  | ug/kg          | 50.0           |                  | 77.0    | 50-150           |     |             |
| Chloroform                         | 52        |      | 5                  | ug/kg          | 50.0           |                  | 103     | 70-130           |     |             |
| Chloromethane                      | 53        |      | 5                  | ug/kg          | 50.0           |                  | 106     | 50-150           |     |             |
| 4-Chlorotoluene                    | 49        |      | 5                  | ug/kg          | 50.0           |                  | 97.1    | 70-130           |     |             |
| 2-Chlorotoluene                    | 47        |      | 5                  | ug/kg          | 50.0           |                  | 93.0    | 70-130           |     |             |
| 1,2-Dibromo-3-chloropropane (DBCP) | 46        |      | 5                  | ug/kg          | 50.0           |                  | 92.9    | 70-130           |     |             |
| Dibromochloromethane               | 53        |      | 5                  | ug/kg          | 50.0           |                  | 106     | 70-130           |     |             |
|                                    | 53        |      | 5                  | ug/kg<br>ug/kg | 50.0           |                  | 106     | 70-130<br>70-130 |     |             |
| 1,2-Dibromoethane (EDB)            |           |      |                    | ug/kg<br>ug/kg |                |                  |         |                  |     |             |
| Dibromomethane                     | 54        |      | 5                  |                | 50.0           |                  | 107     | 60-140           |     |             |
| 1,2-Dichlorobenzene                | 47        |      | 5                  | ug/kg          | 50.0           |                  | 93.8    | 70-130           |     |             |
| 1,3-Dichlorobenzene                | 50        |      | 5                  | ug/kg          | 50.0           |                  | 99.2    | 70-130           |     |             |
| 1,4-Dichlorobenzene                | 47        |      | 5                  | ug/kg          | 50.0           |                  | 94.0    | 70-130           |     |             |
| 1,1-Dichloroethane                 | 51        |      | 5                  | ug/kg          | 50.0           |                  | 101     | 70-130           |     |             |
| 1,2-Dichloroethane                 | 54        |      | 5                  | ug/kg          | 50.0           |                  | 107     | 70-130           |     |             |
| trans-1,2-Dichloroethene           | 52        |      | 5                  | ug/kg          | 50.0           |                  | 103     | 70-130           |     |             |
| cis-1,2-Dichloroethene             | 51        |      | 5                  | ug/kg          | 50.0           |                  | 103     | 70-130           |     |             |
| 1,1-Dichloroethene                 | 40        |      | 5                  | ug/kg          | 50.0           |                  | 80.5    | 70-130           |     |             |
| 1,2-Dichloropropane                | 51        |      | 5                  | ug/kg          | 50.0           |                  | 101     | 70-130           |     |             |

Page 30 of 43

### Volatile Organic Compounds 8260C (5035-LL) (Continued)

|                                  |            |      | Reporting |       | Spike      | Source         |         | %REC   |     | RPD  |
|----------------------------------|------------|------|-----------|-------|------------|----------------|---------|--------|-----|------|
| Analyte                          | Result     | Qual | Limit     | Units | Level      | Result         | %REC    | Limits | RPD | Limi |
| Batch: B4C0015 - EPA 5035 (C     | Continued) |      |           |       |            |                |         |        |     |      |
| LCS (B4C0015-BS1)                |            |      |           |       | Prepared 8 | & Analyzed: 02 | 2/29/24 |        |     |      |
| 2,2-Dichloropropane              | 53         |      | 5         | ug/kg | 50.0       |                | 106     | 70-130 |     |      |
| cis-1,3-Dichloropropene          | 51         |      | 5         | ug/kg | 50.0       |                | 102     | 70-130 |     |      |
| trans-1,3-Dichloropropene        | 53         |      | 5         | ug/kg | 50.0       |                | 106     | 70-130 |     |      |
| 1,1-Dichloropropene              | 53         |      | 5         | ug/kg | 50.0       |                | 106     | 70-130 |     |      |
| Diethyl ether                    | 38         |      | 5         | ug/kg | 50.0       |                | 75.9    | 60-140 |     |      |
| 1,4-Dioxane                      | 265        |      | 100       | ug/kg | 250        |                | 106     | 0-200  |     |      |
| Ethylbenzene                     | 48         |      | 5         | ug/kg | 50.0       |                | 95.9    | 70-130 |     |      |
| Hexachlorobutadiene              | 49         |      | 5         | ug/kg | 50.0       |                | 98.8    | 70-130 |     |      |
| 2-Hexanone                       | 42         |      | 5         | ug/kg | 50.0       |                | 84.1    | 50-150 |     |      |
| Isopropylbenzene                 | 50         |      | 5         | ug/kg | 50.0       |                | 100     | 70-130 |     |      |
| p-Isopropyltoluene               | 51         |      | 5         | ug/kg | 50.0       |                | 102     | 70-130 |     |      |
| Methylene Chloride               | 50         |      | 5         | ug/kg | 50.0       |                | 101     | 60-140 |     |      |
| 4-Methyl-2-pentanone             | 47         |      | 5         | ug/kg | 50.0       |                | 93.7    | 50-150 |     |      |
| Naphthalene                      | 50         |      | 5         | ug/kg | 50.0       |                | 100     | 70-130 |     |      |
| n-Propylbenzene                  | 51         |      | 5         | ug/kg | 50.0       |                | 102     | 70-130 |     |      |
| Styrene                          | 50         |      | 5         | ug/kg | 50.0       |                | 99.9    | 70-130 |     |      |
| 1,1,1,2-Tetrachloroethane        | 49         |      | 5         | ug/kg | 50.0       |                | 97.9    | 70-130 |     |      |
| Tetrachloroethene                | 52         |      | 5         | ug/kg | 50.0       |                | 103     | 70-130 |     |      |
| Tetrahydrofuran                  | 51         |      | 5         | ug/kg | 50.0       |                | 101     | 50-150 |     |      |
| Toluene                          | 54         |      | 5         | ug/kg | 50.0       |                | 108     | 70-130 |     |      |
| 1,2,4-Trichlorobenzene           | 48         |      | 5         | ug/kg | 50.0       |                | 96.7    | 70-130 |     |      |
| 1,2,3-Trichlorobenzene           | 49         |      | 5         | ug/kg | 50.0       |                | 98.4    | 70-130 |     |      |
| 1,1,2-Trichloroethane            | 53         |      | 5         | ug/kg | 50.0       |                | 107     | 70-130 |     |      |
| 1,1,1-Trichloroethane            | 52         |      | 5         | ug/kg | 50.0       |                | 104     | 70-130 |     |      |
| Trichloroethene                  | 51         |      | 5         | ug/kg | 50.0       |                | 101     | 70-130 |     |      |
| 1,2,3-Trichloropropane           | 43         |      | 5         | ug/kg | 50.0       |                | 86.9    | 70-130 |     |      |
| 1,3,5-Trimethylbenzene           | 51         |      | 5         | ug/kg | 50.0       |                | 102     | 70-130 |     |      |
| 1,2,4-Trimethylbenzene           | 51         |      | 5         | ug/kg | 50.0       |                | 102     | 70-130 |     |      |
| Vinyl Chloride                   | 56         |      | 5         | ug/kg | 50.0       |                | 112     | 50-150 |     |      |
| o-Xylene                         | 49         |      | 5         | ug/kg | 50.0       |                | 97.9    | 70-130 |     |      |
| m&p-Xylene                       | 96         |      | 10        | ug/kg | 100        |                | 96.2    | 70-130 |     |      |
| 1,1,2,2-Tetrachloroethane        | 48         |      | 5         | ug/kg | 50.0       |                | 95.1    | 70-130 |     |      |
| tert-Amyl methyl ether           | 47         |      | 5         | ug/kg | 50.0       |                | 94.2    | 70-130 |     |      |
| 1,3-Dichloropropane              | 51         |      | 5         | ug/kg | 50.0       |                | 102     | 70-130 |     |      |
| Ethyl tert-butyl ether           | 48         |      | 5         | ug/kg | 50.0       |                | 95.3    | 70-130 |     |      |
| Trichlorofluoromethane           | 41         |      | 5         | ug/kg | 50.0       |                | 82.1    | 50-150 |     |      |
| Dichlorodifluoromethane          | 59         |      | 5         | ug/kg | 50.0       |                | 118     | 50-150 |     |      |
| Surrogate: 4-Bromofluorobenzene  |            |      | 51.0      | ug/kg | 50.0       |                | 102     | 70-130 |     |      |
| Surrogate: 1,2-Dichloroethane-d4 |            |      | 51.0      | ug/kg | 50.0       |                | 102     | 70-130 |     |      |
| Surrogate: Toluene-d8            |            |      | 51.9      | ug/kg | 50.0       |                | 104     | 70-130 |     |      |

### Volatile Organic Compounds 8260C (5035-LL) (Continued)

| Analyte                            | Result Qu  | Reporting<br>al Limit | Units | Spike<br>Level | Source<br>Result | %REC | %REC<br>Limits | RPD      | RPI<br>Limi |
|------------------------------------|------------|-----------------------|-------|----------------|------------------|------|----------------|----------|-------------|
| atch: B4C0015 - EPA 5035 (C        | Continued) |                       |       |                |                  |      |                |          |             |
| .CS Dup (B4C0015-BSD1)             |            |                       |       | •              | & Analyzed: 02   |      |                |          |             |
| Acetone                            | 41         | 5                     | ug/kg | 50.0           |                  | 81.1 | 50-150         | 5.94     | 30          |
| Benzene                            | 51         | 5                     | ug/kg | 50.0           |                  | 102  | 70-130         | 1.98     | 20          |
| Bromobenzene                       | 47         | 5                     | ug/kg | 50.0           |                  | 94.2 | 70-130         | 1.64     | 20          |
| Bromochloromethane                 | 54         | 5                     | ug/kg | 50.0           |                  | 109  | 70-130         | 3.07     | 20          |
| Bromodichloromethane               | 54         | 5                     | ug/kg | 50.0           |                  | 109  | 70-130         | 3.71     | 20          |
| Bromoform                          | 49         | 5                     | ug/kg | 50.0           |                  | 97.2 | 70-130         | 1.65     | 20          |
| Bromomethane                       | 59         | 5                     | ug/kg | 50.0           |                  | 117  | 50-150         | 14.5     | 30          |
| 2-Butanone                         | 42         | 5                     | ug/kg | 50.0           |                  | 84.3 | 50-150         | 2.40     | 30          |
| tert-Butyl alcohol                 | 47         | 5                     | ug/kg | 50.0           |                  | 94.7 | 70-130         | 12.0     | 20          |
| sec-Butylbenzene                   | 48         | 5                     | ug/kg | 50.0           |                  | 95.7 | 70-130         | 5.96     | 20          |
| n-Butylbenzene                     | 47         | 5                     | ug/kg | 50.0           |                  | 94.5 | 70-130         | 4.06     | 20          |
| tert-Butylbenzene                  | 48         | 5                     | ug/kg | 50.0           |                  | 95.6 | 70-130         | 6.22     | 20          |
| Methyl t-butyl ether (MTBE)        | 33         | 5                     | ug/kg | 50.0           |                  | 65.7 | 70-130         | 21.6     | 20          |
| Carbon Disulfide                   | 30         | 5                     | ug/kg | 50.0           |                  | 60.6 | 50-150         | 26.9     | 40          |
| Carbon Tetrachloride               | 53         | 5                     | ug/kg | 50.0           |                  | 106  | 70-130         | 0.341    | 20          |
| Chlorobenzene                      | 46         | 5                     | ug/kg | 50.0           |                  | 91.3 | 70-130         | 1.82     | 20          |
| Chloroethane                       | 51         | 5                     | ug/kg | 50.0           |                  | 102  | 50-150         | 28.0     | 30          |
| Chloroform                         | 53         | 5                     | ug/kg | 50.0           |                  | 106  | 70-130         | 2.43     | 20          |
| Chloromethane                      | 53         | 5                     | ug/kg | 50.0           |                  | 105  | 50-150         | 0.946    | 30          |
| 1-Chlorotoluene                    | 46         | 5                     | ug/kg | 50.0           |                  | 92.8 | 70-130         | 4.57     | 20          |
| 2-Chlorotoluene                    | 45         | 5                     | ug/kg | 50.0           |                  | 89.2 | 70-130         | 4.17     | 20          |
| .,2-Dibromo-3-chloropropane (DBCP) | 46         | 5                     | ug/kg | 50.0           |                  | 91.7 | 70-130         | 1.28     | 20          |
| Dibromochloromethane               | 55         | 5                     | ug/kg | 50.0           |                  | 110  | 70-130         | 3.87     | 20          |
| ,2-Dibromoethane (EDB)             | 55         | 5                     | ug/kg | 50.0           |                  | 110  | 70-130         | 3.29     | 20          |
| Dibromomethane                     | 56         | 5                     | ug/kg | 50.0           |                  | 111  | 60-140         | 3.70     | 30          |
| ,2-Dichlorobenzene                 | 46         | 5                     | ug/kg | 50.0           |                  | 92.0 | 70-130         | 1.87     | 20          |
| .,3-Dichlorobenzene                | 48         | 5                     | ug/kg | 50.0           |                  | 95.1 | 70-130         | 4.20     | 20          |
| 1,4-Dichlorobenzene                | 46         | 5                     | ug/kg | 50.0           |                  | 91.4 | 70-130         | 2.80     | 20          |
| 1,1-Dichloroethane                 | 42         | 5                     | ug/kg | 50.0           |                  | 83.6 | 70-130         | 19.1     | 20          |
| 1,2-Dichloroethane                 | 53         | 5                     | ug/kg | 50.0           |                  | 107  | 70-130         | 0.411    | 20          |
| rans-1,2-Dichloroethene            | 41         | 5                     | ug/kg | 50.0           |                  | 82.3 | 70-130         | 22.5     | 20          |
| cis-1,2-Dichloroethene             | 54         | 5                     | ug/kg | 50.0           |                  | 107  | 70-130         | 4.59     | 20          |
| 1,1-Dichloroethene                 | 44         | 5                     | ug/kg | 50.0           |                  | 87.3 | 70-130         | 8.08     | 20          |
| 1,2-Dichloropropane                | 52         | 5                     | ug/kg | 50.0           |                  | 104  | 70-130         | 3.29     | 20          |
| 2,2-Dichloropropane                | 52         | 5                     | ug/kg | 50.0           |                  | 104  | 70-130         | 1.85     | 20          |
| cis-1,3-Dichloropropene            | 53         | 5                     | ug/kg | 50.0           |                  | 104  | 70-130         | 3.79     | 20          |
| · · ·                              | 55         | 5                     | ug/kg | 50.0           |                  |      | 70-130         | 4.42     |             |
| rans-1,3-Dichloropropene           |            |                       |       |                |                  | 111  |                |          | 20          |
| I,1-Dichloropropene                | 53         | 5                     | ug/kg | 50.0           |                  | 105  | 70-130         | 0.454    | 20          |
| Diethyl ether                      | 41         | 5                     | ug/kg | 50.0           |                  | 81.4 | 60-140         | 6.97     | 30          |
| 1,4-Dioxane                        | 268        | 100                   | ug/kg | 250            |                  | 107  | 0-200          | 1.21     | 50          |
| Ethylbenzene                       | 46         | 5                     | ug/kg | 50.0           |                  | 91.5 | 70-130         | 4.78     | 20          |
| Hexachlorobutadiene                | 48         | 5                     | ug/kg | 50.0           |                  | 96.5 | 70-130         | 2.38     | 20          |
| 2-Hexanone                         | 43         | 5                     | ug/kg | 50.0           |                  | 86.6 | 50-150         | 2.93     | 20          |
| Sopropylbenzene                    | 47         | 5                     | ug/kg | 50.0           |                  | 93.9 | 70-130         | 6.39     | 20          |
| o-Isopropyltoluene                 | 48         | 5                     | ug/kg | 50.0           |                  | 96.3 | 70-130         | 5.73     | 20          |
| 1ethylene Chloride                 | 38         | 5                     | ug/kg | 50.0           |                  | 75.7 | 60-140         | 28.4     | 30          |
| -Methyl-2-pentanone                | 47         | 5                     | ug/kg | 50.0           |                  | 93.6 | 50-150         | 0.128    | 20          |
| laphthalene                        | 49         | 5                     | ug/kg | 50.0           |                  | 97.3 | 70-130         | 3.24     | 20          |
| n-Propylbenzene                    | 48         | 5                     | ug/kg | 50.0           |                  | 96.7 | 70-130         | 5.32     | 20          |
| Styrene                            | 48         | 5                     | ug/kg | 50.0           |                  | 96.1 | 70-130         | 3.94     | 20          |
| 1,1,1,2-Tetrachloroethane          | 48         | 5                     | ug/kg | 50.0           |                  | 95.4 | 70-130         | 2.57     | 20          |
| Tetrachloroethene                  | 52         | 5                     | ug/kg | 50.0           |                  | 104  | 70-130         | 1.02     | 20          |
| Tetrahydrofuran                    | 53         | 5                     | ug/kg | 50.0           |                  | 105  | 50-150         | 3.85     | 40          |
| Toluene                            | 55         | 5                     | ug/kg | 50.0           |                  | 110  | 70-130         | 1.98     | 20          |
| 1,2,4-Trichlorobenzene             | 47         | 5                     | ug/kg | 50.0           |                  | 94.3 | 70-130         | 2.45     | 20          |
| 1,2,3-Trichlorobenzene             | 49         | 5                     | ug/kg | 50.0           |                  | 98.1 | 70-130         | 0.285    | 20          |
| 1,1,2-Trichloroethane              | 50         | 5                     | ug/kg | 50.0           |                  | 100  | 70-130         | <u> </u> | 32 0        |

### Volatile Organic Compounds 8260C (5035-LL) (Continued)

| Analyte                          | Result      | Qual | Reporting<br>Limit | Units | Spike<br>Level | Source<br>Result | %REC    | %REC<br>Limits | RPD   | RPD<br>Limit |
|----------------------------------|-------------|------|--------------------|-------|----------------|------------------|---------|----------------|-------|--------------|
| Batch: B4C0015 - EPA 5035 (      | (Continued) |      |                    |       |                |                  |         |                |       |              |
| LCS Dup (B4C0015-BSD1)           |             |      |                    |       | Prepared 8     | & Analyzed: 0    | 2/29/24 |                |       |              |
| 1,1,1-Trichloroethane            | 52          |      | 5                  | ug/kg | 50.0           |                  | 104     | 70-130         | 0.269 | 20           |
| Trichloroethene                  | 51          |      | 5                  | ug/kg | 50.0           |                  | 103     | 70-130         | 1.47  | 20           |
| 1,2,3-Trichloropropane           | 42          |      | 5                  | ug/kg | 50.0           |                  | 84.1    | 70-130         | 3.27  | 20           |
| 1,3,5-Trimethylbenzene           | 49          |      | 5                  | ug/kg | 50.0           |                  | 97.7    | 70-130         | 4.70  | 20           |
| 1,2,4-Trimethylbenzene           | 48          |      | 5                  | ug/kg | 50.0           |                  | 95.8    | 70-130         | 5.88  | 20           |
| Vinyl Chloride                   | 53          |      | 5                  | ug/kg | 50.0           |                  | 106     | 50-150         | 4.88  | 30           |
| o-Xylene                         | 47          |      | 5                  | ug/kg | 50.0           |                  | 93.5    | 70-130         | 4.58  | 20           |
| m&p-Xylene                       | 92          |      | 10                 | ug/kg | 100            |                  | 92.1    | 70-130         | 4.36  | 20           |
| 1,1,2,2-Tetrachloroethane        | 46          |      | 5                  | ug/kg | 50.0           |                  | 92.4    | 70-130         | 2.88  | 20           |
| tert-Amyl methyl ether           | 49          |      | 5                  | ug/kg | 50.0           |                  | 97.0    | 70-130         | 2.93  | 20           |
| 1,3-Dichloropropane              | 54          |      | 5                  | ug/kg | 50.0           |                  | 108     | 70-130         | 5.15  | 20           |
| Ethyl tert-butyl ether           | 45          |      | 5                  | ug/kg | 50.0           |                  | 89.5    | 70-130         | 6.34  | 20           |
| Trichlorofluoromethane           | 47          |      | 5                  | ug/kg | 50.0           |                  | 94.4    | 50-150         | 13.9  | 20           |
| Dichlorodifluoromethane          | 60          |      | 5                  | ug/kg | 50.0           |                  | 119     | 50-150         | 1.40  | 30           |
| Surrogate: 4-Bromofluorobenzene  |             |      | 49.9               | ug/kg | 50.0           |                  | 99.7    | 70-130         |       |              |
| Surrogate: 1,2-Dichloroethane-d4 |             |      | 53.1               | ug/kg | 50.0           |                  | 106     | 70-130         |       |              |
| Surrogate: Toluene-d8            |             |      | 54.1               | ug/kg | 50.0           |                  | 108     | 70-130         |       |              |

### Quality Control

#### (Continued)

### Semivolatile organic compounds

| Analyte                     | Result Qual         | Reporting<br>Limit | Units          | Spike<br>Level | Source<br>Result | %REC         | %REC<br>Limits | RPD  | RPD<br>Limi |
|-----------------------------|---------------------|--------------------|----------------|----------------|------------------|--------------|----------------|------|-------------|
|                             |                     |                    |                |                |                  |              | , <del>-</del> | •    |             |
| Batch: B4B1213 - 1_Semivo.  | latiles Extractions |                    | ь              |                | 00/24 Amelija    | 4. 02/20/24  |                |      |             |
| Blank (B4B1213-BLK1)        | ND                  | 120                |                | reparea: 02/2  | 28/24 Analyze    | ea: U2/29/24 |                |      |             |
| 1,2,4-Trichlorobenzene      | ND                  | 129                | ug/kg          |                |                  |              |                |      |             |
| 1,2-Dichlorobenzene         | ND                  | 129                | ug/kg          |                |                  |              |                |      |             |
| 1,3-Dichlorobenzene         | ND                  | 129                | ug/kg          |                |                  |              |                |      |             |
| 1,4-Dichlorobenzene         | ND                  | 129                | ug/kg          |                |                  |              |                |      |             |
| Phenol                      | ND                  | 129                | ug/kg          |                |                  |              |                |      |             |
| 2,4,5-Trichlorophenol       | ND                  | 129                | ug/kg          |                |                  |              |                |      |             |
| 2,4,6-Trichlorophenol       | ND                  | 129                | ug/kg          |                |                  |              |                |      |             |
| 2,4-Dichlorophenol          | ND                  | 129                | ug/kg          |                |                  |              |                |      |             |
| 2,4-Dimethylphenol          | ND                  | 328                | ug/kg          |                |                  |              |                |      |             |
| 2,4-Dinitrophenol           | ND                  | 328                | ug/kg          |                |                  |              |                |      |             |
| 2,4-Dinitrotoluene          | ND                  | 129                | ug/kg          |                |                  |              |                |      |             |
| 2,6-Dinitrotoluene          | ND                  | 129                | ug/kg          |                |                  |              |                |      |             |
| 2-Chloronaphthalene         | ND                  | 129                | ug/kg          |                |                  |              |                |      |             |
| 2-Chlorophenol              | ND                  | 129                | ug/kg          |                |                  |              |                |      |             |
| 2-Methylnaphthalene         | ND                  | 129                | ug/kg          |                |                  |              |                |      |             |
| Nitrobenzene                | ND                  | 129                | ug/kg          |                |                  |              |                |      |             |
| 2-Methylphenol              | ND<br>ND            | 129                | ug/kg<br>ug/kg |                |                  |              |                |      |             |
| 2-Nitroaniline              | ND<br>ND            | 129                | ug/kg<br>ug/kg |                |                  |              |                |      |             |
|                             |                     |                    |                |                |                  |              |                |      |             |
| 2-Nitrophenol               | ND                  | 328                | ug/kg          |                |                  |              |                |      |             |
| 3,3'-Dichlorobenzidine      | ND                  | 328                | ug/kg          |                |                  |              |                |      |             |
| 3-Nitroaniline              | ND                  | 129                | ug/kg          |                |                  |              |                |      |             |
| 4,6-Dinitro-2-methylphenol  | ND                  | 328                | ug/kg          |                |                  |              |                |      |             |
| 4-Bromophenyl phenyl ether  | ND                  | 129                | ug/kg          |                |                  |              |                |      |             |
| 4-Chloro-3-methylphenol     | ND                  | 129                | ug/kg          |                |                  |              |                |      |             |
| 4-Chloroaniline             | ND                  | 129                | ug/kg          |                |                  |              |                |      |             |
| 4-Chlorophenyl phenyl ether | ND                  | 129                | ug/kg          |                |                  |              |                |      |             |
| 4-Nitroaniline              | ND                  | 129                | ug/kg          |                |                  |              |                |      |             |
| 4-Nitrophenol               | ND                  | 328                | ug/kg          |                |                  |              |                |      |             |
| Acenaphthene                | ND                  | 129                | ug/kg          |                |                  |              |                |      |             |
| Acenaphthylene              | ND                  | 129                | ug/kg          |                |                  |              |                |      |             |
| Aniline                     | ND                  | 129                | ug/kg          |                |                  |              |                |      |             |
| Anthracene                  | ND                  | 129                | ug/kg          |                |                  |              |                |      |             |
| Benzo(a)anthracene          | ND                  | 129                | ug/kg          |                |                  |              |                |      |             |
| Benzo(a)pyrene              | ND                  | 129                | ug/kg          |                |                  |              |                |      |             |
| Benzo(b)fluoranthene        |                     | 129                | ug/kg          |                |                  |              |                |      |             |
|                             | ND                  |                    |                |                |                  |              |                |      |             |
| Benzo(g,h,i)perylene        | ND                  | 129                | ug/kg          |                |                  |              |                |      |             |
| Benzo(k)fluoranthene        | ND                  | 129                | ug/kg          |                |                  |              |                |      |             |
| Benzoic acid                | ND                  | 993                | ug/kg          |                |                  |              |                |      |             |
| Biphenyl                    | ND                  | 20                 | ug/kg          |                |                  |              |                |      |             |
| Bis(2-chloroethoxy)methane  | ND                  | 129                | ug/kg          |                |                  |              |                |      |             |
| Bis(2-chloroethyl)ether     | ND                  | 129                | ug/kg          |                |                  |              |                |      |             |
| Bis(2-chloroisopropyl)ether | ND                  | 129                | ug/kg          |                |                  |              |                |      |             |
| Bis(2-ethylhexyl)phthalate  | ND                  | 397                | ug/kg          |                |                  |              |                |      |             |
| Butyl benzyl phthalate      | ND                  | 129                | ug/kg          |                |                  |              |                |      |             |
| Chrysene                    | ND                  | 129                | ug/kg          |                |                  |              |                |      |             |
| Di-n-octyl phthalate        | ND                  | 199                | ug/kg          |                |                  |              |                |      |             |
| Dibenz(a,h)anthracene       | ND                  | 129                | ug/kg          |                |                  |              |                |      |             |
| Dibenzofuran                | ND                  | 129                | ug/kg          |                |                  |              |                |      |             |
| Diethyl phthalate           | ND                  | 129                | ug/kg          |                |                  |              |                |      |             |
| Dimethyl phthalate          | ND<br>ND            | 328                | ug/kg          |                |                  |              |                |      |             |
|                             |                     |                    |                |                |                  |              |                |      |             |
| Di-n-butyl phthalate        | ND                  | 199                | ug/kg          |                |                  |              |                |      |             |
| Fluoranthene                | ND                  | 129                | ug/kg          |                |                  |              |                |      |             |
| Fluorene                    | ND                  | 129                | ug/kg          |                |                  |              |                |      |             |
| Hexachlorobenzene           | ND                  | 129                | ug/kg          |                |                  |              |                |      |             |
| Hexachlorobutadiene         | ND                  | 129                | ug/kg          |                |                  |              |                |      |             |
| Hexachlorocyclopentadiene   | ND                  | 328                | ug/kg          |                |                  |              |                |      |             |
| Hexachloroethane            | ND                  | 129                | ug/kg          |                |                  |              |                | Page |             |

### Semivolatile organic compounds (Continued)

| Analyte                                             | Result (           | Reporting<br>Qual Limit    | Units          | Spike<br>Level | Source<br>Result | %REC         | %REC<br>Limits                 | RPD | RPI<br>Lim |
|-----------------------------------------------------|--------------------|----------------------------|----------------|----------------|------------------|--------------|--------------------------------|-----|------------|
| Batch: B4B1213 - 1_Semivola                         | atiles Extractions | (Continued)                |                |                |                  |              |                                |     |            |
| Blank (B4B1213-BLK1)                                |                    | •                          | Pr             | repared: 02/2  | 8/24 Analyze     | ed: 02/29/24 |                                |     |            |
| Indeno(1,2,3-cd)pyrene                              | ND                 | 129                        | ug/kg          |                |                  |              |                                |     |            |
| Isophorone                                          | ND                 | 129                        | ug/kg          |                |                  |              |                                |     |            |
| Naphthalene                                         | ND                 | 129                        | ug/kg          |                |                  |              |                                |     |            |
| N-Nitrosodimethylamine                              | ND                 | 129                        | ug/kg          |                |                  |              |                                |     |            |
| N-Nitrosodi-n-propylamine                           | ND                 | 129                        | ug/kg          |                |                  |              |                                |     |            |
| N-Nitrosodiphenylamine                              | ND                 | 129                        | ug/kg          |                |                  |              |                                |     |            |
| Pentachlorophenol                                   | ND                 | 328                        | ug/kg          |                |                  |              |                                |     |            |
| Phenanthrene                                        | ND                 | 129                        | ug/kg          |                |                  |              |                                |     |            |
| Pyrene                                              | ND                 | 129                        | ug/kg          |                |                  |              |                                |     |            |
| m&p-Cresol                                          | ND                 | 258                        | ug/kg          |                |                  |              |                                |     |            |
| Pyridine                                            | ND                 | 129                        | ug/kg          |                |                  |              |                                |     |            |
| Azobenzene                                          | ND                 | 129                        | ug/kg          |                |                  |              |                                |     |            |
| Total Dichlorobenzene                               | ND                 | 129                        | ug/kg          |                |                  |              |                                |     |            |
| Surrogate: Nitrobenzene-d5                          |                    | 3910                       | ug/kg          | 6620           |                  | 59.0         | <i>30-126</i>                  |     |            |
| Surrogate: p-Terphenyl-d14                          |                    | 5220                       | ug/kg<br>ug/kg | 6620           |                  | 39.0<br>78.8 | <i>30-126</i><br><i>47-130</i> |     |            |
|                                                     |                    |                            | ug/kg<br>ug/kg |                |                  |              |                                |     |            |
| Surrogate: 2-Fluorobiphenyl<br>Surrogate: Phenol-d6 |                    | <i>3410</i><br><i>3720</i> | ug/kg<br>ug/kg | 6620<br>6620   |                  | 51.5<br>56.2 | <i>34-130</i><br><i>30-130</i> |     |            |
| •                                                   |                    |                            |                |                |                  |              |                                |     |            |
| Surrogate: 2,4,6-Tribromophenol                     |                    | 3230                       | ug/kg<br>ug/kg | 6620<br>6620   |                  | 48.8         | <i>30-130</i>                  |     |            |
| Surrogate: 2-Fluorophenol                           |                    | 3980                       |                |                |                  | 60.1         | 30-130                         |     |            |
| LCS (B4B1213-BS1)                                   |                    |                            |                | •              | 28/24 Analyze    |              |                                |     |            |
| 1,2,4-Trichlorobenzene                              | 2280               | 129                        | ug/kg          | 3310           |                  | 68.7         | 40-130                         |     |            |
| 1,2-Dichlorobenzene                                 | 3110               | 129                        | ug/kg          | 3310           |                  | 94.0         | 40-130                         |     |            |
| 1,3-Dichlorobenzene                                 | 2990               | 129                        | ug/kg          | 3310           |                  | 90.2         | 40-130                         |     |            |
| 1,4-Dichlorobenzene                                 | 2650               | 129                        | ug/kg          | 3310           |                  | 79.9         | 40-130                         |     |            |
| Phenol                                              | 3350               | 129                        | ug/kg          | 3310           |                  | 101          | 40-130                         |     |            |
| 2,4,5-Trichlorophenol                               | 2470               | 129                        | ug/kg          | 3310           |                  | 74.5         | 40-130                         |     |            |
| 2,4,6-Trichlorophenol                               | 2660               | 129                        | ug/kg          | 3310           |                  | 80.3         | 40-130                         |     |            |
| 2,4-Dichlorophenol                                  | 2670               | 129                        | ug/kg          | 3310           |                  | 80.7         | 40-130                         |     |            |
| 2,4-Dimethylphenol                                  | 2640               | 328                        | ug/kg          | 3310           |                  | 79.8         | 40-130                         |     |            |
| 2,4-Dinitrophenol                                   | 2190               | 328                        | ug/kg          | 3310           |                  | 66.3         | 15-140                         |     |            |
| 2,4-Dinitrotoluene                                  | 2580               | 129                        | ug/kg          | 3310           |                  | 78.0         | 40-130                         |     |            |
| 2,6-Dinitrotoluene                                  | 2680               | 129                        | ug/kg          | 3310           |                  | 80.9         | 40-130                         |     |            |
| 2-Chloronaphthalene                                 | 2640               | 129                        | ug/kg          | 3310           |                  | 79.7         | 40-130                         |     |            |
| 2-Chlorophenol                                      | 3130               | 129                        | ug/kg          | 3310           |                  | 94.5         | 40-130                         |     |            |
| 2-Methylnaphthalene                                 | 2310               | 129                        | ug/kg          | 3310           |                  | 69.6         | 40-130                         |     |            |
| Nitrobenzene                                        | 2840               | 129                        | ug/kg          | 3310           |                  | 85.7         | 40-130                         |     |            |
| 2-Methylphenol                                      | 2560               | 129                        | ug/kg          | 3310           |                  | 77.2         | 40-130                         |     |            |
| 2-Nitroaniline                                      | 2570               | 129                        | ug/kg          | 3310           |                  | 77.8         | 40-130                         |     |            |
| 2-Nitrophenol                                       | 2700               | 328                        | ug/kg          | 3310           |                  | 81.4         | 40-130                         |     |            |
| 3-Nitroaniline                                      | 2530               | 129                        | ug/kg          | 3310           |                  | 76.3         | 40-130                         |     |            |
| 4,6-Dinitro-2-methylphenol                          | 2240               | 328                        | ug/kg          | 3310           |                  | 67.7         | 30-130                         |     |            |
| 4-Bromophenyl phenyl ether                          | 2050               | 129                        | ug/kg          | 3310           |                  | 61.9         | 40-130                         |     |            |
| 4-Chloro-3-methylphenol                             | 2280               | 129                        | ug/kg          | 3310           |                  | 68.8         | 40-130                         |     |            |
| 4-Chlorophenyl phenyl ether                         | 2220               | 129                        | ug/kg          | 3310           |                  | 67.1         | 40-130                         |     |            |
| 4-Nitroaniline                                      | 2680               | 129                        | ug/kg          | 3310           |                  | 80.9         | 40-130                         |     |            |
| 4-Nitrophenol                                       | 2360               | 328                        | ug/kg          | 3310           |                  | 71.4         | 40-130                         |     |            |
| Acenaphthene                                        | 2210               | 129                        | ug/kg          | 3310           |                  | 66.6         | 40-130                         |     |            |
| Acenaphthylene                                      | 2610               | 129                        | ug/kg          | 3310           |                  | 78.8         | 40-130                         |     |            |
| Anthracene                                          | 2940               | 129                        | ug/kg          | 3310           |                  | 88.8         | 40-130                         |     |            |
| Benzo(a)anthracene                                  | 2650               | 129                        | ug/kg          | 3310           |                  | 79.9         | 40-130                         |     |            |
| Benzo(a)pyrene                                      | 2770               | 129                        | ug/kg          | 3310           |                  | 83.5         | 40-130                         |     |            |
| Benzo(b)fluoranthene                                | 2950               | 129                        | ug/kg          | 3310           |                  | 89.0         | 40-130                         |     |            |
| Benzo(g,h,i)perylene                                | 2500               | 129                        | ug/kg          | 3310           |                  | 75.4         | 40-130                         |     |            |
| Benzo(k)fluoranthene                                | 3090               | 129                        | ug/kg          | 3310           |                  | 93.2         | 40-130                         |     |            |
| Biphenyl                                            | 626                | 20                         | ug/kg          | 828            |                  | 75.7         | 40-130                         |     |            |
| Bis(2-chloroethoxy)methane                          | 2870               | 129                        | ug/kg          | 3310           |                  | 86.8         | 40-130                         |     |            |

Page 35 of 43

#### Semivolatile organic compounds (Continued)

|                                 |                 |         | Reporting |       | Spike         | Source        |             | %REC          |     | RPD  |
|---------------------------------|-----------------|---------|-----------|-------|---------------|---------------|-------------|---------------|-----|------|
| Analyte                         | Result          | Qual    | Limit     | Units | Level         | Result        | %REC        | Limits        | RPD | Limi |
| Batch: B4B1213 - 1_Semivola     | tiles Extractio | ons (Co | ntinued)  |       |               |               |             |               |     |      |
| LCS (B4B1213-BS1)               |                 |         |           | Pr    | repared: 02/2 | 18/24 Analyze | d: 02/29/24 |               |     |      |
| Bis(2-chloroethyl)ether         | 3100            |         | 129       | ug/kg | 3310          |               | 93.5        | 40-130        |     |      |
| Bis(2-chloroisopropyl)ether     | 3600            |         | 129       | ug/kg | 3310          |               | 109         | 40-130        |     |      |
| Bis(2-ethylhexyl)phthalate      | 2960            |         | 397       | ug/kg | 3310          |               | 89.3        | 40-130        |     |      |
| Butyl benzyl phthalate          | 2870            |         | 129       | ug/kg | 3310          |               | 86.8        | 40-130        |     |      |
| Chrysene                        | 2860            |         | 129       | ug/kg | 3310          |               | 86.3        | 40-130        |     |      |
| Di-n-octyl phthalate            | 2150            |         | 199       | ug/kg | 3310          |               | 64.9        | 40-130        |     |      |
| Dibenz(a,h)anthracene           | 2490            |         | 129       | ug/kg | 3310          |               | 75.3        | 40-130        |     |      |
| Dibenzofuran                    | 2570            |         | 129       | ug/kg | 3310          |               | 77.6        | 40-130        |     |      |
| Diethyl phthalate               | 2730            |         | 129       | ug/kg | 3310          |               | 82.5        | 40-130        |     |      |
| Dimethyl phthalate              | 2500            |         | 328       | ug/kg | 3310          |               | 75.5        | 40-130        |     |      |
| Di-n-butyl phthalate            | 3200            |         | 199       | ug/kg | 3310          |               | 96.6        | 40-130        |     |      |
| Fluoranthene                    | 2990            |         | 129       | ug/kg | 3310          |               | 90.3        | 40-130        |     |      |
| Fluorene                        | 2510            |         | 129       | ug/kg | 3310          |               | 75.7        | 40-130        |     |      |
| Hexachlorobenzene               | 2570            |         | 129       | ug/kg | 3310          |               | 77.7        | 40-130        |     |      |
| Hexachlorobutadiene             | 2580            |         | 129       | ug/kg | 3310          |               | 78.0        | 40-130        |     |      |
| Hexachlorocyclopentadiene       | 2530            |         | 328       | ug/kg | 3310          |               | 76.3        | 40-130        |     |      |
| Hexachloroethane                | 2970            |         | 129       | ug/kg | 3310          |               | 89.7        | 40-130        |     |      |
| Indeno(1,2,3-cd)pyrene          | 2600            |         | 129       | ug/kg | 3310          |               | 78.5        | 40-130        |     |      |
| Isophorone                      | 3010            |         | 129       | ug/kg | 3310          |               | 90.8        | 40-130        |     |      |
| Naphthalene                     | 2360            |         | 129       | ug/kg | 3310          |               | 71.2        | 40-130        |     |      |
| N-Nitrosodimethylamine          | 2890            |         | 129       | ug/kg | 3310          |               | 87.4        | 40-130        |     |      |
| N-Nitrosodi-n-propylamine       | 2830            |         | 129       | ug/kg | 3310          |               | 85.5        | 40-130        |     |      |
| N-Nitrosodiphenylamine          | 2750            |         | 129       | ug/kg | 3310          |               | 82.9        | 40-130        |     |      |
| Pentachlorophenol               | 2410            |         | 328       | ug/kg | 3310          |               | 72.8        | 15-140        |     |      |
| Phenanthrene                    | 3070            |         | 129       | ug/kg | 3310          |               | 92.6        | 40-130        |     |      |
| Pyrene                          | 3010            |         | 129       | ug/kg | 3310          |               | 91.0        | 40-130        |     |      |
| m&p-Cresol                      | 2500            |         | 258       | ug/kg | 3310          |               | 75.5        | 40-130        |     |      |
| Surrogate: Nitrobenzene-d5      |                 |         | 4160      | ug/kg | 6620          |               | 62.8        | 30-126        |     |      |
| Surrogate: p-Terphenyl-d14      |                 |         | 5200      | ug/kg | 6620          |               | 78.6        | 47-130        |     |      |
| Surrogate: 2-Fluorobiphenyl     |                 |         | 3730      | ug/kg | 6620          |               | 56.3        | <i>34-130</i> |     |      |
| Surrogate: Phenol-d6            |                 |         | 4630      | ug/kg | 6620          |               | 70.0        | 30-130        |     |      |
| Surrogate: 2,4,6-Tribromophenol |                 |         | 3910      | ug/kg | 6620          |               | 59.0        | 30-130        |     |      |
| Surrogate: 2-Fluorophenol       |                 |         | 5100      | ug/kg | 6620          |               | 77.0        | 30-130        |     |      |

### Quality Control

#### (Continued)

### Semivolatile organic compounds (Continued)

| Analyte                     | Result           | Reporting<br>Qual Limit | Units          | Spike<br>Level | Source<br>Result | %REC  | %REC<br>Limits | RPD    | RPI<br>Limi |
|-----------------------------|------------------|-------------------------|----------------|----------------|------------------|-------|----------------|--------|-------------|
| ,                           |                  |                         | Offics         | Level          | Nesuit           | /UNLC | LIIIIIG        | IXI D  | LIIII       |
| Batch: B4B1213 - 1_Semivola | tiles Extraction | s (Continued)           |                |                |                  |       |                |        |             |
| LCS Dup (B4B1213-BSD1)      |                  |                         |                | •              | 28/24 Analyze    |       |                |        |             |
| 1,2,4-Trichlorobenzene      | 2270             | 129                     | ug/kg          | 3310           |                  | 68.7  | 40-130         | 0.0874 | 30          |
| 1,2-Dichlorobenzene         | 2550             | 129                     | ug/kg          | 3310           |                  | 77.0  | 40-130         | 19.9   | 30          |
| 1,3-Dichlorobenzene         | 2480             | 129                     | ug/kg          | 3310           |                  | 75.0  | 40-130         | 18.4   | 30          |
| 1,4-Dichlorobenzene         | 2260             | 129                     | ug/kg          | 3310           |                  | 68.4  | 40-130         | 15.5   | 30          |
| Phenol                      | 2680             | 129                     | ug/kg          | 3310           |                  | 81.0  | 40-130         | 22.3   | 30          |
| 2,4,5-Trichlorophenol       | 2640             | 129                     | ug/kg          | 3310           |                  | 79.6  | 40-130         | 6.67   | 30          |
| 2,4,6-Trichlorophenol       | 2540             | 129                     | ug/kg          | 3310           |                  | 76.6  | 40-130         | 4.71   | 30          |
| 2,4-Dichlorophenol          | 2640             | 129                     | ug/kg          | 3310           |                  | 79.8  | 40-130         | 1.07   | 30          |
| 2,4-Dimethylphenol          | 2420             | 328                     | ug/kg          | 3310           |                  | 73.1  | 40-130         | 8.87   | 3           |
| 2,4-Dinitrophenol           | 2130             | 328                     | ug/kg          | 3310           |                  | 64.2  | 15-140         | 3.13   | 3           |
| 2,4-Dinitrotoluene          | 2740             | 129                     | ug/kg          | 3310           |                  | 82.7  | 40-130         | 5.87   | 3           |
| 2,6-Dinitrotoluene          | 2730             | 129                     | ug/kg          | 3310           |                  | 82.3  | 40-130         | 1.76   | 30          |
| 2-Chloronaphthalene         | 2740             | 129                     | ug/kg          | 3310           |                  | 82.8  | 40-130         | 3.82   | 30          |
| 2-Chlorophenol              | 2630             | 129                     | ug/kg          | 3310           |                  | 79.3  | 40-130         | 17.4   | 3           |
| 2-Methylnaphthalene         | 2250             | 129                     | ug/kg          | 3310           |                  | 67.9  | 40-130         | 2.50   | 3           |
| Nitrobenzene                | 2800             | 129                     | ug/kg          | 3310           |                  | 84.5  | 40-130         | 1.41   | 31          |
|                             | 2170             | 129                     | ug/kg<br>ug/kg | 3310           |                  | 65.6  |                | 16.3   | 3<br>3      |
| 2-Methylphenol              |                  |                         | ug/kg<br>ug/kg |                |                  |       | 40-130         |        |             |
| 2-Nitroaniline              | 2600             | 129                     |                | 3310           |                  | 78.5  | 40-130         | 0.973  | 3           |
| 2-Nitrophenol               | 2540             | 328                     | ug/kg          | 3310           |                  | 76.8  | 40-130         | 5.89   | 3           |
| 3-Nitroaniline              | 2660             | 129                     | ug/kg          | 3310           |                  | 80.5  | 40-130         | 5.31   | 3           |
| 4,6-Dinitro-2-methylphenol  | 2700             | 328                     | ug/kg          | 3310           |                  | 81.5  | 30-130         | 18.5   | 3           |
| 4-Bromophenyl phenyl ether  | 2240             | 129                     | ug/kg          | 3310           |                  | 67.6  | 40-130         | 8.81   | 3           |
| 4-Chloro-3-methylphenol     | 2220             | 129                     | ug/kg          | 3310           |                  | 66.9  | 40-130         | 2.80   | 3           |
| 4-Chlorophenyl phenyl ether | 2260             | 129                     | ug/kg          | 3310           |                  | 68.4  | 40-130         | 1.92   | 3           |
| 4-Nitroaniline              | 1970             | 129                     | ug/kg          | 3310           |                  | 59.5  | 40-130         | 30.5   | 3           |
| 4-Nitrophenol               | 2680             | 328                     | ug/kg          | 3310           |                  | 80.9  | 40-130         | 12.4   | 3           |
| Acenaphthene                | 2220             | 129                     | ug/kg          | 3310           |                  | 67.1  | 40-130         | 0.688  | 3           |
| Acenaphthylene              | 2690             | 129                     | ug/kg          | 3310           |                  | 81.3  | 40-130         | 3.10   | 3           |
| Anthracene                  | 3050             | 129                     | ug/kg          | 3310           |                  | 92.1  | 40-130         | 3.58   | 3           |
| Benzo(a)anthracene          | 2670             | 129                     | ug/kg          | 3310           |                  | 80.5  | 40-130         | 0.773  | 3           |
| Benzo(a)pyrene              | 2920             | 129                     | ug/kg          | 3310           |                  | 88.2  | 40-130         | 5.43   | 30          |
| Benzo(b)fluoranthene        | 3050             | 129                     | ug/kg          | 3310           |                  | 92.0  | 40-130         | 3.27   | 3(          |
| Benzo(g,h,i)perylene        | 2800             | 129                     | ug/kg          | 3310           |                  | 84.5  | 40-130         | 11.4   | 3           |
| Benzo(k)fluoranthene        | 3270             | 129                     | ug/kg          |                |                  | 98.8  |                | 5.83   | 31          |
| ` '                         |                  |                         |                | 3310           |                  |       | 40-130         |        |             |
| Biphenyl                    | 663              | 20                      | ug/kg          | 828            |                  | 80.1  | 40-130         | 5.65   | 3           |
| Bis(2-chloroethoxy)methane  | 2890             | 129                     | ug/kg          | 3310           |                  | 87.3  | 40-130         | 0.643  | 3           |
| Bis(2-chloroethyl)ether     | 2740             | 129                     | ug/kg          | 3310           |                  | 82.8  | 40-130         | 12.1   | 3           |
| Bis(2-chloroisopropyl)ether | 3070             | 129                     | ug/kg          | 3310           |                  | 92.8  | 40-130         | 15.9   | 3           |
| Bis(2-ethylhexyl)phthalate  | 3030             | 397                     | ug/kg          | 3310           |                  | 91.4  | 40-130         | 2.30   | 3           |
| Butyl benzyl phthalate      | 2900             | 129                     | ug/kg          | 3310           |                  | 87.5  | 40-130         | 0.895  | 3           |
| Chrysene                    | 2930             | 129                     | ug/kg          | 3310           |                  | 88.6  | 40-130         | 2.63   | 30          |
| Di-n-octyl phthalate        | 3290             | 199                     | ug/kg          | 3310           |                  | 99.4  | 40-130         | 42.1   | 3           |
| Dibenz(a,h)anthracene       | 2610             | 129                     | ug/kg          | 3310           |                  | 78.8  | 40-130         | 4.46   | 3           |
| Dibenzofuran                | 2720             | 129                     | ug/kg          | 3310           |                  | 82.1  | 40-130         | 5.66   | 3           |
| Diethyl phthalate           | 2830             | 129                     | ug/kg          | 3310           |                  | 85.6  | 40-130         | 3.64   | 3           |
| Dimethyl phthalate          | 2580             | 328                     | ug/kg          | 3310           |                  | 78.0  | 40-130         | 3.23   | 3           |
| Di-n-butyl phthalate        | 3310             | 199                     | ug/kg          | 3310           |                  | 99.9  | 40-130         | 3.38   | 3           |
| Fluoranthene                | 3080             | 129                     | ug/kg          | 3310           |                  | 93.0  | 40-130         | 2.92   | 3           |
|                             | 2640             | 129                     | ug/kg<br>ug/kg | 3310           |                  |       |                | 5.28   |             |
| Fluorene                    |                  |                         |                |                |                  | 79.8  | 40-130         |        | 3           |
| Hexachlorobenzene           | 2790             | 129                     | ug/kg          | 3310           |                  | 84.1  | 40-130         | 8.01   | 3           |
| Hexachlorobutadiene         | 2510             | 129                     | ug/kg          | 3310           |                  | 75.8  | 40-130         | 2.76   | 3           |
| Hexachlorocyclopentadiene   | 2640             | 328                     | ug/kg          | 3310           |                  | 79.8  | 40-130         | 4.46   | 3           |
| Hexachloroethane            | 2460             | 129                     | ug/kg          | 3310           |                  | 74.3  | 40-130         | 18.8   | 3           |
| Indeno(1,2,3-cd)pyrene      | 2730             | 129                     | ug/kg          | 3310           |                  | 82.3  | 40-130         | 4.68   | 3           |
| Isophorone                  | 2960             | 129                     | ug/kg          | 3310           |                  | 89.3  | 40-130         | 1.75   | 3           |
| Naphthalene                 | 2400             | 129                     | ug/kg          | 3310           |                  | 72.5  | 40-130         | 1.84   | 3           |
| N-Nitrosodimethylamine      | 2060             | 129                     | ug/kg          | 3310           |                  | 62.3  | 40-130         | Page   |             |

Page 37 of 43

#### Semivolatile organic compounds (Continued)

|                                 |                  |         | Reporting   |       | Spike        | Source       |             | %REC          |      | RPD   |
|---------------------------------|------------------|---------|-------------|-------|--------------|--------------|-------------|---------------|------|-------|
| Analyte                         | Result           | Qual    | Limit       | Units | Level        | Result       | %REC        | Limits        | RPD  | Limit |
| Batch: B4B1213 - 1_Semivola     | ntiles Extractio | ons (Co | ntinued)    |       |              |              |             |               |      |       |
| LCS Dup (B4B1213-BSD1)          |                  |         |             | Pr    | epared: 02/2 | 8/24 Analyze | d: 03/01/24 |               |      |       |
| N-Nitrosodi-n-propylamine       | 2530             |         | 129         | ug/kg | 3310         |              | 76.3        | 40-130        | 11.4 | 30    |
| N-Nitrosodiphenylamine          | 2890             |         | 129         | ug/kg | 3310         |              | 87.4        | 40-130        | 5.24 | 30    |
| Pentachlorophenol               | 2620             |         | 328         | ug/kg | 3310         |              | 79.3        | 15-140        | 8.44 | 30    |
| Phenanthrene                    | 3230             |         | 129         | ug/kg | 3310         |              | 97.5        | 40-130        | 5.11 | 30    |
| Pyrene                          | 3050             |         | 129         | ug/kg | 3310         |              | 92.1        | 40-130        | 1.20 | 30    |
| m&p-Cresol                      | 2270             |         | 258         | ug/kg | 3310         |              | 68.5        | 40-130        | 9.73 | 30    |
| Surrogate: Nitrobenzene-d5      |                  |         | 4090        | ug/kg | 6620         |              | 61.8        | 30-126        |      |       |
| Surrogate: p-Terphenyl-d14      |                  |         | 5160        | ug/kg | 6620         |              | 77.9        | 47-130        |      |       |
| Surrogate: 2-Fluorobiphenyl     |                  |         | <i>3750</i> | ug/kg | 6620         |              | <i>56.7</i> | <i>34-130</i> |      |       |
| Surrogate: Phenol-d6            |                  |         | 3870        | ug/kg | 6620         |              | 58.5        | 30-130        |      |       |
| Surrogate: 2,4,6-Tribromophenol |                  |         | 4140        | ug/kg | 6620         |              | 62.6        | 30-130        |      |       |
| Surrogate: 2-Fluorophenol       |                  |         | 4220        | ug/kg | 6620         |              | 63.8        | 30-130        |      |       |

#### Polychlorinated Biphenyls (PCBs)

|                                                   |              |      | Reporting |       | Spike        | Source       |             | %REC     |      | RPD   |
|---------------------------------------------------|--------------|------|-----------|-------|--------------|--------------|-------------|----------|------|-------|
| Analyte                                           | Result       | Qual | Limit     | Units | Level        | Result       | %REC        | Limits   | RPD  | Limit |
| Batch: B4B1223 - 1_Semivolatil                    | es Extractio | ons  |           |       |              |              |             |          |      |       |
| Blank (B4B1223-BLK1)                              |              |      |           | Pr    | epared: 02/2 | 9/24 Analyze | d: 03/02/24 |          |      |       |
| Aroclor-1016                                      | ND           |      | 66        | ug/kg |              |              |             |          |      |       |
| Aroclor-1221                                      | ND           |      | 66        | ug/kg |              |              |             |          |      |       |
| Aroclor-1232                                      | ND           |      | 66        | ug/kg |              |              |             |          |      |       |
| Aroclor-1242                                      | ND           |      | 66        | ug/kg |              |              |             |          |      |       |
| Aroclor-1248                                      | ND           |      | 66        | ug/kg |              |              |             |          |      |       |
| Aroclor-1254                                      | ND           |      | 66        | ug/kg |              |              |             |          |      |       |
| Aroclor-1260                                      | ND           |      | 66        | ug/kg |              |              |             |          |      |       |
| Aroclor-1262                                      | ND           |      | 66        | ug/kg |              |              |             |          |      |       |
| Aroclor-1268                                      | ND           |      | 66        | ug/kg |              |              |             |          |      |       |
| PCBs (Total)                                      | ND           |      | 66        | ug/kg |              |              |             |          |      |       |
| Surrogate: 2,4,5,6-Tetrachloro-m-xylene<br>(TCMX) |              |      | 8.34      | ug/kg | 13.3         |              | 62.6        | 36.2-130 |      |       |
| Surrogate: Decachlorobiphenyl (DCBP)              |              |      | 6.03      | ug/kg | 13.3         |              | 45.2        | 43.3-130 |      |       |
| LCS (B4B1223-BS1)                                 |              |      |           | Pr    | epared: 02/2 | 9/24 Analyze | d: 03/02/24 |          |      |       |
| Aroclor-1016                                      | 199          |      | 66        | ug/kg | 167          |              | 119         | 58.2-125 |      |       |
| Aroclor-1260                                      | 195          |      | 66        | ug/kg | 167          |              | 117         | 65.5-130 |      |       |
| Surrogate: 2,4,5,6-Tetrachloro-m-xylene<br>(TCMX) |              |      | 10.2      | ug/kg | 13.3         |              | 76.4        | 36.2-130 |      |       |
| Surrogate: Decachlorobiphenyl (DCBP)              |              |      | 6.50      | ug/kg | 13.3         |              | 48.8        | 43.3-130 |      |       |
| LCS Dup (B4B1223-BSD1)                            |              |      |           | Pr    | epared: 02/2 | 9/24 Analyze | d: 03/02/24 |          |      |       |
| Aroclor-1016                                      | 206          |      | 66        | ug/kg | 167          |              | 124         | 58.2-125 | 3.68 | 20    |
| Aroclor-1260                                      | 203          |      | 66        | ug/kg | 167          |              | 122         | 65.5-130 | 3.91 | 20    |
| Surrogate: 2,4,5,6-Tetrachloro-m-xylene<br>(TCMX) |              |      | 10.0      | ug/kg | 13.3         |              | 75.2        | 36.2-130 |      |       |
| Surrogate: Decachlorobiphenyl (DCBP)              |              |      | 6.34      | ug/kg | 13.3         |              | 47.5        | 43.3-130 |      |       |

|                              |                                                      |      | Quality<br>(Conti  | Control |                |                  |         |                |      |              |
|------------------------------|------------------------------------------------------|------|--------------------|---------|----------------|------------------|---------|----------------|------|--------------|
| Total Petroleum Hydrocarbons | 5                                                    |      |                    |         |                |                  |         |                |      |              |
| Analyte                      | Result                                               | Qual | Reporting<br>Limit | Units   | Spike<br>Level | Source<br>Result | %REC    | %REC<br>Limits | RPD  | RPD<br>Limit |
| Batch: B4B1186 - 1_Semivola  | ntiles Extractio                                     | ons  |                    |         |                |                  |         |                |      |              |
| Blank (B4B1186-BLK1)         |                                                      |      |                    |         | Prepared 8     | & Analyzed: 0    | 2/28/24 |                |      |              |
| Total Petroleum Hydrocarbons | ND                                                   |      | 27                 | mg/kg   |                |                  |         |                |      |              |
| Surrogate: Chlorooctadecane  |                                                      |      | 9.08               | mg/kg   | 8.33           |                  | 109     | 50-130         |      |              |
| LCS (B4B1186-BS1)            |                                                      |      |                    |         | Prepared 8     | & Analyzed: 0    | 2/28/24 |                |      |              |
| Total Petroleum Hydrocarbons | 583                                                  |      | 27                 | mg/kg   | 667            |                  | 87.5    | 44.7-125       |      |              |
| Surrogate: Chlorooctadecane  |                                                      |      | 9.39               | mg/kg   | 8.33           |                  | 113     | 50-130         |      |              |
| LCS Dup (B4B1186-BSD1)       | LCS Dup (B4B1186-BSD1) Prepared & Analyzed: 02/28/24 |      |                    |         |                |                  |         |                |      |              |
| Total Petroleum Hydrocarbons | 551                                                  |      | 27                 | mg/kg   | 667            |                  | 82.6    | 44.7-125       | 5.71 | 30           |
| Surrogate: Chlorooctadecane  |                                                      |      | 9.05               | mg/kg   | 8.33           |                  | 109     | 50-130         |      |              |

#### **Notes and Definitions**

| <u>Item</u> | Definition                                            |
|-------------|-------------------------------------------------------|
| Wet         | Sample results reported on a wet weight basis.        |
| ND          | Analyte NOT DETECTED at or above the reporting limit. |

### NEW ENGLAND TESTING LABORATORY, IN

59 Greenhill Street West Warwick, RI 02893

| West Warwick,<br>1-888-863-8522               |                  |                                                                | 4 [                        | 3 2     |        | 7035                 | е         |                                          | 14        | Λ     |                                                                   |
|-----------------------------------------------|------------------|----------------------------------------------------------------|----------------------------|---------|--------|----------------------|-----------|------------------------------------------|-----------|-------|-------------------------------------------------------------------|
| 3096                                          | PROJECT NAME/    | LOCATION<br>LYNARD                                             |                            |         |        |                      | PR        |                                          |           | 7/    |                                                                   |
| CLIENT                                        |                  |                                                                | A                          |         | 0      | NO.                  | PRESERVAT | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1    |           | //    |                                                                   |
| REPORT TO:<br>INVOICE TO:                     |                  |                                                                | U                          | SO      | OTHER  | OF                   | A         | 10/                                      | (A)       |       |                                                                   |
| DATE TIME                                     | C G R A A P B    | SAMPLE I.D.                                                    | A<br>U<br>E<br>O<br>U<br>S | Ĺ       | R      | CONTAINERS           | V<br>E    |                                          | *///      |       | REMARKS                                                           |
| 2/27/24                                       | X                | B-108,2-4                                                      |                            | 7       |        | 3                    |           | XX                                       |           |       | PID ZO. IPPUNV                                                    |
| 212124                                        | Х                | 8-118,2-41                                                     | . 90                       | V       |        | 3                    |           | 44                                       |           |       | 11 11                                                             |
|                                               |                  |                                                                |                            |         |        |                      |           |                                          |           |       |                                                                   |
|                                               |                  |                                                                |                            |         |        |                      |           |                                          |           |       |                                                                   |
|                                               |                  |                                                                |                            |         |        |                      |           |                                          |           |       |                                                                   |
|                                               |                  |                                                                |                            |         |        |                      |           |                                          |           |       |                                                                   |
|                                               |                  |                                                                |                            |         |        |                      |           |                                          |           |       |                                                                   |
|                                               |                  |                                                                |                            |         |        |                      |           |                                          |           |       |                                                                   |
|                                               |                  |                                                                |                            |         |        |                      |           |                                          | 1         |       |                                                                   |
| Sampled by: (Signatur  Relinquished by: (Sign | ille             | Date/Time Received by: (\$ 2/27/29  Date/Time Received by: (\$ | )=/                        |         | Z      | 27 ZZ LJ:3           | -         | oratory Remar<br>np. received:<br>oled □ | ks: 3     |       | Special Instructions: List Specific Detection Limit Requirements: |
| Relinquished by: (Sign                        | _                | - 2/27/7/ 1:22                                                 | boratory by. (Signature)   | _       | 1      | 27   13 <sub>0</sub> | 20        |                                          |           |       |                                                                   |
| No                                            | roots the falls: | wing tests: Radiologicals, Radon, Asbestos                     | MK Perchan                 | rata Br | romati | 1771                 | 24        | Imanalla Car                             | hamatos C | T ETD | Turnaround (Business Days)                                        |

Page 42 of 43

|                                                                                                                                                                                                                                                                                     | MassDEP Analytical Protocol Certification Form                                                                                                                                                                                                                                                                             |                             |                                           |                            |                                                     |                                  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|-------------------------------------------|----------------------------|-----------------------------------------------------|----------------------------------|--|
| Labo                                                                                                                                                                                                                                                                                | Laboratory Name: New England Testing Laboratory, Inc. Project #: 3096                                                                                                                                                                                                                                                      |                             |                                           |                            |                                                     |                                  |  |
| Proje                                                                                                                                                                                                                                                                               | ect Location                                                                                                                                                                                                                                                                                                               | on: Maynard                 |                                           |                            | RTN:                                                |                                  |  |
|                                                                                                                                                                                                                                                                                     | Form pro<br>B27035                                                                                                                                                                                                                                                                                                         | ovides certification        | ons for the followin                      | g data set: list Lab       | oratory Sample ID N                                 | lumber(s):                       |  |
| Matrio                                                                                                                                                                                                                                                                              | ces: 🗆 Gi                                                                                                                                                                                                                                                                                                                  | roundwater/Surfac           | ce Water ⊠ Soil/Se                        | diment   Drinking          | y Water □ Air □ Oth                                 | er:                              |  |
| CAM                                                                                                                                                                                                                                                                                 | Protoco                                                                                                                                                                                                                                                                                                                    | ol (check all that a        | apply below):                             |                            |                                                     |                                  |  |
| 8260 CAM                                                                                                                                                                                                                                                                            | VOC<br>II A ⊠                                                                                                                                                                                                                                                                                                              | 7470/7471 Hg<br>CAM III B ⊠ | MassDEP VPH<br>(GC/PID/FID)<br>CAM IV A □ | 8082 PCB<br>CAM V A 🗵      | 9014 Total<br>Cyanide/PAC<br>CAM VI A □             | 6860 Perchlorate<br>CAM VIII B □ |  |
|                                                                                                                                                                                                                                                                                     | SVOC<br>II B ⊠                                                                                                                                                                                                                                                                                                             | 7010 Metals<br>CAM III C □  | MassDEP VPH<br>(GC/MS)<br>CAM IV C □      | 8081 Pesticides<br>CAM V B | 7196 Hex Cr<br>CAM VI B                             | MassDEP APH<br>CAM IX A □        |  |
|                                                                                                                                                                                                                                                                                     | Metals<br>III A ⊠                                                                                                                                                                                                                                                                                                          | 6020 Metals<br>CAM III D □  | MassDEP EPH<br>CAM IV B □                 | 8151 Herbicides<br>CAM V C | 8330 Explosives<br>CAM VIII A □                     | TO-15 VOC<br>CAM IX B □          |  |
| A                                                                                                                                                                                                                                                                                   | Affirmativ                                                                                                                                                                                                                                                                                                                 | e Responses to              | Questions A through                       | gh F are required t        | for "Presumptive Ce                                 | rtainty" status                  |  |
| A                                                                                                                                                                                                                                                                                   | Were all samples received in a condition consistent with those described on the Chain-of-Custody, properly preserved (including temperature) in the field or laboratory, and prepared/analyzed within method holding times?   ☑ Yes ☐ No                                                                                   |                             |                                           |                            |                                                     |                                  |  |
| В                                                                                                                                                                                                                                                                                   | Were the analytical method(s) and all associated QC requirements specified in the selected CAM protocol(s) followed?   □ Yes □ No                                                                                                                                                                                          |                             |                                           |                            |                                                     |                                  |  |
| С                                                                                                                                                                                                                                                                                   | Were all required corrective actions and analytical response actions specified in the selected CAM protocol(s) implemented for all identified performance standard non-conformances?   ☑ Yes ☐ No                                                                                                                          |                             |                                           |                            |                                                     |                                  |  |
| D                                                                                                                                                                                                                                                                                   | Does the laboratory report comply with all the reporting requirements specified in CAM VII A, "Quality Assurance and Quality Control Guidelines for the Acquisition and Reporting of Analytical Data"?   □ Yes □ No                                                                                                        |                             |                                           |                            |                                                     |                                  |  |
| E                                                                                                                                                                                                                                                                                   | VPH, EPH, APH, and TO-15 only a. VPH, EPH, and APH Methods only: Was each method conducted without significant modification(s)? (Refer to the individual method(s) for a list of significant modifications). b. APH and TO-15 Methods only: Was the complete analyte list reported for each method?  □ Yes □ No □ Yes □ No |                             |                                           |                            |                                                     |                                  |  |
| F                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                            |                             |                                           |                            | -conformances identified<br>Questions A through E)? |                                  |  |
| Res                                                                                                                                                                                                                                                                                 | sponses                                                                                                                                                                                                                                                                                                                    | to Questions G,             | H and I below are re                      | equired for "Presu         | mptive Certainty" st                                | atus                             |  |
| G                                                                                                                                                                                                                                                                                   | Were the reporting limits at or helow all CAM reporting limits specified in the selected CAM                                                                                                                                                                                                                               |                             |                                           |                            |                                                     |                                  |  |
| <u>Data User Note</u> : Data that achieve "Presumptive Certainty" status may not necessarily meet the data usability and representativeness requirements described in 310 CMR 40. 1056 (2)(k) and WSC-07-350.                                                                       |                                                                                                                                                                                                                                                                                                                            |                             |                                           |                            |                                                     |                                  |  |
| Н                                                                                                                                                                                                                                                                                   | Were <b>all</b> QC performance standards specified in the CAM protocol(s) achieved?   ☑ Yes ☐ No¹                                                                                                                                                                                                                          |                             |                                           |                            |                                                     |                                  |  |
| I                                                                                                                                                                                                                                                                                   | Were results reported for the complete analyte list specified in the selected CAM protocol(s)?  ☐ Yes ☐ No¹                                                                                                                                                                                                                |                             |                                           |                            |                                                     |                                  |  |
| ¹All r                                                                                                                                                                                                                                                                              | <sup>1</sup> All negative responses must be addressed in an attached laboratory narrative.                                                                                                                                                                                                                                 |                             |                                           |                            |                                                     |                                  |  |
| I, the undersigned, attest under the pains and penalties of perjury that, based upon my personal inquiry of those responsible for obtaining the information, the material contained in this analytical report is, to the best of my knowledge and belief, is accurate and complete. |                                                                                                                                                                                                                                                                                                                            |                             |                                           |                            |                                                     |                                  |  |
| Sign                                                                                                                                                                                                                                                                                | ature: 💯                                                                                                                                                                                                                                                                                                                   |                             |                                           | Positio                    | n: Laboratory Director                              |                                  |  |
| Print                                                                                                                                                                                                                                                                               | Printed Name: Richard Warila                                                                                                                                                                                                                                                                                               |                             |                                           |                            | 3/5/2024                                            |                                  |  |

Page 43 of 43

MAY 22, 2024 [ADD2]

Mount Vernon Group Architects, Inc., Project No. 02021.10

#### **SECTION 31 20 00**

#### **EARTH MOVING**

#### PART 1 - GENERAL

#### 1.01 RELATED DOCUMENTS

A. All the Contract Documents, including Drawings, General and Supplementary Conditions and Division 1 – General Requirements, apply to the Work of this Section.

#### 1.02 SPECIAL INSTRUCTIONS

- A. The General Contractor shall become familiar with other Sections of the Specifications to determine the type and extent of work there under which affects the work of this section whether or not such work is specifically mentioned.
- B. Examine all drawings and all other Sections of the Specifications for the requirements therein affecting the work of this trade. Plans, surveys, measurements, and dimensions, under which the work is to be performed are believed to be correct to the best of the Architect's knowledge, but the Contractor shall have examined them for himself during the bidding period, as no allowance will be made for any errors or inaccuracies that may be found herein. The contractor shall reconcile all drawings.
- C. Where there is a conflict between drawings and these specifications, the stricter requirement and the interpretation that is most in favor of the owner shall be adopted at no additional cost to the owner.
- D. By submitting a bid, the Contractor affirms that he has carefully examined the site and all conditions affecting work under this Section. No claim for additional costs will be allowed because of lack of full knowledge of existing conditions.
- E. Coordinate work with that of all other trades affecting or affected by work of this Section. Cooperate with such trades to assure a steady progress of work under this Contract.

#### 1.03 DESCRIPTION OF WORK

- A. The Base Bid shall include but is not limited to the following:
  - 1. Removing and stacking topsoil within the limits noted in the drawings.
  - Excavation of earth, and rock excavating to the elevations noted on the drawings or specified herein, whichever is
    deeper. Disposing of excavated material generated within the limit of excavation and installing structural fill within
    the footprint of the proposed building and within the influence zone starting from the natural sand and gravel or
    rock up to finish grade as shown on drawings.
  - 3. Removal and disposal of existing utilities as shown in the drawings.
  - 4. Removal and disposal of asphalt and concrete pavement, retaining walls, fences, curbing, brush, trees and tree stumps to the limits as shown on drawings. [ADD2]
  - 5. Improving the existing fill within proposed paved areas.
- B. The Work of this Section includes, but is not limited to, furnishing and installation of the following:
  - 1. Do not commence any excavation or construction work until verification of the layout performed by the Engineer/Surveyor has been received and approved by the Architect.
  - 2. All materials, equipment, labor, and services required for all Earth Moving work, including all items incidental thereto, as specified herein and as shown on the Drawings:
  - 3. All excavated soil shall be removed from the site and disposed of.
  - 4. No burning on the site shall be permitted.

MAY 22, 2024 [ADD2]

Mount Vernon Group Architects, Inc., Project No. 02021.10

- 5. Removing unsuitable materials from within the proposed building footprint and the clearing limits noted on the drawings, including asphalt, existing fill, and organic matter, construction debris, remnants of existing foundations, and other deleterious matter.
- 6. Improving the subgrade of the proposed paved areas in the existing fill as described in these specifications.
- 7. Dewatering
- 8. Proof-rolling of exposed subgrade for fill, footings, foundations, slabs, walks, pavements, lawns and grasses, and exterior plants.
- 9. Performing test pits before the start of and during excavation as required by the Geotechnical Engineer;
- Removing and/or improving the existing fill in accordance with the requirements of Section 3.02 of these specifications.
- Amending the existing fill to meet the gradation requirements of Structural Fill and/or Ordinary Fill.
- 12. Fill slopes and site retaining walls.
- 13. Installing excavation support, shoring or bracing as necessary.
- 14. Protecting existing utilities during the different phases of the earthwork operations.
- 15. Disposing off-site of excess or unsuitable materials.
- 16. Placing bedding, sub-base and base course layers.
- 17. Stabilizing/mitigating saturated or otherwise disturbed materials.
- 18. Excavating and backfilling required for the installation of the building slab and footings, pavements, underground utilities including storm drainage, sanitary, electrical and water.
- 19. Pumping and/or bailing necessary to maintain excavated spaces free from water from any source whatsoever.
- 20. Preparation, submission of, and compliance with an approved, phased erosion control plan in accordance with DEP requirements for a SWPPP (Stormwater Pollution Prevention Plan) to include materials and measures required to control soil erosion resulting from construction operations for the duration of the project.
- 21. All temporary stormwater management controls shall be in accordance with the Town of Maynard Stormwater Drain System By-Laws Chapter 33, Stormwater Management By-Laws Chapter 34 latest addition and the Town of Maynard MS-4 permit. As enforced by the Town of Maynard (DPW) Department of Public Works or a DPW duly authorized representative.
- 22. Designation of an Erosion Control Supervisor and submission of weekly erosion control reports.
- 23. Coordination with Archaeological Monitor.
- 24. Sediment removal and disposal.
- 25. Maintenance of erosion control devices.
- 26. Removal of erosion control devices as directed.
- 27. Install temporary construction fencing and safety devices or controls as specified and as necessary.
- 28. Dust control and clean-up.
- 29. Performing material testing, and field density testing as needed.
- Groundwater Control, dewatering, pumping, bailing, filtering, and control of groundwater and surface water for all
  work under this contract in accordance with item 1.13 of these specifications.
- 31. Refer to specification Section 31 21 01 Site Utilities Preparation for additional dewatering requirements.
- 32. Installing fencing and safety devices or controls as specified and as necessary.
- 33. Notifying all affected utility companies and Dig Safe before the start of work.
- 34. Processing and improving onsite marginal soil, as needed, including by crushing and blending, to meet the specifications herein.
- 35. Installing seismographs and monitoring vibration at the nearby existing buildings during construction. The cost of vibration monitoring shall be included in the base bid.

MAY 22, 2024 [ADD2]

Mount Vernon Group Architects, Inc., Project No. 02021.10

#### 1.04 GENERAL REQUIREMENTS

- A. The Contractor shall furnish all labor, material, tools, and equipment necessary to excavate materials; segregate, track, handle, sample, analyze, and test excavated materials, backfill, and re-grade as indicated on the Drawings.
- B. The Contractor shall use suitable, amended on-site soils and fill, and soil from off-site sources, as needed. Please note that most of the on-site materials will likely not be suitable for reuse without amendment, nor will all required material gradations be present on the site. The contractor shall avoid mixing the reusable soils with fine-grained and/or organic soils.
- C. Rock blasted or excavated from the excavation area shall not be used directly for backfill below footings or retaining walls unless the rock is processed to meet the gradations of the individual fill materials as noted herein.
- D. The Contractor shall make excavations in such a manner and to such widths that will provide suitable room for performing the Work and shall furnish and place all sheeting, bracing, and supports, if necessary. Excavation support is anticipated for this project.
- E. The Contractor shall provide labor and material for all pumping and draining, as necessary; and shall render the bottom of excavation firm and unyielding, and dry and in all respects acceptable. The Contractor shall collect and properly dispose of all discharge water from dewatering systems in accordance with Town of Maynard Bylaws noted herein and all State requirements, regulations and permits.
- F. The contractor shall provide a dewatering system for the discharge water used during the installation of the geothermal wells. Refer to Section 31 21 00 Site Utilities Preparation for requirements.
- G. The Contractor shall raise the Site to final grades and compact the subgrade and intermediate layers to the required criteria set forth within this Section.
- H. The contractor shall provide routine monitoring of in-place excavation support system.
- I. Contractor shall protect and moisture condition all onsite and imported materials for proper installation, compaction, and use. This includes covering, drying, and adding moisture in order to maintain suitable workability of the soil materials. Failure by the Contractor to follow this requirement shall not be cause for additional cost to the Owner.

#### 1.05 LAWS AND REGULATIONS

- A. Work shall be accomplished in accordance with regulations of local, county, state and national agencies or utility company standards as they apply.
- B. Comply with the rules, regulations, laws and ordinances of the Town of Maynard, of the State of Massachusetts, appropriate agencies of the State of Massachusetts and all other authorities having jurisdiction. Coordinate all work done within Town and State rights of way with the appropriate agencies. Provide all required traffic control and safety measures, including uniformed police officers per Town and State requirements. All labor, materials, equipment and services necessary to make the work comply with such requirements shall be provided without additional cost to the Owner.
- C. Comply with the provisions of the Manual of Accident Prevention in Construction of the Associated General Contractors of America, Inc., the Commonwealth of Massachusetts Rules and Regulations For the Prevention of Accidents in Construction Operations, and the requirements of the Occupational Safety and Health Administration (OSHA), United States Department of Labor.
- D. The Contractor shall procure and pay for all permits and licenses required for the complete work specified herein and shown on the Drawings.

#### 1.06 RELATED WORK SPECIFIED ELSEWHERE

A. Carefully examine all the Contract Documents for requirements that affect the Work of this Section.

MAY 22, 2024 [ADD2]

Mount Vernon Group Architects, Inc., Project No. 02021.10

- B. Other Specification Sections which directly relate to the Work of this section include, but are not limited to, the following Sections:
  - 1. Section 31 09 00 Subsurface Investigation
  - 2. Section 31 10 00 Site Clearing
  - 3. Section 31 21 00 Site Preparation
  - 4. Section 31 21 01 Site Utilities Preparation
  - 5. Section 32 25 00 Erosion & Sedimentation Controls
  - 6. Section 32 16 00 Wood Guard Rail
  - 7. Section 32-31 70 Chain Link Fences and Gates
  - 8. Section 33 32 23 Segmental Retaining Walls
  - 9. Section 33 61 37 Geothermal Ground -Source Heat Exchange System

#### 1.07 REFERENCE SPECIFICATIONS [ADD2]

- A. Comply with applicable requirements of the following standards. Where these standards conflict with other specified requirements, the most restrictive requirements govern.
  - 1. American Society for Testing and Materials (ASTM):
    - a. ASTM C136, Sieve Analysis of Fine and Coarse Aggregates.
    - b. ASTM D1556, Density of Soil In Place by the Sand-Cone Method
    - c. ASTM D1557, Standard Test Methods for Laboratory Compaction Characteristics of Soil Using Modified Effort (56,000 ft-lbs/ft.<sup>3</sup> (2,700 kN-m/m<sup>3</sup>)).
    - d. ASTM D6938, Standard Test Method for In-Place Density and Water Content of Soil and Soil-Aggregate by Nuclear Methods (Shallow Depth).
    - e. ASTM D6913, Particle Size Analysis of Soils.
    - f. ASTM D2487, Standard Test Method for Classification of Soils for Engineering Purposes.
  - 2. Commonwealth of Massachusetts:
    - a. Massachusetts Department of Transportation (MassDOT), "Standard Specifications for Highways and Bridges" latest edition.
    - b. Commonwealth of Massachusetts State Building Code.
  - 3. American Association of State Highway and Transportation Officials (AASHTO):
    - a. AASHTO T-11, Standard Method of Test for amount of material finer than 0.075 mm sieve in aggregate.
    - b. AASHTO T-27, Standard Method of Test for sieve analysis of fine and coarse aggregates.
  - 4. Occupational Safety and Health Act (OSHA) of 1970 (Public Law 91-596 of the United States, 29 USC Section 651 et seq.).
  - 5. Deleted [ADD2]
  - 6. DD Phase Geotechnical Report, Proposed Green Meadow Elementary School dated April 24, 2024 [ADD2]

#### 1.08 BENCH MARKS AND ENGINEERING

- A. Employ, with the Contract Price, a competent Civil Engineer or Land Surveyor, registered in Massachusetts, who shall perform the following work:
  - 1. All lines and grade work not presently established at the site shall be laid out by the Engineer/Surveyor in accordance with the Drawings and Specifications. Establish permanent benchmarks necessary for the work under this Contract. Maintain all established bounds and bench marks and replace as directed at no expense to the Owner any that are destroyed or disturbed.
  - 2. Establish all lines and grades for the work and verify all locations, property lines, work lines, and other dimensioned points indicated on the Contract Drawings for the existing site.

MAY 22, 2024 [ADD2]

Mount Vernon Group Architects, Inc., Project No. 02021.10

- 3. Submit to the Architect, a written confirmation of locations of all lines, and any discrepancies between conditions and locations as they actually exist and those indicated on the Contract Drawings. Such confirmation shall bear the registration stamp of the Engineer/Surveyor.
- B. The General Contractor shall use GPS (Global Positioning System) to locate all horizontal and vertical data shown on the CAD drawings for all proposed site work.
- C. Do not commence any excavation or construction work until verification of the layout performed by the Engineer/Surveyor has been received and approved by the Architect.
- D. Do not commence any excavation or construction work until verification of the layout performed by the Engineer/Surveyor has been received and approved by the Architect.

#### 1.09 SOIL REPORT

- A. DD Phase Geotechnical Report, Proposed Green Meadows Elementary School Maynard Massachusetts dated: April 27, 2024 prepared by Lahlaf Geotechnical Consulting, Inc. is attached hereto, and hereby made part of the Contract Documents. [ADD2]
- B. The Owner assumes no responsibility for the General Contractor's failure to make his own site investigation and makes no representation other than the soils reports regarding the character of the soil or subsurface conditions which may be encountered during the performance of the work. The General Contractor shall refer to Section 31 09 00 Subsurface Investigation, and attached soil Reports. Failure by the General Contractor to be aware of existing site conditions shall not be cause for additional cost to the Owner.
- C. The subsurface explorations and geotechnical report were performed primarily for use in preparing the foundation design and are included for the convenience of the contractor. Use and interpretation of these data for purposes of the work shall be the responsibility of the Contractor. Subsurface conditions and groundwater levels are not considered as accurate for any times or locations other than the specific time and location of each of the explorations.
- D. Interpretation of this data for purposes of construction is the responsibility of the Contractor. It is the Contractor's responsibility to make interpretations and draw conclusions with respect to the character of materials to be encountered and groundwater conditions at the site and their impact upon Contractor's work based on his expert knowledge of the area, construction dewatering methods, and support of excavation methods. Contractor may, at his own expense, conduct additional subsurface testing as required for his own information after approval by the Owner.
- E. Information on subsurface conditions is made available for the convenience of the Bidders. The Owner does not represent to the General Contractor that the information is either an accurate or a comprehensive indication of subsurface conditions. Bidders are invited to review the information to apprise themselves of the information available, and also to make additional investigations at their own expense.
- F. Test boring location as depicted on the Drawings are located by tape measurements from existing site features and structures and shall only be considered as accurate as the procedure utilized.
- G. The Contractor shall be aware that the ground surface elevation was interpolated to the nearest foot and are approximate.
- H. No claim for extra cost or extension of time resulting from reliance by the General Contractor on information presented herein shall be allowed, except as provided in the Contract Documents.

#### 1.10 EXISTING UTILITIES

- A. Locate and mark underground utilities to remain in service before beginning the work. Active utilities existing on the site and work areas shall be carefully protected from damage and relocated or removed as necessitated by the work. When an active utility line is exposed during construction, its location and elevation shall be plotted on the record drawings as described in this Section and both Architect and Utility Owner notified in writing.
- B. Active utilities existing at the site and work areas shall be carefully protected from damage and relocated or removed as required by the work. When an active utility line is exposed during construction, its location and elevation shall be plotted on the record drawings as described in this Section and both Architect and Utility Owner notified in writing.

MAY 22, 2024 [ADD2]

Mount Vernon Group Architects, Inc., Project No. 02021.10

C. Inactive or abandoned utilities encountered during construction shall be removed if within the building area or grouted, plugged, or capped. The location of such utilities shall be noted on the record drawings and reported in writing to the Architect.

#### 1.11 SAMPLING AND TESTING

- A. The contractor shall submit two (2) 50-lbs samples of each type of fill material, in air-tight containers, proposed for use on-site in accordance with PART 2 PRODUCTS, to the Owner's testing agency for preliminary compliance testing at least two (2) weeks prior to use. No fill material shall be delivered to the site or placed until the material has been preliminarily approved. The final review of the material will be based on a sample tested by the owner's testing agency upon delivery of the material to the site. The gradation curves shall fit entirely within the envelopes defined by the limits specified herein for the material to be approved for use at the site.
  - 1. Samples shall be delivered to the office of the Architect or as directed.
  - 2. Samples required in connection with compaction tests will be taken and transported by the Soils Representative.
  - Additional tests, including grain-size analyses and laboratory compaction tests shall be performed on the material after it is delivered to the site.
  - For on-site materials, submit representative samples, collected from each stockpile of excavated on-site material to be used, directly to the Owner's Geotechnical Consultant's office or as directed at least two (2) weeks in advance of use of these materials.
- B. Product Data: Submit location of pits for borrow material. Samples shall include name of source, name of material, sampling date, and intended use.
- C. Samples shall be representative of the source pit. If materials are found to vary once construction begins, the Contractor will be required to submit additional representative samples, for compliance testing, at his own cost.
- D. Compaction (Field Density) tests:
  - 1. Field density tests shall be performed at all bench and other site fixture pads.
  - 2. Compaction tests shall be performed on each lift of placed and compacted material and at every 100 feet within the same lift. Accordingly, it is the responsibility of the Contractor to provide ample notice to the testing agency to provide a field representative to perform field density tests.
- E. Materials imported to the site by the Contractor for on-site use shall not contain oil, hazardous waste, or deleterious materials.
  - The Contractor shall be responsible for all costs incurred by the Owner as a result of the Contractor's action to import materials containing concentrations of oil and/or hazardous materials to the site, including the cost of removing the contaminated soil, the cost of remediation of onsite soils affected by the contamination, and the cost of replacement..
  - In the event that site characterization of off-site borrow sources indicates that soils are acceptable to the Architect
    or Engineer for use, then chemical testing will not be required. It is anticipated that chemical testing would not
    normally be required for material from customarily utilized commercial borrow sources.
    - No fill material from "urban areas" will be accepted for fill at the site, even if chemical testing indicates no exceedances of "Reportable Concentrations".
    - If requested by the Owner or Engineer, based on review of the borrow site characterization, the Contractor shall conduct testing on proposed fill material and submit results prior to delivery to the site, at no additional cost to the Owner. Testing shall be conducted by a DEP-certified testing laboratory and shall include, at a minimum, the following analytical test data.
    - a. Total Petroleum Hydrocarbons (EPA Method 418.1) every 100 yards
    - b. Volatile Organic Compounds (EPA Method 8420) every 500 yards

MAY 22, 2024 [ADD2]

Mount Vernon Group Architects, Inc., Project No. 02021.10

- c. PCB and Pesticides (EPA Method 8080) every 500 yards
- d. Total RCRA Metals (EPA Method 6000-7000 series) every 500 yards
- e. Polynuclear Aromatic Hydrocarbons (EPA Method 8270) every 500 yards
- f. TCLP for those total parameters which exceed twenty times the TCP criteria every 500 yards.
- g. Total cyanide (EPA 9020)
- 3. All off-site material submitted for use on the project site shall conform to the S-1 Soils Standards contained in the Massachusetts Contingency Plan, dated October 1, 1993, Section 310 CMR 40.0975 or site soil background levels, whichever is lower. Samples will be chemically tested to determine their conformance with the S-1 Soils Standards and site soil background levels.
- 4. Testing parameters and testing frequencies may be reduced, as directed by the Soils Representative.
- 5. All sieve analyses for conformance of on-site and off-site fill materials to be used in the work shall be done by means of a mechanical wet sieve analysis and in accordance with ASTM D 6913 using the sieves listed in Sections 2.01, A. plus the following sieves: #40, #10, and 1 inch. [ADD2]

#### 1.12 QUALITY ASSURANCE

- A. The Owner may retain and pay for the services of an independent testing agency (Soils Representative) to monitor backfill operations, perform laboratory tests on soil samples, and to perform field density tests; and a Geotechnical Engineer to periodically observe the earthwork operations, observe the preparation of the subgrade for footings, slabs, and paved areas, and to review laboratory and field test data. The geotechnical engineer may from time to time request that the contractor excavate tests pits ahead of excavation to confirm subsurface conditions. Test pits shall be performed at no additional cost to the Owner.
- B. The Engineer's duties do not include the supervision or direction of the actual work by the Contractor, his employees, or agents. Neither the presence of the Engineer nor any observation and testing by the Engineer shall excuse the contractor from defects discovered in his Work at that time or subsequent to the testing.
- C. The services of the Soils representative may include but are not limited to monitoring and performing observations of the backfill operations and testing during placement of fills and backfills within the proposed building, parking area, underneath structures in general, and controlled fill areas.
- D. Subgrades shall be observed and approved by the geotechnical engineer before placing fill. The compaction and material composition shall be approved by the geotechnical engineer before placement. The by the Architect, and/or Geotechnical Engineer prior to placing subsequent lifts. If inspections indicate subgrade does not meet specified requirements, the unsuitable subgrade shall be excavated, the unsuitable material shall be removed, and replaced with approved structural backfill material and compacted at no additional cost to the owner or architect. The work shall be done in accordance with this specification.
- E. Costs related to retesting due to unacceptable quality of work and failures discovered by testing shall be paid for by the Contractor at no additional expense to Owner, and the costs thereof will be deducted by the Owner from the Contract Sum.
  - The Soils Representative's presence or the Geotechnical Engineer does not include supervision or direction of
    the actual work by the Contractor, his employees or agents. Neither the presence of the Soils Representative,
    nor any observations and testing performed by him, nor any notice or failure to give notice shall excuse the
    Contractor from defects discovered in his work.
  - 2. The Owner reserves the right to modify the services of the Soils Representative or Geotechnical engineer.
- F. The contractor shall make provisions for allowing safe and timely observations and testing of Contractor's Work by the Geotechnical Engineer and by the Soils Representative. The presence of the independent testing agency and/or the Geotechnical Engineer does not include supervision or direction of the actual work of the Contractor, his employees or agents. Neither the presence of the Soils Representative and/or the Geotechnical Engineer, nor any observations and testing performed by them, nor failure to give notice of defects shall excuse the Contractor from defects discovered in his work.

MAY 22, 2024 [ADD2]

Mount Vernon Group Architects, Inc., Project No. 02021.10

- G. Pre-excavation Conference: Conduct conference at Project site to comply with requirements in Division 1 Section "Project Management and Coordination."
  - Before commencing earthwork, meet with representatives of the governing authorities, Owner, Architect, Engineer, consultants, Soils Representative, and other concerned entities. Review earthwork procedures and responsibilities including testing and inspection procedures and requirements. Notify participants at least 3 working days prior to convening conference. Record discussions and agreements and furnish a copy to each participant.
- H. Testing: Compaction tests will be required by the Owner and will be paid for by the owner. No specific testing schedule has been established at this time. If tests indicate that density requirement have not been achieved, the contractor continue compacting the tested material. All retesting is these areas shall be paid for by the contractor.
- I. The Owner's Testing Agency will perform water content, gradation tests on onsite and processed materials, and compaction tests at a frequency and at locations as required. The results of these tests will be submitted to the Architect, and a copy submitted to the Contractor, on a timely basis so that the Contractor can take such action as is required to remedy the indicated deficiencies.
- J. Contractor shall notify Architect when excavations have reached required subgrade and provide a minimum notice of 24 hours prior to placement of backfill on exposed subgrade. Density and Compaction Testing: The contractor is responsible to schedule compaction tests and allow adequate time for the proper execution of said tests. This section also applies to instances when the General Contractor resumes earthwork operations after a period of pause in earthwork operations that require observations by the Geotechnical Engineer.

#### K. Testing frequency shall be as follows:

| Material                                                             | Responsible<br>Party | Situation               | Test                                                          | Minimum Frequency                                                         |
|----------------------------------------------------------------------|----------------------|-------------------------|---------------------------------------------------------------|---------------------------------------------------------------------------|
| Structural Fill/<br>Ordinary Fill/                                   | Contractor           | Source<br>Investigation | Grain Size                                                    | 1 per source                                                              |
| Processed Gravel                                                     |                      | mvooligation            | Moisture Density Relationship                                 | 1 per source                                                              |
| for Subbase/                                                         | Owner                | During                  | Grain Size t                                                  | 1 per source                                                              |
| Common Borrow/<br>Bedding Material/<br>Crushed Stone /<br>Pea Gravel |                      | Placement               | Moisture Density Relationship                                 | 1 per 100 tons                                                            |
|                                                                      | Owner                | As-Placed               | Dry Density and As-Placed Moisture                            | 2 per lift per location of<br>activity and no less than 1<br>every 500 sf |
| Loam Borrow                                                          | Contractor           | During<br>Placement     | PH, Nitrogen, Phosphorous, Potassium, and USDA Classification | 2 per Acre                                                                |
| Riprap                                                               | Contractor           | Source<br>Investigation | Source Material Certification                                 | 1 per source                                                              |
|                                                                      |                      | mvooligation            | Specific Gravity                                              | 1 per source                                                              |
|                                                                      | Contractor           | During<br>Placement     | Source Material Certification                                 | 1 per 500 tons                                                            |
|                                                                      |                      | i laccinoni             | Specific Gravity                                              | 1 per 500 tons                                                            |

MAY 22, 2024 [ADD2]

Mount Vernon Group Architects, Inc., Project No. 02021.10

The Owner reserves the right to modify the services of the Soils Representative or Geotechnical engineer.

#### 1.13 PROTECTION

- A. All rules and regulations governing the respective utilities shall be observed in executing all work under this Section.
- B. All work shall be executed in such a manner as to prevent any damage to existing streets, curbs, paving, service utility lines, structures and adjoining property. Monuments and benchmarks shall be carefully maintained and, if disturbed or destroyed and replaced.
- C. The work of this Section shall be performed in such a manner as to cause no interference with access by the abutters, Subcontractors or other Contractors to all portions of the site as is necessary for the normal conduct of their work.

#### 1.14 DEFINITIONS

- A. MassDOT specifications shall mean "The Standard Specification for Highways and Bridges", Commonwealth of Massachusetts, Massachusetts Department of Transportation, latest edition, including supplements.
- B. The words "finished grades" as used herein mean the required final grade elevations indicated on the Drawings and defined in this specification section. Where not otherwise indicated, areas outside of buildings shall be given uniform slopes between points, for which finished grades are shown, or between such points and existing grade except that vertical curves or rounding shall be provided at abrupt changes in slope.
- C. Excavation: Removal of material encountered to subgrade elevations indicated and subsequent disposal of materials removed. See EXECUTION section for directions for treatment of excavations in rock.
- D. Unauthorized Excavation: Removal of materials beyond indicated subgrade elevations or dimensions without specific direction of the Architect. Unauthorized excavation, as well as remedial work directed by the Architect, shall be at the Contractor's expense. See EXECUTION section for instructions for treatment of unauthorized excavation.
- E. Additional Excavation: Excavation required beyond anticipated subgrade elevation. See EXECUTION section for procedures.
- F. Natural Subgrade: The undisturbed, inorganic native soil exposed below site fill and disturbed native soils at footing and/or structural fill bearing elevations; or Rock at least 12" below the footing bearing elevation, slabs on grade, or utilities.
- G. Subgrade: Surface or elevation remaining after completing excavation, or top surface of a fill or backfill immediately below subbase, drainage fill, or topsoil materials.
- H. Structure: Buildings, foundations, slabs, tanks, curbs, or other man made stationary features occurring above or below ground surface.
- I. Structural Fill: Imported or approved on site aggregate or select soil meeting the physical properties described in Section 2.1 MATERIALS, and compacted in place to form a supportive bearing surface.
- J. Unsuitable material: On-site materials which are of improper gradation to allow adequate compaction, and/or defined as organically contaminated (including roots), uncontrolled fill material, disturbed native material, or otherwise identified as improper for the intended use by the Architect. Refer to the Supplemental info section of the Geotechnical Engineering Report.
- K. Rock: All materials which, in the opinion of the Architect, require blasting or special impact tools such as jack hammers, sledges, chisels or devices similar in purpose which are designed for use in cutting or breaking materials that have compressive strengths in excess of 300 pounds per square inch in their natural states. Boulders larger than 3 cubic yards in volume in open excavations and larger than 1 cubic yard in trenches are classified as Rock.
- L. Zone of Influence: The area bounded by a one horizontal to one vertical (1H:1V) line sloping downward and outward from the bottom, outer edge of the footings and foundations.

MAY 22, 2024 [ADD2]

Mount Vernon Group Architects, Inc., Project No. 02021.10

- M. The words "invert" or "invert elevation" as used herein shall be defined as the elevation at the inside bottom surface of the pipe or channel.
- N. The words "bottom of the pipe" as used herein shall be defined as the base of the pipe at its outer surface
- O. Trench shall be defined as an excavation of any length where the width is less than twice the depth and where the shortest distance between payment lines does not exceed ten (10') feet. All other excavations shall be defined as open excavations.
- P. Rock (Mass & Rock): Excavated material in beds, ledges, unstratified masses, and conglomerate deposits that cannot be removed by rock excavating equipment equivalent to the following size and performance ratings (Caterpillar 340), without systematic drilling, ram hammering, ripping, or blasting, when permitted.
- Q. Heaved Rock shall be understood to be rock that heaves as a result of blasting and shall include blasted rock and rock disturbed by blasting operations. [ADD2]
- R. Common Borrow: See MATERIALS Section.
- S. Structural Fill: See MATERIALS Section.
- T. Bedding Fill for Pipe and Other Utility Structures: See MATERIALS Section.
- U. Bedding Fill for geothermal pipe trenches: See MATERIALS Section.
- V. Gravel Base Course for Paved Areas: See MATERIALS Section.
- W. Trenching Fill: See MATERIALS Section.
- X. Loam Borrow: See MATERIALS Section.
- Y. Filter Fabric: See MATERIALS Section.
- Z. Vapor Retarder: See MATERIALS Section.

#### 1.15 SUBMITTALS

- A. Submit a detailed construction sequence plan for project excavation indicating temporary stockpile areas, side slopes of excavations, limits of required temporary excavation support and sequence and procedures for subgrade protection, excavation, concrete placement, moisture conditioning of on-site excavated soils used as fill, filling, backfill, and compaction.
- B. Submit Rock blasting plan shall be submitted at least 10 days before the start of blasting operations. This submittal shall include description of blasting operations, handling procedure and storage of explosives, blasting limits and depths, blasting sequence, measures to limit vibrations, as needed, measures to lo limit over-blast and rock heave to less than 2 feet, and measures to protect the existing building during blasting operations.
- C. Grain-size distribution analysis test data shall be delivered with the samples. The analysis shall be performed in accordance with ASTM D 6913 and shall at the minimum include the sieve sizes listed for the respective material in Part 2. The data shall include a plot of the gradation and the envelope of the specified material. A material shall be considered meeting the specifications when its gradation curve fits entirely within the specified envelope. Borrow materials with grain-size distribution curves that do not fall entirely within the specified envelope shall be deemed unacceptable.
- D. Provide submittals in accordance with requirements of Section 01 33 00 Submittal Procedures in accordance with requirements of the Contract Documents.
  - 1. Submit a detailed earthwork sequence plan for project excavation indicating temporary stockpile areas and procedures for subgrade protection.
- E. Submit a dewatering plan for review by the Architect at least two weeks before the start of construction. Dewatering and groundwater control systems shall be designed to keep excavations free of water and to avoid disturbance of the subgrade.

MAY 22, 2024 [ADD2]

Mount Vernon Group Architects, Inc., Project No. 02021.10

- F. Excavation and Excavation Support Plan: Submit at least 10 calendar days prior to the start of the work a detailed plan for the sequence of excavation, and methods to be used to shore roadways, sidewalks and other structures.
- G. Obtain required permits for discharge of dewatering effluent. Submit two copies of all permits obtained at least one week prior to system installation.
- H. Submit soil samples in accordance with Section 1.12 of these specifications.
- Submit representative samples of approved equivalent materials, such as Filter Fabric, for approval prior to delivery to the site.
- J. Submit gradations from suppliers of crushed stone for pipe bedding, structure bedding, and infiltration system encasement and bedding.
- K. Submit shop drawings and calculations for proprietary site retaining walls.

#### 1.16 EXAMINATION OF SITE AND DOCUMENTS

- A. It is hereby understood that the General Contractor has carefully examined the site and all conditions affecting work under this Section. No claim for additional costs shall be allowed because of a lack of knowledge of existing conditions as indicated in the Contract Documents, or obvious from observation of the site.
- B. Plans, surveys, measurements, and dimensions under which the work is to be performed are believed to be correct, but the General Contractor shall have examined them for himself during the bidding period and formed his own conclusions as to the full requirements of the work involved.

#### 1.17 PROJECT COORDINATION

- A. Prior to start of earthwork, the General Contractor shall arrange an onsite meeting with the Architect and the Geotechnical Engineer for the purpose of establishing the General Contractor's schedule of operations, and scheduling observation and requirements. The Geotechnical Engineer may from time-to-time request that the General Contractor excavate test pits ahead of excavation to confirm subsurface conditions at no additional cost to the Owner.
- B. Protect all benchmarks, monuments, and property boundary pins. Replace if destroyed by General Contractor's operation.
- C. As construction proceeds, the Contractor shall be responsible for notifying the Geotechnical Engineer and the independent testing firm prior to the start of earthwork operations requiring observation and/or testing.

#### 1.18 PROJECT CONDITIONS

#### A. "GEOTECHNICAL ENGINEERING REPORT"

- The geotechnical engineering report prepared for this site (which includes subsurface exploration data and an
  exploration location plan) referenced in this section is included in the Supplemental information section and is
  made available for the convenience and information to the Contractor only. It is expressly understood that the
  Owner will not be responsible for any interpretation, conclusions or generalizations made by the contractor
  based on the contractor's review of the report.
- B. Do not proceed with utility interruptions without Architect's written permission. Notify Architect not less than two days in advance of proposed utility interruptions.
- C. Contact utility-locator service for area where Project is located before excavating.
- D. Protect nearby structures from damage. All construction induced damage shall be repaired by the General Contractor at no additional expense to the Owner.
- E. The General Contractor shall obtain and pay for all permits and licenses required to complete the work of this Section.
- F. In case of conflict between regulations or between regulations and Specifications, the General Contractor shall comply with the strictest applicable codes, regulations, or Specifications at no additional cost to the owner.

MAY 22, 2024 [ADD2]

Mount Vernon Group Architects, Inc., Project No. 02021.10

- G. The General Contractor may perform additional test borings and other explorations at no cost to the Owner.
- H. Demolish and completely remove from site existing underground utilities indicated to be removed. Coordinate with utility companies and Town of New Bedford to shut off services if lines are active.

#### 1.19 SEQUENCING AND SCHEDULING

A. As construction proceeds, notify the Architect prior to the start of earthwork operations which require observations and testing. A minimum of 72 hours notification shall be provided for work that requires observation or testing

#### 1.20 AS BUILT SURVEY

- A. At the completion of the specified work, a field survey shall be performed by a surveyor registered in Massachusetts of the as built building, ground elevations (spot elevations 50' on center and at edges of pavement and or curbing, top and bottom of walls and utility structures, floor elevations, utilities, fencing, walls and all site improvements, limit-of-work line, property lines, and tree line within the limit of work. The surveyed information shall be presented in a AutoCAD electronic file format (latest version) and submitted to the Architect in the form of a CD with PDF'S at a scale of 1"=30'.
- B. All field survey work and presentative of the surveyed information shall be completed and submitted to the Architect within four weeks of completion of the construction as specified and as shown on the drawings.

#### 1.21 MEASUREMENTS

- A. Measurement of Unsuitable Soil over-excavation:
  - 1. Strip vegetation, topsoil, buried organic material and fill in accordance with drawings. Remove existing asphalt, curbing, cobbles, boulders, concrete, metal, woods, and above and below ground structures.
  - 2. Remove unsuitable soils to top of natural soil as shown on the Contract Documents or as directed in the field by the Owner's Geotechnical Engineer.
  - 3. Quantity of blasted rock shall be measured by calculating the volume between the pay lines for excavated rock and the top of the rock surface as defined by rock probes performed before the start of blasting. The probes shall be performed in a grid with a maximum spacing of 50 feet. The probes shall extend at least 10 feet in rock. The probes shall be observed by the Geotechnical Engineer.
  - 4. Employ a Registered Land Surveyor to survey to bottom of the excavation for unsuitable soils throughout the building footprint. Excavations shall be surveyed at the corners, high and low points, and a maximum spacing for survey points of 20 feet in each direction on a grid.
  - 5. Quantities shall be measured in their original position to the limits of clearly defined vertical construction lines and to the depth required for the defined construction. Payment will be at the Contract Unit Rates.

#### 1.22 UNIT PRICES

- A. The base bid shall include the excavating and disposing of excavated material generated within the limit of work and specified subgrades grades shown on the drawings or specified herein.
- B. Unit prices shall be provided for all items listed in Part 2- PRODUCTS. The unit rates shall include furnishing/processing, stockpiling, placing, and compacting the material).
- C. Provide unit rate for rock excavation in trenches and in open excavations, removed from the site, and any placement of fill required to bring excavated surface to specified subgrade.

MAY 22, 2024 [ADD2]

Mount Vernon Group Architects, Inc., Project No. 02021.10

D. Provide unit rate for rock excavation as open excavation, removed from the site, and any placement of fill required to bring excavated surface to specified subgrade.

#### PART 2 - PRODUCTS

#### 2.01 FILL MATERIAL

A. Structural fill for support of Building foundations, floor slabs and base course for concrete sidewalks and pads shall be widely graded sand and gravel, free of clay, organic material, snow, ice, frozen soil or other deleterious materials, and conforming to the following graduation requirements. Soil finer than the No. 200 sieve shall be non-plastic. Structural Fill shall have a plastic index of less than 6 and shall be compacted in maximum 9-inch loose lifts to at least 95 percent of the Modified Proctor maximum dry density (ASTM D1557), with moisture contents within +- 2 percentage points of the optimum moisture content.

| U.S. Bureau of Standards | Percent Pass | ing         |
|--------------------------|--------------|-------------|
| Sieve Size and Number    | Minimum      | Maximum     |
| 3- inches                | 100 percent  |             |
| 1-1/2 inch               | 80 percent   | 100 percent |
| 1/2 inch                 | 50 percent   | 100 percent |
| No.4                     | 30 percent   | 85 percent  |
| No.20                    | 15 percent   | 60 percent  |
| No.60                    | 5 percent    | 35 percent  |
| No.200                   | 0 percent    | *10 percent |

<sup>\* 0-5</sup> for the top 12 inches under sidewalks, exterior slabs, pads, and walkways

- 2. Material falling within the above Specifications, encountered during the excavation, shall be stored in segregated stockpiles for reuse as Compacted Structural Fill. All material shall be subject to approval by the Architect.
- B. Processed gravel for base course for bituminous concrete pavement shall be a processed material with angular particles meeting the requirements conforming to MassDOT Specifications Section M1.03.1.

| U.S. Bureau of Standards | Percent Pass | sing        |
|--------------------------|--------------|-------------|
| Sieve Size and Number    | Minimum      | Maximum     |
| 3-inches                 | 100 percent  |             |
| 1-1/2 inch               | 70 percent   | 100 percent |
| No.3/4                   | 50 percent   | 85 percent  |
| No.4                     | 30 percent   | 60 percent  |
| No.200                   | 3 percent    | 10 percent  |

C. Ordinary Fill - Well-graded, natural inorganic soil approved by the Architect and meeting the following requirements to be used for general filling to subgrades in lawn areas and to the bottom of the subbase beneath pavements, sidewalks and other than specified above, and conforming to the following graduation requirements. Soil finer than the No. 200 sieve shall be non-plastic. Ordinary Fill shall have a plastic index of less than 6 and shall be compacted in maximum 9-inch loose lifts to at least 95 percent of the Modified Proctor maximum dry density (ASTM D1557), with moisture contents within +- 2 percentage points of the optimum moisture content.

| U.S. Bureau of Standards | Percent Pass | ing         |
|--------------------------|--------------|-------------|
| Sieve Size and Number    | Minimum      | Maximum     |
| 6-inches                 | 100 percent  |             |
| 1 inch                   | 50 percent   | 100 percent |
| No.4                     | 20 percent   | 100 percent |
| No. 20                   | 10 percent   | 70 percent  |
| No.60                    | 5 percent    | 45 percent  |
| No.200                   | 0 percent    | 20          |

1. It shall be free of organic or other weak or compressible materials, of frozen materials, trash or other deleterious materials and of stones larger than six (6) inches maximum dimension.

MAY 22, 2024 [ADD2]

Mount Vernon Group Architects, Inc., Project No. 02021.10

- 2. It shall be of such nature and character that it can be compacted to the specified densities in a reasonable length of time.
- 3. It shall be free of highly plastic clays, of all materials subject to decay, decomposition or dissolution and of cinders or other materials which shall corrode piping or other metal.
- 4. It shall have a maximum dry density of not less than one hundred (100) pounds per cubic foot.
- 5. Material from excavation on the site may be used as ordinary fill if it meets the above requirements.

#### D. COMMON BORROW

- a. Common Borrow material shall be soil containing no stone larger than 8 inches and shall be substantially free of organic loam, wood, trash, or other objectionable materials which may be decomposable, compressible or which cannot be properly compacted. Onsite and offsite Common Borrow materials shall not contain more than 30 and 20% percent by weight of silt and clay, respectively.
  - No Common Borrow shall be imported until available onsite Ordinary Fill has been used or with prior written approval from the Architect.
  - 2 Common Borrow material from off-site borrow sources shall contain no detectable concentrations of asbestos.
  - 3 Crushed concrete can be used as Common Borrow provided it meet the requirements of these specifications.
  - 4 Common Borrow can be used beneath the topsoil in landscaped areas, and at depths greater than 3 feet in paved areas.

#### E. PROCESSED GRAVEL FOR SUBBASE

- Processed Gravel for Subbase shall be onsite or imported material conforming to Item M1.03.1 of the MassDOT Standard Specifications. This material can be used as subbase in the top 12 inches beneath paved area.
- 2. Processed Gravel for Subbase may be anticipated to be onsite in limited quantities.
- 3. Crushed concrete shall not be used as Processed Gravel for Subbase.

#### F. DENSE GRADED CRUSHED STONE FOR SUBBASE

- 1. Dense graded Crushed Stone for subbase shall be imported material conforming to Item M2.01.7 of the MassDOT Standard Specifications. This material shall be used as an alternate to Processed Gravel for Subbase in the top 12 inches immediately beneath paved areas.
- 2. Crushed concrete shall not be used as Dense Graded Crushed Stone for Subbase.
- 3. Dense graded Crushed Stone for subbase are not anticipated to be present onsite.

#### G. CRUSHED STONE

- Crushed stone shall consist of durable crushed rock or durable crushed gravel stone, free from ice and snow, sand, clay, loam, or other deleterious material, conforming to MassDOT specifications, Section M2.01.0 through M2.01.6 size as indicated on Drawings. Dense graded crushed stone shall be uniformly blended and conform to the following gradation requirements.
- 2. The crushed stone shall be reasonably free from clay, loam or deleterious material and not more than 1.0% of satisfactory material passing a No. 200 sieve will be allowed to adhere to the crushed stone. Where crushed stone is to be used for surfacing, this requirement shall be not more than 0.5% of satisfactory material passing a No. 200 sieve.

|            | Percent Passing By V |                |                |
|------------|----------------------|----------------|----------------|
| Sieve Size | 1/2-Inch Stone       | 3/4-Inch Stone | 1.5-Inch Stone |
| 2 inches   | 100                  | 100            | 100            |

MAY 22, 2024 [ADD2]

Mount Vernon Group Architects, Inc., Project No. 02021.10

| 1 ½ inch | 100    | 100    | 95-100 |
|----------|--------|--------|--------|
| 1 inch   | 100    | 100    | 35-70  |
| 3/4 inch | 100    | 90-100 | 0-25   |
| 5/8 inch | 100    |        |        |
| 1/2 inch | 85-100 | 10-50  |        |
| 3/8 inch | 15-45  | 0-20   |        |
| No. 4    | 0-15   | 0-5    |        |
| No. 8    | 0-5    |        |        |

#### H. SAND

Sand shall consist of clean inert, hard, durable grains of quartz or other hard durable rock, free from clay, organics, surface coatings or other deleterious material, confirming to the MassDOT Specifications Section M1.04.1. Sand shall conform to the following gradation:

| Sieve Size | Percent Passing by Weight |
|------------|---------------------------|
| 1/2-inch   | 100                       |
| 3/8-inch   | 85-100                    |
| No. 4      | 60-100                    |
| No. 16     | 35-80                     |
| No. 50     | 10-55                     |
| No. 100    | 2-10                      |

#### I. LOAM BORROW

Loam borrow shall meet the requirements of MassDOT Specifications for M1.05.0. Existing topsoil may also be excavated, stockpiled, screened and reused as loam on the project provided that the resultant material is consistent with the requirements of the MassDOT Specifications. All topsoil shall be screened free of roots, rocks and vegetative matter. The contractor shall amend and rehandle topsoil as needed to meet the standard specifications.

#### J. FILTER FABRIC

1. Conform to MassDOT Specifications for Type III Fabric Embankment or Subgrade Stabilization, Section M9.50.0, Mirafi 140 Filter Fabric, or approved equivalent.

MAY 22, 2024 [ADD2]

Mount Vernon Group Architects, Inc., Project No. 02021.10

#### K. VAPOR BARRIER

Vapor Retarder must have the following qualities:

- 1. WVTR less than or equal to 0.006 gr/ft2/hr as tested by ASTM E 96
- 2. ASTM E 1745 Class A (Plastics)
- 3. Vapor Retarder Products:
- Stego Wrap (15-mil) Vapor Barrier by Stego Industries, LLC, San Juan Capistrano, CA (877) 464-7834 www.stegoindustries.com, or approved equivalent.

#### Accessories:

- 1. Vapor Retarding Seam Tape must have the following qualities:
  - a. Water Vapor Transmission Rate of 0.3 perms or lower by ASTM E 96
- 2. Vapor Proofing Mastic have the following qualities:
  - a. Water Vapor Transmission Rate of 0.3 perms or lower by ASTM E 96
- 3. Pipe Boots:
  - Construct pipe boots from vapor barrier material, pressure sensitive tape and/or mastic per manufacturer's instructions.

#### L. ACCESSORIES

- A. Detectable Warning Tape: Acid- and alkali-resistant polyethylene film warning tape manufactured for marking and identifying underground utilities, a minimum of 6 inches wide and 4 mils thick, continuously inscribed with a description of the utility, with metallic core encased in a protective jacket for corrosion protection, detectable by metal detector when tape is buried up to 30 inches deep; colored as follows:
  - 1. Red: Electric
  - 2. Yellow: Gas
  - 3. Orange: Telephone and other communications.
  - 4. Blue: Water System
  - 5. Green: Sewer

#### L. UNDER-DRAINS

Under-slab drain pipes shall consist of 4" diameter Schedule 40 PVC with perforations in ¼ of the diameter and placed with the perforations down.

#### PART 3 - EXECUTION

#### 3.01 EXCAVATION

- B. Excavation of Subgrades
  - Topographic survey has been made of the project site following completion of the earthwork and this survey is included in the Bid Documents.

#### B. General

Excavate all materials to the elevations, dimensions and form as shown on the Drawings and as specified for the
construction of the building, site walls, utility structures, utilities, paving, site improvements and other structures
necessary for the completion of the building, utilities, and site work. All unsuitable materials within the indicated

MAY 22, 2024 [ADD2]

Mount Vernon Group Architects, Inc., Project No. 02021.10

and specified limits shall be excavated and removed from the site. Unsuitable materials shall include the following:

- a. Pavements, utility structures, building foundations and other man-made structures.
- b. Peat, organic silts, and other organic materials subject to decomposition, consolidation, or decay.
- c. Miscellaneous fill including sand, gravel, cinders, ash, glass, wood, and metal.
- d. Ledge or boulders except as specified for fills herein.
- e. Material that contains more than 3 percent organic matter by weight.
- 2. All unsuitable materials within the indicated and specified limits shall be excavated and removed from the site. The removal shall vertically extend to the elevations of the bottom of existing fill and buried organic soil shown in the boring and test pit logs included in the Geotechnical Report or to the limits shown in the drawings, whichever is deeper. The excavation resulting from the removal of the unsuitable soils shall extend to the natural/native undisturbed soil. Horizontally, the removal shall extend to the limits of ZOI or 5 feet beyond the limits of the building and 2 feet outside the limits of footings of retaining walls, stairs, and ramps, whichever is greater. The excavations shall be carried to the bottom of the unsuitable materials but in case less than 12 inches beneath the bottom of footings and 12 inches beneath the bottom of slabs. The grades within the building and all footings shall be restored to the grades provided on the contract plans using compacted Structural Fill. [ADD2]
- 3. Employ a Registered Land Surveyor to survey to bottom of the excavation for unsuitable soils throughout the building footprint. Excavations shall be surveyed at the corners, high and low points, and a maximum spacing for survey points of 20 feet in each direction on a grid.
- 4. Control the grading so that ground is pitched to prevent water from running into excavated areas, damaging other structures, or adjacent properties.
- 5. Where soil has been softened or eroded by flooding, equipment, traffic, or placement during unfavorable weather, or such other conditions, it shall be removed and replaced by the Contractor with suitable material at no cost to the Owner.
- 6. The topsoil/subsoil layer, root balls, where encountered, organic soil, the existing fill, and other deleterious matter shall be entirely removed from within the proposed building footprint.
- Topsoil/subsoil, organic material, root balls, where encountered, and other deleterious material shall be entirely removed from within the gravel road and paved road limits, geothermal field limits and retaining wall installation limits.
- 8. Cobbles and boulders shall be removed at least 6 inches from beneath footings and 18 inches from beneath the bottom of slabs within the entire building footprint, and 2 feet beneath the bottom of paved areas. The resulting excavations shall be backfilled with compacted Structural Fill under the building and with ordinary Fill under the subbase of paved areas.
- 9. The contractor is cautioned that some of the natural sand at the site has silt contents higher than 20 percent. Such soils can be compacted at moisture contents within 2 percent of the optimum moisture content determined from the laboratory compaction test. Soils with more than 20 percent fine contents are generally very sensitive to moisture content variations and are susceptible to frost. Such soils are very difficult to compact at moisture contents that are much higher or much lower than the optimum moisture content determined from the laboratory compaction test. Therefore, strict moisture control shall be implemented during stockpiling, placement, and compaction of the onsite soils.
- 10. Maintain all subgrades for site improvements in satisfactory condition, protected against traffic and properly drained, until the surface improvement is placed. In areas to receive pavement or other surface materials, at top and bottom of embankments, along swales and elsewhere, place sufficient grade stakes to facilitate checking the subgrade levels. Correct all irregularities, compacting thoroughly any fill materials.
- 11. Minimum depth of excavation in rock shall be performed in accordance with the requirements in Section 3.04 E.
- 12. The base of the footing excavations in the natural soil shall be compacted with a dynamic vibratory compactor weighing at least 200 pounds and imparting a minimum of 4 kips of force to the subgrade. All compaction shall be to specified levels.
- 13. The subgrades of slabs and paved areas in the natural soil shall be compacted with a vibratory roller compactor imparting a dynamic effort of at least 40 kips. Where soft materials are encountered, they shall be removed and

MAY 22, 2024 [ADD2]

Mount Vernon Group Architects, Inc., Project No. 02021.10

- replaced with Structural Fill within the footprint of the proposed building and with Ordinary Fill within the proposed paved areas.
- 14. Where paved areas are located in existing fill areas, the existing fill shall be improved after the surficial topsoil and subsoil are removed by compacting the exposed subgrade in the fill using at least six (6) passes of a vibratory roller compactor imparting a dynamic effort of at least 40 kips. Where soft zones are revealed by the compaction effort and where organic soil is exposed, the soft materials or organic oil shall be removed and replaced with Ordinary Fill to the bottom of the subbase layer.
- 15. The Contractor shall obtain from the proper authority locations of all utilities within the scope of this work so that there will be no damage done to such utilities. Neither the Owner nor the Architect will be responsible for any such damage, and the Contractor shall restore any structure or utility so damaged without additional compensation. Written notifications to the appropriate utility agencies shall be made at least ten (10) days prior to the commencement of any work.
- 16. Excess Material Suitable excavated material which is required for fill and backfill shall be separately stockpiled as directed by the Architect. All surplus fill other than that required to complete the intent of the Contract shall become the property of the Contractor and shall be disposed of off the property by the Contractor. All excavated materials which, in the opinion of the Architect, are not suitable for fill or backfill shall be removed and disposed of off the property.
- 17. Any unsanitary conditions encountered, such as broken sewer mains or uncovered garbage shall be corrected or removed entirely as directed by the Architect.
- 18. The Contractor shall remove materials beneath the existing building to 12 inches beneath bottom of proposed footings, 12 inches beneath bottom of proposed slab, or to the bottom of the unsuitable material, whichever is deeper. In proposed paved areas, the Contractor shall remove a minimum of 18 inches beneath the existing grades. Refer to quantities in item. Should quantities of certain materials or classes of work be increased or decreased from what is shown in the drawings and specified herein, the Contract Unit Rates listed below shall be the basis of payment to the Contractor, or credit to the Owner, for such increase or decrease in the work. The Contract Unit Rates shall represent the exact net amount, per unit, to be paid to the Contractor in the case of increase in the quantities, and the exact amount to be refunded to the Owner in the case of decreases in the quantities. No additional adjustment shall be allowed for overhead, profit, insurance, or other direct or indirect expenses by the Contractor. Contract Unit Rates of materials shall include hauling, storing, stockpiling, moving, importing, spreading, and compacting. Increases or decrease in the quantities shall be approved by the Owner.
- 19. Amending the existing fill free of organic matter by adding and blending with crushed stone shall be allowed.

  Blending shall produce a uniform, homogeneous mixture. Blending by pushing with a dozer shall not be allowed.
- 20. To reduce the potential for mixing of organic soil with blasted rock intended for crushing, the topsoil, roots, tree stumps, and vegetation shall be removed before blasting. The remainder of the overburden soils and excavatable weathered rock shall not be removed before blasting.

#### C. Excavation for Site Improvements

- 1. Excavate to the lines and grades shown on the Drawings and as specified to obtain the subgrades for the following items of work:
  - a. Concrete slabs on grade
  - b. Bituminous concrete road and parking pavement
  - c. Gravel road limits
  - d. Concrete paving
  - e. Curbing Seeded areas
  - f. Retaining Walls
  - g. Unspecified improvements to elevations noted on the drawings.

#### D. Utilities and Utility Structures

 Construct surface subgrades including filling prior to excavation for utilities and utility structures. Excavate to the lines and grades shown on the Drawings and as specified herein to obtain the subgrade for the following items of work:

MAY 22, 2024 [ADD2]

Mount Vernon Group Architects, Inc., Project No. 02021.10

- a. Utility structures to grades shown on the Drawings in the building and outside the building. Remove by excavating all unsuitable materials; including buried organics, from under drainage structures and backfill with specified fills compacted in place to subgrades.
- b. Excavation for structures and other accessories shall have twelve (12) inch minimum and twenty-four (24)
- c. inch maximum clearance on all sides.
- d. All utility lines to 12 inches below bottom of utility lines or structures.
- e. Trench for water pipe to provide a minimum of five feet of cover above top of pipe.
- f. Unless otherwise shown, provide separate trenches for each utility. Lay all piping in open trenches except where tunneling is required. Excavation for structures and other accessories shall have 12 in. minimum and 24 in. maximum clearance on all sides.
- g. Grade the bottom of trenches evenly to have a constant pitch in the direction of flow and to insure a uniform compacted thickness of selected material as called for.
- E. Existing services and utilities encountered shall be immediately repaired, protected, and maintained in use until relocation of same has been completed or be cut and capped were directed or be prepared for connections when so required.

#### F. Excavation Classification

- 1. Unclassified Excavation For the purposes of payment, materials shall be unclassified except for those materials beyond the limits specified in Section item 3.01.F.2, as described in item 3.1-B of these specifications. pavement Excavation shall comprise and include the satisfactory excavation, removal, and disposal of all materials encountered within the lines and grades shown in the Drawings or limits specified herein, whichever is deeper, regardless of the nature of the materials, and shall be understood to include, but not be limited to, earth, topsoil, subsoil, hardpan, fill, foundations, pavements, curbs, piping, railroad track and ties, cobblestones, footings, bricks, concrete, abandoned drainage and utility structures, debris, and materials classified as unsuitable materials. All excavation and replacement, if applicable, with suitable material within the lines and grades shown in the Drawings or the limits specified herein, whichever is deeper, will be considered and bid as unclassified and shall be included in the Contractor's lump sum (i.e., shall not be paid for using Unit Rates). [ADD2]
- 2. For bidding purposes, the limits of unclassified excavation (i.e., excavations included as part of the base bid and for which there will be no payment using Contract Unit Rates) to remove the existing fill and organic soil within the building, paved areas, and athletic fields shall be as follows:[ADD2]
  - a. 32,000 cubic yards of cut, this includes:
    - 20,000 cubic yards of blasted rock (Assume blasting within building footprint and 5 feet beyond to El. 210 feet.)
    - ii. 8,000 cubic yards of topsoil removal
    - iii. 4,000 cubic vards of unsuitable material[ADD2]
  - b. 16,000 cubic yards of fill, this includes:
    - i. 10,000 cubic yards from on-site materials
    - ii. 6,000 cubic yards of imported fill

(Assume Fill placed within proposed building and within zone of influence to El. 215 feet, and Ordinary Fill placed within proposed paved areas to 12 inches beneath the bottom of the pavement.)[ADD2]

3. All excavation and replacement, if applicable, with suitable material within the lines and grades shown in the drawings and in these specifications that are within the quantities listed in item 3.01.F.2 shall be considered and bid as unclassified and shall be included in the Contractor's lump sum (i.e., shall not be paid for using Contract Unit Rates). Excavations beyond these lines described herein and beyond the quantities listed in item 3.01.F.2in the item shall be measured and paid for after approval of the measurements by the Architects as Classified Excavation using the Contract Unit Rates for respective classification in accordance with the allowance included in the contract documents. All quantities shall be measured in place. There shall be no swell, fluff, of expansion factor allowed. Measurements using truck loads shall not be allowed. Should quantities be less than those listed in item 3.01.F.2, the Contractor shall provide a credit to the Owner using the contract unit rates.

MAY 22, 2024 [ADD2]

Mount Vernon Group Architects, Inc., Project No. 02021.10

- A. Petroleum Contaminated Soil Allowance: The Contractor shall carry in the base bid an allowance of 100 cubic yards for removal of unanticipated as directed in Section 01 22 00 Unit prices, petroleum contaminated soil materials.

  Allowance shall cover removal and disposal of petroleum contaminated soil and furnishing imported suitable backfill materials compacted in place as directed herein. The base bid shall cover all costs related to such excavation, removal off site, disposal, and replacement with compacted fill of approved material, overhead, and profit. No amount other than that herein specified will be paid by the Owner for the work defined herein.
  - If the total void volume of unanticipated petroleum contaminated material excavation, and its replacement with compacted fill exceeds the amount included in the Contract as listed above, the Owner shall pay the excess excavation and replacement at the Unit Rate submitted in the Bid Attachment – Unit Rates Schedule.
  - If the total quantity of unanticipated petroleum contaminated materials, and its replacement with compacted fill is
    less than the amount included in the Contract as listed above, the contract sum will be decreased by the
    difference in excavation and its replacement multiplied by the Unit Rate submitted in the Bid Attachment Unit
    Rates Schedule.

### 3.02 FROST PROTECTION

- A. Protect excavation bottoms and sides against freezing. Provide protective insulating materials as necessary, including by means of heat blankets, and heating plant.
- B. A layer of fill shall not be left in an uncompacted state at the close of a day's operation when there is the potential for that layer to freeze.
- C. The Contractor shall not place any material on snow, ice, frozen soil, or soil that was permitted to freeze prior to compaction. Removal of these unsatisfactory materials will be at the Contractor's expense.
- D. Do not excavate to full indicated depth when freezing temperatures may be expected, unless work can be completed to subgrade, the materials installed, and the excavation backfilled the same day. Protect the excavation from frost if placing of materials or backfilling is delayed.
- E. The Contractor shall keep the operations under this Contract clear and free of accumulation of snow within the limits of Contract Lines as necessary to carry out the work.
- F. Frozen materials shall be installed on frozen ground. Fill materials shall be free of frost.
- G. The subgrade of footings and slabs shall be protected from frost before placing concrete. The subgrade on the sides of the footings shall be protected from frost after the footings are constructed until sufficient fill is placed to protect the bottom of footings from frost induced heave. Uninsulated slabs shall be covered with heat blankets until the slab areas are heated. The cover shall extend at least 4 feet beyond the limits of the slabs.

### 3.03 DISTURBANCE OF EXCAVATED AND FILLED AREAS DURING CONSTRUCTION

- A. The Contractor shall take the necessary steps to avoid disturbance of subgrade and underlying natural soils/compacted fill during excavation and filling operations. Methods of excavation and filling operations shall be revised as necessary to avoid disturbance of the subgrade and underlying natural soils/compacted fill, including restricting the use of certain types of construction equipment and their movement over sensitive or unstable materials. The Contractor shall coordinate with the Architect or Soils Representative to modify his operations as necessary to minimize disturbance and protect bearing soils, based on the Architect's or Soils Representative's observations.
- B. All excavated or filled areas disturbed during construction, all loose or saturated soil, and other areas that will not meet compaction requirements as specified herein shall be removed and replaced with compacted approved material in accordance with these Specifications. Fill that cannot be compacted within 48 hours because of its saturated condition shall be removed and replaced with compacted approved material in accordance with these Specifications. Costs of removal of disturbed material and replacement with approved material shall be borne by the Contractor.
- C. If requested by the Architect or Geotechnical Engineer, the Contractor shall place a six-inch layer of Crushed Stone or 12-inch layer of Granular Fill/Structural Fill over natural underlying soil to stabilize areas disturbed during construction.

MAY 22, 2024 [ADD2]

Mount Vernon Group Architects, Inc., Project No. 02021.10

- D. The placement of the Crushed Stone layer or Granular Fill/Structural Fill as well as material costs shall be borne by the Contractor. A geotextile fabric shall be used to separate the crushed stone from the natural soil and from the overlying fill when directed by the Geotechnical Engineer at no additional cost to the owner at no extra cost to the owner.
- E. Material that is above or below optimum moisture for compaction of the particular material in place as determined by the Architect or the Soils Representative and is disturbed by the Contractor during construction operations so that proper compaction cannot be reached shall be classified as unsuitable bearing materials. This material shall be removed and replaced with lean concrete, suitable/approved backfill material, or crushed stone as directed by the Geotechnical Engineer or Soils Representative at no additional cost to the Owner.

MAY 22, 2024 [ADD2]

Mount Vernon Group Architects, Inc., Project No. 02021.10

### 3.04 FILLS, BACKFILLS AND COMPACTION

## A. Samples and Testing

- 1. All fill material and its placement shall be subject to quality control testing. A qualified laboratory will be selected by the Owner to perform tests on materials. All costs of testing will be paid for by the Owner. Test results and laboratory recommendations shall be available to the Architect.
- B. Provide samples of each fill material from the proposed source of supply including on-site sources. Allow sufficient time for testing and evaluation of results before material is needed. Submit samples from alternate source if required.
- C. Architect will be sole and final judge of suitability of all material.
- D. The laboratory will determine maximum dry density and optimum water content in accordance with A.S.T.M.
- E. D-1557, Method D and the in-place density in accordance with A.S.T.M. D-1556.
- F. Tests of material as delivered shall be made from time to time. Materials in question shall not be used, pending test results. Tests of compacted materials will be made regularly. Remove rejected materials and replace with approved material.
- G. Cooperate with laboratory in obtaining field samples of in-place materials after compaction. Furnish incidental field labor in connection with these tests.

## H. Placing Fills and Compacting

1. Fill material shall be placed in horizontal layers not exceeding the maximum loose lift thickness with the minimum number of passes of compaction equipment as summarized on the table below. Each layer shall be compacted to the percentage of maximum dry density specified for the particular type of fill and at a water content equal to optimum water content plus or minus two (2) percent. The maximum dry density and optimum water content shall be as specified herein:

|                                                                                                              | Max<br>Stone<br>Size | Max. Loose Lift<br>Thickness<br>Below<br>Structures<br>& Pavements | Less<br>Critical<br>Areas | Min, Number of<br>Passes<br>Below<br>Structures<br>& Pavements | Less<br>Critical<br>Areas |
|--------------------------------------------------------------------------------------------------------------|----------------------|--------------------------------------------------------------------|---------------------------|----------------------------------------------------------------|---------------------------|
| Hand-operated vibratory plate or light roller in confined areas                                              | nt                   |                                                                    |                           |                                                                |                           |
| Hand-operated Vibratory drum roller weighing at least 1,000# in                                              | 4 in.                | 8 in.                                                              | 8 in.                     | 6                                                              | 4                         |
| confined areas                                                                                               | 6 in.                | 8 in.                                                              | 10 in.                    | 6                                                              | 4                         |
| Light vibratory drum Roller, minimur<br>weight at drum 5,000#, minimur<br>Dynamic force 10,000#              |                      | 10 in.                                                             | 12 in.                    | 6                                                              | 4                         |
| Medium to heavy Vibratory drur<br>roller, Minimum weight at Drur<br>10,000#, minimum Dynamic Ford<br>20,000# | n<br>n               | 12 in.                                                             | 12 in.                    | 6                                                              | 4                         |

MAY 22, 2024 [ADD2]

Mount Vernon Group Architects, Inc., Project No. 02021.10

- Areas to be filled or backfilled shall be free of construction debris, refuse, compressible or decayable materials and standing water. Do not place fill when fill materials or layers below it are frozen.
- J. Notify the Architect when excavation is ready for inspection. Filling and backfilling shall not be started until conditions have been approved by the Architect.
- K. Before backfilling against walls, the permanent structures must be completed and sufficiently aged to attain strength required to resist backfill pressures without damage. Temporary bracing will not be permitted except by written permission from the Architect. When filling on both sides of a wall or pier, place fill simultaneously on each side. Correct any damage to the structure caused by backfilling operations at no cost to the Owner. Place no stones closer than 18 inches to wall surfaces.
- L. In confined areas adjacent to footings and foundation walls and in utility trenches beneath floor slab, the fill shall be compacted with hand operated vibration tampers. The maximum lift thickness shall be four inches. The degree of compaction attained shall be equivalent to that attained in the adjacent open areas where heavy rolling equipment is used.
- M. After the subgrade under concrete slabs and paved areas has been shaped to line, grade and cross-sections, it shall be rolled with an approved power roller weighing not less than six tons until thoroughly compacted. This operation shall include any reshaping, refilling or wetting required to obtain proper compaction. Any areas that subsequently settle shall be refilled to true subgrade and properly compacted.
- N. In freezing weather, a layer of fill shall not be left in an un-compacted state at the close of a day's operations. Prior to terminating operations for the day, the final layer of fill, after compaction, shall be rolled with a smooth-wheeled roller to eliminate ridges of soil left by tractors, trucks and compaction equipment.

### O. Placing Fills

- 1. In the building footprint Structural Fill shall be placed under the concrete footings and slabs. Ordinary Fill shall be placed under Processed Gravel for Subbase in paved areas. The material shall be placed and compacted in layers as described in the above table and compacted to at least 95 percent of maximum dry density as determined by A.S.T.M. Test D1557.with moisture contents within +- 2 percentage points of optimal moisture content. Incidental compaction due to traffic by construction equipment will not be credited toward the required minimum coverages.
- P. Placement of structural fill should not be conducted when air temperatures are low enough to cause freezing of the moisture in the fill during or before placement, approximately 32 degrees F., or below. Fill materials should not be placed on snow, ice or un-compacted frozen soil. Structural fill should not be placed on frozen soil. No fill should be allowed to freeze prior to compaction. At the end of each day's operations, the last lift of fill, after compaction, should be rolled by a smooth-wheeled roller to eliminate ridges of un-compacted soil and protected from freezing.

### Q. Deficiency of Fill Materials

- 1. Provide required additional fill materials as specified if a sufficient quantity of suitable materials is not available from the required excavation on the project site at no additional cost to the Owner.
- R. Where water content of the fill must be adjusted to meet this Specification, the fill shall be thoroughly disked to ensure uniform distribution of any water added.

#### S. Fill and Backfill for Utilities

- 1. Backfill trenches only after pipe and leaching chambers have been inspected, tested and locations of pipes and appurtenances have been recorded.
- T. Each pipe section shall be laid on a 12 inches minimum bed of crushed stone as specified herein above. In addition, all underground utilities in the building and on the site including water lines, sanitary waste, vent piping, electrical conduit, mechanical piping, gas piping and storm drainage piping serving the roof drains and downspouts shall be set in a six inches bed of sand. Bed shall be shaped by means of hand shovels to give full and continuous support to the lower 1/3 of each pipe. Backfill by hand around pipe, until the crown of the pipe if covered by at least two (2) feet of sand for which there is a sieve analysis chart on page 8, paragraph 2.01D. Use sand or crushed stone and tamp firmly in layers not

MAY 22, 2024 [ADD2]

Mount Vernon Group Architects, Inc., Project No. 02021.10

- exceeding six inches in thickness. Take care not to disturb the pipe. Compact the remainder of the backfill thoroughly with a rammer of suitable weight or with an approved mechanical tamper to achieve compaction of 95 percent as specified.
- U. Trenches and utility structures shall be backfilled with greatest care; fill materials required for backfilling to subgrades shall be Structural Fill or Ordinary Fill as specified. Backfill shall be compacted to 95 percent as specified. No mud, frozen earth or stone more than six inches in greatest diameter or other objectionable material shall be used for refilling. Any selected material required for filling shall be furnished and placed by the Contractor

### 3.05 ROCK EXCAVATION

- A. Bedrock and boulders be encountered during excavation, the following shall apply:
  - 1. When rock is encountered within the building footprint and its zone of influence and site improvements it shall be excavated or ripped with a hydraulic excavator. When it is demonstrated to the satisfaction of the Architect and the Geotechnical Engineer that this material can no longer be removed with a hydraulic excavator and requires drilling and blasting, this material shall be classified as Rock Excavation.
- B. Intermittent drilling and ripping performed to increase production and not necessary to permit excavation of material.
- C. Measurements:
  - 1. When, during the process of excavation, rock is encountered, it shall be uncovered and exposed in such a manner that the unbroken ledge surface is clearly visible, and the Architect shall be notified by the General Contractor, before proceeding further. The areas in question shall then be cross-sectioned as hereinafter specified.
- D. The General Contractor shall perform rock probes at the site in a grid pattern before the start of excavations. At a minimum, the results of the probes should include the ground surface elevation and the elevation of the top of the rock. The probes should extend at least 10 feet beyond the perceived top of rock to make sure that the perceived top of rock is not a boulder.
- E. Failure on the part of the General Contractor to perform the probes and identify the depth to top of the rock surface and to notify the Architect and proceeding by the General Contractor with the rock excavation before cross-sections are taken, shall forfeit the General Contractor right of claim towards the stated allowance or additional payment over and above the stated allowance at the quoted unit price.
- F. The General Contractor shall employ and pay for a licensed Registered Civil Engineer or Land Surveyor to take cross-sections of rock before removal and to make computations of volume of rock encountered within the Payment Lines. Cross-sections shall be taken in the presence of the Geotechnical Engineer and the computations approved by the Architect. The Owner has the option to perform independent cross-sections and computations of rock quantities.
- G. Where removal of boulder or ledge is required the extent of this removal and basis of payment shall be determined by the Architect with payment made as stated in Unit Prices.

#### H. Blasting

- Blasting: Obtain written permission and approval of method from local authorities before proceeding with rock excavation. Explosives shall be stored, handled, and employed in accordance with state and local regulations or, in the absence of such, in accordance with the provisions of the "Manual of Accident Prevention of Construction" of the Associated General Contractors of America, Inc.
- I. Notify the Architect at least 48 hours before any intended blasting and do no blasting without his specific approval of each blasting operation.
  - General Contractor shall present evidence that his insurance includes coverage for blasting operations before
    doing any blasting work. A pre and post survey shall be performed for all buildings and utilities within 250 feet of
    the nearest blasting operations, conforming to the Municipal ordinance governing blasting and the Municipal Fire
    Department regulations.
- J. All rock blasting shall be well covered with heavy mats or timbers chained together and the General Contractor shall take great care to do no damage to existing structures, utility lines and trees to remain.

MAY 22, 2024 [ADD2]

Mount Vernon Group Architects, Inc., Project No. 02021.10

- K. Any damage caused by the work of this General Contractor shall be repaired to the full satisfaction of the Architect at no additional cost to the Owner.
- L. Any rock fragments or loose material from blasting operations shall be removed. All voids shall be filled with a leveling layer of Structural Fill
- M. Additional blasting requirements:
  - a. Comply fully with National and Town of Maynard Regulations.
  - b. All documentation submitted with application for "Use and Handling' PERMIT. 527 CMR 13:04 (11) E-1 states "A Use and Handling" Permit may be suspended or revoked by the head of the Fire Department or the Marshal or their designees for any violation of 527 CMR 13:00, or MGL c. 148"
  - c. Meet all requirements of 527 CMR 13;00
  - d. Perform Pre-Blast Surveys completed per 527 CMR 13:00
  - e. No Blasting Saturdays, Sundays or Holidays.[ADD2]
  - f. All shots to be double matted unless approved in advance by the Town of Maynard Fire Chief.
  - g. Shot size limited to 500 lbs. unless approved in advance by the Town of Maynard Fire Chief.
  - h. Blast warning signals to be sounded in accordance with 527 CMR 13:00
  - i. 24 hours notification to the fire department of intent to blast.
  - j. The contractor shall schedule and pay for detail officers to block traffic on Tiger Drive at Great Road and at Fowler High School during the blast.
  - k. In or near residential areas, written notification must be distributed to homes advising of intent to blast at least three (3) days prior to blasting operations. Such written notification to include time frame of blasting operations and description of warning signals. The area of distribution shall be determined by the Fire Chief during pre-blast conference. A Fire Department detail shall be required unless waived by the Fire Chief.
  - I. Provide at least three (3) or more seismographs throughout construction.
  - m. All seismographs to be calibrated and certified according to manufactures specifications and 527 CMR 13:00
- N. Rock should be cut a minimum of 12 inches outside utility structures and a minimum of 18 inches on each side of utility pipes.[ADD2]
- O. Rock surfaces that heave due to blasting should be compacted with a vibratory roller that imparts a minimum of 40 kips to the rock surface. To reduce the magnitude of rock heave, drilling for blast holes should extend no more than 2 feet beneath proposed subgrades. Where the thickness of heaved rock is more than 2 feet, the heaved rock shall be removed and replaced with approved backfill material. Where the heaved rock thickness is less than 2 feet, the rock surface shall be compacted with at least 6 passes of vibratory roller compactor imparting a minimum effort of at least 40 kips. The thickness of the heaved rock shall be assessed by means of test pits performed during blasted rock excavation. [ADD2]
- P. Complaints:
- Q. Report all blasting complaints to the Architect within 24 hours of receipt thereof. Include the name, address, date, time received, date and time of blast complained about, and a brief description of the alleged damages or other circumstances upon which the complaint is predicated. Assign each complaint a number, and number all complaints consecutively in order of receipt.
- R. Submit a summary report to the Architect each week which indicates the date, time and name of person investigating the complaint, and the amount of damage, if any.
- S. When settlement of a claim is made, furnish the Architect with a copy of the release of claim by the claimant.
- T. Immediately notify the Architect, throughout the statutory period of liability, of any formal claim or demands made by attorneys on behalf of claimants, or of serving of any notice, summons, subpoena, or other legal documents incidental to litigation, and of any out-of-court settlement or court verdict resulting from litigation.
- U. Immediately notify the Architect of any investigations, hearings, or orders received from any governmental agency, board or body claiming to have authority to regulate blasting operations.

MAY 22, 2024 [ADD2]

Mount Vernon Group Architects, Inc., Project No. 02021.10

- V. Basis of Payment: The total amount of rock excavation shall be based upon the volume of rock excavated within and/or above the lines referred to in the next paragraph as "Payment Lines". The payment lines are only to be used as a basis of payment, and are not to be used as limits of excavation. Limits of excavation area as shown on the Drawings and as specified herein.
- W. Rock blasting if needed, shall be controlled to reduce vibrations and airblast overpressure to below thresholds established in the Contract Documents. The peak particle velocity shall be maintained at less than 2 inches per second (ips) for concrete foundations, 1ips for stone foundations, and 0.5 ips for rubble foundations at the nearest structure. [ADD2]
- X. Perform rock pre-splitting along the lines separating the blasting for the Early Site Package and the blasting slated to occur during the next phase so as to reduce the potential damage to the existing building during blasting operations. [ADD2]

MAY 22, 2024 [ADD2]

Mount Vernon Group Architects, Inc., Project No. 02021.10

Payment Lines for Rock Excavation:

- 1. Payment shall be made for volume between El. 210 and the top rock defined by the rock probes.[ADD2]
- Y. Allowance for Rock Excavation: The Base Bid shall cover all costs relating to such rock excavation, including blasting, removal and placement of the excavated material, overhead and profit. No amount other than that herein specified will be paid by the Owner for excavation herein defined.[ADD2]
  - 1. Quantities shall be measured by the volume of void created using survey points of the excavated area. The fixed Unit Rate shall be applicable to variations in excess of the allowance quantity up to 100% of the allowance quantity.
  - 2. If the total quantity of Rock Excavation, open and/or trench, is less than the amount of Rock Excavation included in the Contract as listed above, the Contract sum will be decreased by the difference in Rock Excavation multiplied at the fixed Unit Rate. Quantities shall be measured by the volume of void created using survey points of the excavated area. The fixed Unit Rate shall be applicable to variations of the allowance quantity by decreases of 100% of the allowance quantity.
  - 3. Hoe ramming rock shall be paid for as rock excavation and shall not be paid for as time and material (T&M).

### 3.5 REUSE OF ONSITE MATERIALS AND PROCESSING OF ONSITE MATERIALS

- A. Based on the borings and test pits, the existing fill contains up to 45 percent fines and the natural soil layer contains up to 45 percent fines. Subgrade support capacities may deteriorate when such soils become wet and/or disturbed. The Contractor shall keep exposed subgrades properly drained and free of ponded water. Subgrades shall be protected from machine and foot traffic to reduce disturbance. Placed onsite material that becomes soft and unsuitable to support additional lifts of fill shall be removed and replaced at no additional cost to the owner. The contractor shall not make claims due to difficulty handling the onsite material. The Fill and natural soil layer also contained up to 30 percent of cobbles and boulders ranging up to about 7 feet in diameter.
- B. Organic soils shall not be reused for backfill except as directed by the landscape architect in slopes of 4H:1V or flatter.[ADD2]
- C. Should onsite materials be encountered that are suitable for reuse in accordance with the requirements for these specifications, the Owner shall receive a credit from the contractor for the quantity of reused onsite material. The credit shall be based on the difference in unit rates between imported and onsite material for the particular soil designation. The contractor shall provide Unit Rates for these materials in his base bid.
- D. Excavated onsite soils which are suitable for re-use at the time of excavation but become frozen or too wet for re-use due to poor material handling practices shall be disposed of off-site and replaced as necessary at no additional cost to the Owner.
- E. The processing of the existing building concrete and brick materials into Ordinary Fill shall be allowed.
- F. The Contractor must inspect all existing stockpiles on site including soil testing for each stockpiled material.
- G. The Contractor must amend the existing stockpiles if testing determines that the stockpiles do not meet the specifications for their intended use. The Contractor shall provide third party sampling and testing for all soils amended on-site.

MAY 22, 2024 [ADD2]

Mount Vernon Group Architects, Inc., Project No. 02021.10

- H. The Contractor shall be allowed to mobilize a rock crusher to the site to process cobbles, boulders, blasted rock, and imported rock by blending these materials with the existing fill and natural soil and crushing them to produce a well graded materials, provided that these materials are maintained at suitable moisture contents for proper compaction processed material obtained by crushing blasted rock, boulders, and soil shall meet the gradation requirements of Ordinary Fill and Structural Fill. Material produced by the crushing operation shall be well graded so as to reduce the potential for formation of honeycombs during its placement and compaction. Honeycombing is defined as material placed with visible voids between particles. Crushed material shall have a gradation curve that falls entirely within the specified envelope when tested for gradation using the sieves listed in item 1.12-E.5. [ADD2] The Contractor shall be allowed to transport the material offsite to perform the operations described in this item offsite and bring back the processed material provided that the processing offsite does is separate from other operations and provided that the work is approved by the project environmental professional.
- I. The Contractor shall protect, and moisture condition all onsite and imported materials for proper installation, compaction, and use. This includes covering, drying, and adding moisture in order to maintain suitable workability of the soil materials. The contractor shall protect stockpiled unprocessed and processed materials from exposure to moisture using tarps. The tarps shall be secured so as not to be moved by wind or other action. No claim shall be made by the contractor, due to failure to comply with this requirement.
- J. When processing the blasted rock, the Contractor shall mix the blasted rock with onsite soil free of organic soil to produce a well graded processed material meeting the specification of the material for which it is intended for use.
- K. Before blasted rock, cobbles, and boulders that are crushed and processed onsite are reused, they shall be observed and approved by the geotechnical engineer. At the start of the crushing operations, the soil to rock proportions placed into the crusher shall be varied until the processed material meets the appropriate gradation requirements. The soil to rock proportion thus achieved shall be maintained throughout the duration of the project.
- L. The material placed into the crusher shall be free of organics, wood, and other deleterious matter.
- M. The jaws of the crusher shall be adjusted daily to maintain the crushing gradation.
- N. Excess blasted rock, processed or unprocessed, not used on site shall be the property of the Contractor and shall be removed offsite at no additional cost to the Owner.

### 3.06 OFF-SITE DISPOSAL OF SOILS

- A. All off-site disposal of soils shall meet the minimum requirements of the following as applicable:
  - 1. DEP Policy #Comm-97-001: Reuse and Disposal of Contaminated Soil at Massachusetts Landfills.
- B. DEP Policy #WSC-13-500: Similar Soils Provision Guidance
- C. The Contractor is responsible for any and all disposal characterization sampling and analysis and preparation of disposal applications as required by the facility to be used. Copies of all applications and approvals.

### 3.07 TEMPORARY STEEL SHEETING

A. An excavation support system will be required to construct the proposed foundations near roadways and sidewalks as referenced in the Drawings. The contractor is responsible for the adequacy of the excavation support system and shall retain the services of a Professional Engineer registered in the Commonwealth of Massachusetts to design the required excavation support systems. The contractor's Professional Engineer shall practice in a discipline applicable to excavation work, shall have experience in the design of excavation support system and shall design in conformance with OSHA requirements. The contractor's Professional Engineer shall provide sufficient on-site inspection and supervision to assure that the excavation support system is installed and functions in accordance with his design. Criteria listed here in defining the responsibilities of the construction manager's Professional Engineer are minimum requirements.

MAY 22, 2024 [ADD2]

Mount Vernon Group Architects, Inc., Project No. 02021.10

- B. The contractor shall submit the attached Certificate of Design completed and signed by the contractor and the Professional Engineer, identifying the Contractor's Professional Engineer who will be responsible for design of the excavation support system, and including, for record purposes only:
  - 1. An overall time schedule for construction of the braced excavation system.
- C. A description of the anticipated sequence of construction.
- D. Submit three (3) copies to the Architect of:
  - Complete details of braced excavation methods, equipment and sizes and lengths of materials proposed to be used
  - b. Details of vibration monitoring devices and reports.
  - c. Details of the means and methods that will be used in monitoring the integrity of the support system during its entire period of use to insure the safety of the excavation.
  - d. Complete computations of the design of the braced excavation system bearing the seal of the responsible Registered Professional Engineer duly registered licensed to practice within a discipline applicable to excavation work, in the state where the project is located.
  - e. Any other pertinent data required for record purposes by the Engineer.
- E. Receipt of the information by the Architect will not relieve the contractor of the sole responsibility for the adequacy of the braces excavation system, and for assuring that there will be no resulting damage to adjacent existing pavement, utilities, or structures, and for providing safe conditions within the sheeted areas.
- F. Further for the record, upon completion of the work of this section, the contractor shall submit three copies of all records of survey, vibration monitoring and inspection of existing structures to the Architect.
- G. Work shall not be started until all materials and equipment necessary for construction are either on the site of the work or satisfactorily available for immediate use as required.
- H. The sheeting shall be sufficiently tight to minimize any resulting lowering of the groundwater level outside the excavation.
- The sheeting shall be driven by approved means to the design elevation. No ends or edges of sheeting shall be left exposed in a manner, which could create a possible had to safety of the public or a hindrance to traffic of any kind.
- J. The satisfactory construction and maintenance of the excavation support system, complete in place, shall be the responsibility of the contractor.

### 3.08 SUBGRADE PREPARATION

- A. Bring all areas to required subgrade levels as specified and as determined from the Drawings.
- B. Maintain all subgrades for site improvements in satisfactory condition, protected against traffic and properly drained, until the surface improvement is placed. In areas to receive pavement or other surface materials, at top and bottom of embankments, along swales and elsewhere, place sufficient grade stakes to facilitate checking the subgrade levels. Correct all irregularities, compacting thoroughly any fill materials.
- C. Check all manhole covers, grates, valve boxes and similar structures for correct elevation and position and make, or have made any necessary adjustments in such structures.
- D. All subgrades must be inspected and approved by the Architect before site improvements are made.
- E. The asphalt, topsoil/subsoil, root balls, organic soil, existing fill, and other deleterious matter shall be entirely removed from within the proposed building footprint.
- F. Topsoil/subsoil, asphalt, organic material, root balls, and other deleterious material shall be entirely removed from within the paved areas.
- G. Tree stumps, root balls, and roots larger than ½ inch in diameter shall be removed and the cavities shall be filled with Structural Fill within the building footprint and Ordinary Fill beneath the subbase layer within paved areas.

MAY 22, 2024 [ADD2]

Mount Vernon Group Architects, Inc., Project No. 02021.10

- H. The base of the footing excavations in the natural soil shall be compacted with a dynamic vibratory compactor weighing at least 200 pounds and imparting a minimum of 4 kips of force to the subgrade, before placing concrete.
- The subgrades of slabs and paved areas in the natural soil shall be compacted with a heavy vibratory roller compactor imparting a dynamic effort of at least 40 kips.
- J. Where soft zones are revealed by the compaction effort and where organic soil is exposed, the soft materials or organic soil should be removed and replaced with Structural Fill within the building and with Ordinary Fill beneath the subbase of paved areas
- K. Due to the high susceptibility of the natural soil for disturbance under foot and vehicular traffic, a minimum of 12 inches of Structural Fill shall be placed under footings on top of the natural soil to provide a firm working surface during placement of formwork and rebar.
- L. Fill placed within the footprint of the proposed building shall meet the gradation and compaction requirements of Structural Fill.
- M. Fill placed under the subbase of paved areas, shall meet the gradation and compaction requirements of Ordinary Fill.
- N. Fill placed in the top 12 inches beneath sidewalks shall consist of Structural Fill with less than 5 percent fines.
- O. When crushed stone is required in the drawings or it is used for the convenience of the contractor, it shall be wrapped in a geotextile fabric for separation.
- P. The bottom of footings bearing in bedrock shall be prepared as level as possible and shall not be sloped steeper than 12H:1V. [ADD2]
- Q. Granular fill shall not be placed directly on rock surfaces containing voids. Suitably sized crushed stone or a geotextile for separation shall be placed on the fractured surface prior to placing the fill to limit migration of smaller particles into the voids. [ADD2]

### 3.09 PROTECTION, SHORING AND DEWATERING

- A. Protect open excavations with steel plates, fencing, warning lights and other suitable safeguards.
- B. Provide all pumps and pumping facilities to keep all excavations free from water from whatever source at all times, when work is in progress.
- C. The contractor shall comply with the Town of Maynard Stormwater Management Bylaws, Drainage System Bylaws and MS-4 General Permit requirements as enforced by the Maynard Department of Public Works.
- D. The Contractor shall control the grading in areas under construction on the site so that the surface of the ground will properly slope to prevent accumulation of groundwater and surface water in excavated areas and adjacent properties.
- E. The Contractor shall provide, at his own expense, adequate pumping and drainage facilities to maintain the excavated area sufficiently dry from groundwater and/or surface runoff so as not to adversely affect construction procedures nor cause excessive disturbance of underlying natural ground. The flows of all water resulting from pumping shall be managed so as not to cause erosion, siltation of drainage systems, or damage to adjacent property.
- F. The groundwater level shall me maintained at 12 inches beneath the bottom of excavation or deeper until the excavation is backfilled to at least 2 feet above the groundwater level.
- G. Damage resulting from the failure of the dewatering operations of the Contractor, and damage resulting from the failure of the Contractor to maintain all the areas of work in a suitable dry condition, shall be repaired by the Contractor, as directed by the Engineer, at no additional expense to the Owner. The Contractor's pumping and dewatering operations shall be carried out in such a manner as to prevent damage to the Contract work and so that no loss of ground will result from these operations. Precautions shall be taken to protect new work from flooding during storms or from other causes. Pumping shall be continuous to protect the work and/or to maintain satisfactory progress.
- H. All pipelines or structures not stable against uplift during construction or prior to completion shall be thoroughly braced or otherwise protected. Water from the trenches, excavations, and stormwater management operations shall be disposed of

MAY 22, 2024 [ADD2]

Mount Vernon Group Architects, Inc., Project No. 02021.10

in such a manner as to avoid public nuisance, injury to public health or the environment, damage to public or private property, or damage to the work completed or in progress.

- The Contractor shall excavate interceptor swales and ditches, as necessary, prior to the start of major earthmoving
  operations to reduce the potential for erosion and to keep areas as free from surface and ponded water as possible. All
  piping exposed above ground surface for this use, shall be properly covered to allow foot traffic and vehicles to pass
  without obstruction.
- J. Should surface, rain or groundwater be encountered during the operations, the Contractor shall furnish and operate pumps or other equipment and provide all necessary piping to keep all excavations clear of water at all times and shall be responsible for any damage to work or adjacent properties for such water. All piping exposed above ground surface for this use, shall be properly covered to allow foot traffic and vehicles to pass without obstruction.
- K. The presence of groundwater or stormwater in soil will not constitute a condition for which an increase in the contract price may be made. Under no circumstances place concrete fill, lay piping or install appurtenances in excavation containing free water. Keep utility trenches free of water until pipe joint material has hardened and backfilled to prevent flotation

### 3.10 DUST CONTROL

- A. Comply with 310 CMR 7.09 "Dust, Odor, Construction and Demolition" of the Commonwealth of Massachusetts.
- B. Maintain all excavations, embankments, stockpiles, haul roads, permanent access roads, plant sites, waste areas, borrow areas, and all other work areas free from dust which would cause the standards of air pollution to be exceed or case a hazard or nuisance to others.
- C. Take necessary measures to control dust resulting from construction operations and do prevent spillage of material on public roads and streets.
- D. Provide wet machine sweeping of street surfaces after each workday or as needed to minimize dust and sediment.

#### 3.11 MAINTENANCE

- A. Protection of graded areas: protect newly graded areas from traffic and erosion. Keep free of trash and debris.
- B. Repair and reestablish grades in settled, eroded, and rutted areas to specified tolerances.
- C. Reconditioning compacted areas: where completed compacted areas are disturbed by subsequent construction operations or adverse weather, scarify surface, reshape, and compact to required density prior to further construction.
- D. Settling: where settling is measurable or observable at excavated areas during general project warranty period, remove surface (pavement, lawn or other finish), add fill material, compact, and replace surface treatment. Restore appearance, quality, and condition of surface or finish to match adjacent work, and eliminate evidence of restoration to greatest extent possible.
- E. Unless directed otherwise by the Town of Maynard Department of Public Works, erosion control measures shall be maintained, inspected, repaired as required by the Architect or Department of Public Works representative and left in place.

MAY 22, 2024 [ADD2]

Mount Vernon Group Architects, Inc., Project No. 02021.10

## 3.12 RUBBISH REMOVAL

A. The General General Contractor shall remove all waste and debris and dispose daily in accordance with requirements of Section 01 74 19 – Construction Waste Management and Disposal.

**END OF SECTION** 

MAY 22, 2024 [ADD2]

Mount Vernon Group Architects, Inc., Project No. 02021.10

THIS PAGE IS LEFT INTENTIONALLY BLANK



To: Chris LeBlanc

From: Christopher Treiling

Reviewed By: Jagrut Jathal, P.E.

*Date:* February 01, 2024

Subject: Geothermal Test Loop Installations and Formation Thermal Properties Testing

**Green Meadow Elementary School** 

Maynard, Massachusetts

CDM Smith Project No. 292999

## Introduction

This memorandum presents the results of the Geothermal Test Loop Installation and Formation Thermal Properties Testing that were performed at the site of the proposed Green Meadows Elementary School Project, located in Maynard, Massachusetts.

Vertical closed-loop geothermal ground heat exchangers (test loops) were installed and thermally tested at one location to characterize the subsurface conditions and to generate data for the system design. The test loops are located within a field behind the current Green Meadow Elementary School. The field behind the school is currently owned by the town of Maynard Department of Public Works. The ground surface elevation rises gradually from the Southeast corner of the lot at about El. 213 to the Northwest corner of the lot at about El. 215.

CDM Smith Inc. coordinated with a drilling subcontractor and observed the installation of the test loops and formation thermal testing in accordance with our statement of work, and subsequently authorized by Mount Vernon Group Architects on December 18, 2023.

This memorandum presents the geothermal test loop program and the results and conclusions of the formation thermal properties testing relative to the ongoing system design.

Unless otherwise indicated, elevations (El.) noted herein are in feet and referenced to the North American Vertical Datum of 1988 (NAVD 88).

## **Purpose and Scope of Work**

The purpose of installing test loops are to establish the geologic profile, thermal properties, and drilling conditions of the subsurface materials in which the full production borefield(s) will be constructed. Useful constructability information to be gathered includes depth to bedrock, rock fractures, groundwater production, and borehole stability. The depth to bedrock is critical for

accurate construction cost estimating as it determines how much steel casing is needed per borehole/loop.

The thermal testing is necessary to obtain the aggregate thermal properties of the earth materials that are input to the borefield modeling and used to determine the borefield size (i.e., total length of loop piping needed) thus cost. The volume of groundwater produced that needs to be managed and disposed is a key cost consideration for drilling geothermal borefields.

The characteristics and depths of the geologic materials inferred to exist beneath the borefield area, and groundwater-producing conditions, were unknown prior to implementing this program. Additionally, subsurface conditions could vary substantially from one area to another, even between individual drilling locations within a borefield. Therefore, a test loop was installed at opposite corners of the proposed borefield to address these unknowns. Through this process, Mount Vernon Group will be able to obtain more competitive, accurate construction bids and with a lower risk of change orders. Finally, the test loops will be converted into final system production loops during full borefield development.

CDM Smith's scope of work included the following tasks:

- Developed specifications for the drilling and installation of the geothermal test loops and formation thermal testing (for thermal conductivity, thermal diffusivity and borehole thermal resistance),
- Engaged a geothermal drilling subcontractor and coordinated with the project team to execute the test loop program,
- Provided oversight during the geothermal test loop installations and the formation thermal testing,
- Prepared test loop logs, including data and field observation of the overburden and rock formations encountered, estimate of groundwater production rate, rate of penetration, grouting information, etc. for future loop field construction as part of Contract Documents, and
- Prepared this memorandum summarizing the geothermal test loop program and results of the formation thermal testing.

**Attachments A, B and C** accompanying this memorandum contain the following information, respectively, the test loop logs, grout thermal conductivity testing results, and the formation thermal properties testing reports prepared by Geothermal Resources Technologies, Inc. (GRTI).

## **Geothermal Test Loop Program**

CDM Smith engaged Skillings and Sons, Inc. (Skillings) geothermal drilling contractor of Amherst, New Hampshire, to install two (2) geothermal test loops and conduct formation thermal testing of each completed loop. The drilling and loop installation work was performed between December 20, 2023, and December 27, 2023, and the thermal testing between January 2, 2024, and January 4, 2024. The test loop locations are shown on **Figure 1** and the loops are identified as:

- TB-1 Located at the Southeast corner of the field behind the school.
- TB-2 Located at the Northwest corner of the field behind the school.

### **General Procedures**

This subsection outlines the general procedures used at each of the two test loop locations. Data specific to each test loop installation are presented separately in the following two subsections.

Skillings utilized two different drilling methods during this program. Air rotary casing hammer (ARCH) drilling was used to penetrate the full thickness of the unconsolidated geologic materials ("overburden") and a short distance into the underlying bedrock. Skillings used a  $6-\frac{1}{2}$ " wing bit attached to nominal 3" diameter threaded steel drill rods in 20-foot sections. The wing bit was inserted into the  $6-\frac{1}{4}$ " permeant steel casing prior to the initiation of drilling to allow for a simultaneous installation of the casing. Skillings drilled into the top of the bedrock formation until reaching bedrock that was competent enough to support the permanent steel casing from the bottom of the bedrock "socket" up to the surface.

Following installation of the casing, Skillings advanced the borehole deeper in the bedrock using the air rotary drilling method. The drill tooling included a 5.6" diameter carbide button bit with downhole percussion hammer attached to drill rods. Compressed air is blown down the drill rods, reverses flow at the bottom and is used as a medium to carry bedrock cuttings and groundwater infiltrating into the borehole from fractures in the bedrock from the bottom of the borehole out of the top of the casing. Steel casing is not needed to support the borehole as long as the rock is competent, i.e., can remain self-supporting for as long as needed to install and grout in the test loop, which was the case for both test holes.

The groundwater volume produced from the bedrock during drilling was recorded on the test loop log as an estimate of the rate of water exiting the borehole at various depths. Both information on groundwater level and water production rate during drilling are reported in the test loop logs included in **Attachment A**.

TB-1 and TB-2 were each drilled to a depths of 605 feet below ground surface (bgs) respectively. In each borehole, Skillings installed a high-density polyethylene (HDPE) 1.25-inch diameter DR11 U-Bend to drill depth and backfilled the borehole with thermally-enhanced bentonite grout with a target thermal conductivity (TC) of 1.4 Btu/hr-ft-°F. The test loop logs showing construction at each location are included in **Attachment A.** Skillings collected a test specimen of the grout used for test borehole TB-1 and sent the sample to the product manufacturer (GeoPro, Inc.) for TC testing to confirm compliance with the test loop specifications.

A pressure test was conducted on each test loop to assess the integrity of the U-Bend assembly after installation. All pressure test results complied with project specifications. In addition, after flushing each loop with 35 GPM for approximately 15 minutes, flow tests were conducted on each installed test loop at various flow rates ranging from 5 to 15 gallons per minute (GPM) to ensure the U-Bends were free of obstructions or kinks. All flow tests showed the loops to be in compliance with specifications. Supply and return pressures were determined using a liquid filled pressure gauge with precision to nearest 2 psi.

## **Test Loop TB-1 Installation**

Skillings advanced TB-1 through the overburden and into bedrock to a depth of 40 feet bgs using the ARCH drilling method and installed the steel casing into bedrock socket to a depth of 40 feet bgs. Weathered rock was encountered at approximately 5 ft bgs and competent bedrock was encountered at approximately 18 ft bgs at this location. Skillings then advanced TB-1 through the rock from 40 feet bgs to 605 feet bgs using air rotary drilling. During the drilling operation penetration rates varied from 1.6 – 3.2 ft/min. The TB-1 test loop log is in **Attachment A**.

Skillings encountered challenging grouting conditions at TB-1, stemming from formation loss. After initiating the grouting operation and pumping the designated number of batches into the borehole without any discernible grout return, Skillings took proactive measures. To address the issue of excessive grout loss, 2 bags of ¾-inch bentonite chips were introduced with the intention of effectively sealing the problematic zone. After a brief waiting period, Skillings resumed the grouting operation, resulting in the visible emergence of grout at the surface. However due to continued grout settlement, Skillings topped off TB-1 with additional ¾-inch bentonite chips. The grout test results showed a TC of 1.510 Btu/hr-ft-°F, which complied with project specifications. GeoPro's test results are included in **Attachment B**.

The pressure test was conducted at 100 pounds per square inch (psi) and held for a duration of 1 hour. The final pressure was 103 psi at the end of the test, with a pressure increase of 3.0% over a duration of 1 hour which complies with the project specifications. A leak testing typically requires no more than 5% pressure drop over a 60-minute testing period to pass the test. The flow test results on TB-1 are summarized in **Table 1**.

Table 1 TB-1 Flow Test Data

| Flow Rate<br>(GPM) | Pressure Supply<br>(psi) | Pressure Return<br>(psi) | $\Delta$ Pressure<br>Measured<br>(psi) | $\Delta$ Pressure<br>Calculated<br>(psi) |
|--------------------|--------------------------|--------------------------|----------------------------------------|------------------------------------------|
| 5                  | 48.0                     | 44.0                     | 4.0                                    | 3.0                                      |
| 10                 | 46.0                     | 35.0                     | 11.0                                   | 9.9                                      |
| 15                 | 41.0                     | 19.0                     | 22.0                                   | 20.1                                     |

### **Test Loop TB-2 Installation**

Skillings advanced TB-2 through the overburden and into bedrock to a depth of 40 feet bgs using the ARCH drilling method and installed the steel casing into the bedrock socket to a depth of 40 feet bgs. Weathered rock was encountered at approximately 5 ft bgs and bedrock was encountered at approximately 18 ft bgs at this location. Skillings then advanced TB-2 through the rock from 40 feet bgs to 605 feet bgs using air rotary drilling. During the drilling operation penetration rates varied from 1.6 – 3.9 ft/min. The TB-2 test loop log is in **Attachment A.** Similar to TB-1, Skillings encountered challenging grouting conditions at TB-2, stemming from formation loss.

The pressure test was conducted at 100 pounds per square inch (psi) and held for a duration of 1 hour. The final pressure was 101 psi at the end of the test, with a pressure increase of 1.0% over a duration of 1 hour, which complies with the project specifications. The flow test results on TB-2 are summarized below in **Table 2**.

Table 2 TB-2 Flow Test Data

| Flow Rate<br>(GPM) | Pressure Supply<br>(psi) | Pressure Return<br>(psi) | ∆ Pressure<br>Measured<br>(psi) | $\Delta$ Pressure<br>Calculated<br>(psi) |
|--------------------|--------------------------|--------------------------|---------------------------------|------------------------------------------|
| 5                  | 20.2                     | 16.5                     | 3.5                             | 3.0                                      |
| 10                 | 32.0                     | 22.0                     | 10.0                            | 9.9                                      |
| 15                 | 42.0                     | 22.0                     | 20.0                            | 20.1                                     |

## **Subsurface Conditions**

CDM Smith previously conducted geologic due diligence in planning for the test loops. The following references were reviewed for the surficial geology (i.e., overburden) and bedrock geology:

- U.S. Geological Survey "Surficial Materials Map of the Maynard Quadrangle, Massachusetts," compiled by Stone, J.R. and Stone, B.D., 2018, Scientific Investigation Map 3402, Quadrangle 97 Maynard (Surficial Geologic Map).
- U.S. Geological Survey "Bedrock Geologic Map of Massachusetts," compiled by Zen, E., Goldsmith, R., Ratcliffe, N.M., Robinson, P., Stanley, R.S., Hatch, N.L., Shride, A.F., Weed, E.G.A., and Wones, D.R. (Bedrock Geologic Map).

We also consulted with our drilling contractor, Skillings, regarding their prior well drilling experience within the project site area.

## **Surficial Geology**

The Surficial Geologic Map, shown in **Figure 2**, indicates that the mapped surficial geologic materials in the vicinity of the test site consist of coarse deposits and thin glacial outwash deposits. A summary of each geologic material and its respective drillability is as follows:

- <u>Coarse Deposits</u> Predominantly gravel, sand and gravel, and sand deposits and may also include some silt and clay, generally easy to drill..
- <u>Thin Glacial Outwash Deposits</u> Predominantly nonsorted and nonstratified matric of sand, some silt and clay. May also contain cobbles, boulders, and gravel. outwash deposited by the melting glacier, generally easy to drill.

Based on the material excavated during the soft digging effort, a 0.5- to 1-foot-thick layer of Topsoil may be encountered at the ground surface. Coarse or thin glacial outwash deposits underlie the Topsoil stratum.

## **Bedrock Geology**

The Bedrock Geologic Map, shown in **Figure 3**, indicates that the rock formation in the general vicinity of the test loops is the Andover Granite which consists of light to medium gray, medium to coarse grained, muscovite-biotite Granite. This formation is known to intrude the nearby Nashoba Formation. These intrusions are generally small features and are not well mapped.

## **Formation Thermal Properties Testing**

### **Procedures**

Skillings conducted formation thermal conductivity testing at TB-2 during the period from January 02 to January 04, 2024. Skillings performed the testing using a formation thermal conductivity (FTC) unit provided by Geothermal Resources Technologies, Inc. (GRTI), the firm that analyzed the data. GRTI's testing procedures meet or exceed the standards of the American Society of Heat, Refrigeration, and Air-Conditioning Engineers, Inc. (ASHRAE) and the International Ground Source Heat Pump Association (IGSPHA).

The test loop assemblies were topped off with water before the start of the test, which was circulated to remove air. The test loop assemblies were then connected to the FTC unit and insulation was installed on the exposed well pipes. The heating elements and data acquisition device were activated and ran continuously for approximately 48 hours using a generator. Upon completion of the testing, the FTC unit was removed and returned to GRTI for analysis.

GRTI used the line source method of analysis to determine the formation thermal conductivity. The average temperature of the water entering and exiting the test loop was recorded for the analysis. Information regarding the calculation of the different thermal properties can be found within GRTI's reports included in **Attachment C**.

#### Results

The results of the formation thermal conductivity, formation thermal diffusivity and undisturbed formation temperature range are summarized in **Table 4** below and can be found in the GRTI reports included in **Attachment C**.

**Table 4 Summary of Formation Thermal Properties Test Results** 

| Parameter                                  | Test Borehole Number |  |  |
|--------------------------------------------|----------------------|--|--|
| Parameter                                  | TB-2                 |  |  |
| Formation Thermal<br>Conductivity          | 1.93 Btu/hr-ft-°F    |  |  |
| Formation Thermal Diffusivity              | 1.34 ft²/day         |  |  |
| Average Heat Capacity                      | 34.6 Btu/ ft³-°F     |  |  |
| Undisturbed Formation<br>Temperature Range | 50.3 – 52.6 °F       |  |  |

## **Conclusions**

Observations made during drilling of the two test loops indicate that the geological conditions are consistent with what was inferred from CDM Smith's previous due diligence. The overburden which extended to depths of 18 feet and consisted of topsoil underlain by silty sand and gravel underlain by weathered rock. Competent granite bedrock was encountered beneath the weathered rock and extended to the test loop termination depth at each test loop location.

Other conclusions relevant to the system design and full-scale borefield construction are as follow:

- Fractures within the bedrock at TB-1 and TB-2 produced moderate but manageable groundwater volumes.
- Bedrock fracture across the project site is assumed variable leading to different grout loss in formations and can lead to increased grout costs.
- The depth to bedrock across the site is shallow and generally consistent which will help to reduce the steel casing installation costs.
- Bedrock fracture patterns across the project site is assumed variable leading to different groundwater volumes across the site.
- A moderate number of boulders were encountered within the overburden during the drilling operation, however, did not create issues or delays during drilling.

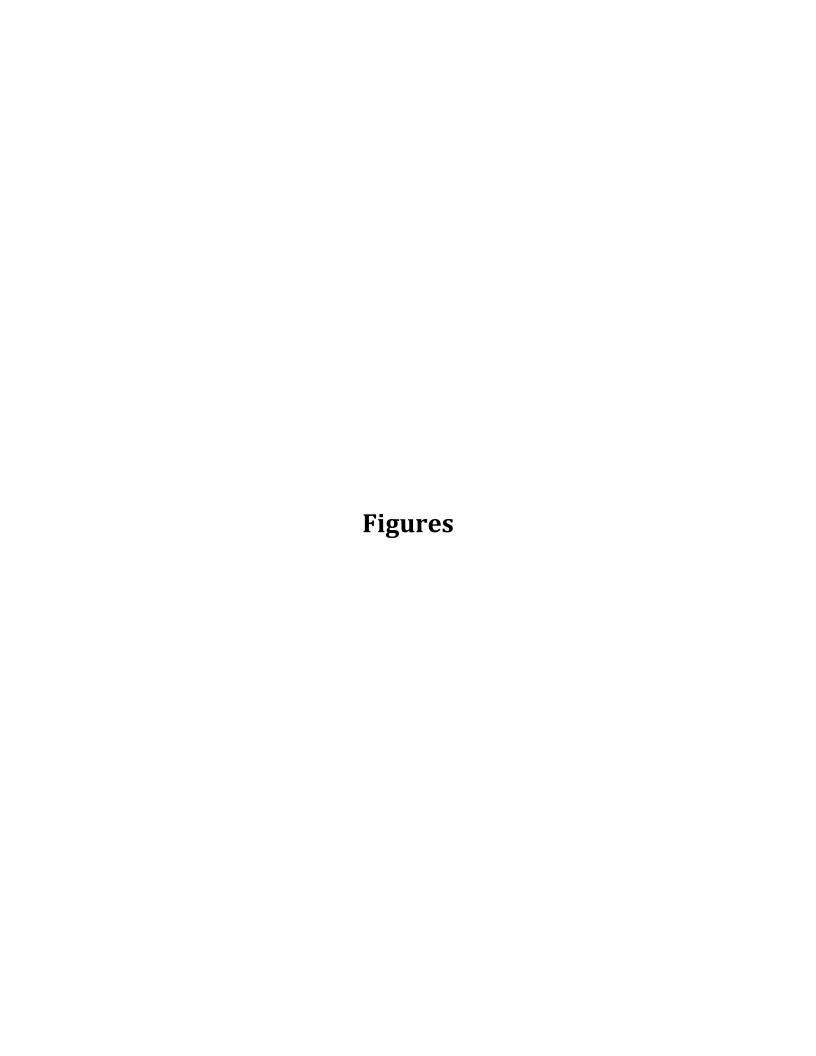
This memorandum has been prepared exclusively for Mount Vernon Group Architects for the Green Meadow Elementary School project as understood at the time of the geothermal test loop program. The drilling conditions are only known at the test loop locations and may vary significantly at other locations. These variations will not become evident until drilling during construction.

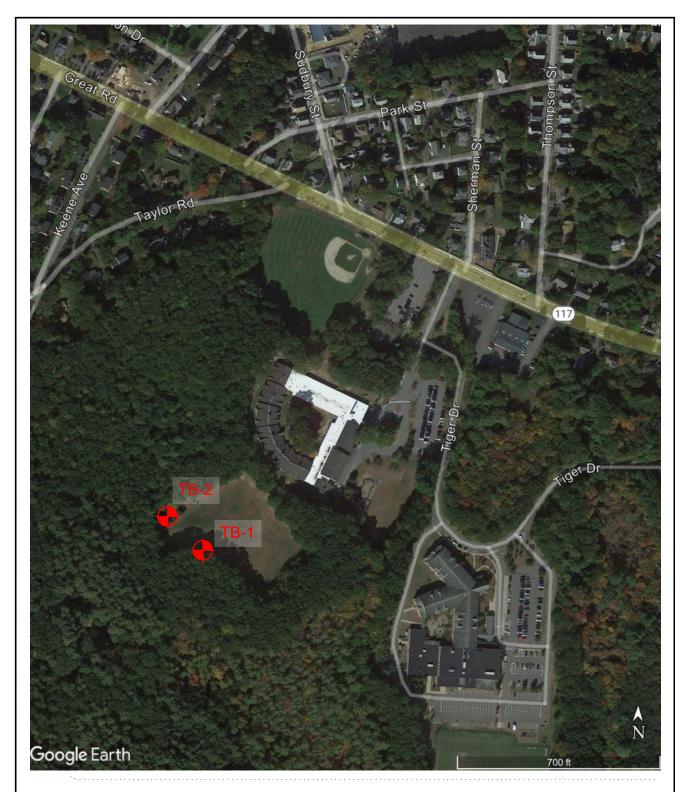
This memorandum has been prepared in accordance with generally accepted engineering practices. No other warranty, express or implied, is made.

## **Attachments**

Figure 1 – Test Loop Location Plan

Figure 2 – Surficial Geologic Map


Figure 3 - Bedrock Geologic Map


Attachment A – Test Loop Logs

Attachment B - Grout Thermal Conductivity Reports

Attachment C - GRTI Reports

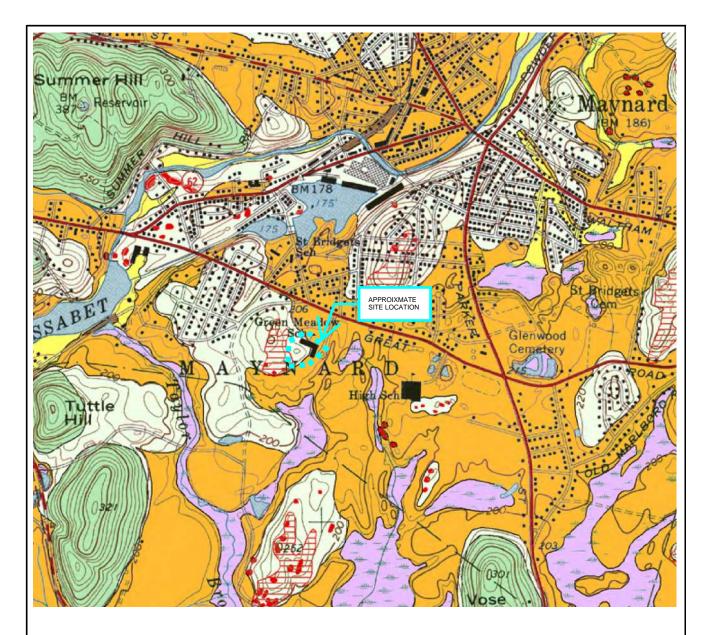
Cc: Vincent Salvaggio, Robert Button





### Legend:




DESIGNATION AND APPROXIMATE LOCATION OF TEST BOREHOLE DRILLED BY SKILLINGS & SONS BETWEEN DECEMBER 20, 2023 AND DECEMBER 22, 2023.

REFRENCE: GOOGLE EARTH PRO



Geothermal Test Loop Installations and Formation Thermal Properties Testing, Green Meadow Elementary School, Maynard, Massachusetts

FIGURE 1
TEST BOREHOLE LOCATION PLAN

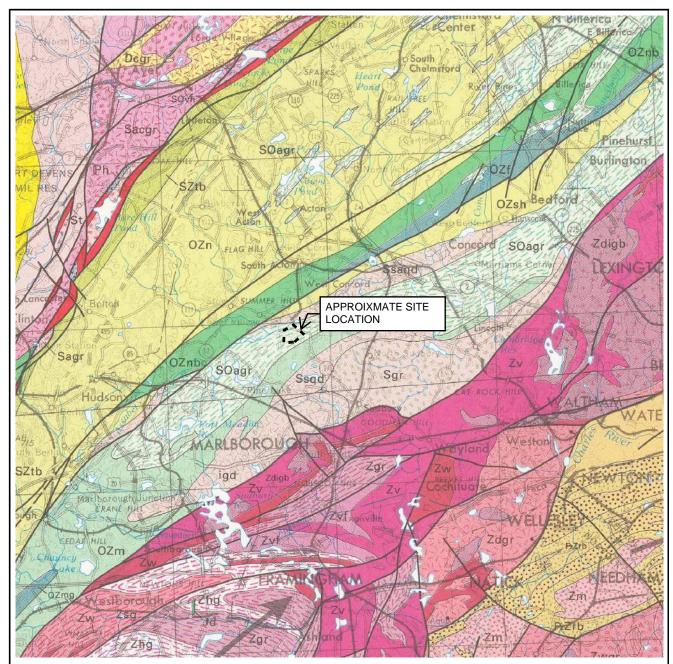


#### Legend:



Coarse deposits consist of gravel deposits, sand and gravel deposits, and sand deposits, not differentiated in this report. Gravel deposits are composed of at least 50 percent gravel-size clasts; cobbles and boulders predominate; minor amounts of sand occur within gravel beds, and sand comprises a few separate layers. Gravel layers generally are poorly sorted, and bedding commonly is distorted and faulted due to postdepositional collapse related to melting of ice. Sand and gravel deposits occur as mixtures of gravel and sand within individual layers and as layers of sand alternating with layers of gravel. Sand and gravel layers generally range between 25 and 50 percent gravel particles and between 50 and 75 percent sand particles. Layers are well sorted to poorly sorted; bedding may be distorted and faulted due to postdepositional collapse. Sand deposits are composed mainly of very coarse to fine sand, commonly in well-sorted layers. Coarser layers may contain up to 25 percent gravel particles, generally granules and pebbles; finer layers may contain some very fine sand, silt, and clay




Thin till—Nonsorted, nonstratified matrix of sand, some silt, and little clay containing scattered pebble, cobble, and boulder clasts; large surface boulders are common; unit was mapped where till is generally less than 10 to 15 ft thick including areas of shallow bedrock. Predominantly consists of upper till of the last glaciation; loose to moderately compact, generally sandy, commonly stony. Two facies are present in some places: a looser, coarser grained ablation facies, melted out from supraglacial position; and an underlying more compact, finer grained lodgement facies deposited subglacially. In general, both ablation and lodgement facies of upper till derived from fine-grained bedrock are finer grained, more compact, less stony and have fewer surface boulders than upper till derived from coarse-grained crystalline rocks. Across Massachusetts, fine-grained bedrock sources include the red Mesozoic sedimentary rocks of the Connecticut Valley lowland, marble in the western river valleys, and fine-grained schists in upland areas

REFRENCE: FIGURE BASED ON A DRAWING TITLED: "SURFICIAL MATERIALS MAP OF THE MAYNARD QUADRANGLE, MASSACHUSETTS," COMPILED BY STONE, J.R. AND STONE, B.D. FOR U.S. GEOLOGICAL SURVEY, 2018, SCIENTIFIC INVESTIGATION MAP 3402, QUADRANGLE 97-MAYNARD



Geothermal Test Loop Installations and Formation Thermal Properties Testing, Green Meadow Elementary School, Maynard, Massachusetts

FIGURE 2 SURFICIAL GEOLOGIC MAP



### Legend:



Andover Granite (Silurian or Ordovican - Light- to medium-gray, foliated, medium- to coarse-grained muscovite-biotite granite; pegmatite masses common. Includes Acton Granite (Silurian Ordovican). Intrudes OZn

REFRENCE: FIGURE BASED ON A DRAWING TITLED: "BEDROCK GEOLOGIC MAP OF MASSACHUSETTS," COMPILED BY ZEN, E., GOLDSMITH, R., RATCLIFFE, N.M., ROBINSON, P., STANLEY, R.S., HATCH, N.L., SHRIDE, A.F., WEED, E.G.A., AND WONES, D.R. FOR THE DEPARTMENT OF THE INTERIOR, UNITED STATES GEOLOGIC SURVEY



Geothermal Test Loop Installations and Formation Thermal Properties Testing, Green Meadow Elementary School, Maynard, Massachusetts

FIGURE 3 BEDROCK GEOLOGIC MAP

## **Attachment A**

Test Loop Logs

| CDI               | M<br>nith.                  |                             | Geologic/Ge                      | othermal Test Loop In                    | stallation Log                  |                  |                  |
|-------------------|-----------------------------|-----------------------------|----------------------------------|------------------------------------------|---------------------------------|------------------|------------------|
|                   | Client                      | Mount Vernon Group          | Architects                       | Drilling Contractor                      | Skillings                       | & Sons           | Loop No.         |
| Proj              | ect Name                    | Green Meadow Elemer         | ntary Schools                    | Driller/Crew                             | Justin Skillin                  | gs & helper      |                  |
| Project           | Location                    | Maynard, Massac             | Maynard, Massachusetts           |                                          | Reichdrill R                    | RTD69TW          | TB-1             |
| Projec            | t Number                    | 292999                      |                                  | Drilling Method(s)                       | Air Ha                          | mmer             |                  |
| Depth<br>(ft-bgs) | Strata<br>Depth<br>(ft-bgs) | Strata                      | Groundwater<br>Produced<br>(GPM) | Drilling Method - Drill<br>Rate (ft/min) | Borehole Drilling               |                  |                  |
|                   | 5                           | Overburden                  | <5                               | 0-20': AH - 3.2                          | Ground Surface                  | +210.0           | ft               |
|                   | 18                          | Weathered Rock              | <5                               | 20-40': AH - 1.8                         | Elevation                       | _                |                  |
|                   |                             |                             | <5                               | 40-60': AH - 2.3                         | Borehole Drill Depth            | 600 / -390       | ) ft-bgs/Elev    |
|                   |                             |                             | <5                               | 60-80': AH - 2.5                         | Top of Bedrock                  | 18 / 192         | ft-bgs/Elev      |
| 100               |                             |                             | 10                               | 80-100': AH - 2.1                        | Casing Diameter /               |                  |                  |
|                   |                             |                             | 10                               | 100-120': AH - 2.3                       | Installed Depth                 | 6.25 in./ 40 / 1 | 70.0 ft-bgs/Elev |
|                   |                             |                             | 10                               | 120-140': AH - 2.5                       | Casing Left in<br>Ground        | ☑ Yes            | □ No             |
|                   |                             |                             | 15<br>15                         | 140-160': AH - 2.8<br>160-180': AH - 2.8 | Depth to                        | NR / NR          | ft-bgs/Elev      |
| 200               |                             |                             | 15                               | 180-200': AH - 2.4                       | Groundwater<br>Date(s)          |                  |                  |
| 200               | 1                           |                             | 15                               | 200-220': AH - 2.4                       | Drilled/Observed By             | 12/20/2023       | / CRT            |
|                   |                             |                             | 20                               | 220-240': AH - 2.1                       | Loc                             | op Installation  |                  |
|                   |                             |                             | 20                               | 240-260': AH - 2.0                       | Loop Type, DR                   | U-Bend DR        | 11 HDPE          |
|                   |                             |                             | 20                               | 260-280': AH - 1.9                       |                                 | _                |                  |
| 300               |                             |                             | 20                               | 280-300': AH - 1.9                       | Loop Diameter                   | 1.25             | in               |
|                   |                             | Granite                     | 20                               | 300-320': AH - 2.0                       | Installed Loop Depth            | 600              | ft-bgs           |
|                   |                             | Granice                     | 20                               | 320-340': AH - 2.2                       |                                 | 5.625            |                  |
|                   |                             |                             | 25                               | 340-360': AH - 1.8                       | Borehole Diameter               | 5.625            | in               |
|                   |                             |                             | 25                               | 360-380': AH - 1.8                       | Borehole Volume                 | 105 / 787        | cf/gal           |
| 400               | -                           |                             | 25<br>25                         | 380-400': AH - 1.6<br>400-420': AH - 1.7 | Date Installed /<br>Observed By | 12/21/2023       | / CRT            |
|                   |                             |                             | 30                               | 420-440': AH - 1.6                       | Observed by                     | Grouting         |                  |
|                   |                             |                             | 30                               | 440-460': AH - 1.7                       | Water                           | 49.5             | gal/batch        |
|                   |                             |                             | 30                               | 460-480': AH - 1.8                       | GeoPro TG Select                | 150              | lbs/batch        |
| 500               |                             |                             | 30                               | 480-500': AH - 1.7                       | PowerTec                        | 64               | lbs/batch        |
|                   |                             |                             | 30                               | 500-520': AH - 1.6                       | Sand                            | NA               | lbs/batch        |
|                   |                             |                             | 30                               | 520-540': AH - 1.7                       | Batch Yield                     | 59.7             | gal/batch        |
|                   |                             |                             | 30                               | 540-560': AH - 1.7                       | Total No. Batches               | 23               | <u> </u>         |
|                   |                             |                             | 30                               | 560-580': AH - 1.8                       | Target Thermal                  |                  |                  |
| 600               | 605                         |                             | 30                               | 580-600': AH - 1.9                       | Conductivity                    | 1.4              | Btu/hr-ft-°F     |
|                   | Botto                       | m of Borehole at 605 ft bgs |                                  |                                          | Tremie Tube<br>Diameter         | 1                | (in)             |
|                   |                             |                             |                                  |                                          | Tremie Tube<br>Embedment        | 550              | (ft-bgs)         |
|                   |                             |                             |                                  |                                          | Grout Return at<br>Surface      | ☑ Yes            | □ No             |

Surface Grout Sample

Collected / Date Grouted /

Observed By

✓ Yes

12/27/2023

□ No

HAQ

- 1) ARCH denotes air rotary casing hammer. AH denotes air hammer drilling methods.
- 2) 5.625" button bit used for AH bedrock drilling

Additional Remarks

- 3) Overburden material generally consisted of Redish-Brown Silty Sand with cobbles and boulders.
- 4) Ground surface elevation approximate obtained from google earth pro
- 5) Due to grout loss in formation, 3 bags of bentonite used to seal zone and top off test well.

| CDI               | vi<br>nith.                             |                             | Geologic/Ge                      | othermal Test Loop In                    | stallation Log               |                |                        |
|-------------------|-----------------------------------------|-----------------------------|----------------------------------|------------------------------------------|------------------------------|----------------|------------------------|
|                   | Client                                  | Mount Vernon Group          | Architects                       | Drilling Contractor                      | Skillings & Sons             |                | Loop No.               |
| Proje             | Project Name Green Meadow Elementary Sc |                             | ntary Schools                    | Schools Driller/Crew                     |                              | -              |                        |
| Project           | Location                                | Maynard, Massachusetts      |                                  | Drill Rig Make/Model                     | Reichdrill RTD69TW <b>T</b>  |                | TB-2                   |
| Project           | t Number                                | 292999                      |                                  | Drilling Method(s)                       | Air Hammer                   |                |                        |
| Depth<br>(ft-bgs) | Strata<br>Depth<br>(ft-bgs)             | Strata                      | Groundwater<br>Produced<br>(GPM) | Drilling Method - Drill<br>Rate (ft/min) | Во                           | rehole Drillin | g                      |
|                   | 5                                       | Overburden                  | <5                               | 0-20': ARCH - 3.9                        | Ground Surface<br>Elevation  | +/15.0         | ft                     |
|                   | 18                                      | Weathered Rock              | <5                               | 20-40': ARCH - 1.6                       |                              |                |                        |
|                   |                                         |                             | <5                               | 40-60': ARCH - 2.4                       | Borehole Drill Depth         | 600 / -38      | 35 ft-bgs/Elev         |
|                   |                                         |                             | <5                               | 60-80': ARCH - 2.6                       | Top of Bedrock               | 18 / 19        | 7 ft-bgs/Elev          |
| 100               | ]                                       |                             | 10                               | 80-100': ARCH - 2.3                      | Casing Diameter /            | C 25 in / 40 / | 17F.O. & 1 /F!         |
|                   |                                         |                             | 10                               | 100-120': AH - 2.2                       | Installed Depth              | 6.25 in./ 40 / | 175.0 ft-bgs/Elev      |
|                   |                                         |                             | 10                               | 120-140': AH - 2.6                       | Casing Left in<br>Ground     | Yes            | □ No                   |
|                   |                                         |                             | 15                               | 140-160': AH - 2.6                       | Depth to                     |                | ft has/Flour           |
|                   |                                         |                             | 15                               | 160-180': AH - 2.5                       | Groundwater                  | NR / NR        | ft-bgs/Elev            |
| 200               | -                                       |                             | 15                               | 180-200': AH - 2.4                       | Date(s) Drilled/Observed By  | 12/21/2023     | / CRT                  |
|                   |                                         |                             | 15                               | 200-220': AH - 2.4                       |                              | op Installatio | n                      |
|                   |                                         |                             | 20                               | 220-240': AH - 2.2                       |                              |                |                        |
|                   |                                         |                             | 20                               | 240-260': AH - 2.1                       | Loop Type, DR                | U-Bend D       | R 11 HDPE              |
| 200               |                                         |                             | 20                               | 260-280': AH - 2.1                       | Loop Diameter                | 1.25           | in                     |
| 300               |                                         |                             | 20                               | 280-300': AH - 2.4<br>300-320': AH - 2.2 |                              |                |                        |
|                   |                                         | Granite                     | 20                               | 320-340': AH - 2.0                       | Installed Loop Depth         | 600            | ft-bgs                 |
|                   |                                         |                             | 25                               | 340-360': AH - 2.4                       | Borehole Diameter            | 5.625          | in                     |
|                   |                                         |                             | 25                               | 360-380': AH - 1.9                       | Barrie II Walance            | 405 / 70       |                        |
| 400               |                                         |                             | 25                               | 380-400': AH - 2.3                       | Borehole Volume              | ,              | 37 cf/gal              |
|                   | †                                       |                             | 25                               | 400-420': AH - 1.9                       | Date Installed / Observed By | 12/23/2023     | / CRT                  |
|                   |                                         |                             | 30                               | 420-440': AH - 1.8                       | - Cassilica By               | Grouting       |                        |
|                   |                                         |                             | 30                               | 440-460': AH - 1.9                       |                              |                |                        |
|                   |                                         |                             | 30                               | 460-480': AH - 2.0                       | Water                        | 49.5           | gal/batch              |
| 500               |                                         |                             | 30                               | 480-500': AH - 2.1                       | GeoPro TG Select             | 150            | lbs/batch              |
|                   | 1                                       |                             | 30                               | 500-520': AH - 2.4                       | PowerTec                     | 64             | lbs/batch              |
|                   |                                         |                             | 30                               | 520-540': AH - 1.9                       | Sand<br>Batch Yield          |                | lbs/batch<br>gal/batch |
|                   |                                         |                             | 30                               | 540-560': AH - 1.8                       | Total No. Batches            |                | gai/batch<br>27        |
|                   |                                         |                             | 30                               | 560-580': AH - 1.6                       | Target Thermal               |                |                        |
| 600               | 605                                     |                             | 30                               | 580-600': AH - 1.6                       | Conductivity                 | 1.4            | Btu/hr-ft-°F           |
|                   | Botto                                   | m of Borehole at 605 ft bgs |                                  |                                          | Tremie Tube<br>Diameter      | 1              | (in)                   |
|                   |                                         |                             |                                  |                                          | Tremie Tube<br>Embedment     | 550            | (ft-bgs)               |
| 700               |                                         |                             |                                  |                                          | Grout Return at<br>Surface   | ☑ Yes          | □ No                   |
| 700               | 4                                       |                             |                                  |                                          | Grout Sample                 | □ Yes          | □ No                   |

Observed By

Collected Date Grouted /

□ Yes

12/27/2023

☑ No

HAQ

- 1) ARCH denotes air rotary casing hammer. AH denotes air hammer drilling methods.
- 2) 5.625" button bit used for AH bedrock drilling

Additional Remarks

- 3) Overburden material generally consisted of Redish-Brown Silty Sand with cobbles and boulders.
- 4) Ground surface elevation approximate obtained from google earth pro
- 5) Due to grout loss in formation, 3 bags of bentonite used to seal zone and top off test well.

## **Attachment B**

**Grout Thermal Conductivity Reports** 



Phone: 877.580.9348 | Fax: 877.580.9371

January 31, 2024

Skillings and Sons Attn: Jared Mullen 9 Columbia Drive Amherst, NH 03031 Phone: 603-235-4533

Fax:

RE: Thermal Grout Thermal Conductivity Analysis Report

Thank you for participating in this "field quality control" program for the various Thermal Grout products. The objective of this analysis is to offer an unbiased verification of the thermal conductivity of the field mixed material. This analysis is intended to help ensure proper performance of the grouting material and that proper mixing procedures are consistently being followed throughout the project. It is recommended that, at a minimum, three separate analyses be performed on each commercial project.

Based on information supplied on the "Test Information Form" that accompanied the sample container, the tested specimen was collected on the following date from the following project:

Sample Received by Lab: January 9, 2024
Sample Collection Date: December 27, 2023
Project Name: Green Meadow: TB-1

City, State: Maynard, MA

GeoPro, Inc. tests in accordance to ASTM D-5334 to determine thermal conductivity of fully hydrated grout specimens. Our analysis indicated that the thermal conductivity value of the specimen supplied from the project referenced above was as follows:

Thermal Conductivity: **1.510** Btu/hr-ft-°F = 2.613 W/m-°K

If this value is lower than expected, please contact GeoPro, Inc. immediately at (605) 542-7391 to discuss possible reasons for a discrepancy and possible remedies.

We at GeoPro, Inc. believe that our combined efforts to provide this project with a high quality, high performance grouting material helps to build confidence in ground-source heat pump applications. We believe that increased confidence by all parties involved will help this industry achieve its objective of becoming a "main-stream" technology. Again, thank you for your participation in this program.

If you have any questions regarding this analysis, please contact me at (877) 580-9348 ext 106.

Sincerely,
Tylu Ahl

Tyler Harbeck GeoPro, Inc.

## **Attachment C**

**GRTI** Reports



# FORMATION THERMAL CONDUCTIVITY TEST & DATA ANALYSIS

TEST LOGATION Green Meadow Elementary School TB-2
Maynard, MA

TEST DATE January 2-4, 2024

ANALYSIS FOR Skillings & Sons, LLC

9 Columbia Drive Amherst, NH 03031 Phone: (603) 459-2600

TEST PERFORMED BY Skillings & Sons, LLC

### **EXECUTIVE SUMMARY**

A formation thermal conductivity test was performed on test borehole TB-2 at Green Meadow Elementary School at a GPS location of N 42° 25.347′ (latitude), W 71° 27.608′ (longitude) in Maynard, Massachusetts. The vertical bore was installed on December 22, 2023 by Skillings & Sons, LLC. Geothermal Resource Technologies' (GRTI) test unit was attached to the vertical bore on the morning of January 2, 2024.

This report provides an overview of the test procedures and analysis process, along with plots of the loop temperature and input heat rate data. The collected data was analyzed using the "line source" method and the following average formation thermal conductivity was determined.

## Formation Thermal Conductivity = 1.93 Btu/hr-ft-°F

Due to the necessity of a thermal diffusivity value in the design calculation process, an estimate of the average thermal diffusivity was made for the encountered formation.

## Formation Thermal Diffusivity $\approx 1.34 \text{ ft}^2/\text{day}$

Bore thermal resistance calculations were made on the test data using the method outlined in the Gehlin Doctoral Thesis<sup>1</sup>. Since the average value listed below was empirically determined from the test data it may not directly correlate with values found in loopfield design programs.

## **Bore Thermal Resistance = 0.220 hr-ft-°F/Btu**

The undisturbed formation temperature for the tested bore was determined from the initial loop temperature data collected at startup.

## **Undisturbed Formation Temperature** ≈ 50.3-52.6°F

The formation thermal properties determined by this test do not directly translate into a loop length requirement (i.e. feet of bore per ton). These parameters, along with many others, are inputs to commercially available loop-field design software to determine the required loop length. Additional questions concerning the use of these results are discussed in the frequently asked question (FAQ) section at www.grti.com.

JANUARY 17, 2024 1 OF 8 FTC TEST REPORT

<sup>&</sup>lt;sup>1</sup> Signhild Gehlin. "Thermal Response Test - Method Development and Evaluation," (Doctoral Thesis, Lulea University of Technology, 2002).

### TEST PROCEDURES

The American Society of Heating, Refrigeration, and Air-Conditioning Engineers (ASHRAE) has published recommended procedures for performing formation thermal conductivity tests in the ASHRAE HVAC Applications Handbook, Geothermal Energy Chapter. The International Ground Source Heat Pump Association (IGSHPA) also lists test procedures in their Design and Installation Standards. GRTI's test procedures meet or exceed those recommended by ASHRAE and IGSHPA, with the specific procedures described below:

**Grouting Procedure for Test Loops** – To ensure against bridging and voids, it is recommended that the bore annulus is uniformly grouted from the bottom to the top via tremie pipe.

**Time Between Loop Installation and Testing** – A minimum delay of five days between loop installation and test startup is recommended for bores that are air drilled, and a minimum waiting period of two days for mud rotary drilling.

**Undisturbed Formation Temperature Measurement** – The undisturbed formation temperature should be determined by recording the loop temperature as the water returns from the u-bend at test startup.

**Required Test Duration** – A minimum test duration of 36 hours is recommended, with a preference toward 48 hours.

**Data Acquisition Frequency -** Test data is recorded at five minute intervals.

Equipment Calibration/Accuracy – Transducers and datalogger are calibrated per manufacturer recommendations. Manufacturer stated accuracy of power transducers is less than  $\pm 2\%$ . Temperature sensor accuracy is periodically checked via ice water bath.

**Power Quality** – The standard deviation of the power should be less than or equal to 1.5% of the average power, with maximum power variation of less than or equal to 10% of the average power.

**Input Heat Rate** – The heat flux rate should be 51 Btu/hr (15 W) to 85 Btu/hr (25 W) per foot of installed bore depth to best simulate the expected peak loads on the u-bend.

**Insulation** – GRTI's equipment has 1 inch of foam insulation on the FTC unit and 1/2 inch of insulation on the hose kit connection. An additional 2 inches of insulation is provided for both the FTC unit and loop connections by insulating blankets.

**Retesting in the Event of Failure** – In the event that a test fails prematurely, a retest may not be performed until the bore temperature is within 0.5°F of the original undisturbed formation temperature or until a period of 14 days has elapsed.

## DATA ANALYSIS

Geothermal Resource Technologies, Inc. (GRTI) uses the "line source" method of data analysis to determine the thermal conductivity of the formation. The line source method assumes an infinitely thin line source of heat in a continuous medium. A plot of the late-time temperature rise of the line source temperature versus the natural log of elapsed time will follow a linear trend. The linear slope is inversely proportional to the thermal conductivity of the medium. Applying the line source method to a u-bend grouted in a borehole, the test must be run long enough to allow the finite dimensions of the u-bend pipes and the grout to become insignificant. Experience has shown that approximately ten hours is required to allow the error of early test times and the effects of finite borehole dimensions to become insignificant.

In order to analyze real data from a formation thermal conductivity test, the average temperature of the water entering and exiting the u-bend heat exchanger is plotted versus the natural log of elapsed testing time. Using the Method of Least Squares, linear coefficients are then calculated to produce a line that fits the data. This procedure is repeated for various time intervals to ensure that variations in the power or other effects are not producing inaccurate results.

Bore thermal resistance was determined using the formula outlined in Gehlin's Doctoral Thesis<sup>2</sup>. A serial development was used to approximate the exponential integral. The calculated bore resistance applies only to the test conditions, a bore in an operating loopfield could have a significantly different resistance due to changes in the loop fluid temperature, flow rate and presence of antifreeze.

The calculated results are based on test bore information submitted by the driller/testing agency. GRTI is not responsible for inaccuracies in the results due to erroneous bore information. All data analysis is performed by personnel that have an engineering degree from an accredited university with a background in heat transfer and experience with line source theory. The test results apply specifically to the tested bore. Additional bores at the site may have significantly different results depending upon variations in geology and hydrology.

Through the analysis process, the collected raw data is converted to spreadsheet format (Microsoft Excel®) for final analysis. If desired, please contact GRTI and a copy of the data will be made available in either a hard copy or electronic format.

CONTACT: Chad Martin

Regional Managing Engineer Asheville, NC (828) 275-7113

cmartin@grti.com

## TEST BORE DETAILS

## (AS PROVIDED BY SKILLINGS & SONS, LLC)

| Site Name                | Green Meadow Elementary School, TB-2           |
|--------------------------|------------------------------------------------|
| Location                 | Maynard, MA                                    |
| Driller                  | Skillings & Sons, LLC                          |
| Installed Date           | December 22, 2023                              |
| Borehole Diameter        | 6-1/4 inches                                   |
| Casing                   | Permanent 6 inch steel casing from 0-45 ft     |
| U-Bend Size              | 1-1/4 inch DR11 HDPE                           |
| U-Bend Depth Below Grade | 605 ft                                         |
| Grout Type               | GeoPro TG Select/PowerTEC 1.4                  |
| Grout Mixture            | 150 lb TG Select, 64 lb PowerTEC, 48 gal water |
| Grouted Portion          | Entire bore                                    |

### DRILL LOG

| FORMATION DESCRIPTION                                   | DEPTH (FT) |
|---------------------------------------------------------|------------|
| Gravel, light grey and brown, medium and coarse texture | 0'-17'     |
| Granite, brown/light grey, coarse texture               | 17'-605'   |

Note: Bore produced 10-12 gpm water from 0-100 ft; 35+ gpm from 100-605 ft.

# THERMAL CONDUCTIVITY TEST DATA



FIG. 1: TEMPERATURE & HEAT RATE DATA VS TIME

Figure 1 above shows the loop temperature and heat input rate data versus the elapsed time of the test. The temperature of the fluid supplied to and returning from the U-bend are plotted on the left axis, while the amount of heat supplied to the fluid is plotted on the right axis on a per foot of bore basis. In the test statistics below, calculations on the power data were performed over the analysis time period listed in the Line Source Data Analysis section.

#### SUMMARY TEST STATISTICS

| Test Date                            | December 2-4, 2023         |
|--------------------------------------|----------------------------|
| Undisturbed Formation Temperature    | Approx. 50.3-52.6°F        |
| Duration                             | 47.9 hr                    |
| Average Voltage                      | 239.4 V                    |
| Average Heat Input Rate              | 46,169 Btu/hr (13,527 W)   |
| Avg Heat Input Rate per Foot of Bore | 76.3 Btu/hr-ft (22.4 W/ft) |
| Circulator Flow Rate                 | 11.4 gpm                   |
| Standard Deviation of Power          | 0.11%                      |
| Maximum Variation in Power           | 0.22%                      |

## LINE SOURCE DATA ANALYSIS

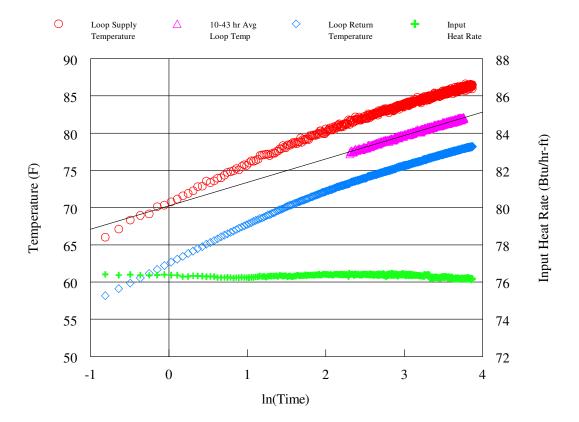



FIG. 2: TEMPERATURE & HEAT RATE VS NATURAL LOG OF TIME

The loop temperature and input heat rate data versus the natural log of elapsed time are shown above in Figure 2. The temperature versus time data was analyzed using the line source method (see page 3) in conformity with ASHRAE and IGSHPA guidelines. A linear curve fit was applied to the average of the supply and return loop temperature data between 10 and 43.0 hours. The slope of the curve fit was found to be 3.15. The resulting thermal conductivity was found to be 1.93 Btu/hr-ft-°F.

## THERMAL DIFFUSIVITY

The reported drilling log for this test borehole indicated that the formation consisted of gravel overburden and granite. An average heat capacity value for granite was calculated from specific heat and density values listed by Kavanaugh and Rafferty<sup>3</sup>. A weighted average of heat capacity values based on the indicated formation was used to determine an average heat capacity of 34.6 Btu/ft<sup>3</sup>-°F for the formation. A diffusivity value was then found using the calculated formation thermal conductivity and the estimated heat capacity. The thermal diffusivity for this formation was estimated to be **1.34** ft<sup>2</sup>/day.

<sup>3</sup>Stephen P. Kavanaugh and Kevin Rafferty, Geothermal Heating and Cooling: Design of Ground-Source Heat Pump Systems (Atlanta: ASHRAE, 2014), 75.

#### **BORE THERMAL RESISTANCE**

Resistance to heat transfer from a geothermal bore can be viewed as consisting of two components, bore resistance and ground resistance. This relationship is diagrammed in Figure 3, where  $t_f$  is the loop fluid temperature,  $t_b$  is the bore wall temperature and  $t_g$  is the ground temperature. The ground resistance is dependent upon the formation thermal conductivity and diffusivity. Factors that affect bore thermal resistance include the resistance of the pipe material, diameter of the heat exchanger, position of the heat exchanger in the bore, the bore diameter, casing length and type, and the thermal conductivity of the grout/backfill in the bore annulus. A detailed examination of bore resistance is discussed by Kavanaugh and Rafferty<sup>4</sup>.

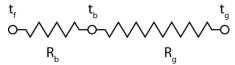



FIG. 3: RESISTANCE DIAGRAM FOR A GEOTHERMAL BORE

Bore thermal resistance calculations were made on the test data according to the formula below as outlined in the Gehlin Doctoral Thesis<sup>5</sup>. The calculated formation thermal conductivity and thermal diffusivity from the Line Source Analysis were used in the formula. The average undisturbed formation temperature of 51.5°F was used and the average bore thermal resistance from 10-43.0 hrs was found to be **0.220 hr-ft-**°F/Btu.

The calculated bore resistances apply only to the test conditions, and a bore in an operating loopfield could have a significantly different resistance due to changes in the loop fluid temperature, flow rate, and presence of antifreeze. Additional information on bore resistance may be found in the study by Oklahoma State University and Oklahoma Gas & Electric where various vertical bore heat exchanger configurations were tested<sup>6</sup>.

$$R_b = \frac{H}{Q} * \left\{ T(t) - T_g - \frac{Q}{4\pi\lambda_g H} * \left[ Ei \left( \frac{r_b^2}{4\alpha_g t} \right) \right] \right\}$$

Where:  $R_b$  Borehole thermal resistance (hr-ft- $^{\circ}$ F/Btu)

H Active U-bend depth (ft)

Q Average heat injected (Btu/hr)

T(t) Temperature dependent on time t (°F)

 $T_g$  Undisturbed ground temperature

 $\lambda_g$  Formation thermal conductivity (Btu/hr-ft- ${}^{\circ}$ F)

 $r_b$  Average borehole radius (in)

 $\alpha_g$  Formation thermal diffusivity (ft<sup>2</sup>/hr)

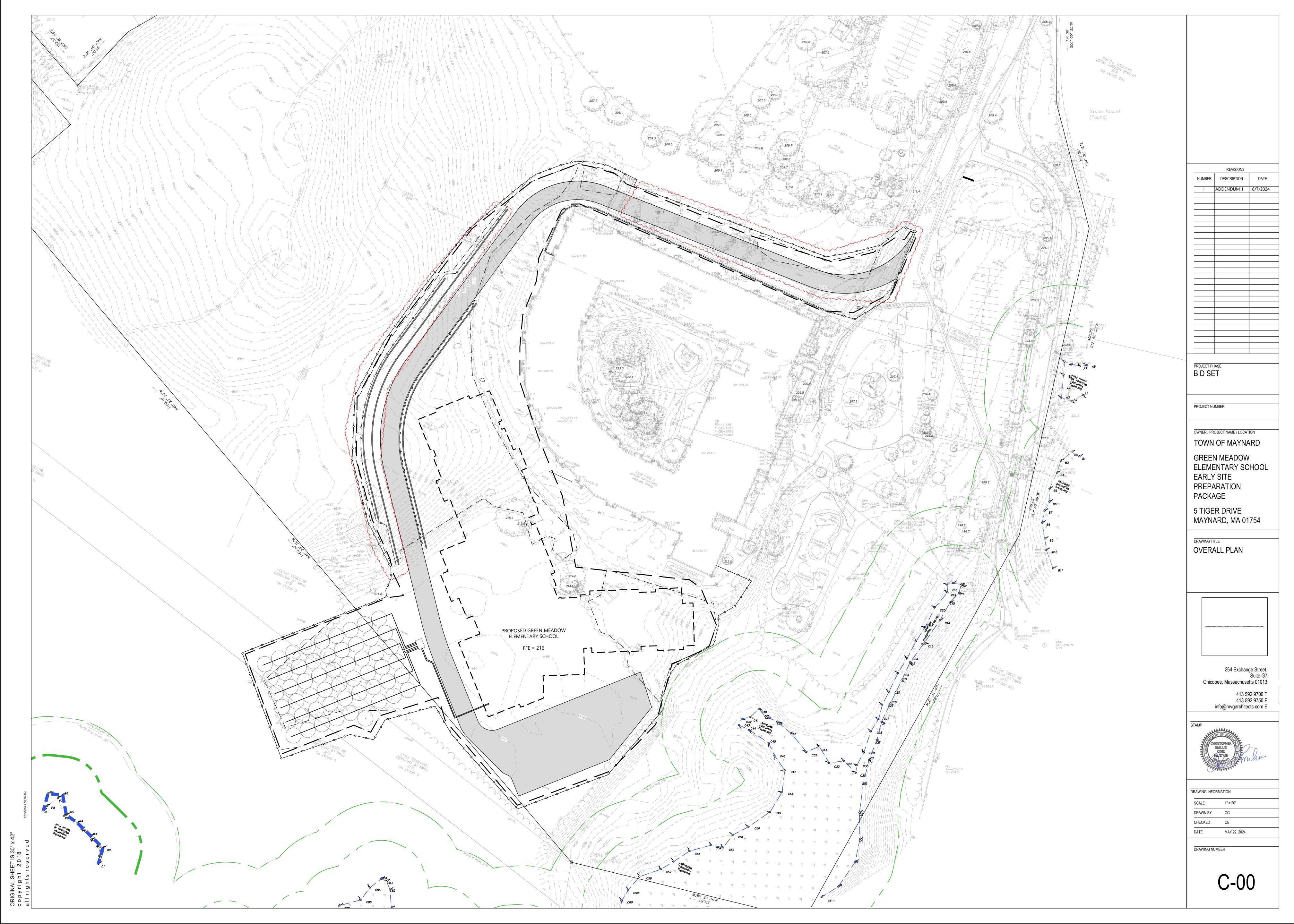
<sup>&</sup>lt;sup>4</sup>Stephen P. Kavanaugh and Kevin Rafferty, Geothermal Heating and Cooling: Design of Ground-Source Heat Pump Systems (Atlanta: ASHRAE, 2014), pages 58-67.

<sup>&</sup>lt;sup>5</sup>Gehlin, 12-13.

<sup>&</sup>lt;sup>6</sup> Beier, R. and Ewbank, G. (2012, August). *In-Situ Test Thermal Response Tests Interpretations, OG&E Ground Source Heat Exchange Study*. Retrieved from http://ghpok.org/



# CERTIFICATE OF CALIBRATION

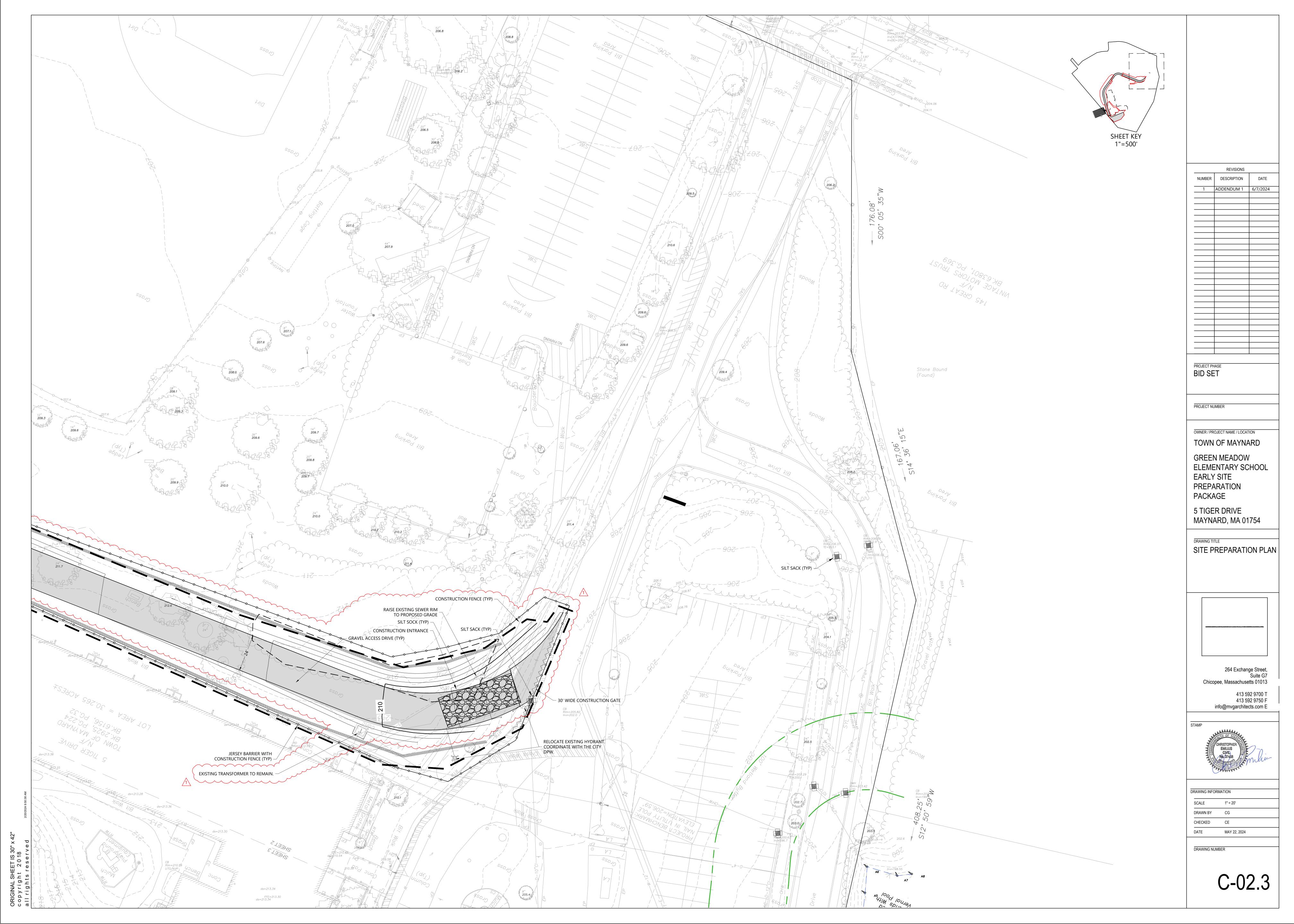

GRTI maintains calibration of the datalogger, current transducer and voltage transducer on a regular schedule. The components are calibrated by the manufacturer using recognized national or international measurement standards such as those maintained by the National Institute of Standards and Technology (NIST).

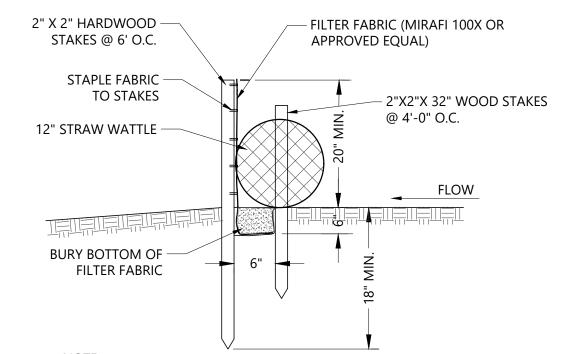
| FTC Unit _ | 231 |
|------------|-----|
|            |     |
| DA Unit    | 82  |

| PRIMARY EQUIPMENT  |                      |           |  |  |
|--------------------|----------------------|-----------|--|--|
| COMPONENT          | CALIBRATION DUE DATE |           |  |  |
| Datalogger         | 6/2/2023             | 6/2/2026  |  |  |
| Current Transducer | 3/15/2023            | 3/15/2026 |  |  |
| Voltage Transducer | 3/15/2023            | 3/15/2026 |  |  |

GRTI periodically verifies the combined temperature sensor/datalogger accuracy via a water bath. Temperature readings are simultaneously taken with a digital thermometer that has been calibrated using instruments traceable to NIST.

| DATE                     | 11/8/2023      | 7/5/2023       |  |
|--------------------------|----------------|----------------|--|
| THERMOCOUPLE 1 (°F)      | 52.1 52.1 52.2 | 55.4 55.5 55.6 |  |
| THERMOCOUPLE 2 (°F)      | 52.1 52.2 52.3 | 55.4 55.5 55.6 |  |
| THERMOCOUPLE 3 (°F)      | 52.2 52.2 52.3 | 55.5 55.6 55.7 |  |
| THERMOCOUPLE 4 (°F)      | 52.2 52.3 52.4 | 55.6 55.7 55.8 |  |
| DIGITAL THERMOMETER (°F) | 52.3 52.3 52.4 | 55.6 55.6 55.7 |  |

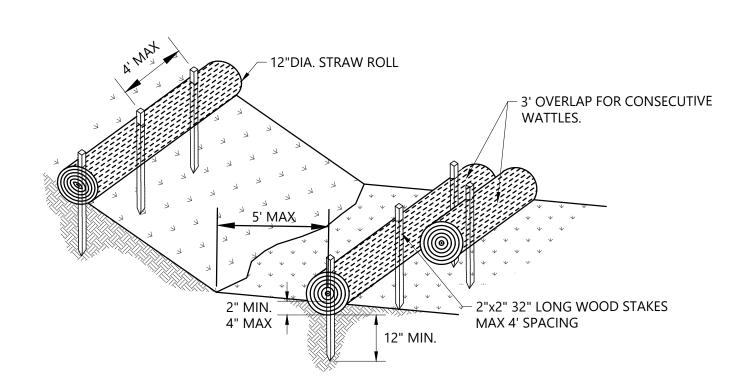




# **GENERAL EROSION & SEDIMENTATION CONTROL PLAN NOTES:** APPLICANT/CONTRACTOR SHALL BE RESPONSIBLE FOR PHYSICALLY MARKING THE LIMITS OF CONSTRUCTION ON THE SITE WITH TAPE, SIGNS, OR ORANGE CONSTRUCTION FENCE, SO THAT WORKERS UNDERSTAND THE AREAS TO BE PROTECTED. THE PHYSICAL MARKERS SHALL BE INSPECTED DAILY AND REPAIRED AS NECESSARY THROUGHOUT THE DURATION OF THE PROJECT. PERIMETER SEDIMENT CONTROL SYSTEM SHALL BE INSTALLED PRIOR TO SOIL DISTURBANCE AND MAINTAINED TO CONTAIN SOILS ON-SITE. AREAS OUTSIDE OF THE PERIMETER SEDIMENT CONTROL SYSTEM MUST NOT BE DISTURBED UNLESS THE APPLICANT HAS OBTAINED PRIOR APPROVAL FROM THE CITY. MEASURES SHALL BE TAKEN TO CONTROL EROSION WITHIN THE PROJECT AREA. SEDIMENT IN RUNOFF WATER SHALL BE TRAPPED AND RETAINED WITHIN THE PROJECT AREA AND STREET SWEEPING OF ADJACENT STREETS AND ROADS SHALL BE INCLUDED WHERE NECESSARY. 4. ALL AREAS OUTSIDE THE SITE SHALL BE PROTECTED FROM SHEET KEY 1"=500' MONITORING AND MAINTENANCE OF EROSION AND SEDIMENT CONTROL MEASURES THROUGHOUT THE COURSE OF CONSTRUCTION SHALL BE REQUIRED. SEDIMENT SHALL BE REMOVED ONCE THE VOLUME REACHES $\frac{1}{4}$ TO $\frac{1}{2}$ THE HEIGHT OF THE EROSION CONTROL. REVISIONS DIVERT RUNOFF FROM OFFSITE AND UNDISTURBED AREAS AWAY NUMBER DESCRIPTION FROM CONSTRUCTION TO MINIMIZE SOIL EROSION AND SEDIMENTATION ON AND OFF-SITE. TEMPORARILY STABILIZE ALL ADDENDUM 1 6/7/2024 HIGHLY ERODIBLE SOILS AND SLOPES IMMEDIATELY. LAND DISTURBANCE ACTIVITIES EXCEEDING TWO ACRES IN SIZE SHALL NOT BE DISTURBED WITHOUT A SEQUENCING PLAN THAT REQUIRES STORMWATER CONTROLS TO BE INSTALLED AND EXPOSED SOILS STABILIZED, AS DISTURBANCE BEYOND THE TWO ACRES CONTINUES. A CONSTRUCTION PHASING PLAN, INCLUDING EROSION AND SEDIMENT CONTROL PLAN FOR EACH PHASE, SHALL BE SUBMITTED TO THE CITY PRIOR TO ANY CONSTRUCTION ON THE SITE. MASS CLEARINGS AND GRADING OF THE ENTIRE SITE SHALL BE AVOIDED. SOIL STOCKPILES MUST BE STABILIZED OR COVERED AT THE END OF EACH WORKDAY. STOCKPILE SIDE SLOPES SHALL NOT BE GREATER THAN 2:1. ALL STOCKPILES SHALL BE SURROUNDED BY SEDIMENT CONTROLS. DISTURBED AREAS REMAINING IDLE FOR MORE THAN 14 DAYS SHALL BE TEMPORARILY OR PERMANENTLY STABILIZED. 10. PERMANENT SEEDING SHALL BE UNDERTAKEN IN THE SPRING FROM MARCH THROUGH MAY, AND IN LATE SUMMER AND EARLY FALL FROM AUGUST TO OCTOBER 15. DURING THE PEAK SUMMER MONTHS AND IN THE FALL AFTER OCTOBER 15, WHEN SEEDING IS FOUND TO BE IMPRACTICAL, AN APPROPRIATE TEMPORARY MULCH AND/OR NON-ASPHALTIC SOIL TACKIFIER WITH WINTER RYE SHALL BE APPLIED. PERMANENT SEEDING MAY BE UNDERTAKEN DURING THE SUMMER IF PLANS PROVIDE FOR ADEQUATE MULCHING AND WATERING. 11. TEMPORARY CONSTRUCTION ENTRANCES SHALL BE INSTALLED AT ALL ENTRANCE/EXIST POINTS OF THE SITE TO REDUCE THE AMOUNT OF SOIL CARRIED ONTO ROADWAYS AND OFF THE SITE. DUST SHALL ALSO BE CONTROLLED AT THE SITE. PROJECT PHASE 12. ALL SLOPES STEEPER THAN 3:1 (H:V, 33.3%), AS WELL AS PERIMETER DIKES, SEDIMENT BASINS OR TRAPS, AND EMBANKMENTS MUST, UPON COMPLETION, BE IMMEDIATELY STABILIZED WITH SOD, SEED AND ANCHORED STRAW MULCH, OR OTHER APPROVED STABILIZATION MEASURES. 13. TEMPORARY SEDIMENT TRAPPING DEVICES MUST NOT BE REMOVED PROJECT NUMBER UNTIL PERMANENT STABILIZATION IS ESTABLISHED IN ALL CONSTRUCTION AREAS ASSOCIATED WITH THE PROJECT. SIMILARLY, STABILIZATION MUST BE ESTABLISHED PRIOR TO CONVERTING REMOVE EXIST. TEMPORARY SEDIMENT TRAPS/BASINS INTO PERMANENT (POST-CONSTRUCTION) STORMWATER MANAGEMENT FACILITIES. OWNER / PROJECT NAME / LOCATION ALL FACILITIES USED FOR TEMPORARY MEASURES SHALL BE CLEANED AND RE-STABILIZED PRIOR TO BEING PUT INTO FINAL TOWN OF MAYNARD / SILT SOCK (TYP) -14. ALL TEMPORARY EROSION AND SEDIMENT CONTROL MEASURES **GREEN MEADOW** SHALL BE REMOVED AFTER FINAL SITE STABILIZATION. DISTURBED **ELEMENTARY SCHOOL** SOIL AREAS RESULTING FROM THE REMOVAL OF TEMPORARY EXITING CONTAINER TO BE MEASURES SHALL BE PERMANENTLY STABILIZED WITHIN 30 DAYS OF RELOCATED BY OWNER **EARLY SITE** PREPARATION SITE DUST CONTROL REQUIREMENTS PACKAGE THE CONTRACTOR SHALL MITIGATE ALL DEMOLITION AND REMOVE EXIST. CONSTRUCTION DUST GENERATED ON THE PROJECT SITE CONSTRUCTION FENCE (TYP) -REGARDLESS OF THE ACTIVITY BEING PERFORMED. 5 TIGER DRIVE THE CONTRACTOR SHALL PROVIDE WATER FOR DUST CONTROL AND PUMPS AND HOSES ON SITE AT ALL TIMES TO MANAGE DUST MAYNARD, MA 01754 DURING AND AFTER DEMOLITION. THE CONTRACTOR SHALL EMPLOY TECHNIQUES SUCH AS WET SWEEPING, WATERING DOWN WITH HOSES AND PREEMPTIVE DRAWING TITLE CLEANING TO MITIGATE DUST GENERATION FROM ALL OPERATIONS. DEMO PLAN SAW CUTTING SHALL BE DONE USING SAWS THAT ARE EQUIPPED WITH SPRAY ATTACHMENTS THAT WILL ADEQUATELY WET DEBRIS REMOVE EXIST. GENERATED FROM CUTTING FROM BECOMING AIR-BORN. BENCHES REMOVE EXIST. SILT SOCK (TYP) JERSEY BARRIER WITH CONSTRUCTION FENCE (TYP) -264 Exchange Street, Chicopee, Massachusetts 01013 413 592 9700 T 413 592 9750 F REMOVE EXIST info@mvgarchitects.com E 60,000 ± SF TREE REMOVAL BOULDER\$ JERSEY BARRIER WITH CONSTRUCTION FENCE (TYP) -SILT SOCK (TYP) -Existing transformer to remain. $\sim$ DRAWING INFORMATION CHECKED CE MAY 22, 2024 DRAWING NUMBER ds=220.70 ds=213.34FFE=213.30 ds=213.34



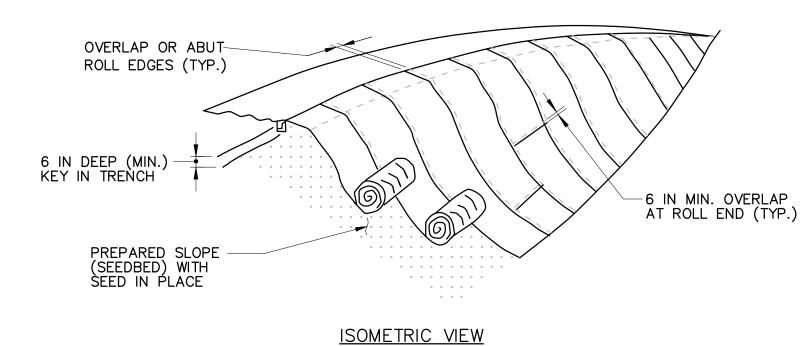


# **GENERAL NOTES:** 1. REFER TO DRAWING C-01 FOR EROSION CONTROL NOTES. THESE NOTES SHALL APPLY TO THE FINAL SITE CONDITION. APPLICANT/CONTRACTOR SHALL BE RESPONSIBLE FOR PHYSICALLY MARKING THE LIMITS OF CONSTRUCTION ON THE SITE WITH TAPE, SIGNS, OR ORANGE CONSTRUCTION FENCE, SO THAT WORKERS UNDERSTAND THE AREAS TO BE PROTECTED. THE PHYSICAL MARKERS SHALL BE INSPECTED DAILY AND REPAIRED AS NECESSARY THROUGHOUT THE DURATION OF THE PROJECT. PERIMETER SEDIMENT CONTROL SYSTEM AS SHOWN ON THIS DRAWING AND ON THE DEMOLITION PLAN SHALL BE INSTALLED PRIOR TO SOIL DISTURBANCE AND MAINTAINED TO CONTAIN SOILS ON-SITE. AREAS OUTSIDE OF THE PERIMETER SEDIMENT CONTROL SYSTEM MUST NOT BE DISTURBED UNLESS THE APPLICANT HAS OBTAINED PRIOR APPROVAL FROM THE CITY. ADDED MEASURES TO CONTROL EROSION ARE ADDED TO THIS DRAWING TAKEN TO CONTROL EROSION WITHIN THE PROJECT AREA AND TO CONTROL SEDIMENT TO THE PROPOSED LOWER SHEET KEY POND AND THE OUTFALL PIPING BEING INSTALLED DURING THIS 1"=500' PROJECT AND TO BE MAINTAINED AS PART OF THE FINAL SITE. ALL OFF SITE AREAS AND DRAIN INLETS SHALL BE PROTECTED FROM SEDIMENT DURING AND AFTER DEMOLITION AND CONSTRUCTION WORK. REVISIONS 6. ALL SEDIMENT COLLECTION SYSTEMS INCLUDING BUT NOT NUMBER DESCRIPTION LIMITED TO: SILT FENCES, SILT FENCE CHECKS, CATCH BASIN SILT SACKS, STRAW WATTLES, LOWER POND FORE-BAY, POND BOTTOM 1 ADDENDUM 1 6/7/2024 AND OUTLET STRUCTURE, AND UPPER POND INLET STRUCTURE 2 ADDENDUM 2 6/12/2024 AND ALL DRAINAGE PIPING AND STRUCTURES SHALL BE CLEANED. ALL BROKEN, DAMAGED OR CLOGGED SEDIMENT CONTROL DEVICES SHALL REPLACED AS REQUIRED BY THE OWNER'S REPRESENTATIVE ONCE BUILDING AND SITE DEMOLITION AND ALL PROPOSED CONSTRUCTION IS COMPLETED. SITE DUST CONTROL REQUIREMENTS THE CONTRACTOR SHALL MITIGATE ALL DEMOLITION AND CONSTRUCTION DUST GENERATED ON THE PROJECT SITE REGARDLESS OF THE ACTIVITY BEING PERFORMED. THE CONTRACTOR SHALL PROVIDE WATER FOR DEMOLITION AND CONSTRUCTION PURPOSES BY EITHER SUPPLYING WATER OR COORDINATING A TEMPORARY WATER CONNECTION WITH THE CITY WATER DEPARTMENT. ALL COSTS ASSOCIATED WITH PROVIDING WATER OR PROVIDING A TEMPORARY WATER SERVICE AND DISCONNECTION SHALL BE INCLUDED IN THE BASE PRICE FOR THE CONTRACT, INCLUDING ANY COSTS ASSOCIATED WITH WATER METERS AND BACK FLOW DEVICES REQUIRED BY THE CITY WATER DEPARTMENT. THE CONTRACTOR SHALL EMPLOY TECHNIQUES SUCH AS WET SWEEPING, WATERING DOWN WITH HOSES AND PREEMPTIVE CLEANING TO MITIGATE DUST GENERATION FROM ALL OPERATIONS. SAW CUTTING SHALL BE DONE USING SAWS THAT ARE EQUIPPED WITH SPRAY ATTACHMENTS THAT WILL ADEQUATELY WET DEBRIS GENERATED FROM CUTTING FROM BECOMING AIR-BORN. PROJECT PHASE OWNER / PROJECT NAME / LOCATION TOWN OF MAYNARD / SILT SOCK (TYP) **GREEN MEADOW ELEMENTARY SCHOOL EARLY SITE** GRAVEL ACCESS DRIVE (TYP) PREPARATION PACKAGE CONSTRUCTION FENCE (TYP) 5 TIGER DRIVE MAYNARD, MA 01754 SITE PREPARATION PLAN JERSEY BARRIER WITH CONSTRUCTION FENCE (TYP) — 264 Exchange Street, Chicopee, Massachusetts 01013 413 592 9700 T 413 592 9750 F info@mvgarchitects.com E PROPOSED CHAIN LINK FENCE JERSEY BARRIER WITH CONSTRUCTION FENCE (TYP) -EXISTING TRANSFORMER TO REMAIN. — $\wedge$ DRAWING INFORMATION DRAWN BY CG CHECKED CE MAY 22, 2024 DRAWING NUMBER ds=213.34FFE=213.30 ds=213.34






NOTE:
AN EROSION BARRIER CONSISTING OF A CONTINUOUS ROW OF STRAW WATTLES
SHALL BE INSTALLED IN LOCATIONS NOTED ON THE PLANS.

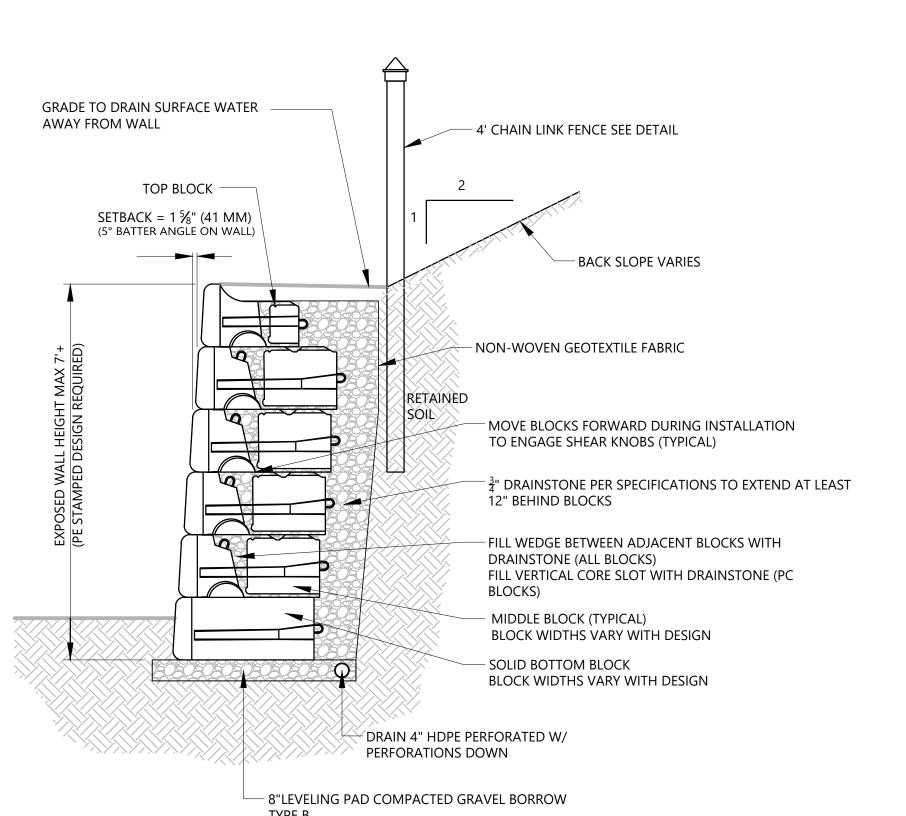

STRAW WATTLE AND SILT FENCE DETAIL

NOT TO SCALE

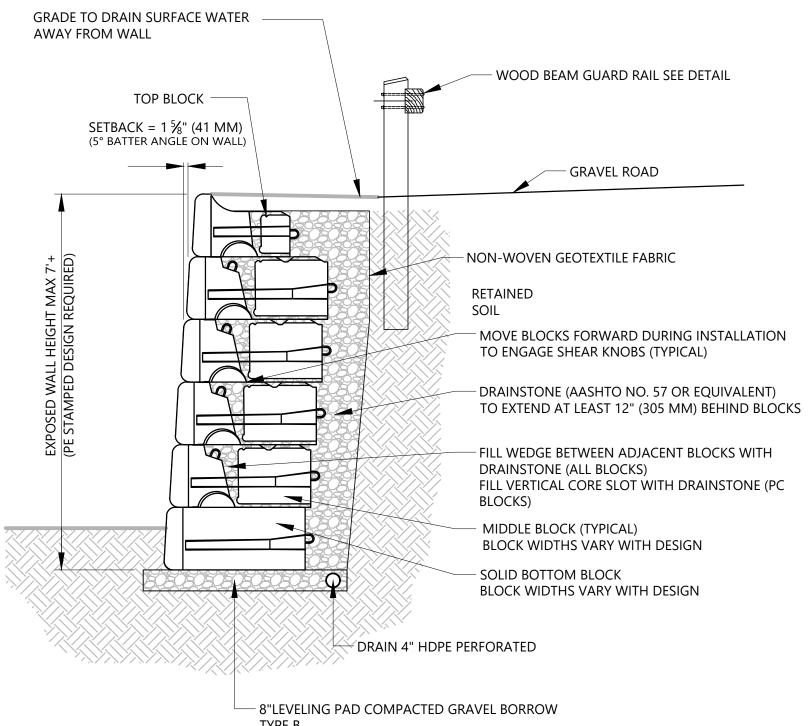


STRAW WATTLE DETAIL

NOT TO SCALE

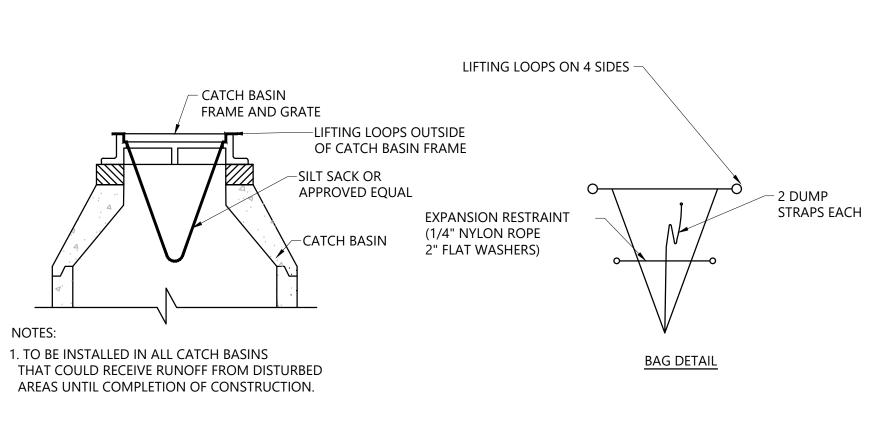



# <u>.....</u>

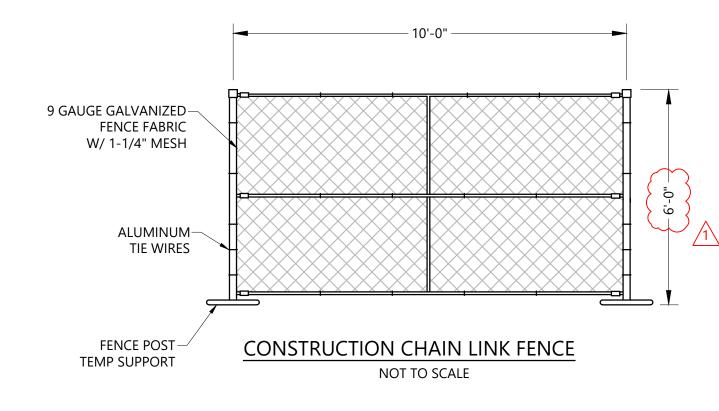

- CONSTRUCTION SPECIFICATIONS
   JUTE MESH FOR POND SIDE SLOPES AND PERMANENT SLOPES SHALL BE 100% JUTE 15 O.Z./SQ.YD. LOOSELY WOVEN AND
- 2. JUTE MESH SHALL BE MADE OF DEGRADABLE (LASTS 6 MONTHS MAX.) NATURAL FIBERS. MESH STRANDS MUST HAVE UNIFORM THICKNESS AND STRANDS SHALL BE EVENLY SPACED IN BOTH DIRECTIONS.
- 3. SECURE MATTING USING STEEL OR BIODEGRADABLE STAPLES, SPACED AT LEAST 12 INCHES ON CENTER.
- 4. PERFORM FINAL GRADING, TOPSOIL APPLICATION, SEEDBED PREPARATION, AND PERMANENT SEEDING IN ACCORDANCE WITH SPECIFICATIONS. PLACE MATTING WITHIN 48 HOURS OF COMPLETING SEEDING OPERATIONS UNLESS END OF WORKDAY STABILIZATION IS SPECIFIED ON THE APPROVED EROSION & SEDIMENT CONTROL PLAN.
- 5. UNROLL MATTING DOWN-SLOPE. LAY MAT SMOOTHLY AND FIRMLY UPON THE SEEDED SURFACE. AVOID STRETCHING THE MATTING.
- 6. OVERLAP OR ABUT ROLL EDGES PER MANUFACTURER RECOMMENDATIONS. OVERLAP ROLL ENDS BY 6 INCHES (MINIMUM), WITH THE UP-SLOPE MAT OVERLAPPING ON TOP OF THE DOWN-SLOPE MAT.
- 7. KEY IN THE UP-SLOPE END OF MAT 6 INCHES (MINIMUM) BY DIGGING A TRENCH, PLACING THE MATTING ROLL END IN THE TRENCH, STAPLING THE MAT IN PLACE, REPLACING THE EXCAVATED MATERIAL, AND TAMPING TO SECURE THE MAT END IN THE
- 8. STAPLE/STAKE MAT IN A STAGGERED PATTERN ON 4 FOOT (MAXIMUM) CENTERS THROUGHOUT AND 1 FOOT (MAXIMUM) CENTERS ALONG SEAMS, JOINTS, AND ROLL ENDS.
- 9. ESTABLISH AND MAINTAIN VEGETATION SO THAT REQUIREMENTS FOR ADEQUATE VEGETATIVE ESTABLISHMENT ARE CONTINUOUSLY MET IN ACCORDANCE LANDSCAPE PLANS AND SPECIFICATIONS.

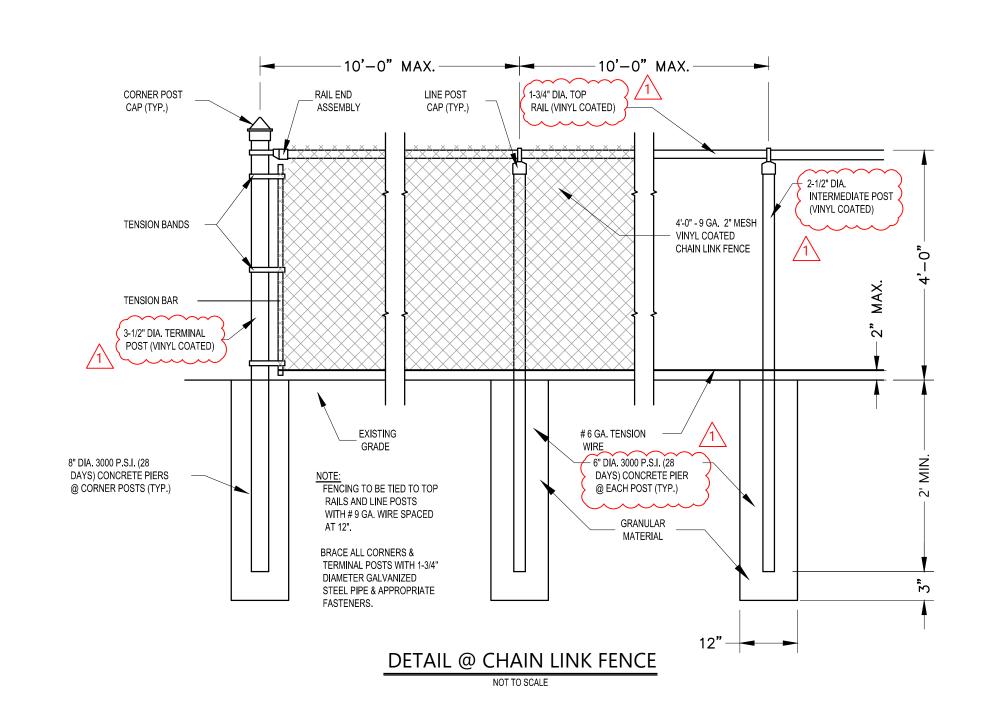
# TEMPORARY SOIL STABILIZATION JUTE MESH SLOPE APPLICATION

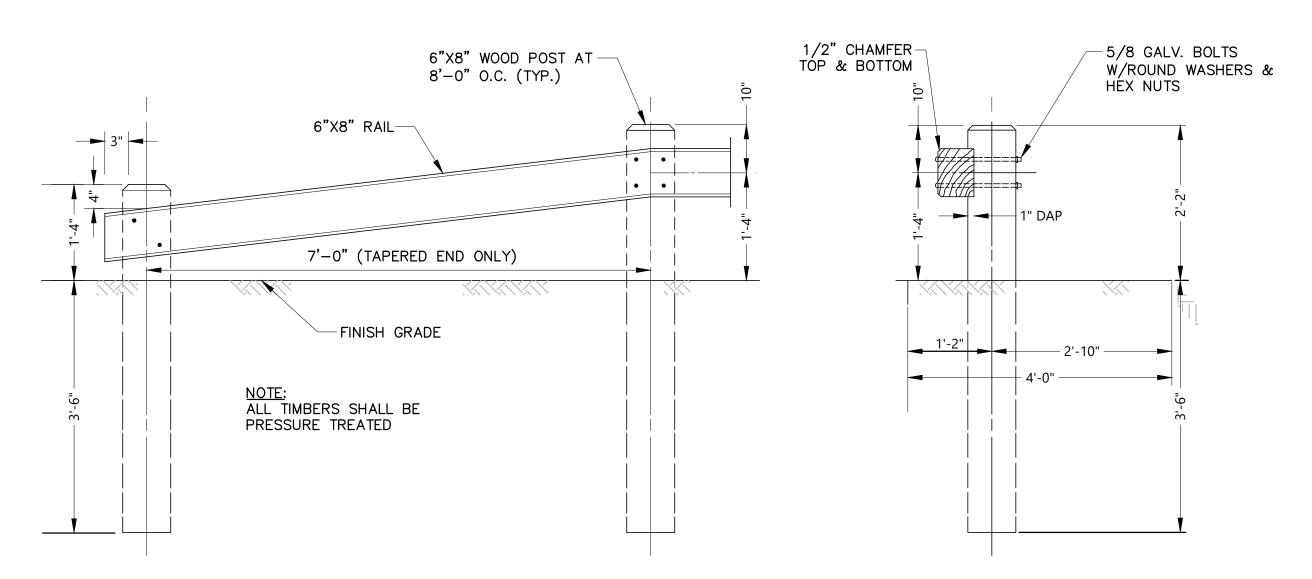
NOT TO SCALE




TYPICAL REDI-ROCK GRAVITY RETAINING WALL W/ FENCE
NOT TO SCALE





TYPICAL REDI-ROCK GRAVITY RETAINING WALL W/ GUARD RAIL


NOT TO SCALE



SILT SACK DETAIL NOT TO SCALE







WOOD BEAM GUARD RAIL DETAIL

NOT TO SCALE

PROJECT PHASE
BID SET

PROJECT NUMBER

OWNER / PROJECT NAME / LOCATION
TOWN OF MAYNARD
GREEN MEADOW
ELEMENTARY SCHOOL
EARLY SITE
PREPARATION
PACKAGE
5 TIGER DRIVE
MAYNARD, MA 01754

REVISIONS

DESCRIPTION

ADDENDUM 1

NUMBER

DRAWING TITLE

DETAILS

264 Exchange Street, Suite G7 Chicopee, Massachusetts 01013 413 592 9700 T 413 592 9750 F



DRAWING INFORMATION

SCALE As indicated

DRAWN BY CG

CHECKED CE

DATE MAY 22, 2024

DRAWING NUMBER

C-03.1

April 27, 2024

Mr. Chris LeBlanc, MCPPO Mount Vernon Group Architects, Inc. 200 Harvard Mill Square Suite 140 Wakefield, MA 01880 Tel: (413) 377-2866

Mobile: (413) 530-0817

E-mail: cleblanc@mvgarchitects.com

Re: **DD Phase Geotechnical Report** 

**Proposed Green Meadow Elementary School** 

Maynard, Massachusetts **LGCI Project No. 2201** 

Dear Mr. LeBlanc:

Lahlaf Geotechnical Consulting, Inc. (LGCI) has completed our Design Development (DD) phase geotechnical study for the proposed Green Meadow Elementary School at the existing Green Meadow Elementary School site in Maynard, Massachusetts. We are submitting our geotechnical report electronically.

The soil samples from our explorations are currently stored at LGCI for further analysis, if requested. Unless notified otherwise, we will dispose of the soil samples after three (3) months.

Thank you for choosing LGCI as your geotechnical engineer.

Very truly yours,

Lahlaf Geotechnical Consulting, Inc.

Abdelmadjid M. Lahlaf, Ph.D., P.E.

Principal Engineer



# DD PHASE GEOTECHNICAL REPORT PROPOSED GREEN MEADOW ELEMENTARY SCHOOL MAYNARD, MASSACHUSETTS

LGCI Project No. 2201 April 27, 2024

Prepared for:

MOUNT VERNON GROUP ARCHITECTS, INC.

200 Harvard Mill Square Suite 140 Wakefield, MA 01880 Tel: (413) 377-2866

# DD PHASE GEOTECHNICAL REPORT PROPOSED GREEN MEADOW ELEMENTARY SCHOOL MAYNARD, MASSACHUSETTS

LGCI Project No. 2201 April 27, 2024

# Prepared for:

# MOUNT VERNON GROUP ARCHITECTS, INC.

200 Harvard Mill Square Suite 140 Wakefield, MA 01880 Tel: (413) 377-2866

## Prepared by:

# LAHLAF GEOTECHNICAL CONSULTING, INC.

100 Chelmsford Road, Suite 2 Billerica, Massachusetts 01862 Phone: (978) 330-5912 Fax: (978) 330-5056



Abdelmadjid M. Lahlaf, Ph.D., P.E. Principal Engineer

# TABLE OF CONTENTS

| 1.  | PROJECT INFORMATION                                                                    | 2  |
|-----|----------------------------------------------------------------------------------------|----|
| 1.1 | Project Authorization                                                                  | 2  |
| 1.2 |                                                                                        |    |
| 1.3 |                                                                                        |    |
| 1.4 |                                                                                        |    |
| 1.5 |                                                                                        |    |
| 1.6 |                                                                                        |    |
| 2.  | SITE AND SUBSURFACE CONDITIONS                                                         |    |
| 2.1 | SURFICIAL GEOLOGY                                                                      | 5  |
| 2.2 |                                                                                        |    |
|     | 2.2.1 General                                                                          |    |
|     | 2.2.2 LGCI's Soil Borings                                                              |    |
|     | 2.2.3 LGCI's Test Pits                                                                 |    |
|     | 2.2.4 Exploration Logs and Locations                                                   |    |
| 2.3 | •                                                                                      |    |
| 2.4 |                                                                                        |    |
| 2.5 |                                                                                        |    |
| 2.6 |                                                                                        |    |
| 3.  | EVALUATION AND RECOMMENDATIONS                                                         | 11 |
| 3.1 | General                                                                                | 11 |
| _   | 3.1.1 Asphalt, Surficial Organic Soil, Subsoil, Buried Organic Soil, and Existing Fill |    |
|     | 3.1.2 Shallow Bedrock                                                                  |    |
|     | 3.1.3 Shallow Footings and Slabs-on-Grade                                              |    |
|     | 3.1.4 Reuse of Onsite Materials                                                        |    |
| 3.2 |                                                                                        |    |
| _   | 3.2.1 General                                                                          |    |
|     | 3.2.2 Footing Design                                                                   |    |
|     | 3.2.3 Settlement Estimates                                                             |    |
| 3.3 |                                                                                        |    |
| 3   | 8.3.1 Slab-on-Grade                                                                    |    |
| 3   | 3.3.2 Under-slab Drains and Waterproofing                                              |    |
| 3.4 | 1 0 0                                                                                  |    |
| 3.5 |                                                                                        |    |
| 3   | 8.5.1 Lateral Earth Pressures                                                          |    |
| 3   | 3.5.2 Seismic Pressures                                                                | 17 |
| 3   | 3.5.3 Perimeter Drains                                                                 | 17 |
| 3.6 | PARKING LOTS, DRIVEWAYS, SIDEWALKS, AND EXTERIOR SLABS                                 | 18 |
| 3   | 8.6.1 General                                                                          | 18 |
| 3   | 3.6.2 Sidewalks                                                                        | 18 |
| 3   | 3.6.3 Pavement Sections                                                                | 18 |
| 3.7 | Underground Utilities                                                                  | 19 |
| 4.  | CONSTRUCTION CONSIDERATIONS                                                            | 20 |
| 4.1 | SUBGRADE PREPARATION                                                                   | 20 |
| 4.2 |                                                                                        |    |
| 4.3 | FILL MATERIALS                                                                         | 22 |
| 4   | 9.3.1 Structural Fill                                                                  | 22 |
| 4   | 1.3.2 Ordinary Fill                                                                    | 22 |
| 4.4 | ·                                                                                      |    |
| 4.5 | ROCK BLASTING CONSIDERATIONS                                                           | 23 |
| 4   | 1.5.1 Rock Removal                                                                     |    |
| 4   | 1.5.2 Ground Vibration Monitoring                                                      | 25 |

| own of Maynard<br>Green Meadow Elementary School - Early Site Package |    |  |
|-----------------------------------------------------------------------|----|--|
| 4.5.3 Public Notification                                             | 25 |  |
| 4.5.4 Pre-Construction Condition Survey                               | 25 |  |
| 4.6 GROUNDWATER CONTROL PROCEDURES                                    |    |  |
| 4.7 TEMPORARY EXCAVATIONS                                             | 26 |  |
| 5. REPORT LIMITATIONS                                                 | 27 |  |
| 6. REFERENCES                                                         | 28 |  |

# List of Tables and Figures

| Table 1 | Summary of LGCI's Borings   |
|---------|-----------------------------|
| Table 2 | Summary of LGCI's Test Pits |

| Figure 1 | Site Location Map         |
|----------|---------------------------|
| Figure 2 | Surficial Geologic Map    |
| Figure 3 | Exploration Location Plan |

# **List of Appendices**

| Appendix A | LGCI's Boring Logs   |
|------------|----------------------|
| Appendix B | LGCI's Test Pit Logs |

**Appendix C** Results of Double Ring Infiltrometer Tests

**Appendix D** Laboratory Test Results

Green Meadow Elementary School - Early Site Package
DD Phase Geotechnical Report
Proposed Green Meadow Elementary School
Maynard, Massachusetts
LGCI Project No. 2201

#### 1. PROJECT INFORMATION

#### 1.1 Project Authorization

LGCI performed services for this project in two phases as follows:

- Preliminary Phase LGCI previously performed preliminary subsurface explorations at the site and prepared and submitted a preliminary geotechnical report in February 2022 in general accordance with the scope described in our proposal No. 21115-Rev. 1 dated December 22, 2021. Our services were authorized by Mr. Chris LeBlanc of Mount Vernon Group Architects, Inc. (MVG) by signing our proposal on December 22, 2021.
- Design Development (DD) Phase LGCI performed additional DD Phase subsurface explorations at the site and prepared and submitted this DD Phase geotechnical report in general accordance with our proposal No. 22140-Rev. 1 dated March 9, 2023. Our services were authorized by Mr. Chris LeBlanc of Mount Vernon Group Architects, Inc. (MVG) by signing our proposal on March 30, 2023.

#### 1.2 Purpose and Scope of Services

The purpose of our preliminary and DD phase studies was to perform subsurface explorations at the site for the proposed Green Meadow Elementary School and to provide preliminary foundation and construction recommendations. LGCI performed the following services:

- Coordinated our exploration locations with MVG and with the Green Meadow Elementary School facilities staff, marked the exploration locations at the site, and contacted Dig Safe Systems, Inc. (Dig Safe) and the Town of Maynard for utility clearance. LGCI also applied for and obtained a trench permit from the Town of Maynard.
- Engaged a drilling subcontractor to advance twenty-nine (29) soil borings at the site, including nine (9) soil borings as part of our preliminary phase services and twenty (20) soil borings as part of our DD phase services.
- Engaged an excavation subcontractor to excavate twenty-two (22) test pits at the site as part of our DD phase services.
- Provided an LGCI geotechnical field representative, full time, at the site to coordinate and observe the explorations, describe the soil samples, and prepare field logs.
- Submitted sixteen (16) soil samples for laboratory testing, including four (4) soil samples during the preliminary phase and twelve (12) soil samples during the DD phase.
- Prepared this geotechnical report containing the results of our preliminary phase and DD phase subsurface explorations and our foundation design and construction recommendations.



Upon completion of our preliminary phase services, LGCI submitted a preliminary geotechnical report dated February 24, 2022. This DD phase geotechnical report includes the results of our preliminary phase services and supersedes the aforementioned report.

Our scope includes attending meetings, reviewing drawings, and performing field services during construction. These services will be performed separately and are not included in this report. Recommendations for unsupported slopes, stormwater management, erosion control, pavement design, slope stability analyses, site specific liquefaction analyses, pile analysis and design, and detailed cost or quantity estimates are not included in our scope of work.

LGCI did not perform environmental services for this project. LGCI did not perform an assessment to evaluate the presence or absence of hazardous or toxic materials above or below the ground surface at or around the site. Any statement about the color, odor, or the presence of suspicious materials included in our exploration logs or report were made by LGCI for information only and to support our geotechnical services. No environmental recommendations and/or opinions are included in this report.

#### 1.3 Reviewed Documents

LGCI Project No. 2201

LGCI reviewed the following documents:

- Drawing L.2 titled: "Site Plan, Green Meadow Elementary School Addition and Renovation, Maynard, MA," (1987 Site Plan) prepared by DiNisco Kretsch & Associates, Inc., dated February 5, 1987, and provided to LGCI by MVG via e-mail on December 20, 2021.
- Drawing EX-1 titled: "Site Survey Plan, Schematic Design, Maynard Public Schools, Green Meadow Elementary School," (Survey Plan) prepared by Samiotes Construction, Inc., dated September 2, 2022, and provided to LGCI via e-mail on February 1, 2024.
- Drawings C-01.1, 2, C-01.3, C-01.4 titled: "Demo Plan, Town of Maynard, Green Meadow Elementary School Project, 5 Tiger Drive, Maynard, MA 01754," (Demo Plan) prepared by MVG and provided to LGCI by Brennan Consulting, Inc. via e-mail on April 24, 2024.
- Drawing C-01.5 titled: "Details, Town of Maynard, Green Meadow Elementary School Project, 5 Tiger Drive, Maynard, MA 01754," (Details) prepared by MVG and provided to LGCI by Brennan Consulting, Inc. via e-mail on April 24, 2024.

## 1.4 Site Location and Description

Our understanding of the site is based on our field observations, our conversations with MVG, and on the drawings listed in Section 1.3.



The site of the proposed construction is at the site of the existing Green Meadow Elementary School located at 5 Tiger Drive in Maynard, Massachusetts as shown in Figure 1. The site is bordered by Tiger Drive on the eastern side, by Great Road on the northern side, and by wooded land on the western and southern sides. The site is occupied by the existing Green Meadow Elementary School building and associated parking lots, driveways, landscaped areas, and athletic fields. The athletic fields include a baseball field north of the existing school and a practice field on the southern side of the existing school within a clearing in the wooded area. The existing school building has an irregular fan shape. Based on the 1987 Site Plan, additions were made to the original Green Meadow Elementary School and the existing building was also renovated. The 1987 Site Plan indicates that the finished floor elevation (FFE) of the existing building is El. 214 feet.

Based on the Survey Plan, the grades at the site rise from approximately El. 196 feet on the eastern side of the site to a relatively level area between El. 212 and El. 215 feet (in the existing practice field) before rising to about El. 251 feet at a hill near the northwestern corner of the site. The grades around the existing school generally rise from about El. 208 feet on the eastern side of the existing building to about El. 225 feet near the western side of the existing building. The grades within the parking lots, driveways, and landscaped areas located east of the existing school rise from approximately El. 196 feet to El. 208 feet in a westerly direction. The Survey Plan indicates that the FFE of the existing building's ground floor is El. 213.3 feet. This FFE is slightly lower than that shown in the 1987 Site Plan.

A dirt path loops around the existing building and ranges in elevation between El. 212 feet and El. 223 feet.

Based on the 1987 Site Plan and the Survey Plan, there appears to have been cuts near the southwestern corner of the existing building to achieve the existing grades in the existing practice field in the tree clearing.

#### 1.5 Project Description

Our understanding of the proposed construction is based on our field observations, our discussions with MVG, and on the Demo Plan and Details listed in Section 1.3.

We understand that the proposed construction will consist of a somewhat L-shaped building that will have a footprint of about 59,000 square feet. The majority of the proposed building footprint will be located in the generally level area in the existing practice field. Nearly one third of the proposed building footprint (on the northern side of the proposed building) will be located in the wooded hill near the western side of the existing building.

The existing grades within most of the proposed building footprint (on the southern side of the proposed building footprint in the general area of the tree clearing) will range between about El. 207 feet and El. 216 feet; thus, requiring net fills ranging between 0 and 8 feet. The thickest fill will be on the eastern side of the proposed building footprint. The existing grades within the northern portion of the proposed building (located in the wooded hill) range between about El.



208 feet and El. 232 feet; thus, requiring net fills of up 5 feet and cuts of up to 16 feet to achieve the proposed FFE of El. 216 feet.

Based on the Demo Plan, an access road will loop around the proposed building and will have grades that will range between El. 210 feet and El. 219 feet. The existing grades within the proposed access drive range up to El. 236 feet; thus, requiring net cuts of up to 17 feet to achieve the proposed grades. Retaining walls will be constructed on both sides of the western portion of the proposed access drive to reduce the extent of the cuts in the overburden and to conceal the rock cuts. Based on the Details, the proposed retaining walls will consist of Redi-Block MSE walls with fences or guardrails on the tops of the walls. Details about the proposed retaining wall geometry, including length, total height, exposed heights, and length of reinforcing are not available at the time of this report.

We understand that the existing building will be demolished after the new building is completed to allow for the construction of proposed athletic fields and paved parking lots. Information about the layout and grading of the proposed athletic fields and paved areas was not available to us at the time of this report.

A thermal well field will be provided in the wooded area on the western side of the proposed building. Work related to the thermal wells was not the focus of this report and is beyond our scope of services for this project.

#### 1.6 Elevation Datum

The 1987 Site Plan does not include a reference to a datum. We understand that the elevations shown in the Survey Plan are referenced to the North American Vertical Datum of 1988 (NAVD 1988).



#### 2. SITE AND SUBSURFACE CONDITIONS

## 2.1 Surficial Geology

LGCI Project No. 2201

LGCI reviewed a surficial geologic map titled: "Surficial Materials Map of the Maynard Quadrangle, Massachusetts," (Surficial Geological Map) prepared by Stone, J.R. and Stone, B.D. for U.S. Geological Survey, 2018, Scientific Investigation Map 3402, Quadrangle 97 – Maynard.

The Surficial Geological Map indicates that the natural soils on the western side of the site mainly consist of thin till. The thin till is described as non-sorted, non-stratified matrix of sand, some silt, and little clay containing scattered pebbles, cobbles, and boulder clasts. The thin till is generally less than 10 to 15 feet thick.

The Surficial Geological Map also indicates that the natural soils on the eastern side of the site consist of coarse deposits, including gravel deposits, sand and gravel deposits, and sand deposits. The gravel deposits are composed mainly of gravel, cobbles, and boulders. The sand and gravel layers generally range from 25 to 50 percent gravel particles and from 50 to 75 percent sand particles. The sand deposits are composed mainly of very coarse to fine sand. Coarser layers may contain up to 25 percent gravel, and finer layers may contain fine sand, silt, and clay.

The Surficial Geological Map also indicates that bedrock outcrops or shallow bedrock may be present on the western side of the site.

The Surficial Geologic Map of the site is shown in Figure 2.

# 2.2 LGCI's Explorations

#### 2.2.1 General

LGCI coordinated our exploration locations with MVG and with the Green Meadow Elementary School staff and marked the exploration locations in the field. LGCI notified Dig Safe and the Town of Maynard for utility clearance prior to starting our explorations at the site. An LGCI geotechnical field representative observed and logged the explorations in the field.

Unless notified otherwise, we will dispose of the soil samples obtained during our explorations after three (3) months.

# 2.2.2 LGCI's Soil Borings

As part of our preliminary phase services, LGCI engaged Northern Drilling Service, Inc. (NDS) of Northborough, Massachusetts to advance nine (9) borings (B-1, B-2, B-4, & B-6 to B-11) at the site between January 28 and February 1, 2022. Borings B-3 and B-5 were not performed. The borings were advanced with a track-mounted B-53 ATV drill rig using drive



and wash boring techniques with a 4-inch casing. The borings extended to depths ranging between 13 and 21 feet beneath the ground surface. Upon completion, the boreholes were backfilled with the soil cuttings and gravel.

As part of our DD phase services, LGCI engaged Soil X Corp. (Soil X) to advance twenty (20) borings (B-101 to B-T-120) at the site between February 19 and 27, 2024. The borings were advanced using a Diedrich D-70 Turbo drill rig using a hollow stem auger with 3-inch casing. The borings extended to depths ranging between 11.2 and 21 feet beneath the ground surface. Upon completion, the boreholes were backfilled with the soil cuttings and gravel. Two (2) groundwater observation wells were installed in borings B-104-OW and B-114-OW (one each).

NDS and Soil X performed Standard Penetration Tests (SPT) during drilling and obtained split spoon samples in the borings with an automatic hammer at typical depth intervals of 2-feet or 5-feet as noted on the boring logs in general accordance with ASTM D-1586.

An LGCI geotechnical field representative observed and logged the borings in the field.

#### 2.2.3 LGCI's Test Pits

As part of our DD phase services, LGCI observed twenty-two (22) test pits (TP-1 to TP-12, TP-14 to TP-19, TP-21 to TP-23, and TP-26). The test pits were excavated by Saunders Construction between February 6 and 12, 2024. Our excavation subcontractor also cleared trees in the wooded area to provide access to the borings in the wooded hill on February 5 and 6, 2024. The test pits were excavated using a Takeuchi TB-290 excavator and extended to depths ranging between 7 feet and 12 feet beneath the ground surface. Upon completion, the test pits were backfilled with the excavated material in 12-inch to 18-inch lifts and tamped with the excavator bucket.

#### 2.2.4 Exploration Logs and Locations

The exploration locations are shown in Figure 3. Appendix A and Appendix B contain LGCI's boring logs and test pit logs, respectively. Table 1 shows a summary of LGCI's borings, and Table 2 shows a summary of LGCI's test pits.

#### 2.3 Subsurface Conditions

The subsurface description in this report is based on a limited number of explorations and is intended to highlight the major soil strata encountered during our explorations. The subsurface conditions are known only at the actual exploration locations. Variations may occur and should be expected between exploration locations. The boring logs represent conditions that we observed at the time of our explorations and were edited, as appropriate, based on the results of the laboratory test data and inspection of the soil samples in the laboratory. The strata boundaries



shown in our exploration logs are based on our interpretations and the actual transitions may be gradual. Graphic soil symbols are for illustration only.

The soil strata encountered in the explorations were as follows, starting at the ground surface.

<u>Topsoil</u> – A layer of surficial organic topsoil was encountered in all borings except in borings B-117 and B-T-120, and in all test pits. The surficial organic topsoil extended to depths ranging between 0.2 and 2.0 feet beneath the ground surface.

<u>Asphalt</u> – A layer of asphalt was encountered in borings B-118 and B-119. The asphalt extended to a depth of 0.3 feet.

<u>Subsoil</u> – A layer of subsoil was encountered beneath the surficial organic topsoil or asphalt in all borings except in borings B-1, B-4, B-8, B-9, B-11, B-104-OW, B-105, B-107, B-118, and B-119. The subsoil was also encountered beneath the topsoil in test pits TP-1, TP-2, TP-7, TP-8, TP-10, TP-11, TP-14 to TP-17, TP-19, TP-23, and TP-26. The subsoil generally extended to depths ranging between 1 and 4 feet beneath the ground surface. In boring B-117, the subsoil extended to a depth of 8 feet beneath the ground surface. The samples in the subsoil were described as silty sand and poorly graded sand. One (1) sample was described as a silt. The fines content in the subsoil ranged between 0 and 45 percent and the gravel content ranged between 0 and 35 percent. When described as silt, the sand content ranged between 40 and 45 percent. The subsoil contained traces of organic soil and roots. The fines in a few samples were described as slightly plastic.

The standard penetration test (SPT) N-values in the subsoil ranged between 2 blows per foot (bpf) and 84 bpf, with most values lower than 21 bpf, indicating mostly very loose to medium dense soil. The high SPT N-values may be caused by frozen soil or obstructions such as cobbles and boulders in the subsoil.

<u>Fill</u> – A layer of fill was encountered beneath the surficial organic topsoil in borings B-1, B-4, B-8, B-9, B-11, B-103 to B-105, B-117, and B-119 and in test pits TP-3 to TP-6, TP-12, TP-18B, and TP-21 to TP-23. The fill extended to depths ranging between 1.5 and 6.9 feet beneath the ground surface. The samples in the fill were mostly described as silty sand or poorly graded sand. One (1) sample was described as well graded gravel. One (1) sample was described as well graded sand. The fines content in the fill ranged between 5 and 45 percent and the gravel content ranged between 0 and 45 percent. When described as gravel, the sand content in the fill ranged between 20 and 25 percent. The fill contained traces of organic soil, wood, and roots.

The SPT N-values in the fill ranged between 5 bpf and refusal, with most values lower than 38 bpf indicating loose to dense material. The high SPT N-values may be caused by frozen soil or by obstructions such as cobbles and boulders in the fill.

<u>Buried Organic Soil</u> – A layer of buried organic soil was encountered beneath the fill layer in boring B-9 and test pits TP-21 and TP-22. The buried organic soil extended to depths ranging



between 3.5 feet and 9 feet beneath the ground surface. The samples in this layer were described as silty sand. The fines content in the buried organic soil ranged between 25 and 35 percent.

The SPT N-value in the buried organic soil was 9 bpf, indicating loose soil.

<u>Sand and Gravel</u> – A layer of sand and gravel was encountered beneath the subsoil, fill, or buried organic soil in all borings and test pits. The sand and gravel layer extended to depths ranging between 3 feet and 21 feet beneath the ground surface. The samples in this layer were mostly described as silty sand, poorly graded sand, or well graded gravel. Three (3) samples were described as silty gravel. The fines content in this layer ranged between 0 and 35 percent, and the gravel content ranged between 0 and 45 percent. When described as gravel, the sand content ranged between 15 and 45 percent. The sand and gravel contained traces of weathered rock. One (1) sample from this layer contained traces of roots.

The SPT N-values within the sand and gravel layer ranged between 3 bpf and refusal, with most values ranging higher than 10 bpf, indicating mostly medium dense to very dense soil. The high SPT N-values may be caused by obstructions such as cobbles and boulders in this layer.

A layer of silt was encountered within the sand and gravel layer in borings B-2 and B-105 at a depth of 14 feet beneath the ground surface. The silt extended to a depth of 19 feet beneath the ground surface. The sand content in the silt layer ranged between 10 and 15 percent. The silt was described as slightly plastic.

<u>Rock</u> –Borings B-1, B-7, B-8, B-11, and B-108 to B-114-OW, and B-118 were advanced into and terminated in rock. Rock was encountered in these borings at depths ranging between 5 and 17.5 feet beneath the ground surface.

Also, refusal on possible large boulders or on apparent rock was encountered at the bottom of test pits TP-1, TP-5, TP-9, TP-10, and TP-16 to TP-18B at depths ranging between 7 and 10.1 feet beneath the ground surface, and at the bottom of borings B-101 to B-103, B-116, and B-118 at depths ranging between 11.2 and 18.5 feet beneath the ground surface.

Rock cores were obtained in borings B-105, and B-108 to B-114-OW. The rock generally consisted of extremely weathered to fresh, slightly to moderately fractured, hard to very hard, grey, white, orange, and light blue Granite. The rock recoveries ranged between 76.7 and 100 percent and the rock quality designation (RQD) values ranged between 41.6 and 97.5 percent.

#### 2.4 Groundwater

Groundwater was encountered in all borings except in borings B-101, B-103, B-105, B-106, B-113, B-115, B-117, B-119, and B-T-120 at depths ranging between 5 and 18.5 feet beneath the ground surface. Groundwater was also observed in test pits TP-9, TP-10, TP-12 to TP-15, and TP-21 at depths ranging between 2 and 18.5 feet beneath the ground surface.



The groundwater measured in groundwater observation wells B-104-OW and B-114-OW are shown in the table below.

|          | G.S. El. |           | G.W.        | G.W. El. |
|----------|----------|-----------|-------------|----------|
|          | (ft.)    | Date      | Depth (ft.) | (ft.)    |
| B-104-OW | 214      | 2/19/2024 | 18.5        | 195.5    |
|          |          | 4/27/2024 | 17.2        | 196.8    |
| B-114-OW | 232      | 2/21/2024 | 5.0         | 227.0    |
|          |          | 4/27/2024 | 17.6        | 214.4    |

The groundwater levels reported in our borings and test pit logs are based on observations made during drilling or shortly after the completion of the explorations. Please note that water was introduced into the boreholes to maintain a stable borehole and the groundwater levels noted on the boring logs may not represent the actual groundwater level, as additional time may be required for the groundwater levels to stabilize. The groundwater levels presented in this report only represent the conditions encountered at the time and location of the explorations. Seasonal fluctuation should be anticipated.

# 2.5 Double Ring Infiltrometer Tests

LGCI performed two (2) double ring infiltrometer tests in test pits TP-23 and TP-26 (one each). The excavation subcontractor excavated to the test depths of 4.0 and 3.5 feet beneath the ground surface at TP-23 and TP-26, respectively. After the double ring infiltrometer tests were completed, the tests pits were continued to depths of 12 and 11 feet beneath the ground surface, respectively.

The results, shown in Appendix C, indicated estimated permeability values of  $8.3 \times 10^{-3}$  cm/sec. at TP-23 and  $8.9 \times 10^{-3}$  cm/sec. at TP-26.

# 2.6 Laboratory Test Data

LGCI submitted sixteen (16) soil samples collected from the borings for grain-size analysis. The results of the grain-size analyses are provided in the test data sheets included in Appendix D and are summarized in the table below.

Grain-Size Analysis Test Results

| Boring No. | Sample No.   | Stratum | Sample<br>Depth<br>(ft.) | Percent<br>Gravel | Percent<br>Sand | Percent<br>Fines |
|------------|--------------|---------|--------------------------|-------------------|-----------------|------------------|
| B-1        | S2           | Fill    | 2 - 4                    | 23.0              | 53.0            | 24.0             |
| B-6        | S2           | Sand    | 2 - 4                    | 0.1               | 93.8            | 6.1              |
| B-7        | S2 – Top 13" | Subsoil | 2 - 4                    | 3.4               | 62.5            | 34.1             |
| B-11       | S2           | Fill    | 2 - 4                    | 22.8              | 68.0            | 9.2              |



| B-104 | S2            | Fill          | 2 - 4     | 13.0 | 44.6 | 42.4 |
|-------|---------------|---------------|-----------|------|------|------|
| B-105 | S1 – Bot. 11" | Fill          | 1.1 - 2   | 49.8 | 39.6 | 10.6 |
| B-109 | S2            | Fill          | 2 - 4     | 3.8  | 58.7 | 37.5 |
| B-109 | S3            | Sand & Gravel | 4 - 6     | 57.3 | 31.4 | 11.3 |
| B-110 | S2            | Fill          | 2 - 4     | 0.0  | 43.5 | 56.5 |
| B-110 | S3            | Sand & Gravel | 4 - 6     | 25.5 | 68.1 | 6.4  |
| B-112 | S2– Bot. 16"  | Sand & Gravel | 2.5 - 4   | 14.7 | 54.0 | 31.3 |
| B-116 | S2            | Sand & Gravel | 2 - 4     | 13.6 | 45.8 | 15.3 |
| TP-17 | G1            | Subsoil       | 0.3 - 4.7 | 0.1  | 55.2 | 44.7 |
| TP-17 | G2            | Sand & Gravel | 4.7 - 9   | 15.1 | 64.0 | 20.9 |
| TP-23 | Infiltrometer |               | 4         | 0.1  | 90.1 | 9.8  |
|       | Test Depth    |               |           |      |      |      |
| TP-26 | Infiltrometer |               | 3.5       | 28.5 | 64.3 | 7.2  |
|       | Test Depth    |               |           |      |      |      |



#### 3. EVALUATION AND RECOMMENDATIONS

#### 3.1 General

LGCI Project No. 2201

Based on our understanding of the proposed construction, our observation of our explorations, and the results of our laboratory testing, there are a few issues that we would like to highlight for consideration and discussion.

#### 3.1.1 Asphalt, Surficial Organic Soil, Subsoil, Buried Organic Soil, and Existing Fill

- Asphalt, surficial organic soil, subsoil, buried organic soil, and existing fill were observed
  in the borings and test pits. These materials are not suitable to support shallow
  foundations.
- The asphalt and the surficial organic soil should be entirely removed from within the proposed construction area.
- The subsoil and the buried organic soil are compressible and should be entirely removed from within the proposed building footprint and should be replaced with Structural Fill.
- The fill contained traces of organic soil, wood, and roots. Existing fill that was not placed with strict moisture, density, and gradation control, and buried organic soil present risk of unpredictable settlement that may result in poor performance of floor slabs and foundations. Due to the risk of excessive settlement, the existing fill should be entirely removed from within the footprint of the proposed building footprint and should be replaced with Structural Fill.
- Based on our borings, we anticipate that the removal will extend to depths of up to about 9 feet. The removal may extend to greater depths at locations not explored by LGCI.
- The removal of the existing fill should extend beyond the limits of the proposed building a minimum distance equal to 5 feet or the distance between the bottom of the proposed footings and the bottom of the fill or buried organic soil, whichever is greater.
- The existing fill and subsoil should be removed to a depth of 18 inches beneath the bottom of the proposed pavement and the bottom of the proposed athletic field subbase layer, and the exposed surface should be improved as described in Section 4.1.

#### 3.1.2 Shallow Bedrock

Apparent rock was encountered at elevations higher than the proposed FFE in many borings and test pits.



Based on the depths to top of apparent bedrock and rock that was confirmed with rock cores, we anticipate that rock removal will be required to reach the bottom of the proposed building foundations and for utilities. We anticipate that most of the rock removal will be in the wooded hill on the northern side of the proposed building. Rock removal will also likely be needed to achieve the proposed grades after the existing building is demolished. The contractor should review the boring and test pit logs and Tables 1 and 2 to assess the need for and extent of rock removal for structures and utilities. We anticipate the rock removal will be achieved by means of rock blasting. Our recommendations for rock blasting and for subgrade preparation in rock are presented in Section 4.5.

The contract documents should include a requirement for a pre-blast condition survey and also vibration monitoring during blasting and earthwork operations as shown in Section 4.5.

# 3.1.3 Shallow Footings and Slabs-on-Grade

Based on the results of the explorations, the subsurface conditions are suitable to support shallow spread and continuous footings bearing on Structural Fill placed directly on top of the natural sand and gravel or rock after removing the asphalt, the surficial organic soil, the subsoil, the buried organic soil, and the existing fill. Our recommendations for footing design are presented in Section 3.2.2. Our estimates for preliminary settlement are presented in Section 3.2.3. Our concrete slab considerations are presented in Section 3.3. Section 4.1 provides recommendations for preparation of subgrades. Our recommendations for rock removal are provided in Section 4.5.

We anticipate that the major considerations during construction will be associated with the removal of the unsuitable soils, i.e., the surficial organic soil, the subsoil, the buried organic soil and the existing fill, rock blasting, and groundwater control during excavations.

#### 3.1.4 Reuse of Onsite Materials

The existing fill and the natural soil are generally silty and not suitable for reuse as Structural Fill and Ordinary Fill without being amended. Silty soils are very susceptible to disturbance when exposed to moisture. Care should be exercised during construction to maintain a dry working subgrade and to provide working mats, e.g., crushed stone or concrete mud mats, to reduce the potential for disturbance of the foundation subgrade and to improve working conditions.

The contractor may consider mobilizing a rock crusher to the site. Existing cobbles and boulders and blasted rock can be processed by blending them with the existing fill and the natural sand and gravel and crushing them to produce a well graded material.

Additional recommendations about reuse of onsite materials are presented in Section 4.4.



#### 3.2 Foundation Recommendations

#### 3.2.1 General

LGCI Project No. 2201

Based on the results of the borings and test pits, the subsurface conditions appear suitable for support of new structures with grade-supported floor slabs and shallow foundations. Recommendations for footing design and settlement are presented below.

# 3.2.2 Footing Design

- We recommend entirely removing the asphalt, the surficial organic soil, the subsoil, the buried organic soil, and the existing fill from within the proposed building footprint as described in Section 3.1.1.
- We recommend supporting the proposed building on spread footings bearing on Structural Fill placed directly on the natural sand and gravel or rock.
- We recommend designing the proposed footings using a net allowable bearing pressure of 5 kips per square foot (ksf) for footings bearing directly on a minimum of 12 inches of Structural Fill placed directly on top of the natural sand and gravel or rock.
- Footing subgrades should be prepared in accordance with the recommendations in Section 4.1.
- Foundations should be designed in accordance with The Commonwealth of Massachusetts State Building Code 780 CMR, Ninth Edition (MSBC 9<sup>th</sup> Edition).
- Exterior footings and footings in unheated areas should be placed at a minimum depth of 4 feet below the final exterior grade to provide adequate frost protection. Interior footings in heated areas may be designed and constructed at a minimum depth of 2 feet below finished floor grades.
- Wall footings should be designed and constructed with continuous, longitudinal steel reinforcement for greater bending strength to span across small areas of loose or soft soils that may go undetected during construction.
- A representative of LGCI should be engaged to observe that the subgrade has been prepared in accordance with our recommendations.

#### 3.2.3 Settlement Estimates

Based on our experience with similar soils and designs using a net allowable bearing pressure of 5 ksf, we anticipate that the total settlement will be approximately 1 inch, and that the differential settlement of the footings will be 3/4 inch or less over a distance of 25 feet. We



believe that total and differential settlements of this magnitude are tolerable for a similar structure. However, the tolerance of the proposed structure to the predicted total and differential settlements should be assessed by the structural engineer.

#### 3.3 Concrete Slab Considerations

#### 3.3.1 Slab-on-Grade

- The proposed floor slab should be constructed as a slab-on-grade bearing on Structural Fill placed directly on top of the natural sand and gravel. We recommend a minimum of 12 inches of Structural Fill beneath the proposed slab-on-grade. The subgrade of the slab should be prepared as described in Section 4.1.
- To reduce the potential for dampness in the proposed floor slabs, the project architect may consider placing a vapor barrier beneath the floor slabs. The vapor barrier should be protected from puncture during the placement of the proposed slab reinforcement.
- For the design of the floor slabs bearing on the materials described above, we recommend using a modulus of subgrade reaction,  $k_{s1}$ , of 100 tons per cubic foot (tcf). Please note that the values of  $k_{s1}$  are for a 1 x 1 square foot area. These values should be adjusted for larger areas using the following expression:

Modulus of Subgrade Re action 
$$(k_s) = k_{s1} * \left(\frac{B+1}{2B}\right)^2$$

where:

 $k_s$  = Coefficient of vertical subgrade reaction for loaded area;

 $k_{s1}$  = Coefficient of vertical subgrade reaction for a 1 x 1 square foot area; and

B = Width of area loaded, in feet.

Please note that cracking of slabs-on-grade can occur as a result of heaving or compression of the underlying soil, but also as a result of concrete curing stresses. To reduce the potential for cracking, the precautions listed below should be closely followed during the construction of all slabs-on-grade:

- Construction joints should be provided between the floor slab and the walls and columns in accordance with the American Concrete Institute (ACI) requirements, or other applicable code.
- In order for the movement of exterior slabs not to be transmitted to foundations or superstructures, exterior slabs, such as approach slabs and sidewalks, should be isolated from the superstructure.



• The backfill in interior utility trenches should be properly compacted.

# 3.3.2 Under-slab Drains and Waterproofing

Based on an FFE of El. 216 feet, we believe that an under-slab drainage system is not required on the southern side of the proposed building where fill is required to achieve the proposed FFE. An under-slab drainage system will be required on the northern side of the proposed building in cut areas and should be installed in accordance with the recommendations below.

- We recommend that the under-slab drainage system consist of 1) a minimum of 12 inches of <sup>3</sup>/<sub>4</sub>-inch crushed stone placed below the slab, and 2) 6-inch-diameter slotted PVC pipes installed with their inverts at least 15 inches below the bottom of the slab.
- The slotted pipes should be installed in trenches placed at 10 to 15 feet apart. The trenches should be at least 18 inches wide and should extend 9 inches below the bottom of the 12 inches of crushed stone layer to allow placing crushed stone around the PVC pipe.
- The slotted PVC pipes should connect to a 6-inch solid PVC header pipe that collects and channels the collected water out of the building.
- The slots on the PVC pipes should be placed facing downward to allow for entry of water at the bottom of the pipe.
- A non-woven geotextile fabric should be installed between the crushed stone and the underlying soil or weathered rock for separation.
- Clean-outs should be included at the end of the perforated pipes, at changes in directions, and at about 100-foot intervals.
- We recommend channeling the water from the under-slab drainage system to flow by gravity to a discharge area or to an infiltration system. If gravity flow is not possible, the groundwater collected from the under-slab drainage system should be collected in a sump-pump pit and pumped out of the building.
- We recommend that a backup generator and spare pump be provided with the system to use in the event of a power outage or pump failure. The owner should apply for a discharge permit and should perform analytical tests as required by the permits.

If the proposed building includes an elevator pit or other structure that extends beneath the FFE, such elevator pit or other structure should be designed to be waterproof.



# 3.4 Seismic Design

LGCI Project No. 2201

In accordance with Section 1613 of MSBC 9<sup>th</sup> Edition, the seismic criteria for the site are as follows:

| • | Site Class:                                                 | D      |
|---|-------------------------------------------------------------|--------|
| • | Spectral Response Acceleration at short period (Ss):        | 0.206g |
| • | Spectral Response Acceleration at 1 sec. (S <sub>1</sub> ): | 0.069g |
| • | Site Coefficient Fa (Table 1613.5.3(1)):                    | 1.6    |
| • | Site Coefficient Fv (Table 1613.5.3(2):                     | 2.4    |
| • | Adjusted spectral response S <sub>MS</sub> :                | 0.330g |
| • | Adjusted spectral response S <sub>M1</sub> :                | 0.166g |

Based on the SPT data from the borings, the site soils are not susceptible to liquefaction during a seismic event.

# 3.5 Lateral Pressures for Wall Design

#### 3.5.1 Lateral Earth Pressures

Lateral earth pressures for the design of retaining walls (walls of below-grade spaces of the proposed building) and site retaining walls are provided below.

| Coefficient of Active Earth Pressure, KA:               | 0.31    |  |
|---------------------------------------------------------|---------|--|
| Coefficient of At-Rest Earth Pressure, K₀:              | 0.47    |  |
| Coefficient of Passive Earth Pressure, K <sub>p</sub> : | 3.3     |  |
| Total Unit Weight γ:                                    | 125 pcf |  |

<u>Note</u>: The values in the table are based on a friction angle for the backfill of 32 degrees and neglecting friction between the backfill and the wall. The design active and passive coefficients are based on horizontal surfaces (non-sloping backfill) on both the active and passive sides, and on a vertical wall face.

- Exterior walls of below-ground spaces and other retaining walls braced at the top to restrain movement/rotation should be designed using the "at-rest" pressure coefficient.
- Site retaining walls should be designed using the active earth pressure coefficient described above.
- Passive earth pressures should only be used at the toe of the wall where special measures or provisions are taken to prevent the disturbance or future removal of the soil on the passive side of the wall, or in areas where the wall design includes a key. In any case, the passive pressures should be neglected in the top 4 feet.
- Where a permanent vertical uniform load will be applied to the active side immediately adjacent to the wall, a horizontal surcharge load equal to half of the uniform vertical load



should be applied over the height of the wall. At a minimum, a temporary construction surcharge of 100 psf should be applied uniformly over the height of the wall.

• We recommend using an ultimate friction factor of 0.5 between the natural sand and gravel and the bottom of the wall. Below-grade walls should be designed for minimum factors of safety of 1.5 for sliding and 2.0 for overturning.

#### 3.5.2 Seismic Pressures

LGCI Project No. 2201

In accordance with the Massachusetts State Building Code,  $9^{th}$  Edition (MSBC  $9^{th}$  Edition), Section 1610, a lateral earthquake force equal to  $0.100*(S_s)*(F_a)*\gamma*H^2$  should be included in the design of the walls (for horizontal backfill), where  $S_s$  is the maximum considered earthquake spectral response acceleration (defined in Section 3.4),  $F_a$  is the site coefficient (defined in Section 3.4),  $\gamma$  is the total unit weight of the soil backfill, and H is the height of the wall.

The earthquake force should be distributed as an inverted triangle over the height of the wall. In accordance with MSBC 9<sup>th</sup> Edition, Section 1610.2, a load factor of 1.43 should be applied to the earthquake force for wall strength design.

Temporary surcharges should not be included when designing for earthquake loads. Surcharge loads applied for extended periods of time should be included in the total static lateral soil pressure, and their earthquake lateral force should be computed and added to the force determined above.

#### 3.5.3 Perimeter Drains

- We recommend that free-draining material be placed within 3 feet of the exterior of walls of below-ground spaces, if any.
- To reduce the potential for dampness in below-ground spaces, proposed below-ground walls should be damp-proofed.
- We recommend that drains be provided behind the exterior of walls of below-ground spaces, and behind the walls of the elevator pit and other below ground spaces. The drains should consist of 4-inch perforated PVC pipes installed with the slots facing down. Perimeter drains should be installed at the bottom of the wall in 18 inches of crushed stone wrapped in a geotextile for separation and filtration.
- We recommend providing weep holes at the bottom of site retaining walls to promote drainage where possible. Alternatively, a pipe should be placed at the base of the wall to collect the water. The pipe should be encased within 18 inches of crushed stone wrapped in a geotextile fabric.



• Groundwater collected by the wall drains should be discharged in a lower area if gravity flow is possible. In any case, the groundwater collected by the wall drains should be discharged in accordance with municipal, state, and other applicable standards.

# 3.6 Parking Lots, Driveways, Sidewalks, and Exterior Slabs

#### 3.6.1 General

LGCI Project No. 2201

The subsurface conditions encountered at the site are generally suitable to support the proposed driveways, parking lots, sidewalks, and exterior slabs after preparation of the subgrade as described in Section 4.1.

- We recommend entirely removing the existing asphalt and the surficial organic soil from within the footprint of the proposed driveways, parking lots, sidewalks, and exterior slabs.
- The existing fill and the subsoil should be improved in accordance with the recommendations in Section 4.1.
- Cobbles and boulders should be removed to at least 18 inches below the bottom of the pavement.

#### 3.6.2 Sidewalks

- Sidewalks should be placed on a minimum of 12 inches of Structural Fill with less than 5 percent fines.
- To reduce the potential for heave caused by surface water penetrating under the sidewalk, the joints between sidewalk concrete sections should be sealed with a waterproof compound. The sidewalks should be sloped away from the building or other vertical surfaces to promote flow of water. To the extent possible, roof leaders should not discharge onto sidewalk surfaces.
- After the proposed grading in the proposed sidewalk and roadway areas is completed, the proposed grading plan should be submitted to LGCI to assess whether drains should be installed under sidewalks and roadways.

#### 3.6.3 Pavement Sections

A typical, minimum, standard-duty pavement section that could be used for parking areas is as follows:

- 1.5" Asphalt "Top Course"
- 2.0" Asphalt "Base Course"



8" Processed Gravel for Sub-Base (MassDOT M1.03.1)

A typical, minimum, heavy-duty pavement section that could be used for areas of heavy truck traffic is as follows:

```
2.0" Asphalt "Top Course"2.5" Asphalt "Base Course"12" Processed Gravel for Sub-Base (MassDOT M1.03.1)
```

The pavement sections shown above represent minimum thicknesses representative of typical local construction practices for similar use. Periodic maintenance should be anticipated.

Pavement material types and construction procedures should conform to specifications of the "Standard Specifications for Highways and Bridges," prepared by the Commonwealth of Massachusetts Department of Transportation dated 2023.

Areas to receive relatively highly concentrated, sustained loads such as dumpsters, loading areas, and storage bins are typically installed over a rigid pavement section to distribute concentrated loads and reduce the possibility of high stress concentrations on the subgrade. Typical rigid pavement sections consist of 6 inches of concrete placed over a minimum of 12 inches of subbase material.

# 3.7 Underground Utilities

Boulders at the bottom of utility trenches should be removed to at least 12 inches below the pipe invert and the resulting excavation should be backfilled with suitable backfill. Utilities should be placed on suitable bedding material in accordance with the manufacturer's recommendations. "Cushion" material should be placed, by hand, above the utility pipe in maximum 6-inch lifts. The lift should be compacted by hand to avoid damage to the utility. Where the bedding/cushion material consists of crushed stone, it should be wrapped in a geotextile fabric.

Compaction of fill in utility trenches should be in accordance with our recommendations in Section 4.3. To reduce the potential for damage to utilities, placement and compaction of fill immediately above the utilities should be performed in accordance with the manufacturer's recommendations.



### 4. CONSTRUCTION CONSIDERATIONS

## 4.1 Subgrade Preparation

LGCI Project No. 2201

- Surficial organic soil, subsoil, asphalt, buried organic soil, existing fill, abandoned utilities, buried foundations, and other below-ground structures should be entirely removed from within the footprint of the proposed building and site structures before the start of foundation work.
- Abandoned/buried foundations should be removed at least 3 feet beneath the bottom of the subbase layer of the proposed paved areas, and 3 feet beneath the topsoil in athletic fields.
- Tree stumps, root balls, and roots larger than ½ inch in diameter should be removed and the cavities filled with suitable material and compacted per Section 4.3 of this report.
- Due to the silty nature of the natural sand and gravel, we recommend placing a minimum of 12 inches of Structural Fill or crushed stone below the bottom of the footings to provide a working pad.
- Cobbles and boulders should be removed at least 6 inches from beneath footings, 24 inches beneath the bottom of slabs and paved areas, and 24 inches beneath the base material for the turf in athletic fields. The resulting excavations should be backfilled with compacted Structural Fill under the building, and with Ordinary Fill under the subbase of paved areas and under the base material in athletic fields.
- The base material of athletic fields should conform to the gradation and placement requirements of the landscape architect or the manufacturer/installer of synthetic turf.
- The base of the footing excavations in granular soil should be compacted with a dynamic vibratory compactor weighing at least 200 pounds and imparting a minimum of 4 kips of force to the subgrade.
- The subgrade of the proposed slabs in the natural soil should be compacted with a dynamic vibratory compactor imparting a minimum of 20 kips of force to the subgrade.
- The surficial organic soil and asphalt should be removed from within the proposed paved areas.
- After the surficial organic soil and asphalt are removed from within the proposed paved areas, the existing fill and subsoil should be improved by compacting the exposed surface of the existing fill and subsoil with at least six (6) passes of a vibratory roller compactor imparting a dynamic effort of at least 40 kips. Where soft zones of soil or organic soil are observed, the soft soil or organic soil should be removed, and the grade should be restored using Ordinary Fill to the bottom of the proposed subbase layer. If pumping of the existing



LGCI Project No. 2201

fill is observed, the compactor should be switched to static mode. Where the fill contains or overlies organic soil, the organic soil should be removed at least 18 inches beneath the bottom of the subbase layer.

- Fill placed within the footprint of the proposed building should meet the gradation and compaction requirements of Structural Fill, shown in Section 4.3.1.
- Fill placed under the subbase of paved areas should meet the gradation and compaction requirements of Ordinary Fill, shown in Section 4.3.2.
- Fill placed in the top 12 inches beneath sidewalks should consist of Structural Fill with less than 5 percent fines.
- Loose or soft soils identified during the compaction of the footing or floor slab subgrades should be excavated to a suitable bearing stratum, as determined by the representative of LGCI. Grades should be restored by backfilling with Structural Fill or crushed stone.
- When crushed stone is required in the drawings or is used for the convenience of the contractor, it should be wrapped in a geotextile fabric for separation except where introduction of the geotextile fabric promotes sliding. A geotextile fabric should not be placed between the bottoms of the footings and the crushed stone.
- An LGCI representative should observe the exposed subgrades prior to fill and concrete
  placement to verify that the exposed bearing materials are suitable for the design soil bearing
  pressure. If soft or loose pockets are encountered in the footing excavations, the soft or loose
  materials should be removed and the bottom of the footing should be placed at a lower
  elevation on firm soil, or the resulting excavation should be backfilled with Structural Fill, or
  crushed stone wrapped in a filter fabric.

### 4.2 Subgrade Protection

The onsite fill and natural soil are frost-susceptible. If construction takes place during freezing weather, special measures should be taken to prevent the subgrade from freezing. Such measures should include the use of heat blankets or excavating the final 6 inches of soil just before pouring the concrete. Footings should be backfilled as soon as possible after footing construction. Soil used as backfill should be free of frozen material, as should the ground on which it is placed. Filling operations should be halted during freezing weather.

Materials with high fines contents are typically difficult to handle when wet, as they are sensitive to moisture content variations. Subgrade support capacities may deteriorate when such soils become wet and/or disturbed. The contractor should keep exposed subgrades properly drained and free of ponded water. Subgrades should be protected from machine and foot traffic to reduce disturbance.



### 4.3 Fill Materials

LGCI Project No. 2201

Structural Fill and Ordinary Fill should consist of inert, hard, durable sand and gravel free from organic matter, clay, surface coatings, and deleterious materials, and should conform to the gradation requirements shown below.

### 4.3.1 Structural Fill

The Structural Fill should have a plasticity index of less than 6 and should meet the gradation requirements shown below. Structural Fill should be compacted in maximum 9-inch loose lifts to at least 95 percent of the Modified Proctor maximum dry density (ASTM D1557), with moisture contents within ±2 percentage points of the optimum moisture content.

| Sieve Size Percent | Passing by Weight |  |  |  |  |
|--------------------|-------------------|--|--|--|--|
| 3 inches           | 100               |  |  |  |  |
| 1 ½ inch           | 80-100            |  |  |  |  |
| ½ inch             | 50-100            |  |  |  |  |
| No. 4              | 30-85             |  |  |  |  |
| No. 20             | 15-60             |  |  |  |  |
| No. 60             | 5-35              |  |  |  |  |
| No. 200*           | 0-10              |  |  |  |  |

<sup>\*</sup> 0-5 for the top 12 inches under sidewalks, exterior slabs, pads, and walkways

### 4.3.2 Ordinary Fill

Ordinary Fill should have a plasticity index of less than 6 and should meet the gradation requirements shown below. Ordinary Fill should be compacted in maximum 9-inch loose lifts to at least 95 percent of the Modified Proctor maximum dry density (ASTM D1557), with moisture contents within ±2 percentage points of the optimum moisture content.

| Sieve Size Percent | Passing by Weight |
|--------------------|-------------------|
| 6 inches           | 100               |
| 1 inch             | 50-100            |
| No. 4              | 20-100            |
| No. 20             | 10-70             |
| No. 60             | 5-45              |
| No. 200            | 0-20              |

### 4.4 Reuse of Onsite Materials

Based on our field observations and the results of the grain-size analyses, the existing fill and natural and gravel are not suitable for reuse as Structural Fill. Some of the existing fill free of organic soil and natural sand and gravel may be reused as Ordinary Fill.



LGCI Project No. 2201

Should the contractor encounter materials suitable for reuse during earthwork operations, the contractor should avoid mixing the reusable soils with fine-grained and/or organic soils. The soils to be reused should be excavated and stockpiled separately for compliance testing.

Soils with 20 percent or greater fines contents are generally very sensitive to moisture content variations and are susceptible to frost. Such soils are very difficult to compact at moisture contents that are much higher or much lower than the optimum moisture content determined from the laboratory compaction test. Therefore, strict moisture control should be implemented during the compaction of onsite soils with fines contents of 20 percent or greater. The contractor should be prepared to remove and replace such soils if pumping occurs.

Materials to be used as fill should first be tested for compliance with the applicable gradation specifications.

The contractor may mobilize a rock crusher to the site. Boulders and blasted rock can be processed with the existing fill and natural sand and gravel by crushing to produce well graded granular fill that is lower in fines if blended with a sufficient proportion of rock. Processed material obtained by crushing blasted rock, boulders, and soil should meet the gradation requirements of Ordinary Fill and Structural Fill. Material produced by the crushing operation should be well graded so as to reduce the potential for formation of honeycombs during its placement and compaction. The site contractor should be prepared to produce batches of material processed using different blending ratios at the start of the earthwork operations. LGCI will review the results of grain-size analyses performed on the processed material and provide an opinion about the blending ratio to maintain throughout construction.

## 4.5 Rock Blasting Considerations

### 4.5.1 Rock Removal

Deep rock cuts will be required to achieve the proposed FFE of the proposed building on the northern side of the proposed building footprint and to achieve the proposed grades of the proposed access road and paved areas.

Minor rock cuts (less than 1 foot) over short distances may be achieved using hoe-rams or using other non-blasting techniques. For the majority of the cuts, we anticipate that rock blasting will be required.

• Rock should be cut to at least 12 inches beneath footings and to a minimum of 24 inches beneath the bottom of the proposed slabs. To facilitate rock excavation and backfilling, we recommend that the blasting extend to an elevation corresponding to 12 inches beneath the bottom of the deepest footings under the entire building footprint, i.e., at a minimum to El. 211 feet.



LGCI Project No. 2201

- The rock should be cut laterally at least 1 foot beyond each side of the footing. For retaining wall footings, the rock should be cut laterally at least 3 feet from the outside face of the wall to allow for placement of the formwork. Where utilities are installed around the perimeter of the proposed building, the rock should be cut at least 3 feet from the nearest utility.
- The rock surface should be cut as level as possible. The surface of rock should not be steeper than 12H:1V.
- Structural Fill should not be placed directly on rock surfaces that are fractured. The fractures should be covered with a geotextile fabric for separation before placing Structural Fill on the fractured rock.
- Rock should be cut at least 18 inches beneath the bottom of paved areas and the ground surface of athletic fields.
- Under utility pipes, manholes, and catch basins, rock should be cut a minimum of 12 inches beneath the pipe or structure.
- Laterally, rock should be cut a minimum of 12 inches outside utility structures and a minimum of 18 inches on each side of utility pipes.
- To reduce overblasting and the potential for heaved rock, drill holes for blasting should not extend more than 2 feet beneath the minimum depths shown above.
- To reduce the potential for damage to the existing building during blasting operations, rock blasting should be controlled to reduce vibrations and airblast overpressure to below thresholds established in the Earth Moving Specifications.
- Pre-splitting or controlled blasting may be desirable to reduce the amount of over-blast near the existing building.
- To reduce the potential for blasted rock intended for crushing mixing with organic soil, we recommend that the topsoil, roots, tree stumps, and vegetation be removed before blasting. The remainder of the overburden soils and excavatable weathered rock should not be removed before blasting.
- To help obtain information about the top of the rock for rock quantity estimating purposes, we recommend that the Earth Moving Specifications include a requirement for the contractor to perform rock probes at the site in a grid pattern before the start of blasting. The probes should be spaced at 50 feet or less. The results of the probes should include, at a minimum, the ground surface elevation and the elevation of the top of the rock. The probes should extend at least 10 feet beyond the perceived top of rock to make sure that the perceived top of rock is not a boulder.



## 4.5.2 Ground Vibration Monitoring

LGCI Project No. 2201

Rock blasting operations will generate ground vibrations that may result in minor cracks and cosmetic damage to nearby structures. To protect the adjacent structures from potential damage, construction blasting should be carefully controlled and monitored. We recommend monitoring vibrations at the ground surface and at nearby structures before and during the rock blasting operations.

We recommend a peak particle velocity (PPV) of 2 inches per second (ips) for concrete foundations and 1 ips for masonry foundations.

### 4.5.3 Public Notification

The human perception threshold to vibration is very low, i.e., people are far more sensitive to vibrations than are the structures they occupy. Various studies have indicated that the sound effects are noticeable at PPV values of 0.02 ips and complaints and claims of damage are likely at PPV values of 0.2 to 0.3 ips. These vibration intensities are well below the intensities that would cause structural damage to buildings. For these reasons, we recommend that the owner implement a proactive program of public notification and education of neighbors on the physical characteristics of blasting effects before the start of blasting.

## 4.5.4 Pre-Construction Condition Survey

We recommend that the Owner perform a pre-construction condition survey of structures located within 250 feet of the nearest blasting operation to document the existing conditions of the structures. The Owner may also consider using crack monitoring gauges to monitor large cracks identified during the pre-construction surveys.

The pre-construction survey performed by the Owner should not be a substitute to the preblast survey performed by the blasting contractor.

### **4.6 Groundwater Control Procedures**

Based on the groundwater levels measured in our explorations, we anticipate that groundwater control procedures will be needed during the removal of the existing fill and during excavations for deep utilities. We also anticipate that significant quantities of groundwater will be present at the bottom of the rock excavation. Accordingly, we recommend that a groundwater control plan be designed and implemented that disposes of the groundwater by gravity. We anticipate that filtered sump pumps installed in a series of sump pump pits located at least 3 feet below the bottom of planned excavations may be sufficient to handle groundwater and surface runoff that may enter the excavation during wet weather. The contractor should be prepared to use multiple sump pumps to maintain a dry excavation during the removal of the existing fill.



The contractor should be permitted to employ whatever commonly accepted means and practices are necessary to maintain the groundwater level below the bottom of the excavation and to maintain a dry excavation during wet weather. Groundwater levels should be maintained at a minimum of 1 foot below the bottom of the excavations during construction. The placement of reinforcing steel or concrete in standing water should not be permitted.

To reduce the potential for sinkholes developing over sump pump pits after the sump pumps are removed, the crushed stone placed in the sump pump pits should be wrapped in a geotextile fabric. Alternatively, the crushed stone should be entirely removed after the sump pump is no longer in use, and the sump pump pit should be restored with suitable backfill.

Proper permits should be obtained from authorities having jurisdiction over the work. At a minimum, the water collected from excavations should be filtered for fines in sedimentation basins before being discharged. The sedimentation basins could be constructed of hay bales wrapped in a geotextile fabric.

The contractor should grade the areas uphill of the proposed construction to direct surface runoff away from the construction area and should be prepared to installed swales as needed to divert the surface runoff.

## 4.7 Temporary Excavations

LGCI Project No. 2201

All excavations to receive human traffic should be constructed in accordance with OSHA guidelines.

The site soils should generally be considered Type "C" and should have a maximum allowable slope of 1.5 Horizontal to 1 Vertical (1.5H:1V) for excavations less than 20 feet deep. Deeper excavations, if needed, should have shoring designed by a professional engineer.

The contractor is solely responsible for designing and constructing stable, temporary excavations and should shore, slope, or bench the sides of the excavations as required to maintain the stability of the excavation sides and bottom.



LGCI Project No. 2201

### 5. REPORT LIMITATIONS

Our analyses and recommendations are based on project information provided to us at the time of this report. If changes to the type, size, and location of the proposed structures or to the site grading are made, the recommendations contained in this report shall not be considered valid unless the changes are reviewed, and the conclusions and recommendations modified in writing by LGCI. LGCI cannot accept responsibility for designs based on our recommendations unless we are engaged to review the final plans and specifications to determine whether any changes in the project affect the validity of our recommendations, and whether our recommendations have been properly implemented in the design.

It is not part of our scope to perform a more detailed site history; therefore, we have not explored for or researched the locations of buried utilities or other structures in the area of the proposed construction. Our scope did not include environmental services or services related to moisture, mold, or other biological contaminants in or around the site.

The recommendations in this report are based in part on the data obtained from the subsurface explorations. The nature and extent of variations between explorations may not become evident until construction. If variations from anticipated conditions are encountered, it may be necessary to revise the recommendations in this report. We cannot accept responsibility for designs based on recommendations in this report unless we are engaged to 1) make site visits during construction to check that the subsurface conditions exposed during construction are in general conformance with our design assumptions and 2) ascertain that, in general, the work is being performed in compliance with the contract documents.

Our report has been prepared in accordance with generally accepted engineering practices and in accordance with the terms and conditions set forth in our agreement. No other warranty, expressed or implied, is made. This report has been prepared for the exclusive use of Mount Vernon Group Architects, Inc. for the specific application to the proposed Green Meadow Elementary School in Maynard, Massachusetts as conceived at this time.



## 6. REFERENCES

In addition to the references included in the text of the report, we used the following references:

The Commonwealth of Massachusetts (2017), "The Massachusetts State Building Code, Ninth (9<sup>th</sup>) Edition."

The Department of Labor, Occupational Safety and Health Administration (1989), "Occupational Safety and Health Standards - Excavations; Final Rule," 20 CFR Part 1926, Subpart P.

USGS Maynard MA topographic map from http://mapserver.mytopo.com.



Table 1 - Summary of LGCI's Borings Proposed Green Meadow Elementary School Maynard, Massachusetts LGCI Project No. 2201

| Boring No. <sup>7</sup> | Elevation<br>(ft.) <sup>1</sup> | Groundwater <sup>2</sup> Depth / El. (ft.) | Bottom of<br>Topsoil/<br><b>Asphalt</b><br>Depth / El.<br>(ft.) | Bottom of<br>Subsoil<br>Depth / El.<br>(ft.) | Bottom of<br>Fill<br>Depth / El.<br>(ft.) | Bottom of<br>Buried<br>Organic Soil<br>Depth / El.<br>(ft.) | Bottom of<br>Sand and<br>Gravel<br>Depth / El.<br>(ft.) | Depth to Top<br>of<br>Rock/ <i>Inferred</i><br><i>Rock</i><br>Depth / El.<br>(ft.) | Bottom of<br>Boring<br>Depth / El.<br>(ft.) |  |
|-------------------------|---------------------------------|--------------------------------------------|-----------------------------------------------------------------|----------------------------------------------|-------------------------------------------|-------------------------------------------------------------|---------------------------------------------------------|------------------------------------------------------------------------------------|---------------------------------------------|--|
|                         |                                 |                                            |                                                                 | 2022 E                                       | Explorations                              |                                                             |                                                         |                                                                                    |                                             |  |
| B-1                     | 206                             | 5.5 / 201                                  | 1.0 / 205                                                       | - / -                                        | 4.0 / 202                                 | - / -                                                       | 17.5 / 189                                              | 17.5 / 189                                                                         | 19.0 <sup>4</sup> / 187                     |  |
| B-2                     | 203                             | 6.5 / 197                                  | 1.0 / 202                                                       | 4.0 / 199                                    | - / -                                     | - / -                                                       | 21.0 <sup>3</sup> / 182                                 | - / -                                                                              | 21.0 / 182                                  |  |
| B-4                     | 203                             | 7.5 / 196                                  | 0.8 / 202                                                       | - / -                                        | 4.0 / 199                                 | - / -                                                       | 21.0 <sup>3</sup> / 182                                 | - / -                                                                              | 21.0 / 182                                  |  |
| B-6                     | 202                             | 8.5 / 194                                  | 0.5 / 202                                                       | 2.0 / 200                                    | - / -                                     | - / -                                                       | 21.0 <sup>3</sup> / 181                                 | - / -                                                                              | 21.0 / 181                                  |  |
| B-7                     | 214                             | 9.5 / 205                                  | 1.0 / 213                                                       | 4.0 / 210                                    | - / -                                     | - / -                                                       | 12.0 / 202                                              | 12.0 / 202                                                                         | 14.0 4/ 200                                 |  |
| B-8                     | 214                             | 10.5 / 204                                 | 1.3 / 213                                                       | - / -                                        | 4.0 / 210                                 | - / -                                                       | 11.0 / 203                                              | 11.0 / 203                                                                         | 13.0 4/ 201                                 |  |
| B-9                     | 214                             | 11.5 / 203                                 | 1.0 / 213                                                       | - / -                                        | 6.6 / 207                                 | 9.0 / 205                                                   | 21.0 <sup>3</sup> / 193                                 | - / -                                                                              | 21.0 / 193                                  |  |
| B-10                    | 214                             | 12.5 / 202                                 | 0.6 / 213                                                       | 4.0 / 210                                    | - / -                                     | - / -                                                       | 21.0 <sup>3</sup> / 193                                 | - / -                                                                              | 21.0 / 193                                  |  |
| B-11                    | 213                             | 13.5 / 200                                 | 0.5 / 213                                                       | - / -                                        | 6.0 / 207                                 | - / -                                                       | 14.3 / 199                                              | 14.3 / 199                                                                         | 18.0 <sup>4</sup> / 195                     |  |
|                         |                                 |                                            |                                                                 | 2024 E                                       | Explorations                              |                                                             |                                                         |                                                                                    |                                             |  |
| B-101                   | 213                             | - / -                                      | 0.5 / 213                                                       | 2.0 / 211                                    | - / -                                     | - / -                                                       | 17.5 <sup>3</sup> / 196                                 | <b>17.5</b> / 196                                                                  | 17.5 <sup>5</sup> / 196                     |  |
| B-102                   | 209                             | 17.5 / 192                                 | 0.2 / 209                                                       | 2.0 / 207                                    | - / -                                     | - / -                                                       | 18.5 <sup>3</sup> / 191                                 | <b>18.5</b> / 191                                                                  | 18.5 <sup>5</sup> / 191                     |  |
| B-103                   | 214                             | - / -                                      | 0.5 / 214                                                       | 4.0 / 210                                    | 2.0 / 212                                 | - / -                                                       | 16.5 <sup>3</sup> / 198                                 | <b>16.5</b> / 198                                                                  | 16.5 <sup>5</sup> / 198                     |  |
| B-104-OW                | 214                             | 18.5 / 196                                 | 0.3 / 214                                                       | - / -                                        | 4.0 / 210                                 | - / -                                                       | 19.2 <sup>3</sup> / 195                                 | <b>19.2</b> / 195                                                                  | 19.1 <sup>5, 9</sup> , 195                  |  |
| B-105                   | 213                             | - / -                                      | 0.7 / 212                                                       | - / -                                        | 2.0 / 211                                 | - / -                                                       | 12.5 / 201                                              | <b>12.5</b> 8/ 201                                                                 | 14.7 / 198                                  |  |
| B-106                   | 213                             | - / -                                      | 0.7 / 212                                                       | 2.0 / 211                                    | - / -                                     | - / -                                                       | 12.5 <sup>3</sup> / 201                                 | - / -                                                                              | 12.5 / 201                                  |  |
| B-107                   | 213                             | 14.7 / 198                                 | 0.3 / 213                                                       | - / -                                        | - / -                                     | - / -                                                       | 15.2 <sup>3</sup> / 198                                 | - / -                                                                              | 15.2 / 198                                  |  |
| B-108                   | 214                             | 13.0 / 201                                 | 0.4 / 214                                                       | 2.0 / 212                                    | - / -                                     | - / -                                                       | 14.7 / 199                                              | 9.0 8/ 205                                                                         | 14.7 <sup>4</sup> / 199                     |  |
| B-109                   | 222                             | 8.4 / 214                                  | 0.5 / 222                                                       | 4.0 / 218                                    | - / -                                     | - / -                                                       | 6.5 / 216                                               | 6.5 / 216                                                                          | 16.5 <sup>4</sup> / 206                     |  |
| B-110                   | 223                             | 15.0 / 208                                 | 0.3 / 223                                                       | 4.0 / 219                                    | - / -                                     | - / -                                                       | 10.0 / 213                                              | 10.0 / 213                                                                         | 15.0 <sup>4</sup> / 208                     |  |
| B-111                   | 224                             | 12.5 / 212                                 | 0.5 / 224                                                       | 2.0 / 222                                    | - / -                                     | - / -                                                       | 9.0 / 215                                               | 9.0 / 215                                                                          | 14.0 4/ 210                                 |  |
| B-112                   | 230                             | 12.1 / 218                                 | 0.2 / 230                                                       | 2.5 / 228                                    | - / -                                     | - / -                                                       | 5.5 / 225                                               | 5.5 / 225                                                                          | 16.0 <sup>4</sup> / 214                     |  |
| B-113                   | 217                             | - / -                                      | 0.3 / 217                                                       | 2.0 / 215                                    | - / -                                     | - / -                                                       | 6.0 / 211                                               | 6.0 / 211                                                                          | 16.0 4/ 201                                 |  |
| B-114-OW                | 232                             | 5.0 / 227                                  | 0.4 / 232                                                       | 3.0 / 229                                    | - / -                                     | - / -                                                       | 3.0 / 229                                               | 5.0 <sup>8</sup> / 227                                                             | 20.0 4,9, 212                               |  |
| B-115                   | 216                             | - / -                                      | 0.4 / 216                                                       | 4.0 / 212                                    | - / -                                     | - / -                                                       | 12.0 <sup>3</sup> / 204                                 | - / -                                                                              | 12.0 / 204                                  |  |
| B-116                   | 213                             | 10.0 / 203                                 | 0.4 / 213                                                       | 2.0 / 211                                    | - / -                                     | - / -                                                       | 11.2 3/ 202                                             | <b>11.2</b> / 202                                                                  | 11.2 <sup>5</sup> / 202                     |  |
| B-117                   | 211                             | - / -                                      | - / -                                                           | 8.0 / 203                                    | 6.9 / 204                                 | - / -                                                       | 12.0 <sup>3</sup> / 199                                 | - / -                                                                              | 12.0 / 199                                  |  |
| B-118                   | 207                             | 11.5 / 196                                 | <b>0.3</b> / 207                                                | - / -                                        | - / -                                     | - / -                                                       | 12.0 <sup>3</sup> / 195                                 | <b>12.0</b> / 195                                                                  | 12.0 <sup>5</sup> / 195                     |  |
| B-119                   | 209                             | - / -                                      | <b>0.3</b> / 209                                                | - / -                                        | 2.0 / 207                                 | - / -                                                       | 12.0 <sup>3</sup> / 197                                 | - / -                                                                              | 12.0 / 197                                  |  |
| B-T-120                 | 210                             | - / -                                      | - / -                                                           | 2.0 / 208                                    | - / -                                     | - / -                                                       | 12.0 <sup>3</sup> / 198                                 | - / -                                                                              | 12.0 / 198                                  |  |

<sup>1.</sup> The ground surface elevation was interpolated from Drawing EX-1 titled: "Site Survey Plan, Schematic Design, Maynard Public Schools, Green Meadow Elementary School," prepared by Samiotes Consultants, Inc., dated September 2, 2022 and provided to LGCI by Brennan via e-mail on February 1, 2024.

<sup>2.</sup> Groundwater was measured during drilling, at the end of drilling, or based on sample moisture, whichever is shallower.

<sup>3.</sup> Boring terminated in the sand and gravel layer.

<sup>4.</sup> Boring terminated in rock.

<sup>5.</sup> Borings terminal on refusal on possible boulder or rock.

<sup>6.</sup> Boring terminated in silt layer.

<sup>7.</sup> Borings B-3 and B-5 were not performed.

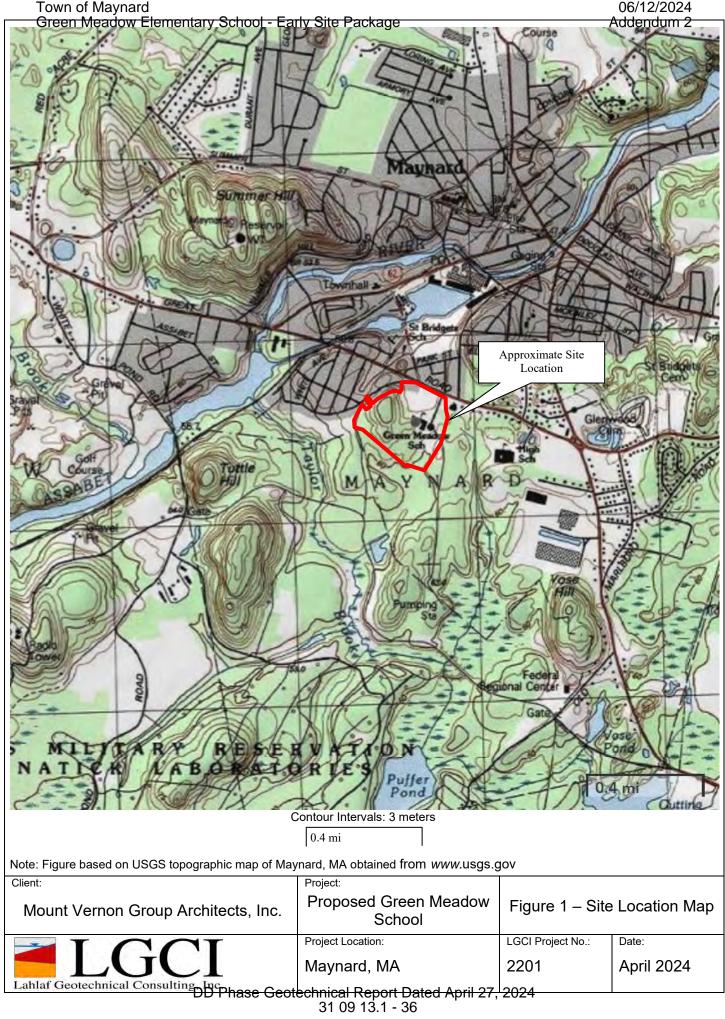
<sup>8.</sup> Boulder (or possible rock) encountered at depths of 12.5 feet, 6 feet, and 3 feet beneath the ground surface in borings B-105, B-108, and B-114, respectively.

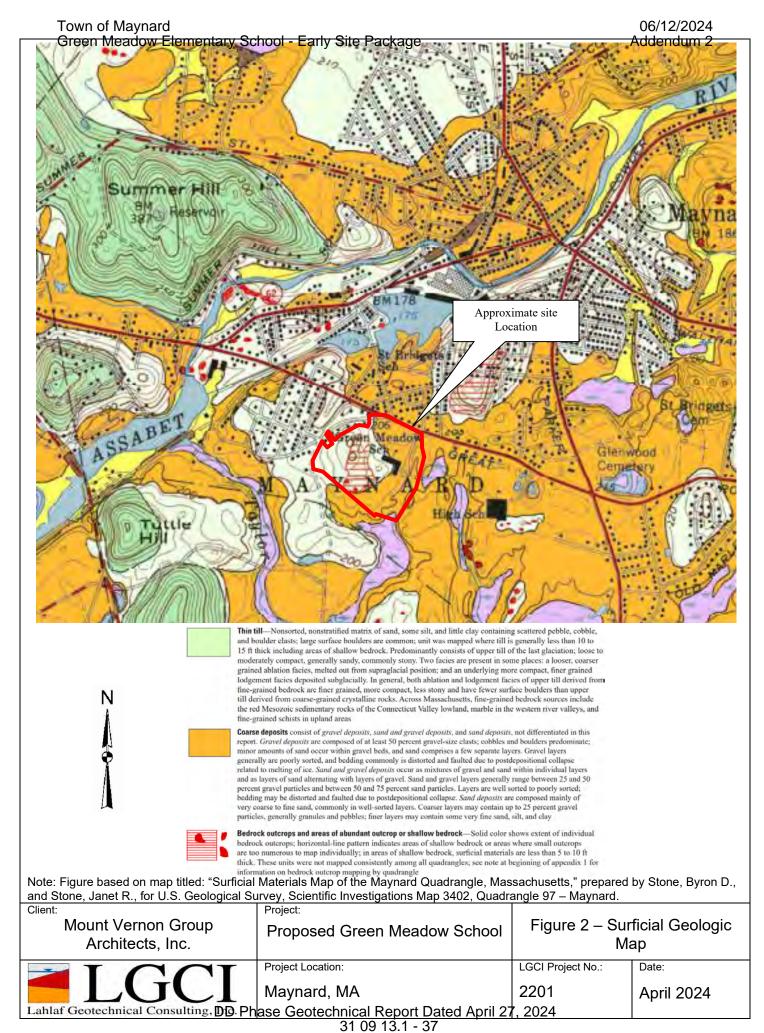
<sup>9.</sup> Groundwater observational well installed in boring.

<sup>10. &</sup>quot;-" means layer was not encountered.

Table 2 - Summary of LGCI's Test Pits
Proposed Green Meadow Elementary School
Maynard, Massachusetts
LGCI Project No. 2201

| Test Pit No.       | Ground-<br>Surface<br>Elevation<br>(ft.) | Groundwater <sup>3</sup> Depth /Elevation (ft.) | Bottom of<br>Topsoil<br>Depth<br>/Elevation<br>(ft.) | Bottom of<br>Subsoil<br>Depth<br>/Elevation<br>(ft.) | Bottom of<br>Fill<br>Depth<br>/Elevation<br>(ft.) | Bottom of<br>Buried<br>Organics<br>Depth<br>/Elevation<br>(ft.) | Bottom of<br>Sand and<br>Gravel Depth<br>/Elevation<br>(ft.) | Bottom of<br>Test Pit Depth<br>/Elevation<br>(ft.) |
|--------------------|------------------------------------------|-------------------------------------------------|------------------------------------------------------|------------------------------------------------------|---------------------------------------------------|-----------------------------------------------------------------|--------------------------------------------------------------|----------------------------------------------------|
| TP-1               | 228                                      | - / -                                           | 0.5 / 228                                            | 2.0 / 226                                            | - / -                                             | - / -                                                           | 7.5 <sup>4</sup> / 221                                       | 7.5 <sup>6</sup> / 221                             |
| TP-2               | 214                                      | - / -                                           | 0.7 / 213                                            | 1.9 / 212                                            | - / -                                             | - / -                                                           | 10.0 4/ 204                                                  | 10.0 / 204                                         |
| TP-3               | 214                                      | - / -                                           | 0.5 / 214                                            | - / -                                                | 2.5 / 212                                         | - / -                                                           | 12.0 4/ 202                                                  | 12.0 / 202                                         |
| TP-4               | 214                                      | - / -                                           | 0.3 / 214                                            | - / -                                                | 4.0 / 210                                         | - / -                                                           | 12.0 4/ 202                                                  | 12.0 / 202                                         |
| TP-5               | 213                                      | - / -                                           | 0.5 / 213                                            | - / -                                                | 1.5 / 212                                         | - / -                                                           | 10.1 4/ 203                                                  | 10.1 <sup>6</sup> / 203                            |
| TP-6               | 213                                      | - / -                                           | 0.6 / 212                                            | - / -                                                | 2.0 / 211                                         | - / -                                                           | 12.0 4/ 201                                                  | 12.0 / 201                                         |
| TP-7               | 234                                      | - / -                                           | 0.5 / 234                                            | 1.5 / 233                                            | - / -                                             | - / -                                                           | 7.5 4/ 227                                                   | 7.5 / 227                                          |
| TP-8               | 227                                      | - / -                                           | 0.6 / 226                                            | 3.5 / 224                                            | - / -                                             | - / -                                                           | 10.0 4/ 217                                                  | 10.0 / 217                                         |
| TP-9               | 219                                      | 7.0 / 212                                       | 0.5 / 219                                            | - / -                                                | - / -                                             | - / -                                                           | 7.0 4/ 212                                                   | 7.0 <sup>6</sup> / 212                             |
| TP-10              | 221                                      | 8.5 / 213                                       | 1.0 / 220                                            | 2.7 / 218                                            | - / -                                             | - / -                                                           | 8.5 4/ 213                                                   | 8.5 <sup>6</sup> / 213                             |
| TP-11              | 204                                      | - / -                                           | 1.0 / 203                                            | 3.0 / 201                                            | - / -                                             | - / -                                                           | 10.8 4/ 193                                                  | 10.8 <sup>7</sup> / 193                            |
| TP-12              | 203                                      | 12.0 / 191                                      | 0.3 / 203                                            | - / -                                                | 1.5 / 202                                         | - / -                                                           | 12.0 4/ 191                                                  | 12.0 / 191                                         |
| TP-14              | 218                                      | 8.0 / 210                                       | 0.5 / 218                                            | 1.0 / 217                                            | - / -                                             | - / -                                                           | 12.0 4/ 206                                                  | 12.0 / 206                                         |
| TP-15              | 213                                      | 2.0 / 211                                       | 0.5 / 213                                            | 2.5 / 211                                            | - / -                                             | - / -                                                           | 12.0 4/ 201                                                  | 12.0 / 201                                         |
| TP-16              | 212                                      | - / -                                           | 0.5 / 212                                            | 2.0 / 210                                            | - / -                                             | - / -                                                           | 8.5 4/ 204                                                   | 8.5 <sup>6</sup> / 204                             |
| TP-17              | 213                                      | - / -                                           | 0.3 / 213                                            | 4.7 / 208                                            | - / -                                             | - / -                                                           | 9.0 4/ 204                                                   | 9.0 <sup>6</sup> / 204                             |
| TP-18B             | 213                                      | - / -                                           | 0.5 / 213                                            | - / -                                                | 3.0 / 210                                         | - / -                                                           | 10.0 4/ 203                                                  | 10.0 <sup>6</sup> / 203                            |
| TP-19              | 209                                      | - / -                                           | 1.0 / 208                                            | 2.3 / 207                                            | - / -                                             | - / -                                                           | 12.0 4/ 197                                                  | 12.0 / 197                                         |
| TP-21              | 202                                      | 2.5 / 200                                       | 0.8 / 201                                            | - / -                                                | 3.0 / 199                                         | 3.5 / 199                                                       | 12.0 4/ 190                                                  | 12.0 / 190                                         |
| TP-22              | 202                                      | - / -                                           | 2.0 / 200                                            | - / -                                                | 3.0 / 199                                         | 3.5 / 199                                                       | 12.0 4/ 190                                                  | 12.0 / 190                                         |
| TP-23 <sup>5</sup> | 200                                      | - / -                                           | 0.8 / 199                                            | 3.0 / 197                                            | 1.5 / 199                                         | - / -                                                           | 12.0 <sup>4</sup> / 188                                      | 12.0 / 188                                         |
| TP-26 <sup>5</sup> | 206                                      | - / -                                           | 0.5 / 206                                            | 2.3 / 204                                            | - / -                                             | - / -                                                           | 11.0 4/ 195                                                  | 11.0 / 195                                         |


<sup>1.</sup> The ground surface elevation was interpolated from Drawing EX-1 titled: "Site Survey Plan, Schematic Design, Maynard Public Schools, Green Meadow Elementary School," prepared by Samiotes Consultants, Inc., dated September 2, 2022 and provided to LGCI by Brennan via e-mail on February 1, 2024.


- 5. Infiltrometer test was performed in test pit.
- 6. Test pit was terminated due to excavator refusal on possible boulder or rock.
- 7. Test pit was terminated due to excavation walls caving in.

<sup>2. &</sup>quot;-" means layer was not encountered.

<sup>3.</sup> Groundwater was measured during excavation, or at the end of excavation, whichever is shallower.

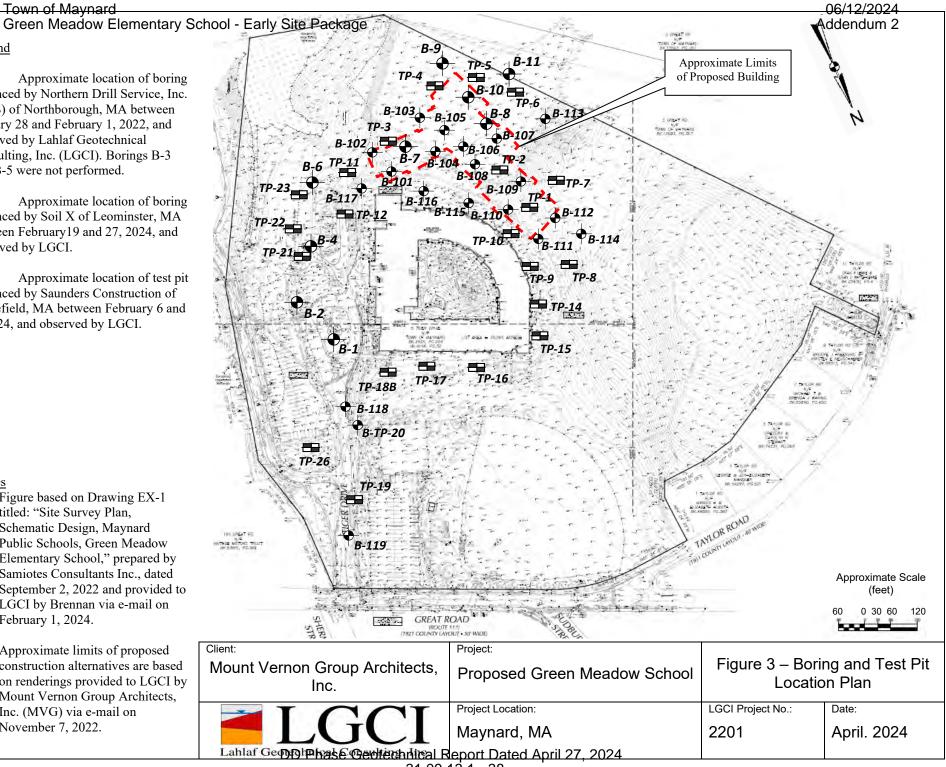
<sup>4.</sup> Test pit terminated in the sand and gravel layer.





Town of Maynard

Legend


Approximate location of boring advanced by Northern Drill Service, Inc. (NDS) of Northborough, MA between January 28 and February 1, 2022, and observed by Lahlaf Geotechnical Consulting, Inc. (LGCI). Borings B-3 and B-5 were not performed.

Approximate location of boring advanced by Soil X of Leominster, MA between February 19 and 27, 2024, and observed by LGCI.

Approximate location of test pit advanced by Saunders Construction of Wakefield, MA between February 6 and 9, 2024, and observed by LGCI.

### Notes

- 1. Figure based on Drawing EX-1 titled: "Site Survey Plan, Schematic Design, Maynard Public Schools, Green Meadow Elementary School," prepared by Samiotes Consultants Inc., dated September 2, 2022 and provided to LGCI by Brennan via e-mail on February 1, 2024.
- 2. Approximate limits of proposed construction alternatives are based on renderings provided to LGCI by Mount Vernon Group Architects, Inc. (MVG) via e-mail on November 7, 2022.



Appendix A – LGCI's Boring Logs

Addendum 2B-1

PAGE 1 OF 1

| State of the state |                                                      |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|--|--|--|
| CLIENT: Mount Vernon Group Architects, Inc.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ROJECT NAME: Proposed Green Meadow Elementary School |  |  |  |
| LGCI PROJECT NUMBER: 2201 PI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ROJECT LOCATION: Maynard, MA                         |  |  |  |
| DATE STARTED:         2/1/22         DATE COMPLETED:         2/1/22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | DRILLING SUBCONTRACTOR: Northern Drill Service, Inc. |  |  |  |
| BORING LOCATION: Near northern edge of proposed addition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | DRILLING FOREMAN: Tim Tucker                         |  |  |  |
| COORDINATES: NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | DRILLING METHOD: Drive and wash with 4-inch casing   |  |  |  |
| SURFACE El.: 206 ft. (see note 1) TOTAL DEPTH: 19 ft.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | DRILL RIG TYPE/MODEL: Mobile B-53 ATV Rig            |  |  |  |
| WEATHER: 20's / Cloudy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | HAMMER TYPE: Automatic                               |  |  |  |
| GROUNDWATER LEVELS:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | HAMMER WEIGHT: 140 lb. HAMMER DROP: 30 in.           |  |  |  |
| ☑ <b>DURING DRILLING</b> : 9.0 ft. / El. 197.0 ft. Based on sample moisture                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <b>SPLIT SPOON DIA.:</b> 1.375 in. I.D., 2 in. O.D.  |  |  |  |
| <b>X</b> AT END OF DRILLING: 5.5 ft. / El. 200.5 ft.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | CORE BARREL SIZE: NA                                 |  |  |  |
| $ar{m{arphi}}$ other:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | LOGGED BY: HO CHECKED BY: NP                         |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | I .                                                  |  |  |  |

|            | El.<br>(ft.) | Sample<br>Interval (ft.) | Sample<br>Number | Blow Counts<br>(N Value) | Pen./Rec.<br>(in.) | Remark | Strata  | a        | Depth<br>El.(ft.) | Material Description                                                                                                                                                                                                   |
|------------|--------------|--------------------------|------------------|--------------------------|--------------------|--------|---------|----------|-------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2          | 205.0        | 0                        | S1               | 17-40-46-25<br>(86)      | 24/22              | 1      | Topsoil | <u> </u> | 1.0<br>205.0      | REMARK 1: Soil was frozen between depths of 0' and 2'. S1 - Top 12": Topsoil Bot. 10": Silty SAND with Gravel (SM), fine to medium, 15-20% fines, 35-40% coarse subangular gravel, trace of organic soil, brown, moist |
| - +<br>- + | -            | 2-                       | S2               | 12-11-10-10<br>(21)      | 24/9               |        | Fill    |          | 4.0               | S2 - Silty SAND with Gravel (SM), fine to medium, trace coarse, 20-25% fines, 20-25% fine to coarse subrounded to subangular gravel, trace of organic soil, brown, moist                                               |
| 5 2        | 200.0        | 4-                       | S3               | 4-4-4-7<br>(8)           | 24/9               |        |         | .0.      | 202.0             | S3 - Poorly Graded SAND with Silt (SP-SM), fine to medium, 5-10% fines, light brown, moist                                                                                                                             |
| .          | -            | 6-                       | •                |                          |                    |        | l b     | · 0 ·    |                   |                                                                                                                                                                                                                        |
| 10         | -            | 9-                       | \ S4             | 12-9-22-25<br>(31)       | 24/22              |        |         | · 0 · 0  | ∑                 | S4 - Silty SAND (SM), fine to medium, 15-20% fines, ~10% fine subrounded gravel, brown with orange mottles, wet                                                                                                        |
| . 1        | 95.0         | 11-                      | /\               |                          |                    | 2      |         | , o c    |                   | REMARK 2: Drill rig chattering at depth of 12' on possible cobble.                                                                                                                                                     |
| 15         | -            | 14-                      | \ S5             | 9-13-28-48               | 24/14              |        |         | .0.      |                   | S5 - Similar to S4, ~20% fines                                                                                                                                                                                         |
| 1          | 90.0         | 16-                      | /\               | (41)                     |                    | 3      |         | , O C    |                   | REMARK 3: Drill rig chattering at depth of 17.5' on possible rock.                                                                                                                                                     |
| +          |              |                          |                  |                          |                    | 4      | Rock    |          | 188.5             | REMARK 4: Roller bit advanced between depths of 17.5 to 19' to confirm presence of rock.                                                                                                                               |
| 201        | 85.0         |                          |                  |                          |                    |        |         |          |                   | Bottom of borehole at 19.0 feet. Backfilled borehole with drill cuttings.                                                                                                                                              |
| - +        | -            |                          |                  |                          |                    |        |         |          |                   |                                                                                                                                                                                                                        |
| · +        | -            |                          |                  |                          |                    |        |         |          |                   |                                                                                                                                                                                                                        |
| 25         |              |                          |                  |                          | 1                  | 1      |         |          |                   |                                                                                                                                                                                                                        |

## **GENERAL NOTES:**

Lahlaf Geotechnical Consulting, Inc.

### 06/12/2024

Addendum 2<sub>B-2</sub>

PAGE 1 OF 1

Green Meadow Elementary School - Early Ste Rackage G

 CLIENT:
 Mount Vernon Group Architects, Inc.
 PROJECT NAME:
 Proposed Green Meadow Elementary School

LGCI PROJECT NUMBER: 2201 PROJECT LOCATION: Maynard, MA

DATE STARTED: 2/1/22 DATE COMPLETED: 2/1/22 DRILLING SUBCONTRACTOR: Northern Drill Service, Inc.

BORING LOCATION: Near eastern edge of proposed addition DRILLING FOREMAN: Tim Tucker

COORDINATES: NA
SURFACE EI.: 203 ft. (see note 1)
TOTAL DEPTH: 21 ft.

WEATHER: 20's / Cloudy

TOTAL DEPTH: 21 ft.

**GROUNDWATER LEVELS:** 

☐ DURING DRILLING: 9.0 ft. / El. 194.0 ft. Based on sample moisture

**T** AT END OF DRILLING: 7.8 ft. / El. 195.2 ft.

▼ OTHER: -

DRILLING METHOD: Drive and wash with 4-inch casing

DRILL RIG TYPE/MODEL: Mobile B-53 ATV Rig

HAMMER TYPE: Automatic

HAMMER WEIGHT: 140 lb. HAMMER DROP: 30 in.

**SPLIT SPOON DIA.:** <u>1.375 in. I.D., 2 in. O.D.</u>

CORE BARREL SIZE: NA

LOGGED BY: HO CHECKED BY: NP

| (ft.) | Sample<br>Interval (ft.) | Sample<br>Number | Blow Counts<br>(N Value) | Pen./Rec.<br>(in.) | Remark | Strata                                          | Depth<br>El.(ft.) | Material Description                                                                                                                                                                                                            |
|-------|--------------------------|------------------|--------------------------|--------------------|--------|-------------------------------------------------|-------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| -     | - 0                      | S1               | 13-39-45-17<br>(84)      | 24/24              | 1      | Topsoil 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 | 1/2.              | REMARK 1: Soil was frozen between depths of 0' and 2.5'. S1 - Top 12": Topsoil  Bot. 12": Silty SAND with Gravel (SM), fine to medium, 15-20% fines, 20-25% coarse subangular gravel, trace of organic soil, light brown, moist |
| 200.0 | 2-                       | S2               | 12-13-8-7<br>(21)        | 24/15              |        | Subsoil                                         | 4.0               | S2 - Similar to S1, 15-20% fine subangular gravel                                                                                                                                                                               |
| 5     | 6-                       | S3               | 7-7-7<br>(14)            | 24/15              |        | . 0                                             | 0                 | S3 - Poorly Graded SAND with Silt (SP-SM), fine to medium, 5-10% fines, light brown, moist                                                                                                                                      |
| 195.0 |                          |                  |                          |                    |        | . 0                                             |                   |                                                                                                                                                                                                                                 |
| 10    | 9-                       | S4               | 6-10-12-13<br>(22)       | 24/14              |        | Sand and Gravel                                 |                   | S4 - Similar to S3, wet                                                                                                                                                                                                         |
| 190.0 | 14-                      |                  |                          |                    |        | . 0                                             | 14.0              |                                                                                                                                                                                                                                 |
| 15 _  | 16-                      | S5               | 4-3-6-7<br>(9)           | 24/18              |        |                                                 | 189.0             | S5 - Silt (ML), slightly plastic, 10-15% fine sand, brown, wet                                                                                                                                                                  |
| 185.0 | -                        |                  |                          |                    |        | Silt                                            | 19.0              |                                                                                                                                                                                                                                 |
| 20    | 19-                      | S6               | 14-20-31-26<br>(51)      | 24/8               |        | Sand and Gravel                                 | 184.0             | S6 - Well Graded GRAVEL with Silt and Sand (GW-GM), fine to coarse, angular, 5-10% fines, 15-20% fine to medium sand, brown, moist                                                                                              |
| 180.0 |                          |                  |                          |                    |        |                                                 |                   | Bottom of borehole at 21.0 feet. Backfilled borehole with drill cuttings.                                                                                                                                                       |
| 25    |                          |                  |                          |                    |        |                                                 |                   |                                                                                                                                                                                                                                 |

### **GENERAL NOTES:**

Lahlaf Geotechnical Consulting, Inc.

CHECKED BY: NP

## Green Meadow Elementary School - Early Ste Nackage G

Addendum 2<sub>R-</sub>

PAGE 1 OF 1

**CLIENT:** Mount Vernon Group Architects, Inc PROJECT NAME: Proposed Green Meadow Elementary School **LGCI PROJECT NUMBER: 2201** PROJECT LOCATION: Maynard, MA **DATE STARTED**: 1/31/22 **DATE COMPLETED: 2/1/22** DRILLING SUBCONTRACTOR: Northern Drill Service, Inc. **BORING LOCATION:** Near eastern edge of proposed addition **DRILLING FOREMAN:** Tim Tucker COORDINATES: NA DRILLING METHOD: Drive and wash with 4-inch casing DRILL RIG TYPE/MODEL: Mobile B-53 ATV Rig SURFACE El.: 203 ft. (see note 1) TOTAL DEPTH: 21 ft. **WEATHER:** 20's / Sunny **HAMMER TYPE:** Automatic **GROUNDWATER LEVELS:** HAMMER WEIGHT: 140 lb. HAMMER DROP: 30 in. **SPLIT SPOON DIA.:** 1.375 in. I.D., 2 in. O.D **X** AT END OF DRILLING: 10.0 ft. / El. 193.0 ft. CORE BARREL SIZE: NA TOTHER:

LOGGED BY: HO

Depth (ft.) Sample EI nterval ( Sample Blow Counts Pen./Rec. Strata Material Description (ft.) Number (N Value) (in.) REMARK 1: Soil was frozen between depths of 0' and 1'. Topsoil 15-70-30 S1 18/18 S1 - Top 9": Topsoil (100)Bot. 9": Silty SAND with Gravel (SM), fine to medium, 15-20% fines, 15-20% fine to coarse subrounded gravel, trace of organic soil, light brown, moist 1.5 S2 - Similar to S1 Bot. 9", 20-25% fines, 40-45% fine to coarse subangular Fill 200.0 8-9-27-24 S2 24/8 (36)S3 - Poorly Graded SAND with Silt (SP-SM), fine to medium, 5-10% fines, 0. 5-4-4-10 24/12 S3 0 0. 0 195.0 0 0 0 S4 - Silty SAND with Gravel (SM), fine to coarse,  $\sim\!15\%$  fines, 40-45% fine to coarse subangular gravel, trace of weathered rock, brown, wet 9 S4 100/4' 4/2 0. 10 0 0 0. REMARK 2: Drill rig chattering between depths of 11' and 12' on possible cobbles or boulder. 000 Sand and Gravel · 0. 190.0 0 ٥ C S5 - Well Graded GRAVEL with Silt and Sand (GW-GM), fine to coarse, angular, 10-15% fines, 15-20% fine to coarse sand, trace of weathered rock, 0 35-23-25-17 15 24/10 S5 ٥ brown, wet (48)0 ( 16 0. ٥ 0 REMARK 3: Drill rig chattering between depths of 17' to 17.5' on possible ( cobbles or boulder. 0. 185.0 ٥ 0 C S6 - Similar to S5, 25-30% fine to coarse sand 0. 12-33-39-41 20 ٥ S6 24/12 (72)21 Bottom of borehole at 21.0 feet. Backfilled borehole with drill cuttings. 180.0

#### **GENERAL NOTES:**

Addendum 2B-6

PAGE 1 OF 1

| CLIENT: Mount Vernon Group Architects, Inc.                           | ROJECT NAME: Proposed Green Meadow Elementary School |  |  |  |  |
|-----------------------------------------------------------------------|------------------------------------------------------|--|--|--|--|
| LGCI PROJECT NUMBER: 2201 PR                                          | ROJECT LOCATION: Maynard, MA                         |  |  |  |  |
| DATE STARTED:         1/31/22         DATE COMPLETED:         1/31/22 | DRILLING SUBCONTRACTOR: Northern Drill Service, Inc. |  |  |  |  |
| BORING LOCATION: Near SE corner of proposed addition                  | DRILLING FOREMAN: _Tim Tucker                        |  |  |  |  |
| COORDINATES: NA                                                       | DRILLING METHOD: Drive and wash with 4-inch casing   |  |  |  |  |
| SURFACE EI.: 202 ft. (see note 1) TOTAL DEPTH: 21 ft.                 | DRILL RIG TYPE/MODEL: Mobile B-53 ATV Rig            |  |  |  |  |
| WEATHER: 20's / Sunny                                                 | HAMMER TYPE: Automatic                               |  |  |  |  |
| GROUNDWATER LEVELS:                                                   | HAMMER WEIGHT: 140 lb. HAMMER DROP: 30 in.           |  |  |  |  |
| ∑ DURING DRILLING: 4.0 ft. / El. 198.0 ft. Based on sample moisture   | <b>SPLIT SPOON DIA.:</b> 1.375 in. I.D., 2 in. O.D.  |  |  |  |  |
| <b>T</b> AT END OF DRILLING: 8.9 ft. / El. 193.1 ft.                  | CORE BARREL SIZE: NA                                 |  |  |  |  |
| $oldsymbol{Y}$ other:                                                 | LOGGED BY: HO CHECKED BY: NP                         |  |  |  |  |
|                                                                       |                                                      |  |  |  |  |

| Depth<br>(ft.)                   | El.<br>(ft.) | Sample<br>Interval (ft.) | San<br>Nun | nple<br>nber | Blow Counts<br>(N Value) | Pen./Rec.<br>(in.) | Remark | Strat           | ta                     | Depth<br>El.(ft.) | Material Description                                                                                                                                                                       |
|----------------------------------|--------------|--------------------------|------------|--------------|--------------------------|--------------------|--------|-----------------|------------------------|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                  |              | 0                        | M          | S1           | 22-24-11-8<br>(35)       | 24/24              | 1      | Topsoil Subsoil | 71 1 <sup>N</sup> . 71 | 0.5<br>201.5      | REMARK 1: Soil was frozen between depths of 0' and 1'. \$1 - Top 6": Topsoil  Bot. 18": Silty SAND (SM), mostly fine, ~20% fines, trace of roots, trace of                                 |
|                                  | 200.0        | 2-                       | $\square$  |              | (00)                     |                    |        | Subson          |                        | 2.0               | organic soil, dark brown, moist                                                                                                                                                            |
|                                  |              |                          |            | S2           | 6-6-5-5<br>(11)          | 24/17              |        |                 | , 0 c                  | 200.0             | S2 - Poorly Graded SAND with Silt (SP-SM), fine, 5-10% fines, trace gravel, tan, moist                                                                                                     |
| 5                                |              | 4-                       |            | S3           | 4-6-7-8<br>(13)          | 24/9               |        |                 | . 0.                   | Ž                 | S3 - Similar to S2, wet                                                                                                                                                                    |
|                                  | 195.0        | 6-                       |            | S4           | 9-8-8-8<br>(16)          | 24/14              |        |                 | .0.<br>.0.             |                   | S4 - Similar to S2, wet                                                                                                                                                                    |
|                                  |              | 8-                       |            | S5           | 4-4-5-7<br>(9)           | 24/9               |        |                 | 000                    | Ţ                 | S5 - Similar to S2, wet                                                                                                                                                                    |
| 10                               |              | 10-                      |            | S6           | 2-4-3-6<br>(7)           | 24/14              |        | Sand and        | , 0 c                  |                   | S6 - Similar to S2, wet                                                                                                                                                                    |
|                                  | 190.0        | 12-                      |            | S7           | 10-27-39-32 (66)         | 24/20              |        | Gravel          | , 0 C                  |                   | S7 - Top 10": Similar to S2, wet<br>Bot 10": Silty SAND with Gravel (SM), mostly fine, 15-20% fines, 30-35% fine to<br>coarse subangular gravel, trace of weathered rock, light brown, wet |
| 15                               |              | 14-                      |            | S8           | 15-21-26-20<br>(47)      | 24/8               |        |                 | . 0.<br>. 0.           |                   | S8 - Well Graded GRAVEL with Silt and Sand (GW-GM), fine to coarse, subrounded to subangular, 10-15% fines, 15-20% fine to coarse sand, trace of weathered rock, brown, wet                |
|                                  | 185.0        |                          |            |              |                          |                    | 2      |                 |                        |                   | REMARK 2: Drill rig chattering between depths of 17' to 18' on possible cobbles or boulder.                                                                                                |
| 20                               | <br>         | 19-                      | M          | S9           | 13-10-7-27<br>(17)       | 24/5               | _      |                 | .00                    |                   | S9 - Similar to S8, subangular, 5-10% fines                                                                                                                                                |
| - <del> </del><br>- <del> </del> | 180.0        | 21 -                     | y V        |              |                          |                    | 1 .    |                 |                        | 21.0              | Bottom of borehole at 21.0 feet. Backfilled borehole with drill cuttings and 3 bags of gravel.                                                                                             |
| -                                |              |                          |            |              |                          |                    |        |                 |                        |                   |                                                                                                                                                                                            |
| 25                               |              |                          |            |              |                          |                    |        |                 |                        |                   |                                                                                                                                                                                            |

## **GENERAL NOTES:**

Addendum 2B-7

PAGE 1 OF 1

| manner for the construction of the constructio |                                                      |  |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|--|--|--|--|
| CLIENT: Mount Vernon Group Architects, Inc.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ROJECT NAME: Proposed Green Meadow Elementary School |  |  |  |  |
| LGCI PROJECT NUMBER: 2201 P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ROJECT LOCATION: Maynard, MA                         |  |  |  |  |
| DATE STARTED:         1/28/22         DATE COMPLETED:         1/28/22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | DRILLING SUBCONTRACTOR: Northern Drill Service, Inc. |  |  |  |  |
| BORING LOCATION: Near NE corner of proposed building                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | DRILLING FOREMAN: Tim Tucker                         |  |  |  |  |
| COORDINATES: NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | DRILLING METHOD: _Drive and wash with 4-inch casing  |  |  |  |  |
| SURFACE El.: 214 ft. (see note 1) TOTAL DEPTH: 14 ft.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | DRILL RIG TYPE/MODEL: Mobile B-53 ATV Rig            |  |  |  |  |
| WEATHER: _20's / Cloudy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | HAMMER TYPE: Automatic                               |  |  |  |  |
| GROUNDWATER LEVELS:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | HAMMER WEIGHT: 140 lb. HAMMER DROP: 30 in.           |  |  |  |  |
| □ DURING DRILLING: Not Encountered                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | SPLIT SPOON DIA.: 1.375 in. I.D., 2 in. O.D.         |  |  |  |  |
| ▼ AT END OF DRILLING: 12.5 ft. / El. 201.5 ft.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | CORE BARREL SIZE: NA                                 |  |  |  |  |
| ▼ OTHER:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | LOGGED BY: HO CHECKED BY: NP                         |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                      |  |  |  |  |

| (ft.) | Sample<br>Interval (ft.) | Sample<br>Number                      | Blow Counts<br>(N Value) | Pen./Rec.<br>(in.) | Remark | Stra               | ta                                  | Depth<br>El.(ft.) | Material Description                                                                                                                                           |
|-------|--------------------------|---------------------------------------|--------------------------|--------------------|--------|--------------------|-------------------------------------|-------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|
|       | 0                        | M                                     | 13-12-5-6                |                    |        | Topsoil            | $\frac{1}{2}\frac{1}{2}\frac{1}{2}$ | 1.0               | S1 - Top 12": Topsoil                                                                                                                                          |
| + -   |                          | S1                                    | (17)                     | 24/24              |        |                    | 17 117                              | 213.0             | Bot. 12": Silty SAND (SM), fine, 15-20% slightly plastic fines, trace of organic soil, trace of roots, light brown, moist                                      |
| Ť .   | 2-                       | S2                                    | 7-7-10-9                 | 04/40              |        | Subsoil            |                                     | •                 | S2 - Top 13": Silty SAND (SM), fine to medium, 30-35% fines, 0-5% fine subangular gravel, trace of organic soil, light brown, moist                            |
| 210.0 | 4-                       | \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ | (17)                     | 24/18              |        |                    |                                     | 4.0               | Bot. 5": Silty SAND (SM), fine to medium, 20-25% slightly plastic fines, brown, moist                                                                          |
| 5     | ] 4                      | N sa                                  | 7-12-17-34               | 24/12              |        |                    | · 0 .                               | 210.0             | S3 - Silty SAND (SM), fine to medium, 15-20% fines, brown, moist                                                                                               |
|       | 6-                       | $\bigwedge$ 33                        | (29)                     | 24/12              |        |                    | 000                                 |                   |                                                                                                                                                                |
|       |                          | N S4                                  | 46-48-37-31              | 24/16              |        |                    | .0.                                 | ,                 | S4 - Well Graded GRAVEL with Silt and Sand (GW-GM), fine to coarse, subrounded, 5-10% fines, 15-20% fine to medium sand, trace of weathered rock, brown, moist |
| 1 -   | 8-                       | Μ                                     | (85)                     |                    |        | Sand and<br>Gravel |                                     |                   | Tool, Drown, Molec                                                                                                                                             |
| 205.0 | 9-                       | 1                                     |                          |                    |        | Graver             | 000                                 |                   | S5 - Silty GRAVEL with Sand (GM), fine to coarse, subrounded, ~15% fir                                                                                         |
| 10    |                          | S5                                    | 28-28-32-23<br>(60)      | 24/10              |        |                    | .0.                                 |                   | 40-45% fine to coarse sand, trace of weathered rock, light brown, moist                                                                                        |
| + .   | 11-                      | /\                                    | (00)                     |                    |        |                    | . 0 .                               |                   |                                                                                                                                                                |
| + -   |                          |                                       |                          |                    | 1      |                    | 00                                  | 12.0              | REMARK 1; Roller bit advanced between depths of 12' to 14' to confirm                                                                                          |
| + -   | -                        |                                       |                          |                    |        | Rock               | //                                  | *                 | presence of rock.                                                                                                                                              |
| 200.0 | 1                        |                                       |                          |                    |        |                    |                                     | 14.0              | Bottom of borehole at 14.0 feet. Backfilled borehole with drill cuttings and 2                                                                                 |
| 15    | -                        |                                       |                          |                    |        |                    |                                     |                   | bags of gravel.                                                                                                                                                |
| + -   |                          |                                       |                          |                    |        |                    |                                     |                   |                                                                                                                                                                |
| + -   | 1                        |                                       |                          |                    |        |                    |                                     |                   |                                                                                                                                                                |
| + -   | 1                        |                                       |                          |                    |        |                    |                                     |                   |                                                                                                                                                                |
| 195.0 | 1                        |                                       |                          |                    |        |                    |                                     |                   |                                                                                                                                                                |
| 20    | 1                        |                                       |                          |                    |        |                    |                                     |                   |                                                                                                                                                                |
| + -   |                          |                                       |                          |                    |        |                    |                                     |                   |                                                                                                                                                                |
| + -   | 1                        |                                       |                          |                    |        |                    |                                     |                   |                                                                                                                                                                |
| + -   | 1                        |                                       |                          |                    |        |                    |                                     |                   |                                                                                                                                                                |
| 190.0 | 1                        |                                       |                          |                    |        |                    |                                     |                   |                                                                                                                                                                |
| 25    | 1                        | 1                                     | 1                        | 1                  |        |                    |                                     | 1                 |                                                                                                                                                                |

## **GENERAL NOTES:**

Lahlaf Geotechnical Consulting, Inc.

PAGE 1 OF 1

PROJECT NAME: Proposed Green Meadow Elementary School CLIENT: Mount Vernon Group Architects, Inc. **LGCI PROJECT NUMBER: 2201** PROJECT LOCATION: Maynard, MA **DATE STARTED:** 1/31/22 DATE COMPLETED: 1/31/22 DRILLING SUBCONTRACTOR: Northern Drill Service, Inc. BORING LOCATION: Near NW corner of proposed building **DRILLING FOREMAN:** Tim Tucker COORDINATES: NA **DRILLING METHOD:** Drive and wash with 4-inch casing SURFACE El.: 214 ft. (see note 1) TOTAL DEPTH: 13 ft. DRILL RIG TYPE/MODEL: Mobile B-53 ATV Rig WEATHER: 20's / Sunny HAMMER TYPE: Automatic **GROUNDWATER LEVELS:** HAMMER DROP: 30 in. **HAMMER WEIGHT:** 140 lb. □ DURING DRILLING: Not Encountered SPLIT SPOON DIA.: 1.375 in. I.D., 2 in. O.D. T AT END OF DRILLING: Not Encountered CORE BARREL SIZE: NA ▼ OTHER: -LOGGED BY: HO CHECKED BY: NP

| Depth<br>(ft.) | El.<br>(ft.) | Sample<br>Interval (ft.) | Sample<br>Number | Blow Counts<br>(N Value) | Pen./Rec.<br>(in.) | Remark | Strata          | Depth<br>El.(ft.) | Material Description                                                                                                                                                                                                                                                                                           |
|----------------|--------------|--------------------------|------------------|--------------------------|--------------------|--------|-----------------|-------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                |              | 0                        | S1               | 19-15-75-25<br>(90)      | 24/24              | 1      | Topsoil 1/1/2 1 | 1.3               | REMARK 1: Soil was frozen between depths of 0' and 2'. S1 - Top 16": Topsoil                                                                                                                                                                                                                                   |
|                | 210.0        | 2-                       | S2               | 17-17-11-15<br>(28)      | 24/15              | 2      | Fill            | 4.0               | Bot. 8": Silty SAND with Gravel (SM), fine to medium, 15-20% fines, 15-20% fine to coarse subangular gravel, trace of organic soil, brown, moist S2 - Similar to S1 Bot. 8", 15-20% fine angular gravel, trace roots REMARK 2: Drill rig chattering between depths of 3' to 4' on possible cobbles or boulder. |
| 5              | _            | 4-<br>5-                 | S3               | 78-100                   | 12/6               |        | .00             | 210.0             | S3 - Well Graded GRAVEL with Silt and Sand (GW-GM), fine to coarse, subangular, ~10% fines, 15-20% fine to coarse sand, trace of weathered rock, light brown, moist                                                                                                                                            |
|                | <br>         | 6-<br>8-                 | S4               | 68-62-42-68<br>(104)     | 24/18              |        | Sand and Gravel |                   | S4 - Top 12": Similar to S3, 40-45% fine to coarse sand Bot. 6": Poorly Graded SAND with Silt (SP-SM), fine to medium, 10-15% fines, trace fine subrounded gravel, light brown, moist                                                                                                                          |
| 10             | 205.0        | 9-                       | S5               | 61-100/5"<br>(100/5")    | 11/7               | 3      | .00             |                   | REMARK 3: Drill rig chattering at depth of 8.5' on possible cobbles or boulder.  S5 - Well Graded GRAVEL with Silt and Sand (GW-GM), fine to coarse subangular, ~10% fines, ~30% fine to coarse sand, trace of weathered rock,                                                                                 |
|                |              | ,                        |                  |                          |                    | 4<br>5 | Rock            | 11.0<br>203.0     | light brown, moist  REMARK 4: Drill rig chattering at depth of 11' on rock.  REMARK 5: Roller bit advanced between depths of 11' to 13' to confirm presence of rock.                                                                                                                                           |
| 15             | 200.0        |                          |                  |                          |                    |        |                 | 13.0              | Bottom of borehole at 13.0 feet. Backfilled borehole with drill cuttings.                                                                                                                                                                                                                                      |
|                |              |                          |                  |                          |                    |        |                 |                   |                                                                                                                                                                                                                                                                                                                |
| 20             | 195.0        |                          |                  |                          |                    |        |                 |                   |                                                                                                                                                                                                                                                                                                                |
|                | -<br>-<br>-  |                          |                  |                          |                    |        |                 |                   |                                                                                                                                                                                                                                                                                                                |
|                | 190.0        |                          |                  |                          |                    |        |                 |                   |                                                                                                                                                                                                                                                                                                                |

### **GENERAL NOTES:**

Lahlaf Geotechnical Consulting, Inc.

Addendum 2<sub>R\_q</sub>

PAGE 1 OF 1

PROJECT NAME: Proposed Green Meadow Elementary School CLIENT: Mount Vernon Group Architects, Inc. **LGCI PROJECT NUMBER: 2201** PROJECT LOCATION: Maynard, MA DATE STARTED: 1/28/22 DATE COMPLETED: 1/28/22 DRILLING SUBCONTRACTOR: Northern Drill Service, Inc. **BORING LOCATION:** Near SE corner of proposed building **DRILLING FOREMAN:** Tim Tucker COORDINATES: NA DRILLING METHOD: Drive and wash with 4-inch casing SURFACE El.: 214 ft. (see note 1) TOTAL DEPTH: 21 ft. DRILL RIG TYPE/MODEL: Mobile B-53 ATV Rig WEATHER: 20's / Cloudy **HAMMER TYPE:** Automatic **GROUNDWATER LEVELS:** HAMMER DROP: 30 in. HAMMER WEIGHT: 140 lb.  $\overline{igspace}$  DURING DRILLING: 9.0 ft. / El. 205.0 ft. Based on sample moisture SPLIT SPOON DIA.: 1.375 in. I.D., 2 in. O.D. **T** AT END OF DRILLING: 12.5 ft. / El. 201.5 ft. CORE BARREL SIZE: NA ▼ OTHER: -LOGGED BY: HO CHECKED BY: NP

| Depth (ft.)  | Sample<br>Interval (ft.) | Sample<br>Number | Blow Counts<br>(N Value) | Pen./Rec. | Stra               | ata      | Depth<br>El.(ft.)           | Material Description                                                                                                                                                   |
|--------------|--------------------------|------------------|--------------------------|-----------|--------------------|----------|-----------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|              | 0                        | M                | 14-19-21-14              |           | Topsoil            | 7. 7. 7. |                             | 1 - Top 12": Topsoil                                                                                                                                                   |
|              |                          | S1               | (40)                     | 24/18     |                    |          | <sup>213.0</sup> Bo         | ot. 6": Poorly Graded SAND with Silt (SP-SM), fine to medium, 10-15% fines, ace of organic soil, trace of roots, light brown, moist                                    |
| 210.0        | 2-                       | S2               | 10-8-7-3<br>(15)         | 24/6      | Fill               |          | S2<br>10                    | 2 - Poorly Graded SAND with Silt and Gravel (SP-SM), fine to medium, 0-15% fines, 25-30% fine subrounded gravel, light brown, moist                                    |
| 5            |                          | S3               | 6-6-5-5<br>(11)          | 24/0      |                    |          | S                           | 3 - No recovery                                                                                                                                                        |
|              | 6-                       | S4               | 4-4-5-13<br>(9)          | 24/9      | Buried             |          | 207.4 SU                    | 4 - Top 7": Well Graded GRAVEL with Silt and Sand (GW-GM), fine to coarse, ibrounded, 5-10% fines, 20-25% fine to medium sand, trace of organic soil, int brown, moist |
| <del> </del> | 8-                       | / V              |                          |           | Organic<br>Soil    |          | bla                         | ot. 2": Silty SAND (SM), fine, 30-35% fines, trace of organic soil, organic odor, ack, moist                                                                           |
| 10           | 9-                       | S5               | 18-15-13-17<br>(28)      | 24/7      |                    | .00      | su<br>br                    | 5 - Well Graded GRAVEL with Silt and Sand (GW-GM), fine to coarse, ibangular, 5-10% fines, ~15% fine to coarse sand, trace of weathered rock, own, wet                 |
| 200.0        | _                        | \$6              | 4-6-8-8<br>(14)          | 24/9      | Sand and<br>Gravel |          | S6<br>We                    | 6 - Poorly Graded SAND with Silt (SP-SM), fine, 10-15% fines, trace of eathered rock, light brown, wet                                                                 |
| 195.0        | 19-                      | S7               | 7-8-6-6<br>(14)          | 24/7      |                    |          | S7<br>30<br><sub>21.0</sub> | 7 - Silty GRAVEL with Sand (GM), fine to coarse, subangular, 15-20% fines, 0-35% fine to medium sand, trace of weathered rock, light brown, wet                        |
| 190.0        | -                        |                  |                          |           |                    |          | ba                          | ags of gravel.                                                                                                                                                         |

### **GENERAL NOTES:**

Lahlaf Geotechnical Consulting, Inc.

## Addendum **2-10**

# Green Meadow Elementary School - Early Site Rackage G

PAGE 1 OF 1

PROJECT NAME: Proposed Green Meadow Elementary School **CLIENT:** Mount Vernon Group Architects, Inc. **LGCI PROJECT NUMBER: 2201** PROJECT LOCATION: Maynard, MA DATE COMPLETED: 1/28/22 DATE STARTED: 1/28/22 DRILLING SUBCONTRACTOR: Northern Drill Service, Inc. **BORING LOCATION:** Near center of proposed building **DRILLING FOREMAN:** Tim Tucker COORDINATES: NA **DRILLING METHOD:** Drive and wash with 4-inch casing SURFACE El.: 214 ft. (see note 1) TOTAL DEPTH: 21 ft. DRILL RIG TYPE/MODEL: Mobile B-53 ATV Rig WEATHER: 20's / Cloudy HAMMER TYPE: Automatic **GROUNDWATER LEVELS:** HAMMER DROP: 30 in. **HAMMER WEIGHT:** 140 lb.  $\overline{igspace}$  **DURING DRILLING:** 6.0 ft. / El. 208.0 ft. Based on sample moisture SPLIT SPOON DIA.: 1.375 in. I.D., 2 in. O.D. **T** AT END OF DRILLING: 12.0 ft. / El. 202.0 ft. CORE BARREL SIZE: NA ▼ OTHER: -LOGGED BY: HO CHECKED BY: NP

|             |                          |                  |                          |                    | _      |                    |        | _                 |                                                                                                                                                     |
|-------------|--------------------------|------------------|--------------------------|--------------------|--------|--------------------|--------|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|
| Depth (ft.) | Sample<br>Interval (ft.) | Sample<br>Number | Blow Counts<br>(N Value) | Pen./Rec.<br>(in.) | Remark | Stra               |        | Depth<br>El.(ft.) | Material Description                                                                                                                                |
| - +         | - 0                      | X S1             | 14-33-26-9<br>(59)       | 24/22              |        | Topsoil            | 74 V 7 | 0.6<br>213.4      | S1 - Top 7": Topsoil  Bot. 15": Silty SAND (SM), fine to coarse, 15-20% slightly plastic fines, trace of organic soil, light brown, moist           |
| 210.        | 2                        | S2               | 5-2-3-3<br>(5)           | 24/14              |        | Subsoil            |        | 4.0               | S2 - Silty SAND (SM), fine, 15-20% slightly plastic fines, trace of organic soil, light brown, moist                                                |
| 5           | 4                        | S3               | 1-2-1-2<br>(3)           | 24/16              |        |                    |        | 210.0             | S3 - Silty SAND (SM), mostly fine, ~20% slightly plastic fines, trace of roots, light brown, moist                                                  |
| +           | 6                        | S4               | 13-11-9-14<br>(20)       | 24/13              |        |                    |        | ¥                 | S4 - Silty GRAVEL with Sand (GM), fine to coarse, subrounded, 15-20% fines, 20-25% fine to medium sand, trace of weathered rock, light brown, moist |
| 205.        | 0 9<br>- 11              | \$5              | 7-10-13-12<br>(23)       | 24/10              |        |                    |        |                   | S5 - Silty SAND with Gravel (SM), fine to coarse, 15-20% fines, 40-45% fine to coarse subrounded gravel, brown, wet                                 |
| 200.        | _                        |                  |                          |                    | 1      | Sand and<br>Gravel |        |                   | REMARK 1: Drill rig chattering at depth of 13' on possible cobbles or boulder.                                                                      |
| 15          | - 16                     | S6               | 6-5-5-7<br>(10)          | 24/8               |        |                    |        |                   | S6 - Silty SAND (SM), fine to medium, 15-20% fines, 5-10% fine subrounded gravel, brown, wet                                                        |
| 195.        | 0 19                     | S7               | 10-12-31-49<br>(43)      | 24/12              |        |                    |        |                   | S7 - Silty SAND with Gravel (SM), fine to medium, 15-20% fines, 25-30% fine subrounded gravel, trace of weathered rock, brown, wet                  |
| -           | 21                       | / V              |                          |                    | 1      |                    | •      | 21.0              | Bottom of borehole at 21.0 feet. Backfilled borehole with drill cuttings and 4 bags of gravel.                                                      |
| 190.        | 0                        |                  |                          |                    |        |                    |        |                   |                                                                                                                                                     |

### **GENERAL NOTES:**

Lahlaf Geotechnical Consulting, Inc.

Addendum 2 1

PAGE 1 OF 1

PROJECT NAME: Proposed Green Meadow Elementary School CLIENT: Mount Vernon Group Architects, Inc. **LGCI PROJECT NUMBER: 2201** PROJECT LOCATION: Maynard, MA DATE STARTED: 1/28/22 DATE COMPLETED: 1/28/22 DRILLING SUBCONTRACTOR: Northern Drill Service, Inc. BORING LOCATION: Near SW corner of proposed building **DRILLING FOREMAN:** Tim Tucker COORDINATES: NA **DRILLING METHOD:** Drive and wash with 4-inch casing SURFACE El.: 213 ft. (see note 1) TOTAL DEPTH: 18 ft. DRILL RIG TYPE/MODEL: Mobile B-53 ATV Rig WEATHER: 20's / Cloudy HAMMER TYPE: Automatic **GROUNDWATER LEVELS: HAMMER WEIGHT:** 140 lb. HAMMER DROP: 30 in. □ DURING DRILLING: Not Encountered SPLIT SPOON DIA.: 1.375 in. I.D., 2 in. O.D. **T** AT END OF DRILLING: 15.7 ft. / El. 197.3 ft. CORE BARREL SIZE: NA ▼ OTHER: -LOGGED BY: HO CHECKED BY: NP

| Simple   Blow Counts   Pen./Rac (IN Value)   |                                 |                  |       |       |        |              |                  | l .                                                                                                                                                                                                                    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|------------------|-------|-------|--------|--------------|------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| St   31-70-29-32   24/16   24/16   24/16   24/16   24/16   24/16   24/16   24/16   24/16   24/16   24/16   24/16   24/16   24/16   24/16   24/16   24/16   24/16   24/16   24/16   24/16   24/16   24/16   24/16   24/16   24/16   24/16   24/16   24/16   24/16   24/16   24/16   24/16   24/16   24/16   24/16   24/16   24/16   24/16   24/16   24/16   24/16   24/16   24/16   24/16   24/16   24/16   24/16   24/16   24/16   24/16   24/16   24/16   24/16   24/16   24/16   24/16   24/16   24/16   24/16   24/16   24/16   24/16   24/16   24/16   24/16   24/16   24/16   24/16   24/16   24/16   24/16   24/16   24/16   24/16   24/16   24/16   24/16   24/16   24/16   24/16   24/16   24/16   24/16   24/16   24/16   24/16   24/16   24/16   24/16   24/16   24/16   24/16   24/16   24/16   24/16   24/16   24/16   24/16   24/16   24/16   24/16   24/16   24/16   24/16   24/16   24/16   24/16   24/16   24/16   24/16   24/16   24/16   24/16   24/16   24/16   24/16   24/16   24/16   24/16   24/16   24/16   24/16   24/16   24/16   24/16   24/16   24/16   24/16   24/16   24/16   24/16   24/16   24/16   24/16   24/16   24/16   24/16   24/16   24/16   24/16   24/16   24/16   24/16   24/16   24/16   24/16   24/16   24/16   24/16   24/16   24/16   24/16   24/16   24/16   24/16   24/16   24/16   24/16   24/16   24/16   24/16   24/16   24/16   24/16   24/16   24/16   24/16   24/16   24/16   24/16   24/16   24/16   24/16   24/16   24/16   24/16   24/16   24/16   24/16   24/16   24/16   24/16   24/16   24/16   24/16   24/16   24/16   24/16   24/16   24/16   24/16   24/16   24/16   24/16   24/16   24/16   24/16   24/16   24/16   24/16   24/16   24/16   24/16   24/16   24/16   24/16   24/16   24/16   24/16   24/16   24/16   24/16   24/16   24/16   24/16   24/16   24/16   24/16   24/16   24/16   24/16   24/16   24/16   24/16   24/16   24/16   24/16   24/16   24/16   24/16   24/16   24/16   24/16   24/16   24/16   24/16   24/16   24/16   24/16   24/16   24/16   24/16   24/16   24/16   24/16   24/16   24/16   24/16   24/16   24/16   24/16   24/16   2   | Depth (ft.) (ft.) Sample Sample | Sample<br>Number |       |       | Remark | Strata       | Depti<br>El.(ft. |                                                                                                                                                                                                                        |
| S2 23-32-21-23 24/20  S3 7-24-14-14 (38)  S4 16-10-9-9 (19)  S5 6-8-5-4 (13)  S6 6-2/3* 3/0 24/6  S7 195 (19)  S8 10-10-9-9 (19)  S9 2- Well Graded SAND with Silt and Gravel (SP-SM), fine to coarse, 5-10% fines subrounded gravel, trace of roots, light brown, moist grayel, prown, p  |                                 | //               |       | 24/16 |        | Topsoil W    |                  | Bot 10" Silty SAND with Gravel (SM) fine to medium 15-20% fines 20-25%                                                                                                                                                 |
| S3 - Top 5": Sitty SAND (SM), fine, trace medium, -15% fines, 5-10% fine to medium moist subrounded gravel, trace of roots, light brown, moist subrounded gravel (SP-SM), fine to medium, -15% fines, 5-10% fine to coarse, subangular gravel, brown, moist (appears reworked).  205.0 8  205.0 8  10 16-10-9-9 (19) 24/13 (19) 24/13 (19) 24/13 (19) 24/13 (19) 24/13 (19) 24/13 (19) 24/13 (19) 24/13 (19) 24/13 (19) 24/13 (19) 24/13 (19) 24/13 (19) 24/13 (19) 24/13 (19) 24/13 (19) 24/13 (19) 24/13 (19) 24/13 (19) 24/13 (19) 24/13 (19) 24/13 (19) 24/13 (19) 24/13 (19) 24/13 (19) 24/13 (19) 24/13 (19) 24/13 (19) 24/13 (19) 24/13 (19) 24/13 (19) 24/13 (19) 24/13 (19) 24/13 (19) 24/13 (19) 24/13 (19) 24/13 (19) 24/13 (19) 24/13 (19) 24/13 (19) 24/13 (19) 24/13 (19) 24/13 (19) 24/13 (19) 24/13 (19) 24/13 (19) 24/13 (19) 24/13 (19) 24/13 (19) 24/13 (19) 24/13 (19) 24/13 (19) 24/13 (19) 24/13 (19) 24/13 (19) 24/13 (19) 24/13 (19) 24/13 (19) 24/13 (19) 24/13 (19) 24/13 (19) 24/13 (19) 24/13 (19) 24/13 (19) 24/13 (19) 24/13 (19) 24/13 (19) 24/13 (19) 24/13 (19) 24/13 (19) 24/13 (19) 24/13 (19) 24/13 (19) 24/13 (19) 24/13 (19) 24/13 (19) 24/13 (19) 24/13 (19) 24/13 (19) 24/13 (19) 24/13 (19) 24/13 (19) 24/13 (19) 24/13 (19) 24/13 (19) 24/13 (19) 24/13 (19) 24/13 (19) 24/13 (19) 24/13 (19) 24/13 (19) 24/13 (19) 24/13 (19) 24/13 (19) 24/13 (19) 24/13 (19) 24/13 (19) 24/13 (19) 24/13 (19) 24/13 (19) 24/13 (19) 24/13 (19) 24/13 (19) 24/13 (19) 24/13 (19) 24/13 (19) 24/13 (19) 24/13 (19) 24/13 (19) 24/13 (19) 24/13 (19) 24/13 (19) 24/13 (19) 24/13 (19) 24/13 (19) 24/13 (19) 24/13 (19) 24/13 (19) 24/13 (19) 24/13 (19) 24/13 (19) 24/13 (19) 24/13 (19) 24/13 (19) 24/13 (19) 24/13 (19) 24/13 (19) 24/13 (19) 24/13 (19) 24/13 (19) 24/13 (19) 24/13 (19) 24/13 (19) 24/13 (19) 24/13 (19) 24/13 (19) 24/13 (19) 24/13 (19) 24/13 (19) 24/13 (19) 24/13 (19) 24/13 (19) 24/13 (19) 24/13 (19) 24/13 (19) 24/13 (19) 24/13 (19) 24/13 (19) 24/13 (19) 24/13 (19) 24/13 (19) 24/13 (19) 24/13 (19) 24/13 (19) 24/13 (19) 24/13 (19) 24/13 (19) 24/13 (19) 24/13 (19) | 210.0                           | S2               |       | 24/20 |        | Fill         |                  | fines, 20-25% fine to coarse subrounded to angular gravel, orange to brown,                                                                                                                                            |
| S4 16-10-9-9 (19) 24/13 (19) 24/13 (19) 24/13 (19) 24/13 (19) 24/13 (19) 24/13 (19) 24/13 (19) 24/13 (19) 24/13 (19) 24/13 (19) 24/13 (19) 24/13 (19) 24/13 (19) 24/13 (19) 24/13 (19) 24/13 (19) 24/13 (19) 24/13 (19) 24/13 (19) 24/13 (19) 24/13 (19) 24/13 (19) 24/13 (19) 24/13 (19) 24/13 (19) 24/13 (19) 24/13 (19) 24/13 (19) 24/13 (19) 24/13 (19) 24/13 (19) 24/13 (19) 24/13 (19) 24/13 (19) 24/13 (19) 24/13 (19) 24/13 (19) 24/13 (19) 24/13 (19) 24/13 (19) 24/13 (19) 24/13 (19) 24/13 (19) 24/13 (19) 24/13 (19) 24/13 (19) 24/13 (19) 24/13 (19) 24/13 (19) 24/13 (19) 24/13 (19) 24/13 (19) 24/13 (19) 24/13 (19) 24/13 (19) 24/13 (19) 24/13 (19) 24/13 (19) 24/13 (19) 24/13 (19) 24/13 (19) 24/13 (19) 24/13 (19) 24/13 (19) 24/13 (19) 24/13 (19) 24/13 (19) 24/13 (19) 24/13 (19) 24/13 (19) 24/13 (19) 24/13 (19) 24/13 (19) 24/13 (19) 24/13 (19) 24/13 (19) 24/13 (19) 24/13 (19) 24/13 (19) 24/13 (19) 24/13 (19) 24/13 (19) 24/13 (19) 24/13 (19) 24/13 (19) 24/13 (19) 24/13 (19) 24/13 (19) 24/13 (19) 24/13 (19) 24/13 (19) 24/13 (19) 24/13 (19) 24/13 (19) 24/13 (19) 24/13 (19) 24/13 (19) 24/13 (19) 24/13 (19) 24/13 (19) 24/13 (19) 24/13 (19) 24/13 (19) 24/13 (19) 24/13 (19) 24/13 (19) 24/13 (19) 24/13 (19) 24/13 (19) 24/13 (19) 24/13 (19) 24/13 (19) 24/13 (19) 24/13 (19) 24/13 (19) 24/13 (19) 24/13 (19) 24/13 (19) 24/13 (19) 24/13 (19) 24/13 (19) 24/13 (19) 24/13 (19) 24/13 (19) 24/13 (19) 24/13 (19) 24/13 (19) 24/13 (19) 24/13 (19) 24/13 (19) 24/13 (19) 24/13 (19) 24/13 (19) 24/13 (19) 24/13 (19) 24/13 (19) 24/13 (19) 24/13 (19) 24/13 (19) 24/13 (19) 24/13 (19) 24/13 (19) 24/13 (19) 24/13 (19) 24/13 (19) 24/13 (19) 24/13 (19) 24/13 (19) 24/13 (19) 24/13 (19) 24/13 (19) 24/13 (19) 24/13 (19) 24/13 (19) 24/13 (19) 24/13 (19) 24/13 (19) 24/13 (19) 24/13 (19) 24/13 (19) 24/13 (19) 24/13 (19) 24/13 (19) 24/13 (19) 24/13 (19) 24/13 (19) 24/13 (19) 24/13 (19) 24/13 (19) 24/13 (19) 24/13 (19) 24/13 (19) 24/13 (19) 24/13 (19) 24/13 (19) 24/13 (19) 24/13 (19) 24/13 (19) 24/13 (19) 24/13 (19) 24/13 (19) 24/13 (19) 24/13 (19) 24/13 (19) 24/  | 5                               | S3               |       | 24/9  |        |              | 6.0              | Bot. 4": Poorly Graded SAND with Silt and Gravel (SP-SM), fine to medium, 10-15% fines, ~20% fine to coarse subangular gravel, brown, moist (appears                                                                   |
| 2000  2000  15  185  6-8-5-4 (13)  24/6  24/6  25  Sand and solve Gravel  20  185  Sand and solve Gravel  20  185  REMARK 1: Split spoon refusal encountered at depth of 14.3' on rock, tip of split spoon spoke into two pieces.  S6- 62/3°  No recovery  REMARK 2: Roller bit advanced between depths of 14.3' to 18' to confirm presence of rock.  Bottom of borehole at 18.0 feet. Backfilled borehole with drill cuttings and 0.5 bag of gravel.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 205.0                           | S4               |       | 24/13 | _      |              | 0                | S4 - Top 6": Well Graded GRAVEL with Silt and Sand (GW-GM), fine to coarse, subangular, 5-10% fines, 15-20% fine to medium sand, brown, moist Bot. 7": Poorly Graded SAND (SP), fine to medium, 0-5% fines, 5-10% fine |
| 200.0  15  16  195.0  190.0  190.0  190.0  190.0  190.0  190.0  190.0  190.0  190.0  190.0  190.0  190.0  190.0  190.0  190.0  190.0  190.0  190.0  190.0  190.0  190.0  190.0  190.0  190.0  190.0  190.0  190.0  190.0  190.0  190.0  190.0  190.0  190.0  190.0  190.0  190.0  190.0  190.0  190.0  190.0  190.0  190.0  190.0  190.0  190.0  190.0  190.0  190.0  190.0  190.0  190.0  190.0  190.0  190.0  190.0  190.0  190.0  190.0  190.0  190.0  190.0  190.0  190.0  190.0  190.0  190.0  190.0  190.0  190.0  190.0  190.0  190.0  190.0  190.0  190.0  190.0  190.0  190.0  190.0  190.0  190.0  190.0  190.0  190.0  190.0  190.0  190.0  190.0  190.0  190.0  190.0  190.0  190.0  190.0  190.0  190.0  190.0  190.0  190.0  190.0  190.0  190.0  190.0  190.0  190.0  190.0  190.0  190.0  190.0  190.0  190.0  190.0  190.0  190.0  190.0  190.0  190.0  190.0  190.0  190.0  190.0  190.0  190.0  190.0  190.0  190.0  190.0  190.0  190.0  190.0  190.0  190.0  190.0  190.0  190.0  190.0  190.0  190.0  190.0  190.0  190.0  190.0  190.0  190.0  190.0  190.0  190.0  190.0  190.0  190.0  190.0  190.0  190.0  190.0  190.0  190.0  190.0  190.0  190.0  190.0  190.0  190.0  190.0  190.0  190.0  190.0  190.0  190.0  190.0  190.0  190.0  190.0  190.0  190.0  190.0  190.0  190.0  190.0  190.0  190.0  190.0  190.0  190.0  190.0  190.0  190.0  190.0  190.0  190.0  190.0  190.0  190.0  190.0  190.0  190.0  190.0  190.0  190.0  190.0  190.0  190.0  190.0  190.0  190.0  190.0  190.0  190.0  190.0  190.0  190.0  190.0  190.0  190.0  190.0  190.0  190.0  190.0  190.0  190.0  190.0  190.0  190.0  190.0  190.0  190.0  190.0  190.0  190.0  190.0  190.0  190.0  190.0  190.0  190.0  190.0  190.0  190.0  190.0  190.0  190.0  190.0  190.0  190.0  190.0  190.0  190.0  190.0  190.0  190.0  190.0  190.0  190.0  190.0  190.0  190.0  190.0  190.0  190.0  190.0  190.0  190.0  190.0  190.0  190.0  190.0  190.0  190.0  190.0  190.0  190.0  190.0  190.0  190.0  190.0  190.0  190.0  190.0  190.0  190.0  190.0  190.0  190.0  190.0  190.0  190.0  190.0  190.0  190.0  190.0    |                                 |                  |       | 24/6  | 5      | Sand and • O | ٥٠٠              | S5 - Similar to S4 Bot. 7", 10-15% coarse subrounded gravel                                                                                                                                                            |
| 14.4 S6 62/3" 3/0  15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | - + -                           |                  |       |       |        | . 0          | 0                |                                                                                                                                                                                                                        |
| 195.0  Bottom of borehole at 18.0 feet. Backfilled borehole with drill cuttings and 0.5 bag of gravel.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                 | S6               | 62/3" | 3/0   | 1 2    |              | 14.3<br>198.7    | split spoon broke into two pieces.  S6 - No recovery  ▼ REMARK 2: Roller bit advanced between depths of 14.3' to 18' to confirm                                                                                        |
| 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 195.0                           |                  |       |       |        | Rock         | 18.0             |                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 20                              |                  |       |       |        |              |                  |                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |                  |       |       |        |              |                  |                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - + -                           |                  |       |       |        |              |                  |                                                                                                                                                                                                                        |

### **GENERAL NOTES:**

Addendum 2101

PAGE 1 OF 1

| CLIENT: Mount Vernon Group Architects, Inc.                           | PROJECT NAME: Proposed Green Meadow Elementary School |  |  |  |
|-----------------------------------------------------------------------|-------------------------------------------------------|--|--|--|
| LGCI PROJECT NUMBER: 2201 PR                                          | OJECT LOCATION: Maynard, MA                           |  |  |  |
| DATE STARTED:         2/19/24         DATE COMPLETED:         2/19/24 | DRILLING SUBCONTRACTOR: Soil X, Corp.                 |  |  |  |
| BORING LOCATION: Near NE corner of eastern wing of proposed building  | DRILLING FOREMAN: Edwin Fajardo                       |  |  |  |
| COORDINATES: NA                                                       | DRILLING METHOD: Hollow Stem Auger (4-1/4" I.D.)      |  |  |  |
| SURFACE EI.: 213 ft. (see note 1) TOTAL DEPTH: 17.5 ft.               | DRILL RIG TYPE/MODEL: Diedrich D-70 turbo             |  |  |  |
| WEATHER: 30's / Sunny                                                 | HAMMER TYPE: Automatic                                |  |  |  |
| GROUNDWATER LEVELS:                                                   | HAMMER WEIGHT: 140 lb. HAMMER DROP: 30 in.            |  |  |  |
| □ DURING DRILLING: Not Encountered                                    | SPLIT SPOON DIA.: 1.375 in. I.D., 2 in. O.D.          |  |  |  |
| ▼ AT END OF DRILLING:                                                 | CORE BARREL SIZE: NA                                  |  |  |  |
| Ţ other:                                                              | LOGGED BY: MBH CHECKED BY: SG                         |  |  |  |
|                                                                       |                                                       |  |  |  |

| ļ           |                          |                  |                          |           |             |        |                   |                                                                                                                                                                    |
|-------------|--------------------------|------------------|--------------------------|-----------|-------------|--------|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Depth (ft.) | Sample<br>Interval (ft.) | Sample<br>Number | Blow Counts<br>(N Value) | Pen./Rec. | Remark      | Strata | Depth<br>El.(ft.) | Material Description                                                                                                                                               |
|             | 0                        | S1               | 1-1-1-2<br>(2)           | 24/15     | Tops        |        | 0.5 212.5         | S1 - Top 6": Topsoil  Bot. 9": Silty SAND (SM), fine to medium, 20-25% fines, 0-5% fine to coarse subangular gravel, trace of roots, trace of organic soil, orange |
| 210.0       |                          | S2               | 9-5-12-11<br>(17)        | 24/10     |             | .00    | 211.0             | S2 - Silty SAND (SM), fine to medium with trace coarse, 15-20% fines, 10-15% fine to coarse subangular gravel, orange to brown, moist                              |
| 5           | 4-                       | S3               | 9-11-19-23<br>(30)       | 24/19     |             | .0.    |                   | S3 - Silty SAND with Gravel (SM), fine to medium with trace coarse, 15-20% fines, 15-20% fine to coarse subrounded gravel, light brown to orange, moist            |
| 205.0       | 8-                       | S4               | 22-24-29-28<br>(53)      | 24/2      |             | .0.    |                   | S4 - Well Graded GRAVEL with Sand (GW), fine to coarse, subangular, 10-15% fines, 25-30% fine to coarse sand, trace of roots, grey, moist                          |
| 10          | 10-                      |                  |                          |           | Sand<br>Gra |        |                   | SE Wall Craded SAND (SW) fine to seems 0.50/ fine subangular                                                                                                       |
|             | 12-                      | S5               | 4-4-4-5<br>(8)           | 24/12     |             | .00    |                   | S5 - Well Graded SAND (SW), fine to coarse, 0-5% fines, 0-5% fine subangular gravel, light brown, moist                                                            |
| 200.0       |                          | S6               | 27-20-11-11<br>(31)      | 24/11     |             | .0.    |                   | S6 - Well Graded SAND with Silt and Gravel (SW-SM), fine to coarse, ~10% fines, 35-40% fine to coarse subangular gravel, orange to brown, moist                    |
| 15          | -                        |                  |                          |           |             | .0.    |                   |                                                                                                                                                                    |
|             |                          |                  |                          |           | 1           | .00    |                   | REMARK 1: HSA refusal at depth of 17.5' on possible rock or boulder.  Bottom of borehole at 17.5 feet. Backfilled borehole with drill cuttings.                    |
| 20          |                          |                  |                          |           |             |        |                   | Bottom of borefiole at 17.5 leet. Backfilled borefiole with drift cuttings.                                                                                        |
|             |                          |                  |                          |           |             |        |                   |                                                                                                                                                                    |
| 190.0       | _                        |                  |                          |           |             |        |                   |                                                                                                                                                                    |
| 25          |                          |                  |                          |           |             |        |                   |                                                                                                                                                                    |

## **GENERAL NOTES:**

<sup>1.</sup> The ground surface elevation was interpolated to the nearest foot from Drawing EX-1 titled: "Site Survey Plan, Schematic Design, Maynard Public Schools, Green Meadow Elementary School," prepared by Samiotes Consultants, Inc., dated September 2, 2022 and provided to LGCI by Brennan via e-mail on February 1, 2024.

Lahlaf Geotechnical Consulting, Inc.

Addendum 2102

PAGE 1 OF

PROJECT NAME: Proposed Green Meadow Elementary School **CLIENT:** Mount Vernon Group Architects, Inc. **LGCI PROJECT NUMBER: 2201** PROJECT LOCATION: Maynard, MA **DATE STARTED**: 2/19/24 DATE COMPLETED: 2/19/24 DRILLING SUBCONTRACTOR: Soil X, Corp. **BORING LOCATION:** Near SE corner of eastern wing of proposed building **DRILLING FOREMAN:** Edwin Fajardo COORDINATES: NA DRILLING METHOD: Hollow Stem Auger (4-1/4" I.D.) SURFACE El.: 209 ft. (see note 1) TOTAL DEPTH: 18.5 ft. DRILL RIG TYPE/MODEL: Diedrich D-70 turbo WEATHER: 30's / Sunny HAMMER TYPE: Automatic **GROUNDWATER LEVELS: HAMMER WEIGHT:** 140 lb. HAMMER DROP: 30 in. □ DURING DRILLING: Not Encountered SPLIT SPOON DIA.: 1.375 in. I.D., 2 in. O.D. **X** AT END OF DRILLING: 17.5 ft. / El. 191.5 ft. CORE BARREL SIZE: NA V OTHER: -LOGGED BY: MBH CHECKED BY: SG

| Depth (ft.) | Sample<br>Interval (ft.) | Sample<br>Number | Blow Counts<br>(N Value) | Pen./Rec.<br>(in.) | Remark | Strat              | Depth<br>El.(ft.) | Material Description                                                                                                                                                    |
|-------------|--------------------------|------------------|--------------------------|--------------------|--------|--------------------|-------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|             | 0                        | 1                |                          |                    |        | Topsoil/           | 208.8             | S1 - Top 2": Topsoil                                                                                                                                                    |
| 1           | 2-                       | S1               | 1-1-2-4<br>(3)           | 24/15              |        | Subsoil            | 2.0               | Bot. 13": Silty SAND (SM), fine to medium, 15-20% fines, 0-5% fine to coarse subangular gravel, trace of roots, trace of organic soil, trace of wood, orange, moist     |
| 205.0       |                          | S2               | 7-7-14-12<br>(21)        | 24/10              |        |                    | 207.0             | S2 - Well Graded SAND with Silt and Gravel (SW-SM), fine to coarse, 10-15% fines, 20-25% fine to coarse subangular gravel, light brown to orange, moist                 |
| 5           | 4 -<br>-                 | S3               | 11-10-10-8<br>(20)       | 24/10              |        |                    |                   | S3 - Well Graded SAND with Silt and Gravel (SW-SM), fine to coarse, 10-15% fines, 15-20% fine to coarse subangular gravel, light brown to orange, moist                 |
| + -         | 6-                       | S4               | 9-8-8-8<br>(16)          | 24/7               |        |                    |                   | S4 - Well Graded SAND with Silt and Gravel (SW-SM), fine to coarse, 10-15% fines, 35-40% fine to coarse subangular gravel, trace of roots, light brown to orange, moist |
| 200.0       | - 10-                    | \$5              | 4-4-5-4<br>(9)           | 24/17              |        | Sand and<br>Gravel |                   | S5 - Well Graded SAND (SW), fine to coarse, ~5% fines, ~10% fine to coarse subangular gravel, light brown, moist                                                        |
| 195.0       | 15-                      | \$6              | 22-61-38-23<br>(99)      | 24/18              |        |                    |                   | S6 - Silty SAND with Gravel (SM), fine to coarse, 20-25% fines, 15-20% fine to coarse subangular gravel, trace of weathered rock, light brown to orange, mois           |
| 190.0       | _                        |                  |                          |                    | 1      |                    | 18.5              | REMARK 1: HSA refusal at depth of 18.5' on possible rock or boulder.  Bottom of borehole at 18.5 feet. Backfilled borehole with drill cuttings.                         |
| 20          |                          |                  |                          |                    |        |                    |                   |                                                                                                                                                                         |
| + -         |                          |                  |                          |                    |        |                    |                   |                                                                                                                                                                         |
| 185.0       | 1                        |                  |                          |                    |        |                    |                   |                                                                                                                                                                         |

### **GENERAL NOTES:**

Lahlaf Geotechnical Consulting, Inc.

Addendum 2103

PAGE 1 OF 1

| CLIENT: Mount Vernon Group Architects, Inc.                          | ROJECT NAME: Proposed Green Meadow Elementary School        |  |  |  |
|----------------------------------------------------------------------|-------------------------------------------------------------|--|--|--|
| LGCI PROJECT NUMBER: 2201 PF                                         | ROJECT LOCATION: Maynard, MA                                |  |  |  |
| <b>DATE STARTED</b> : 2/20/24 <b>DATE COMPLETED</b> : 2/20/24        | DRILLING SUBCONTRACTOR: Soil X, Corp.                       |  |  |  |
| BORING LOCATION: Near SW corner of eastern wing of proposed building | DRILLING FOREMAN: Edwin Fajardo                             |  |  |  |
| COORDINATES: NA                                                      | DRILLING METHOD: Hollow Stem Auger (4-1/4" I.D.)            |  |  |  |
| SURFACE EI.: 214 ft. (see note 1) TOTAL DEPTH: 16.6 ft.              | DRILL RIG TYPE/MODEL: Diedrich D-70 turbo                   |  |  |  |
| WEATHER: 30's / Sunny                                                | HAMMER TYPE: _Automatic                                     |  |  |  |
| GROUNDWATER LEVELS:                                                  | HAMMER WEIGHT: 140 lb. HAMMER DROP: 30 in.                  |  |  |  |
| □ DURING DRILLING: Not Encountered                                   | <b>SPLIT SPOON DIA.</b> : <u>1.375 in. I.D., 2 in. O.D.</u> |  |  |  |
| lacksquare at END of Drilling:                                       | CORE BARREL SIZE: NA                                        |  |  |  |
| $oldsymbol{Y}$ other:                                                | LOGGED BY: MBH CHECKED BY: SG                               |  |  |  |
|                                                                      |                                                             |  |  |  |

|     | El.<br>(ft.) | Sample<br>Interval (ft.) | San<br>Num |    | Blow Counts<br>(N Value) | Pen./Rec.<br>(in.) | Remark | Strata                       | Depth<br>El.(ft.) | Material Description                                                                                                                                                                      |
|-----|--------------|--------------------------|------------|----|--------------------------|--------------------|--------|------------------------------|-------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| - + | -            | 0                        | M          | S1 | 3-6-7-8<br>(13)          | 24/13              |        | Fill Fill                    | 0.5<br>213.5      | S1 - Top 6": Topsoil  Bot. 7": Silty SAND (SM), fine to medium with trace coarse, 20-25% fines, 0-5% fine subangular gravel, brown to orange, moist                                       |
| - + | 10.0         | 2-                       |            | S2 | 17-12-9-10<br>(21)       | 24/16              |        | Subsoil                      | 212.0             | S2 - Silty SAND (SM), fine to medium with trace coarse, 20-25% fines, 0-5% fine subangular gravel, orange, moist                                                                          |
| 5   | -            | 4-                       |            | S3 | 11-14-44-19<br>(58)      | 24/10              |        | .00                          | 210.0             | S3 - Well Graded GRAVEL with Sand (GW), fine to coarse, subangular, 0-5% fines, 35-40% fine to coarse sand, light brown to brown, moist                                                   |
| +   | -            | 6-                       |            | S4 | 14-14-15-14<br>(29)      | 24/15              |        | .00                          |                   | S4 - Well Graded SAND with Silt and Gravel (SW-SM), fine to coarse, 10-15% fines, 20-25% fine to coarse subangular gravel, brown to orange, moist                                         |
| 10  | 05.0         | 8-                       |            |    |                          |                    |        | · 0.                         |                   |                                                                                                                                                                                           |
|     | -            | 10-                      | M          | S5 | 10-11-11-10<br>(22)      | 24/3               |        | Sand and Sand Gravel Control |                   | S5 - Well Graded SAND with Silt and Gravel (SW-SM), fine to coarse, 10-15% fines, 35-40% fine to coarse subangular gravel, brown to orange, moist                                         |
|     | 00.0         | 12-                      |            |    |                          |                    |        | , O (                        |                   |                                                                                                                                                                                           |
| 15  |              | 15-                      | X          | S6 | 28-42-60/2"<br>(102/8")  | 14/11              |        | .0.                          |                   | S6 - Silty SAND with Silt (SM), fine to coarse, ~15% fines, 10-15% fine to coarse subangular gravel, brown to grey, moist                                                                 |
|     |              | 16.2 -<br>16.6 =         |            | S7 | 100/1"                   | 1/0                | 1      |                              | 16.6              | REMARK 1: Auger and split spoon refusal at depth of 16.5' on possible large boulder or rock.  S7 - No Recovery  Bottom of borehole at 16.6 feet. Borehole backfilled with drill cuttings. |
| 20  | 95.0         |                          |            |    |                          |                    |        |                              |                   | Bottom of Botonole at 10.0 feet. Botonole Baokinica with anii eathings.                                                                                                                   |
| +   | _            |                          |            |    |                          |                    |        |                              |                   |                                                                                                                                                                                           |
| 1   | 90.0         |                          |            |    |                          |                    |        |                              |                   |                                                                                                                                                                                           |
| 25  |              |                          |            |    |                          |                    |        |                              |                   |                                                                                                                                                                                           |

## **GENERAL NOTES:**

Lahlaf Geotechnical Consulting, Inc.

Addendu4-OW

PAGE 1 OF

PROJECT NAME: Proposed Green Meadow Elementary School **CLIENT:** Mount Vernon Group Architects, Inc. **LGCI PROJECT NUMBER: 2201** PROJECT LOCATION: Maynard, MA **DATE STARTED**: 2/19/24 DATE COMPLETED: 2/20/24 DRILLING SUBCONTRACTOR: Soil X, Corp. BORING LOCATION: Near NW corner of eastern wing of proposed building **DRILLING FOREMAN:** Edwin Fajardo COORDINATES: NA DRILLING METHOD: Hollow Stem Auger (4-1/4" I.D.) SURFACE El.: 214 ft. (see note 1) TOTAL DEPTH: 19.2 ft. DRILL RIG TYPE/MODEL: Diedrich D-70 turbo WEATHER: 30's / Sunny HAMMER TYPE: Automatic **GROUNDWATER LEVELS: HAMMER WEIGHT:** 140 lb. HAMMER DROP: 30 in. ☑ **DURING DRILLING:** 19.0 ft. / El. 195.0 ft. Based on sample moisture SPLIT SPOON DIA.: 1.375 in. I.D., 2 in. O.D. **X** AT END OF DRILLING: 18.5 ft. / El. 195.5 ft. CORE BARREL SIZE: NA V OTHER: -LOGGED BY: MBH CHECKED BY: SG

| El. (ft.) | Sample<br>Interval (ft.) | Sample<br>Number | Blow Counts<br>(N Value) | Pen./Rec.<br>(in.) | Remark | Strata          | Depth<br>El.(ft.) | Material Description                                                                                                                                                                                            |
|-----------|--------------------------|------------------|--------------------------|--------------------|--------|-----------------|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|           | 0                        | 1                |                          |                    |        | Topsoil         | 0.3               | S1 - Top 4": Topsoil                                                                                                                                                                                            |
| + -       |                          | S1               | 4-5-6-11<br>(11)         | 24/18              |        |                 | 213.7             | Bot. 14": Silty SAND (SM), fine to medium with trace coarse, 15-20% fines, 0-5% fine subangular gravel, trace of roots, trace of wood, orange, moist                                                            |
| 210.0     | 2-                       | S2               | 6-7-10-15<br>(17)        | 24/15              |        | Fill            | 4.0               | S2 - Silty SAND (SM), fine to medium with trace coarse, 40-45% fines, 10-15% fine subrounded gravel, trace of weathered rock, orange, moist                                                                     |
| 5         | 4-                       | S3               | 12-10-12-13<br>(22)      | 24/24              |        | .00             | 210.0             | S3 - Silty SAND (SM), fine to medium, ~20% fines, 0-5% fines subangular gravel, brown, moist                                                                                                                    |
| + -       | 6-                       | S4               | 18-62-36-34<br>(98)      | 24/16              |        | .0.             |                   | S4 - Well Graded SAND with Silt and Gravel (SW-SM), fine to coarse, 10-15% fines, 40-45% fine to coarse subangular gravel, brown to grey, moist                                                                 |
| 205.0     | 10-                      | \$5              | 16-25-21-34<br>(46)      | 24/12              | S      | Sand and Gravel |                   | S5 - Well Graded SAND with Silt and Gravel (SW-SM), fine to coarse, ~10% fines, 15-20% fine to coarse subangular gravel, brown to light brown, moist                                                            |
| 5         | 15-                      | S6               | 73-52-32-51<br>(84)      | 24/13              | -      |                 |                   | S6 - Well Graded SAND with Silt and Gravel (SW-SM), fine to coarse, ~10% fines, 30-35% fine to coarse subangular gravel, brown to light brown, moist                                                            |
| 195.0     | 19.2                     | ≥<\ S7           | 100/2"                   | 2/2                | 1      |                 | ¥<br>19.2 ¥       | REMARK 1: HSA refusal at depth of 19' on possible rock, then attempted split spoon sampling.                                                                                                                    |
| 20 -      | -                        |                  |                          |                    |        |                 | '                 | S7 - Silty SAND with Gravel (SM), fine to coarse, 20-25% fines, 30-35% fine angular gravel, trace of weathered rock, brown, wet Bottom of borehole at 19.2 feet. Groundwater observation well installed to dept |
| 190.0     | -                        |                  |                          |                    |        |                 |                   | Bottom of borehole at 19.2 feet. Groundwater observation well installed to dep of 19.2 ft.                                                                                                                      |

### **GENERAL NOTES:**

Addendum 2105

PAGE 1 OF 1

| CLIENT: Mount Vernon Group Architects, Inc.                           | PROJECT NAME: Proposed Green Meadow Elementary School |  |  |  |
|-----------------------------------------------------------------------|-------------------------------------------------------|--|--|--|
| LGCI PROJECT NUMBER: 2201 P                                           | ROJECT LOCATION: Maynard, MA                          |  |  |  |
| DATE STARTED:         2/26/24         DATE COMPLETED:         2/26/24 | DRILLING SUBCONTRACTOR: Soil X, Corp.                 |  |  |  |
| BORING LOCATION: Within western wing of proposed building             | DRILLING FOREMAN: Edwin Fajardo                       |  |  |  |
| COORDINATES: NA                                                       | DRILLING METHOD: Hollow Stem Auger (4-1/4" I.D.)      |  |  |  |
| SURFACE EI.: 213 ft. (see note 1) TOTAL DEPTH: 14.7 ft.               | DRILL RIG TYPE/MODEL: Diedrich D-70 turbo             |  |  |  |
| WEATHER: 40's / Cloudy                                                | HAMMER TYPE: Automatic                                |  |  |  |
| GROUNDWATER LEVELS:                                                   | HAMMER WEIGHT: 140 lb. HAMMER DROP: 30 in.            |  |  |  |
| □ DURING DRILLING: Not Encountered                                    | SPLIT SPOON DIA.: 1.375 in. I.D., 2 in. O.D.          |  |  |  |
| ▼ AT END OF DRILLING:                                                 | CORE BARREL SIZE: NA                                  |  |  |  |
| $ar{m{Y}}$ other:                                                     | LOGGED BY: MBH CHECKED BY: SG                         |  |  |  |
|                                                                       |                                                       |  |  |  |

| Depth<br>(ft.) | El.<br>(ft.) | Sample<br>Interval (ft.) | Sample<br>Number | Blow Counts<br>(N Value) | Pen./Rec. | Kemark<br>S | trata          | Depth<br>El.(ft.) | Material Description                                                                                                                                                                                                |
|----------------|--------------|--------------------------|------------------|--------------------------|-----------|-------------|----------------|-------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                |              | 0                        | М                | 5-33-63-52/2"            |           | Topso       | il   1/2   1/2 | 0.7               | S1 - Top 8": Topsoil                                                                                                                                                                                                |
|                |              | 1.7                      | X S1             | (96)                     | 20/19     | Fill        |                | 212.3             | Bot. 11": Poorly Graded GRAVEL with Silt and Sand (GP-GM), mostly fine with coarse, subangular, ~10% fines, ~40% fine to coarse sand, brown to grey, moist (appears to be reworked)                                 |
|                | 210.0        | 2-                       | S2               | 30-75/2"<br>(75/2")      | 8/8       |             | .00            | 211.0             | S2 - Well Graded SAND with Silt and Gravel (SW-SM), fine to coarse, 5-10% fines, 20-25% fine to coarse gravel, light brown with orange stripes, moist                                                               |
| 5              |              | 4-                       | S3               | 29-33-68-39<br>(101)     | 24/12     |             | . O (          |                   | S3 - Poorly Graded GRAVEL with Silt and Sand (GP-GM), mostly coarse, subangular to angular, 0-5% fines, 20-25% fine to coarse sand, trace of weathered rock, brown, moist                                           |
| -              |              | 6-<br>7-                 | S4               | 42-63                    | 12/11     | Sand a      |                |                   | S4 - Well Graded SAND with Silt and Gravel (SW-SM), fine to coarse, 5-10% fines, 15-20% fine to coarse subangular gravel, grey brown, moist                                                                         |
| 10             | 205.0        | 10-                      | S5               | 34-51-30-26<br>(81)      | 24/14     | Grave       |                |                   | S5 - Well Graded SAND with Silt and Gravel (SW-SM), fine to coarse, 10-15% fines, 25-30% fine to coarse subangular gravel, grey to brown, moist                                                                     |
| -              | 200.0        | 12.5 -                   | C1               |                          | 18/7.5    | Bould       | er             | 200.5             | C1 - min/ft: 2.5, .9 Pen.: 18" Rec.: 7.5" Paulder bard CRANTE madium grained grow to white                                                                                                                          |
| -              |              | 14-                      | X S6             | 11-100/2"                | 8/2       | 1 Silt      |                | 14.0              | Boulder, hard, GRANITE, medium grained, grey to white \REMARK 1: Advanced roller bit from 14 ft. to 16 ft.                                                                                                          |
|                |              | 14.7                     |                  | (100/2")                 | - 0,2     | Silt        |                | 14.7              | S6 - Sandy SILT with Gravel (ML), slightly plastic, 30-35% fine to coarse sand, 15-20% fine to coarse subangular gravel, grey brown, wet  Bottom of borehole at 14.7 feet. Backfilled borehole with drill cuttings. |
| 20             |              |                          |                  |                          |           |             |                |                   |                                                                                                                                                                                                                     |
|                | <br>         |                          |                  |                          |           |             |                |                   |                                                                                                                                                                                                                     |
| -              | 190.0        |                          |                  |                          |           |             |                |                   |                                                                                                                                                                                                                     |
| 25             |              |                          |                  |                          |           |             |                |                   |                                                                                                                                                                                                                     |

## **GENERAL NOTES:**

Addendum 2106

| Control of the Contro |                                                       |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|--|--|--|
| CLIENT: Mount Vernon Group Architects, Inc.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | PROJECT NAME: Proposed Green Meadow Elementary School |  |  |  |
| LGCI PROJECT NUMBER: 2201                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | PROJECT LOCATION: Maynard, MA                         |  |  |  |
| DATE STARTED:         2/26/24         DATE COMPLETED:         2/27/24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | DRILLING SUBCONTRACTOR: Soil X, Corp.                 |  |  |  |
| BORING LOCATION: Near center of western wing of proposed building                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | DRILLING FOREMAN: Edwin Fajardo                       |  |  |  |
| COORDINATES: NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | DRILLING METHOD: Hollow Stem Auger (4-1/4" I.D.)      |  |  |  |
| SURFACE El.: 213 ft. (see note 1) TOTAL DEPTH: 12.5 ft.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | DRILL RIG TYPE/MODEL: Diedrich D-70 turbo             |  |  |  |
| WEATHER: 40's / Sunny                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | HAMMER TYPE: Automatic                                |  |  |  |
| GROUNDWATER LEVELS:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | HAMMER WEIGHT: 140 lb. HAMMER DROP: 30 in.            |  |  |  |
| □ DURING DRILLING: Not Encountered                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <b>SPLIT SPOON DIA.:</b> 1.375 in. I.D., 2 in. O.D.   |  |  |  |
| T AT END OF DRILLING:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | CORE BARREL SIZE: NA                                  |  |  |  |
| ▼ OTHER:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | LOGGED BY: MBH CHECKED BY: SG                         |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                       |  |  |  |

| Simple   Blow Counts   Pen/Rec.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |              |                          |    |       |        |          |                   |                                                                                                                                         |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|--------------|--------------------------|----|-------|--------|----------|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------|
| S1   S7-8-7   C1(5)   S4   S1   S7-8-7   C1(5)   S4   S2   S2   S2   S2   S2   S2   S2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Depth<br>(ft.) | El.<br>(ft.) | Sample<br>Interval (ft.) |    |       | Remark | Strata   | Depth<br>El.(ft.) | ·                                                                                                                                       |
| 2000  2000  2000  2000  2000  2000  2000  2000  2000  2000  2000  2000  2000  2000  2000  2000  2000  2000  2000  2000  2000  2000  2000  2000  2000  2000  2000  2000  2000  2000  2000  2000  2000  2000  2000  2000  2000  2000  2000  2000  2000  2000  2000  2000  2000  2000  2000  2000  2000  2000  2000  2000  2000  2000  2000  2000  2000  2000  2000  2000  2000  2000  2000  2000  2000  2000  2000  2000  2000  2000  2000  2000  2000  2000  2000  2000  2000  2000  2000  2000  2000  2000  2000  2000  2000  2000  2000  2000  2000  2000  2000  2000  2000  2000  2000  2000  2000  2000  2000  2000  2000  2000  2000  2000  2000  2000  2000  2000  2000  2000  2000  2000  2000  2000  2000  2000  2000  2000  2000  2000  2000  2000  2000  2000  2000  2000  2000  2000  2000  2000  2000  2000  2000  2000  2000  2000  2000  2000  2000  2000  2000  2000  2000  2000  2000  2000  2000  2000  2000  2000  2000  2000  2000  2000  2000  2000  2000  2000  2000  2000  2000  2000  2000  2000  2000  2000  2000  2000  2000  2000  2000  2000  2000  2000  2000  2000  2000  2000  2000  2000  2000  2000  2000  2000  2000  2000  2000  2000  2000  2000  2000  2000  2000  2000  2000  2000  2000  2000  2000  2000  2000  2000  2000  2000  2000  2000  2000  2000  2000  2000  2000  2000  2000  2000  2000  2000  2000  2000  2000  2000  2000  2000  2000  2000  2000  2000  2000  2000  2000  2000  2000  2000  2000  2000  2000  2000  2000  2000  2000  2000  2000  2000  2000  2000  2000  2000  2000  2000  2000  2000  2000  2000  2000  2000  2000  2000  2000  2000  2000  2000  2000  2000  2000  2000  2000  2000  2000  2000  2000  2000  2000  2000  2000  2000  2000  2000  2000  2000  2000  2000  2000  2000  2000  2000  2000  2000  2000  2000  2000  2000  2000  2000  2000  2000  2000  2000  2000  2000  2000  2000  2000  2000  2000  2000  2000  2000  2000  2000  2000  2000  2000  2000  2000  2000  2000  2000  2000  2000  2000  2000  2000  2000  2000  2000  2000  2000  2000  2000  2000  2000  2000  2000  2000  2000  2000  2000  2000  2000  2000  2000  2000   | - +            | -            | 0                        | S1 | 24/16 |        |          | 212.3             | Bot. 8": Silty SAND (SM), fine to medium, 20-25% fines, 10-15% fine to coarse subangular gravel, trace of weathered rock, orange, moist |
| \$\frac{5}{5}\$ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2              | 210.0        |                          | S2 | 24/14 |        | 000      | 211.0             |                                                                                                                                         |
| Sand and O Gravel  Sand and O Gr | 5              |              |                          | S3 | 24/10 |        | 000      |                   | S3 - Silty SAND (SM), fine to coarse, 15-20% fines, 5-10% fine subangular gravel, brown to orange, moist                                |
| 200.0  S4 38-51-50/4" 16/16  200.0  11.3  S4 38-51-50/4" 16/16  11.3  S4 - Well Graded SAND with Silt and Gravel (SW-SM), fine to coarse, 10-15% fines, 25-30% fine to coarse subangular gravel, grey, moist  S4 - Well Graded SAND with Silt and Gravel (SW-SM), fine to coarse, 10-15% fines, 25-30% fine to coarse subangular gravel, grey, moist  Bottom of borehole at 12.5 feet. Backfilled borehole with drill cuttings.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                | 205.0        | 6-                       | •  |       |        | Sand and |                   |                                                                                                                                         |
| S4 38-51-50/4" (101/10") 16/16  200.0  11.3  S4 38-51-50/4" (101/10") 16/16  S4 38-51-50/4" (101/10") 16/16  S54 - Well Graded SAND with Silt and Gravel (SW-SM), fine to coarse, 10-15% fines, 25-30% fine to coarse subangular gravel, grey, moist  S4 - Well Graded SAND with Silt and Gravel (SW-SM), fine to coarse, 10-15% fines, 25-30% fine to coarse subangular gravel, grey, moist  S4 - Well Graded SAND with Silt and Gravel (SW-SM), fine to coarse, 10-15% fines, 25-30% fine to coarse subangular gravel, grey, moist  S4 - Well Graded SAND with Silt and Gravel (SW-SM), fine to coarse, 10-15% fines, 25-30% fine to coarse subangular gravel, grey, moist  S4 - Well Graded SAND with Silt and Gravel (SW-SM), fine to coarse, 10-15% fines, 25-30% fine to coarse subangular gravel, grey, moist                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                | _            |                          |    |       |        | ° 0 °    |                   |                                                                                                                                         |
| 200.0  200.0  15  195.0  200.0  200.0  200.0  200.0  200.0  200.0  200.0  200.0  200.0  200.0  200.0  200.0  200.0  200.0  200.0  200.0  200.0  200.0  200.0  200.0  200.0  200.0  200.0  200.0  200.0  200.0  200.0  200.0  200.0  200.0  200.0  200.0  200.0  200.0  200.0  200.0  200.0  200.0  200.0  200.0  200.0  200.0  200.0  200.0  200.0  200.0  200.0  200.0  200.0  200.0  200.0  200.0  200.0  200.0  200.0  200.0  200.0  200.0  200.0  200.0  200.0  200.0  200.0  200.0  200.0  200.0  200.0  200.0  200.0  200.0  200.0  200.0  200.0  200.0  200.0  200.0  200.0  200.0  200.0  200.0  200.0  200.0  200.0  200.0  200.0  200.0  200.0  200.0  200.0  200.0  200.0  200.0  200.0  200.0  200.0  200.0  200.0  200.0  200.0  200.0  200.0  200.0  200.0  200.0  200.0  200.0  200.0  200.0  200.0  200.0  200.0  200.0  200.0  200.0  200.0  200.0  200.0  200.0  200.0  200.0  200.0  200.0  200.0  200.0  200.0  200.0  200.0  200.0  200.0  200.0  200.0  200.0  200.0  200.0  200.0  200.0  200.0  200.0  200.0  200.0  200.0  200.0  200.0  200.0  200.0  200.0  200.0  200.0  200.0  200.0  200.0  200.0  200.0  200.0  200.0  200.0  200.0  200.0  200.0  200.0  200.0  200.0  200.0  200.0  200.0  200.0  200.0  200.0  200.0  200.0  200.0  200.0  200.0  200.0  200.0  200.0  200.0  200.0  200.0  200.0  200.0  200.0  200.0  200.0  200.0  200.0  200.0  200.0  200.0  200.0  200.0  200.0  200.0  200.0  200.0  200.0  200.0  200.0  200.0  200.0  200.0  200.0  200.0  200.0  200.0  200.0  200.0  200.0  200.0  200.0  200.0  200.0  200.0  200.0  200.0  200.0  200.0  200.0  200.0  200.0  200.0  200.0  200.0  200.0  200.0  200.0  200.0  200.0  200.0  200.0  200.0  200.0  200.0  200.0  200.0  200.0  200.0  200.0  200.0  200.0  200.0  200.0  200.0  200.0  200.0  200.0  200.0  200.0  200.0  200.0  200.0  200.0  200.0  200.0  200.0  200.0  200.0  200.0  200.0  200.0  200.0  200.0  200.0  200.0  200.0  200.0  200.0  200.0  200.0  200.0  200.0  200.0  200.0  200.0  200.0  200.0  200.0  200.0  200.0  200.0  200.0  200.0  200.0  200.0  200.0  200.0  200.0  200.0  200.0 | 10             | -            |                          | S4 | 16/16 |        | .00      |                   | S4 - Well Graded SAND with Silt and Gravel (SW-SM), fine to coarse, 10-15% fines, 25-30% fine to coarse subangular gravel, grey, moist  |
| 195.0<br>20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | - +<br>- +     | 200.0        |                          |    |       |        |          |                   | Bottom of borehole at 12.5 feet. Backfilled borehole with drill cuttings.                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 15             | -            |                          |    |       |        |          |                   |                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - +            | -            |                          |    |       |        |          |                   |                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1              | 195.0        |                          |    |       |        |          |                   |                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 20             |              |                          |    |       |        |          |                   |                                                                                                                                         |
| L <u>190.0</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                | 100.0        |                          |    |       |        |          |                   |                                                                                                                                         |
| 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                | 190.0        |                          |    |       |        |          |                   |                                                                                                                                         |

### **GENERAL NOTES:**

Addendum 2107

PAGE 1 OF 1

| Lahlaf Geotechnical Consulting, Inc.                                                           |                                                      |
|------------------------------------------------------------------------------------------------|------------------------------------------------------|
| CLIENT: Mount Vernon Group Architects, Inc.                                                    | ROJECT NAME: Proposed Green Meadow Elementary School |
| LGCI PROJECT NUMBER: 2201 PR                                                                   | ROJECT LOCATION: Maynard, MA                         |
| DATE STARTED:         2/26/24         DATE COMPLETED:         2/26/24                          | DRILLING SUBCONTRACTOR: Soil X, Corp.                |
| BORING LOCATION: Near center of western wing of proposed building                              | DRILLING FOREMAN: Edwin Fajardo                      |
| COORDINATES: NA                                                                                | DRILLING METHOD: Hollow Stem Auger (4-1/4" I.D.)     |
| SURFACE El.: 213 ft. (see note 1) TOTAL DEPTH: 15.2 ft.                                        | DRILL RIG TYPE/MODEL: Diedrich D-70 turbo            |
| WEATHER: 40's / Cloudy                                                                         | HAMMER TYPE: _Automatic                              |
| GROUNDWATER LEVELS:                                                                            | HAMMER WEIGHT: 140 lb. HAMMER DROP: 30 in.           |
| $\overline{igspace}$ DURING DRILLING: <u>15.0 ft. / El. 198.0 ft. Based on sample moisture</u> | SPLIT SPOON DIA.: 1.375 in. I.D., 2 in. O.D.         |
| ▼ AT END OF DRILLING: 14.7 ft. / El. 198.3 ft.                                                 | CORE BARREL SIZE: NA                                 |
| $ar{m{arphi}}$ other:                                                                          | LOGGED BY: MBH CHECKED BY: SG                        |
|                                                                                                | 1                                                    |

| Depth<br>(ft.) | El.<br>(ft.) | Sample<br>Interval (ft.) | Samp<br>Numb  |                     |          | Remark | Strata      | Depth<br>El.(ft.) | Material Description                                                                                                                                                 |
|----------------|--------------|--------------------------|---------------|---------------------|----------|--------|-------------|-------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                |              | 0                        | \ /           |                     |          |        | Topsoil     | 212.7             | S1 - Top 4": Topsoil                                                                                                                                                 |
|                |              |                          | ∭ s           | 1 3-6-11-1<br>(17)  | 1 24/20  |        | .00         |                   | Bot. 16": Poorly Graded SAND with Silt (SP-SM), fine to medium with trace coarse, ~10% fines, 0-5% fine to coarse subangular gravel, light brown, moist              |
| -              | 210.0        | 2-                       | s             | 9-16-16-1 (32)      | 7 24/18  |        | , O (       |                   | S2 - Poorly Graded SAND with Silt (SP-SM), fine to medium with trace coarse, ~10% fines, 5-10% fine to coarse subangular gravel, light brown, moist                  |
| 5              |              | 4-                       | s             | 3 12-12-23-         | 36 24/21 |        | .00         |                   | S3 - Poorly Graded SAND with Silt (SP-SM), fine to medium with trace coarse, 10-15% fines, 5-10% fine to coarse gravel, light brown, moist                           |
| -              | 205.0        | 7.5                      | s             | 4 58-47-79<br>(126) | 18/15    |        | Sand and O° |                   | S4 - Well Graded SAND with Silt and Gravel (SW-SM), fine to coarse, 5-10% fines, 35-40% fine to coarse angular gravel, trace of weathered rock, brown to grey, moist |
| 10             |              | 10-                      |               | 5 38-100/2          |          |        | Gravel 6 0  |                   | S5 - Well Graded SAND with Silt and Gravel (SW-SM), fine to coarse, 5-10%                                                                                            |
|                | 200.0        | 10.7                     | X s           | (100/2")            |          |        | .0.         |                   | fines, 35-40% fine to coarse angular gravel, trace of weathered rock, brown to grey, moist                                                                           |
|                |              | 15.2=                    | <u></u> ≤ ( s | 6 105/2"            | 2/2      |        | .00         | ¥                 | S6 - Silty SAND with Gravel (SM), fine to coarse, 25-30% fines, 15-20% fine to                                                                                       |
| -              | 195.0        |                          |               |                     |          |        |             |                   | \coarse subangular gravel, trace of weathered rock, brown, wet \ Bottom of borehole at 15.2 feet. Backfilled borehole with drill cuttings.                           |
| 20             |              |                          |               |                     |          |        |             |                   |                                                                                                                                                                      |
|                |              |                          |               |                     |          |        |             |                   |                                                                                                                                                                      |
|                | 190.0        |                          |               |                     |          |        |             |                   |                                                                                                                                                                      |
| 25             |              |                          |               |                     |          |        |             |                   |                                                                                                                                                                      |

## **GENERAL NOTES:**

Lahlaf Geotechnical Consulting, Inc.

Addendum 2108

PAGE 1 OF

PROJECT NAME: Proposed Green Meadow Elementary School **CLIENT:** Mount Vernon Group Architects, Inc. **LGCI PROJECT NUMBER: 2201** PROJECT LOCATION: Maynard, MA DATE STARTED: 2/27/24 DATE COMPLETED: 2/27/24 DRILLING SUBCONTRACTOR: Soil X, Corp. BORING LOCATION: Near center of western wing of proposed building **DRILLING FOREMAN:** Edwin Fajardo COORDINATES: NA **DRILLING METHOD:** Hollow Stem Auger (4-1/4" I.D.) SURFACE El.: 214 ft. (see note 1) TOTAL DEPTH: 14.7 ft. DRILL RIG TYPE/MODEL: Diedrich D-70 turbo WEATHER: 40's / Sunny HAMMER TYPE: Automatic **GROUNDWATER LEVELS:** HAMMER WEIGHT: 140 lb. **HAMMER DROP:** 30 in. DURING DRILLING: 14.5 ft. / El. 199.5 ft. Based on sample moisture SPLIT SPOON DIA.: 1.375 in. I.D., 2 in. O.D. **T** AT END OF DRILLING: 13.0 ft. / El. 201.0 ft. CORE BARREL SIZE: NA ▼ OTHER: \_-LOGGED BY: MBH CHECKED BY: SG

| Depth<br>(ft.) | El.<br>(ft.) | Sample<br>Interval (ft.) | Sample<br>Number | Blow Counts<br>(N Value) | Pen./Rec.<br>(in.) | Remark | Strata          | Depth<br>El.(ft.)            | Material Description                                                                                                                                                                                                                                                                                                                  |
|----------------|--------------|--------------------------|------------------|--------------------------|--------------------|--------|-----------------|------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                |              | - 0                      | S1               | 1-2-1-2<br>(3)           | 24/18              |        | Subsoil         | 0.4<br>213.6                 | S1 - Top 5": Topsoil  Bot. 13": Silty SAND (SM), fine to medium, 20-25% fines, 0-5% fine subangular gravel, trace of roots, orange, moist                                                                                                                                                                                             |
| -              | 210.0        | 2-                       | S2               | 5-6-7-7<br>(13)          | 24/17              |        | Sand and        | 212.0                        | S2 - Silty SAND (SM), fine to medium, 15-20% fines, light brown, moist                                                                                                                                                                                                                                                                |
| 5              |              | 4-                       | S3               | 6-8-30-70/3"<br>(38)     | 21/21              |        | Gravel . O °    |                              | S3 - Sandy SILT (ML), slightly plastic, 35-40% fine to coarse sand, ~20% fine to coarse subangular gravel, brown, moist                                                                                                                                                                                                               |
|                | -<br>        | 5.8                      |                  |                          |                    | 1      | Boulder         | 208.0                        | REMARK 1: Advanced roller bit from 6.0 ft. to 9.0 ft.                                                                                                                                                                                                                                                                                 |
| 10             | 205.0        | 9-9.3                    | ≥< <u>\$4</u>    | 100/3"                   | 3/3 /              | ,2     | Sand and        | 9.0<br>205.0<br>9.2<br>204.8 | S4 - Well Graded SAND with Silt and Gravel (SW-SM), fine to coarse, 5-10% fines, 15-20% fine to coarse subangular gravel, light brown, moist REMARK 2: Split spoon refusal at 9.2 feet. Drillers advanced roller bit to 10.5 /ft., and then started rock core.                                                                        |
| <br>           | <br>         | 10.3                     | C1               |                          | 48/37              |        | Boulder         | ¥                            | C1 - min/ft: 4.4, 3.3, 3.7, 1.8 RQD: 41.6% Hard, slightly to moderately weathered, moderately fractured, grey to orange, coarse grained, GRANITE                                                                                                                                                                                      |
| _ 15_          | 200.0        | 14: <del>5</del> =       | <u>\$5</u>       | 100/2"                   | 2/2                | 3      | Sand and Gravel | 14.5 \(\sum_{199.5}\)        | S5 - Silty SAND with Gravel (SM), fine to coarse, 20-25% fines, ~15% fine to coarse subangular gravel, trace of weathered rock, light brown to grey, wet REMARK 3: Split spoon refusal on possible boulders or rocks, boring terminated at depth of 14.7'.  Bottom of borehole at 14.7 feet. Backfilled borehole with drill cuttings. |
|                | 195.0        | -                        |                  |                          |                    |        |                 |                              | Bottom of Boronole at 14.7 reet. Backlined Boronole with drill cuttings.                                                                                                                                                                                                                                                              |
| 20             | <br>         | _                        |                  |                          |                    |        |                 |                              |                                                                                                                                                                                                                                                                                                                                       |
|                | 190.0        | -                        |                  |                          |                    |        |                 |                              |                                                                                                                                                                                                                                                                                                                                       |

### **GENERAL NOTES:**

Lahlaf Geotechnical Consulting, Inc.

Addendum 2109

PROJECT NAME: Proposed Green Meadow Elementary School CLIENT: Mount Vernon Group Architects, Inc. **LGCI PROJECT NUMBER: 2201** PROJECT LOCATION: Maynard, MA DATE STARTED: 2/23/24 DATE COMPLETED: 2/23/24 DRILLING SUBCONTRACTOR: Soil X, Corp. BORING LOCATION: Within western wing of proposed building **DRILLING FOREMAN:** Edwin Fajardo COORDINATES: NA DRILLING METHOD: HSA (4-1/4" I.D.) then 3-inch casing SURFACE El.: 222 ft. (see note 1) TOTAL DEPTH: 16.5 ft. DRILL RIG TYPE/MODEL: Diedrich D-70 turbo WEATHER: 30's / Rainy HAMMER TYPE: Automatic **GROUNDWATER LEVELS:** HAMMER DROP: 30 in. **HAMMER WEIGHT:** 140 lb. abla during drilling: \_-\_ SPLIT SPOON DIA.: 1.375 in. I.D., 2 in. O.D. **X** AT END OF DRILLING: 8.4 ft. / El. 213.6 ft. CORE BARREL SIZE: NA ▼ OTHER: -LOGGED BY: MBH CHECKED BY: SG

| Depth<br>(ft.) | El.<br>(ft.) | Sample<br>Interval (ft.) | Sample<br>Number | Blow Counts<br>(N Value) |       | Remark |                    |          | Depth<br>El.(ft.) | Material Description                                                                                                                                     |
|----------------|--------------|--------------------------|------------------|--------------------------|-------|--------|--------------------|----------|-------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|
|                |              | 0.5-                     | (™) G1           |                          | 6/6   | ,      | Topsoil            | 71 1 1/1 | 0.5               | G1 - Topsoil                                                                                                                                             |
| L              |              | 0.5                      | \ /              |                          |       | l '    |                    |          | 221.5             | REMARK 1: Topsoil removed during tree clearing, estimated .5' of topsoil.                                                                                |
| -              | 220.0        |                          | S1               | 1-1-1-1 (2)              | 24/14 |        | Subsoil            |          | :                 | S1 - Poorly Graded SAND with Silt (SP-SM), fine to medium, ~10% fines, 0-5% fine subangular gravel, trace of organic soil, trace of roots, orange, moist |
|                |              | 2.5-                     | S2               | 1-2-2-2                  | 24/17 |        |                    |          |                   | S2 - Poorly Graded SAND with Silt (SP-SM), mostly fine with trace medium to coarse, 5-10% fines, trace of roots, light brown, moist                      |
|                |              | 4.5-                     |                  | (4)                      | 24/17 |        |                    | .00      | 4.0               |                                                                                                                                                          |
| 5              |              |                          | S3               | 7-23-22-82/2"<br>(45)    | 20/19 |        | Sand and<br>Gravel | 000      |                   | S3 - Well Graded GRAVEL with Silt and Sand (GW-GM), fine to coarse, subangular, 10-15% fines, 30-35% fine to coarse sand, brown to dark grey, moist      |
|                | 215.0        | 6.2 -<br>6.5 -           |                  |                          |       | 2      |                    | 000      | 215.5             | REMARK 2: HSA Refusal on possible rock at a depth of 6.5 feet. Driller advanced 3-inch casing to perform a rock core.                                    |
| -              |              |                          | ll               |                          |       |        |                    |          | ¥                 | C1 - min/ft: 5.1, 3.9, 4.2, 4.8, 4.9 RQD: 76.7%<br>Hard to Very Hard, slightly weathered, slightly fractured, orange to grey,<br>medium grained, GRANITE |
| 10             |              |                          | C1               |                          | 60/52 |        |                    |          |                   |                                                                                                                                                          |
|                |              |                          |                  |                          |       |        |                    |          |                   |                                                                                                                                                          |
|                | 210.0        | 11.5-                    |                  | _                        |       |        | Rock               |          |                   | C2 - min/ft: 4.1, 4.5, 4.2, 3.6, 3.7 RQD: 59.2%<br>Hard to Very Hard, slightly weathered, slightly fractured, orange to grey, medium grained, GRANITE    |
| -              |              |                          | ll               |                          |       |        |                    |          |                   | medium grained, GRANITE                                                                                                                                  |
| <br>15         |              |                          | C2               |                          | 60/46 |        |                    |          |                   |                                                                                                                                                          |
| -              |              |                          |                  |                          |       |        |                    |          | 16.5              |                                                                                                                                                          |
|                | 205.0        | 16.5 -                   |                  | _                        |       |        |                    |          | 16.5              | Bottom of borehole at 16.5 feet. Backfilled borehole with drill cuttings.                                                                                |
|                |              |                          |                  |                          |       |        |                    |          |                   | · ·                                                                                                                                                      |
| -              |              |                          |                  |                          |       |        |                    |          |                   |                                                                                                                                                          |
| 20_            |              |                          |                  |                          |       |        |                    |          |                   |                                                                                                                                                          |
|                | 200.0        |                          |                  |                          |       |        |                    |          |                   |                                                                                                                                                          |
|                | 200.0        |                          |                  |                          |       |        |                    |          |                   |                                                                                                                                                          |
|                |              |                          |                  |                          |       |        |                    |          |                   |                                                                                                                                                          |
| 25             |              |                          |                  |                          |       |        |                    |          |                   |                                                                                                                                                          |

### **GENERAL NOTES:**

Lahlaf Geotechnical Consulting, Inc.

Addendum 2110

PAGE 1 OF

PROJECT NAME: Proposed Green Meadow Elementary School **CLIENT:** Mount Vernon Group Architects, Inc. **LGCI PROJECT NUMBER: 2201** PROJECT LOCATION: Maynard, MA DATE STARTED: 2/22/24 DATE COMPLETED: 2/22/24 DRILLING SUBCONTRACTOR: Soil X, Corp. BORING LOCATION: Within western wing of proposed building **DRILLING FOREMAN:** Edwin Fajardo COORDINATES: NA DRILLING METHOD: HSA (4-1/4" I.D.) then 3-inch casing SURFACE El.: 223 ft. (see note 1) TOTAL DEPTH: 15 ft. DRILL RIG TYPE/MODEL: Diedrich D-70 turbo WEATHER: 30's / Sunny HAMMER TYPE: Automatic **GROUNDWATER LEVELS:** HAMMER DROP: 30 in. **HAMMER WEIGHT:** 140 lb. □ DURING DRILLING: Not Encountered **SPLIT SPOON DIA.:** <u>1.375 in. I.D., 2 in</u>. O.D. **T** AT END OF DRILLING: 15.0 ft. / El. 208.0 ft. CORE BARREL SIZE: NA ▼ OTHER: -LOGGED BY: MBH CHECKED BY: SG

|     | Sample<br>(t.) |     | Sample<br>Number | Blow Counts<br>(N Value) | Pen./Rec.<br>(in.) | Remark |            | Depth<br>El.(ft.) | Material Description                                                                                                                                                       |
|-----|----------------|-----|------------------|--------------------------|--------------------|--------|------------|-------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| _   | -              | 2   | S1               | 1-1-1-2<br>(2)           | 24/14              |        | Topsoil N. | 0.3               | S1 - Top 4": Topsoil  Bot. 10": Silty SAND with Silt (SM), fine to medium, 15-20% fines, 0-5% fine subangular gravel, trace of organic soil, trace of roots, orange, moist |
| 22  | 0.0            | 4   | S2               | 2-2-5-16<br>(7)          | 24/16              |        | Subsoil    | 4.0               | S2 - Sandy SILT (ML), nonplastic, 40-45% fine sand, trace of roots, orange brown, moist                                                                                    |
| 5   | -              |     | S3               | 22-19-14-12<br>(33)      | 24/15              |        |            | 219.0             | S3 - Well Graded SAND with Silt and Gravel (SW-SM), fine to coarse, 5-10% fines, 25% fine subangular gravel, brown, moist                                                  |
| 21: | 5.0            | 8   | S4               | 14-16-16-18<br>(32)      | 24/17              |        | [· O.      |                   | S4 - Well Graded SAND with Silt and Gravel (SW-SM), fine to coarse, ~10% fines, 15-20% fine to coarse subangular gravel, brown, moist                                      |
| 10  | -<br>- 1       | 0   | I                |                          |                    | 1      |            | d                 | REMARK 1: HSA refusal at depth of 10'. 3-inch casing was driven to 10' below ground surface and rock coring advanced.                                                      |
| - + | 0.0            |     | C1               |                          | 60/60              |        | Rock       |                   | C1 - min/ft: 4.9, 4.4, 4.2, 4.9, 6.2 RQD: 65.8% Hard to very hard, moderately to slightly weathered, moderately fractured, orange to grey, medium grained, GRANITE         |
|     | 5.0            | 5 👢 | •                |                          |                    |        |            | 15.0              | Bottom of borehole at 15.0 feet. Backfilled borehole with drill cuttings.                                                                                                  |
| 20  | _              |     |                  |                          |                    |        |            |                   |                                                                                                                                                                            |
| 20  | 0.0            |     |                  |                          |                    |        |            |                   |                                                                                                                                                                            |
| 25  |                |     |                  |                          |                    |        |            |                   |                                                                                                                                                                            |

### **GENERAL NOTES:**

Lahlaf Geotechnical Consulting, Inc.

▼ OTHER:

Addendur B-111

**CHECKED BY:** SG

**CLIENT:** Mount Vernon Group Architects, Inc PROJECT NAME: Proposed Green Meadow Elementary School **LGCI PROJECT NUMBER: 2201** PROJECT LOCATION: Maynard, MA **DATE STARTED**: 2/22/24 DATE COMPLETED: 2/22/24 DRILLING SUBCONTRACTOR: Soil X, Corp. **BORING LOCATION:** Near NE corner of western wing of proposed building **DRILLING FOREMAN:** Edwin Fajardo COORDINATES: NA DRILLING METHOD: HSA (4-1/4" I.D.) then 3-inch casing DRILL RIG TYPE/MODEL: Diedrich D-70 turbo SURFACE El.: 224 ft. (see note 1) TOTAL DEPTH: 14 ft. **WEATHER:** 30's / Sunny **HAMMER TYPE:** Automatic **HAMMER WEIGHT:** 140 lb. **GROUNDWATER LEVELS:** HAMMER DROP: 30 in. SPLIT SPOON DIA.: 1.375 in. I.D., 2 in. O.D. **X** AT END OF DRILLING: 12.5 ft. / El. 211.5 ft. CORE BARREL SIZE: 2 in. I.D., 2.875 in. O.D.

LOGGED BY: MBH

Depth (ft.) Sample EI nterval ( Sample Blow Counts Pen./Rec. Strata Material Description (ft.) Number (N Value) (in.) Topsoil S1 - Top 6": Topsoil Bot. 11": Silty SAND (SM), fine to medium, 20-25% fines, 0-5% fine subangular gravel, trace of roots, orange brown, moist 2-3-3-2 S1 24/17 (6) Subsoil 2 S2 - Silty SAND with Gravel (SM), fine to coarse, 15-20% fines, 15-20% fine to ۰ 0 coarse subangular gravel, brown, moist 7-17-35-21 24/17 S2 00 (52)0 C S3 - Silty SAND (SM), fine to medium with trace coarse, 15-20% fines, 5-10% fine subangular gravel, grey to orange, moist 0. 19-19-20-16 D Sand and S3 24/20 (39)Gravel . O. S4 - Silty SAND (SM), fine to medium with trace coarse, 15-20% fines, ~10% ٥ 9-21-108 fine to coarse subrounded gravel, trace of roots, grey to orange, moist S4 18/15 0 (129) $\subset$ 7.5  $Q_{\circ}$ ٥ 0 C 215.0 REMARK 1: HSA refusal at depth of 9' on possible rock, advanced 3-inch C1 12/12 casing to perform a rock core. 10 10 C1 - min/ft: 11.9 RQD: 45.8% Hard, slightly weathered, moderately fractured, grey to tan, coarse grained, GRANITE Rock REMARK 2: Core barrel jamming and terminated C1 at depth of 10'. C2 48/47.5 C2 - min/ft: 5.6, 7.0, 3.9, 4.1 RQD: 73.9% Top 26": Hard, slightly weathered, moderately to slightly fractured, grey to tan, coarse grained,  $\ensuremath{\mathsf{GRANITE}}$ Bot. 22": Hard, slightly weathered, slightly fractured, grey to white, medium grained, GRANITE 210.0 REMARK 3: Core barrel jamming and terminated C2 at depth of 14' 15 Bottom of borehole at 14.0 feet. Backfilled borehole with drill cuttings and 1 bag 205.0 20 200.0

#### **GENERAL NOTES:**

Lahlaf Geotechnical Consulting, Inc.

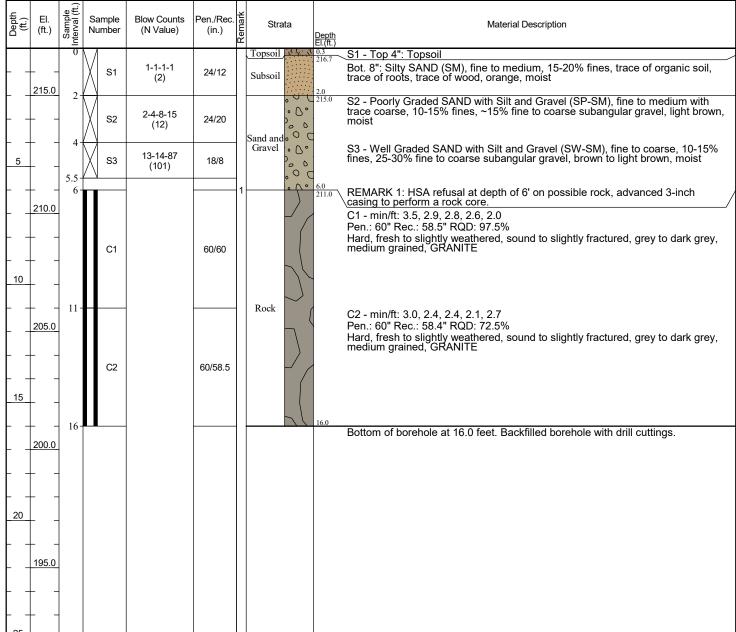
Addendum 2112

PAGE 1 OF 1

PROJECT NAME: Proposed Green Meadow Elementary School **CLIENT:** Mount Vernon Group Architects, Inc. **LGCI PROJECT NUMBER: 2201** PROJECT LOCATION: Maynard, MA DATE STARTED: 2/21/24 DATE COMPLETED: 2/21/24 DRILLING SUBCONTRACTOR: Soil X, Corp. BORING LOCATION: Near NW corner of western wing of proposed building **DRILLING FOREMAN:** Edwin Fajardo COORDINATES: NA DRILLING METHOD: Drive and wash with 4-inch casing SURFACE El.: 230 ft. (see note 1) TOTAL DEPTH: 16 ft. DRILL RIG TYPE/MODEL: Diedrich D-70 turbo WEATHER: 30's / Sunny HAMMER TYPE: Automatic **GROUNDWATER LEVELS:** HAMMER DROP: 30 in. HAMMER WEIGHT: 140 lb. □ DURING DRILLING: Not Encountered SPLIT SPOON DIA.: 1.375 in. I.D., 2 in. O.D. **X** AT END OF DRILLING: 12.1 ft. / El. 217.9 ft. CORE BARREL SIZE: 2 in. I.D., 2.875 in. O.D. ▼ OTHER: -LOGGED BY: MBH CHECKED BY: SG

| St. 1-Top 2: Topsoil Bot. 2". Stly SAND with Gravel (SM), fine to medium, 20-25% fines, 15-20% Subsoil 1-1-15-11 24/4 Subsoil 523 St. 1-Top 2: Sitly SAND (SM), fine to medium, 15-20% fines, 5-10% fine to coarse angular gravel, trace of organic soil, trace of roots, orange to brown, moist Subsoil 72-15 (18) Subsoil 7 |          |                          |     |           |        |             |         |                                                                                                                                                                                                  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|--------------------------|-----|-----------|--------|-------------|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Subsoil  1-1-15-11 (16)  24/4  Subsoil  1-1-15-11 (16)  24/19  4.8  21-100/3*  9/9  15 225.0  60/56  Rock  Rock  Rock  Rock  C2 - min/ft: 5.0, 3.9, 5.2, 6.6, 9.4  Pen: 60*Rec: 50.5* RQD: 51.5% Hard to very hard, slightly to moderately weathered, moderately fractured, grey orange, medium grained, GRANITE  Bottom of borehole at 16.0 feet. Backfilled borehole with drill cuttings.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          | Sample<br>Interval (ft.) |     | Pen./Rec. | Remark | Strata      |         | Depth<br>EL(ft.)                                                                                                                                                                                 |
| Subsoil  1-1-15-11 (16)  24/4  Subsoil  1-1-15-11 (16)  24/19  4.8  21-100/3*  9/9  15 225.0  60/56  Rock  Rock  Rock  Rock  C2 - min/ft: 5.0, 3.9, 5.2, 6.6, 9.4  Pen: 60*Rec: 50.5* RQD: 51.5% Hard to very hard, slightly to moderately weathered, moderately fractured, grey orange, medium grained, GRANITE  Bottom of borehole at 16.0 feet. Backfilled borehole with drill cuttings.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          | 0                        | \ / |           | []     | Topsoil / 1 | -10     | 10.2 S1 - Top 2": Topsoil                                                                                                                                                                        |
| S2 - 10 - 10 - 10 - 20.0  10 220.0  11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -        | 2.                       | S1  | 24/4      |        | Subsoil     |         | Bot. 2": Silty SAND with Gravel (SM), fine to medium, 20-25% fines, 15-20% fine to coarse angular gravel, trace of organic soil, trace of roots, orange to brown, moist                          |
| Subangular gravel, trace of roots, moist subangular gravel, trace of roots, moist subangular gravel, trace of roots, moist subangular gravel, trace of weatherd rock, brown, moist subangular gravel, trace of weatherd subangular gravel, trace of weatherd rock, brown, moist subangular gravel, trace of weatherd rock, brown, moist subangular gravel, trace of weatherd subangular gravel, trace  |          |                          | S2  | 24/19     | - C    | h -         | ٥°      | coarse angular gravel, trace of organic soil, trace of roots, orange to brown,                                                                                                                   |
| C1 - min/fit: 3.3, 5.4, 4.5, 5.1, 6.1 Pen.: 60" Rec.: 56" ROD: 52.5% Hard to very hard, slightly to moderately weathered, moderately fractured, grey orange, medium grained, GRANITE  C2 - min/fit: 5.0, 3.9, 5.2, 6.6, 9.4 Pen.: 60" Rec.: 50.5" RQD: 51.6% Hard to very hard, slightly weathered, orange to grey, medium grained, GRANITE  Bottom of borehole at 16.0 feet. Backfilled borehole with drill cuttings.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5 225.0  | 4.8                      | S3  | 9/9       |        | Gravel O    | 7.<br>C | subangular gravel, trace of roots, moist S3 - Well Graded SAND with Silt and Gravel (SW-SM), fine to coarse, ~10% fines, 25-30% fine to coarse subangular gravel, trace of weatherd rock, brown, |
| Pen.: 60" Rock  C2 - min/ft: 5.0, 3.9, 5.2, 6.6, 9.4 Pen.: 60" Rock: 50" ROD: 51.6% Hard to very hard, slightly to moderately weathered, moderately fractured, grey orange, medium grained, GRANITE  C2 - min/ft: 5.0, 3.9, 5.2, 6.6, 9.4 Pen.: 60" Roc: 50.5" ROD: 51.6% Hard to very hard, slightly weathered, orange to grey, medium grained, GRANITE  Bottom of borehole at 16.0 feet. Backfilled borehole with drill cuttings.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          |                          |     |           |        | 2           | 2       | 224.5 IIIOISt                                                                                                                                                                                    |
| Pen.: 607 50.5   Rec.: 50.5" RQD: 51.6%   Hard to very hard, slightly weathered, slightly fractured, orange to grey, medium grained, GRANITE   Bottom of borehole at 16.0 feet. Backfilled borehole with drill cuttings.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 10 220.0 | -<br>-<br>-              | C1  | 60/56     |        | Rock        |         | Pen.: 60" Rec.: 56" RQD: 52.5%                                                                                                                                                                   |
| Bottom of borehole at 16.0 feet. Backfilled borehole with drill cuttings.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 15 215.0 | -                        | C2  | 60/50.5   |        |             |         | Pen.: 60" Rec.: 50.5" RQD: 51.6%  Hard to very hard, slightly weathered, slightly fractured, orange to grey, mediur grained, GRANITE                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | · † -    | 16.                      |     |           | lΓ     |             |         | Bottom of borehole at 16.0 feet. Backfilled borehole with drill cuttings.                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | + -      |                          |     |           |        |             |         |                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | † -      | 1                        |     |           |        |             |         |                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 20 210 0 |                          |     |           |        |             |         |                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 20 210.0 | 1                        |     |           |        |             |         |                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | + -      |                          |     |           |        |             |         |                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | + -      | 1                        |     |           |        |             |         |                                                                                                                                                                                                  |
| 25 205.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | † -      |                          |     |           |        |             |         |                                                                                                                                                                                                  |
| 25   205.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | + -      | 1                        |     |           |        |             |         |                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 25 205.0 |                          |     |           |        |             |         |                                                                                                                                                                                                  |

### **GENERAL NOTES:**


# Green Meadow Elementary School - Early Site Rackage G

Lahlaf Geotechnical Consulting, Inc.

Addendum 2113

PAGE 1 OF

| <u> </u>                                                      | PROJECT NAME: Proposed Green Meadow Elementary School |
|---------------------------------------------------------------|-------------------------------------------------------|
| LGCI PROJECT NUMBER: 2201                                     | PROJECT LOCATION: Maynard, MA                         |
| <b>DATE STARTED</b> : 2/23/24 <b>DATE COMPLETED</b> : 2/23/24 | DRILLING SUBCONTRACTOR: Soil X, Corp.                 |
| BORING LOCATION: Within proposed roadway                      | DRILLING FOREMAN: Edwin Fajardo                       |
| COORDINATES: NA                                               | DRILLING METHOD: HSA (4-1/4" I.D.) then 3-inch casing |
| SURFACE El.: 217 ft. (see note 1) TOTAL DEPTH: 16 ft.         | DRILL RIG TYPE/MODEL: Diedrich D-70 turbo             |
| WEATHER: 30's / Rainy                                         | HAMMER TYPE: Automatic                                |
| GROUNDWATER LEVELS:                                           | HAMMER WEIGHT: 140 lb. HAMMER DROP: 30 in.            |
| □ DURING DRILLING: Not Encountered                            | SPLIT SPOON DIA.: 1.375 in. I.D., 2 in. O.D.          |
| $oldsymbol{\Psi}$ at end of drilling:                         | CORE BARREL SIZE: NA                                  |
| ▼ other:                                                      | LOGGED BY: MBH CHECKED BY: SG                         |
|                                                               |                                                       |



### **GENERAL NOTES:**

# Green Meadow Llementary School - Early Stern Green

Lahlaf Geotechnical Consulting, Inc.

| CLIENT: Mount Vernon Group Architects, Inc.                           | PROJECT NAME: Proposed Green Meadow Elementary School |
|-----------------------------------------------------------------------|-------------------------------------------------------|
| LGCI PROJECT NUMBER: 2201                                             | PROJECT LOCATION: Maynard, MA                         |
| DATE STARTED:         2/20/24         DATE COMPLETED:         2/21/24 | DRILLING SUBCONTRACTOR: Soil X, Corp.                 |
| BORING LOCATION: Within proposed roadway                              | DRILLING FOREMAN: Edwin Fajardo                       |
| COORDINATES: NA                                                       | DRILLING METHOD: _Drive and wash with 4-inch casing   |
| SURFACE El.: 232 ft. (see note 1) TOTAL DEPTH: 20 ft.                 | DRILL RIG TYPE/MODEL: Diedrich D-70 turbo             |
| WEATHER: 30's / Sunny                                                 | HAMMER TYPE: Automatic                                |
| GROUNDWATER LEVELS:                                                   | HAMMER WEIGHT: 140 lb. HAMMER DROP: 30 in.            |
| □ DURING DRILLING: Not Encountered                                    | SPLIT SPOON DIA.: 1.375 in. I.D., 2 in. O.D.          |
| <b>AT END OF DRILLING:</b> <u>5.0 ft. / El. 227.0 ft.</u>             | CORE BARREL SIZE: 2 in. I.D., 2.875 in. O.D.          |
| $oldsymbol{ar{Y}}$ other: $oldsymbol{\underline{-}}$                  | LOGGED BY: MBH CHECKED BY: SG                         |
|                                                                       |                                                       |

| Depth (ft.) | Sample<br>Interval (ft.) | Sample<br>Number | Blow Counts<br>(N Value) | Pen./Rec. | Remark | Strata          |                            | Depth<br>El.(ft.) | Material Description                                                                                                                                                                                                                                                                                                   |
|-------------|--------------------------|------------------|--------------------------|-----------|--------|-----------------|----------------------------|-------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|             | 0                        | 1 /              |                          |           | П      | Topsoil         |                            | 0.4               | S1 - Top 5": Topsoil                                                                                                                                                                                                                                                                                                   |
| 230.0       | 2                        | S1               | 1-2-3-5<br>(5)           | 24/12     |        | Subsoil         |                            | 231.6             | Bot. 7": Silty SAND (SM), fine to coarse,15-20%% fines, 15-20% fine to coarse subangular gravel, trace of oranic soil, trace of roots, trace of wood, orange to brown, moist                                                                                                                                           |
|             | _                        | X S2             | 58-100/4"<br>(100/4")    | 10/9      |        | Sand and Gravel |                            | 230.0             | S2 - Well Graded SAND with Silt and Gravel (SW-SM), fine to coarse, 5-10% fines, 25-30% fine to coarse subangular gravel, grey, moist                                                                                                                                                                                  |
| 5           | 2.8                      |                  | (100/4)                  |           | 1-     | Boulder -       |                            | 229.2 \<br>5.0 ▼  | REMARK 1: Split spoon refusal at 2.8 ft. Drillers advanced roller bit to 5.0 ft., installed 3-inch casing, and started rock core.                                                                                                                                                                                      |
|             | 5                        |                  | ]                        |           |        |                 |                            | 227.0             | C1 - min/ft: 4.9, 6.4, 4.3                                                                                                                                                                                                                                                                                             |
| 225.0       | -                        | C1               |                          | 36/29     |        |                 |                            |                   | Pen.: 36" Rec.:29" RQD: 53.1% Soft, moderately weathered, moderately fractured, grey, fine grained, GRANITE                                                                                                                                                                                                            |
| + -         | 8                        | П                | 1                        |           |        | -               | $\setminus \setminus \mid$ |                   | C2 - min/ft: 5.3, 4.4                                                                                                                                                                                                                                                                                                  |
| 10          |                          | C2               |                          | 24/22     |        |                 | $\mathcal{I}$              |                   | Pen.: 24" Rec.: 22" RQD: 52.3% Hard, slightly weathered, slightly to moderately fractured, grey to light blue, coarse grained, GRANITE                                                                                                                                                                                 |
| 220.0       | 10                       | СЗ               |                          | 60/56     |        | Rock -          |                            |                   | C3 - min/ft: 4.5, 8.0, 4.5, 4.1, 4.3 Pen.: 60" Rec.: 56" RQD: 45.8% Top 26": Hard, moderately weathered, moderately to extremely fractured, vertical breaks, medium grained, grey to light blue, GRANITE Bot. 30": Hard, slightly weathered to fresh, slightly fractured, medium grained, grey to light brown, GRANITE |
|             | 15                       |                  |                          |           |        |                 |                            |                   | C4 - min/ft: 5.1, 3.2, 3.6, 3.2, 3.9 Pen.: 60" Rec.: 58.5" RQD: 85.8% Hard to very hard, fresh to slightly weathered, sound to slightly fractured, grey                                                                                                                                                                |
| 215.0       |                          | C4               |                          | 60/58.5   |        |                 |                            | 20.0              | to light blue, medium grained, GRANITE                                                                                                                                                                                                                                                                                 |
|             | 20                       |                  | 1                        |           |        |                 |                            | 20.0              | Bottom of borehole at 20.0 feet. Groundwater observation well installed to depth                                                                                                                                                                                                                                       |
| 240.0       |                          |                  |                          |           |        |                 |                            |                   | of 20 ft.                                                                                                                                                                                                                                                                                                              |
| 210.0       |                          |                  |                          |           |        |                 |                            |                   |                                                                                                                                                                                                                                                                                                                        |
|             |                          |                  |                          |           |        |                 |                            |                   |                                                                                                                                                                                                                                                                                                                        |
| T _         |                          |                  |                          |           |        |                 |                            |                   |                                                                                                                                                                                                                                                                                                                        |
| 25          |                          |                  |                          |           |        |                 |                            |                   |                                                                                                                                                                                                                                                                                                                        |

### **GENERAL NOTES:**

Addendum 2115

| CLIENT: Mount Vernon Group Architects, Inc.           | PROJECT NAME: Proposed Green Meadow Elementary School |
|-------------------------------------------------------|-------------------------------------------------------|
| LGCI PROJECT NUMBER: 2201                             | PROJECT LOCATION: Maynard, MA                         |
| DATE STARTED: 2/22/24 DATE COMPLETED: 2/22/24         | DRILLING SUBCONTRACTOR: Soil X, Corp.                 |
| BORING LOCATION: Within proposed roadway              | DRILLING FOREMAN: Edwin Fajardo                       |
| COORDINATES: NA                                       | DRILLING METHOD: Hollow Stem Auger (4-1/4" I.D.)      |
| SURFACE El.: 216 ft. (see note 1) TOTAL DEPTH: 12 ft. | DRILL RIG TYPE/MODEL: Diedrich D-70 turbo             |
| WEATHER: 30's / Sunny                                 | HAMMER TYPE: Automatic                                |
| GROUNDWATER LEVELS:                                   | HAMMER WEIGHT: 140 lb. HAMMER DROP: 30 in.            |
| □ DURING DRILLING: Not Encountered                    | SPLIT SPOON DIA.: 1.375 in. I.D., 2 in. O.D.          |
| ▼ AT END OF DRILLING:                                 | CORE BARREL SIZE: NA                                  |
| ▼ OTHER:                                              | LOGGED BY: MBH CHECKED BY: SG                         |
|                                                       |                                                       |

| -              |              |                          |                  | 7                   | ,                  |          |           |                   | l                                                                                                                                      |
|----------------|--------------|--------------------------|------------------|---------------------|--------------------|----------|-----------|-------------------|----------------------------------------------------------------------------------------------------------------------------------------|
| Depth<br>(ft.) | El.<br>(ft.) | Sample<br>Interval (ft.) | Sample<br>Number |                     | Pen./Rec.<br>(in.) | Rer      | Strata    | Depth<br>El.(ft.) | Material Description                                                                                                                   |
| 2              | 15.0         | 0                        | S1               | 1-2-2-1<br>(4)      | 24/18              | Tops     | oil M. S  | 0.4               | S1 - Top 5": Topsoil  Bot. 13": Silty SAND (SM), fine to medium, 20-25% fines, trace of roots, orange, moist                           |
|                | -            | 2-                       | S2               | 2-2-2-5<br>(4)      | 24/21              | Subs     | oil       | 4.0               | S2 - Silty SAND (SM), fine to medium, 20-25% fines, trace of roots, orange, moist                                                      |
| 5              | 10.0         | 4-                       | S3               | 6-8-10-13<br>(18)   | 24/18              |          | .00       | 212.0             | S3 - Silty SAND (SM), fine to medium, 20-25% fines, light brown to grey, moist                                                         |
| - +            | -            | 6-                       | S4               | 12-11-17-38<br>(28) | 24/24              |          | .00       |                   | S4 - Silty SAND with Gravel (SM), fine to medium, 15-20% fines, 20-25% fine to coarse subangular gravel, grey to brown, moist          |
| + +            | -            | 8-<br>8.4-               | S5               | 100/5"              | 5/0                | Grav     | and o O o |                   | S5 - No Recovery                                                                                                                       |
| 10             | .05.0        | 10-                      | S6               | 34-45-26-21<br>(71) | 24/18              |          | .0.       |                   | S6 - Silty SAND with Gravel (SM), fine to coarse, 30-35% fines, 15-20% fine to coarse subangular gravel, light brown, to orange, moist |
| + +            | -            | 12-                      | /_V              |                     |                    |          | 00        | 12.0              | Bottom of borehole at 12.0 feet. Backfilled borehole with drill cuttings.                                                              |
| 15             | -            |                          |                  |                     |                    |          |           |                   |                                                                                                                                        |
| 2              | 200.0        |                          |                  |                     |                    |          |           |                   |                                                                                                                                        |
|                |              |                          |                  |                     |                    |          |           |                   |                                                                                                                                        |
| 20             | 95.0         |                          |                  |                     |                    |          |           |                   |                                                                                                                                        |
|                | -            |                          |                  |                     |                    |          |           |                   |                                                                                                                                        |
| + +            | -            |                          |                  |                     |                    |          |           |                   |                                                                                                                                        |
| 25             |              |                          | 1                | 1                   | 1                  | <b> </b> |           | 1                 |                                                                                                                                        |

### **GENERAL NOTES:**

Lahlaf Geotechnical Consulting, Inc.

Addendum 2116

06/12/2024

PAGE 1 OF 1

| CLIENT: Mount Vernon Group Architects, Inc.                          | ROJECT NAME: Proposed Green Meadow Elementary School |
|----------------------------------------------------------------------|------------------------------------------------------|
| LGCI PROJECT NUMBER: 2201 PF                                         | ROJECT LOCATION: Maynard, MA                         |
| <b>DATE STARTED</b> : 2/19/24 <b>DATE COMPLETED</b> : 2/19/24        | DRILLING SUBCONTRACTOR: Soil X, Corp.                |
| BORING LOCATION: Within proposed roadway                             | DRILLING FOREMAN: Edwin Fajardo                      |
| COORDINATES: NA                                                      | DRILLING METHOD: Hollow Stem Auger (4-1/4" I.D.)     |
| SURFACE El.: 213 ft. (see note 1) TOTAL DEPTH: 11.2 ft.              | DRILL RIG TYPE/MODEL: Diedrich D-70 turbo            |
| WEATHER: 30's / Sunny                                                | HAMMER TYPE: Automatic                               |
| GROUNDWATER LEVELS:                                                  | HAMMER WEIGHT: 140 lb. HAMMER DROP: 30 in.           |
| □ DURING DRILLING: 10.0 ft. / El. 203.0 ft. Based on sample moisture | SPLIT SPOON DIA.: 1.375 in. I.D., 2 in. O.D.         |
| <b>X</b> AT END OF DRILLING: 10.5 ft. / El. 202.5 ft.                | CORE BARREL SIZE: NA                                 |
| $ar{m{arphi}}$ other:                                                | LOGGED BY: MBH CHECKED BY: SG                        |
|                                                                      |                                                      |

| Depth<br>(ft.) | El.<br>(ft.) | Sample<br>Interval (ft.) | Samp<br>Numb |                           | Pen./Rec.<br>(in.) | Remark | Strat              |                                    | Depth<br>El.(ft.) | Material Description                                                                                                                                        |
|----------------|--------------|--------------------------|--------------|---------------------------|--------------------|--------|--------------------|------------------------------------|-------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                |              | 0                        | s            | 1 4-6-8-10 (14)           | 24/19              |        | Topsoil<br>Subsoil | 74 1 <sup>N</sup> · <sup>7</sup> / | 0.4<br>212.6      | S1 - Top 5": Topsoil  Bot. 14": Silty SAND (SM), fine to coarse, 15-20% fines, 0-5% fine subangular gravel, orange, moist                                   |
| +              | 210.0        | 2-                       | s            | 27-28-25-38 (53)          | 24/20              |        |                    | .0.                                | 211.0             | S2 - Silty SAND (SM), fine to coarse, 15% fines, 10-15% fine subangular gravel, brown to orange, moist                                                      |
| 5              | · –          | 4-                       | s            | 3 20-34-29-31<br>(63)     | 24/19              |        |                    | .00                                |                   | S3 - Silty SAND with Gravel (SM), fine to coarse, 25-30% fines, ~20% fine to coarse gravel, brown, moist                                                    |
| ++             |              | 6.8                      | s            | 4 52-101/3"<br>(101/3")   | 9/9                |        | Sand and<br>Gravel | , o d                              |                   | S4 - Well Graded GRAVEL with Sand (GW), fine to coarse, subangular, 0-5% fines, 25-30% fine to coarse sand, trace of fractured rock, grey, moist            |
|                | 205.0        |                          |              |                           |                    |        |                    | .0.<br>.0.                         |                   |                                                                                                                                                             |
| 10             |              | 10-                      | X s          | 5 16-17-84/2"<br>(101/8") | 14/9               |        |                    | .0.                                | Ţ<br>Ţ            | S5 - Silty SAND with Gravel (SM), fine to coarse, 20-25% fines, 15-20% fine to coarse subangular gravel, trace of weathered rock, light brown to brown, wet |
| ΓΤ             |              | 11.2                     | / V          | (                         |                    | 1      |                    |                                    | 11.2              | REMARK 1: HSA refusal at depth of 11.2' on possible rock.  Bottom of borehole at 11.2 feet. Backfilled borehole with drill cuttings.                        |
| T ,            | 200 0        |                          |              |                           |                    |        |                    |                                    |                   | Descent of periodic at 11.2 local basismod periodic man and catalings.                                                                                      |
| <b> </b>       | 200.0        |                          |              |                           |                    |        |                    |                                    |                   |                                                                                                                                                             |
| + +            |              |                          |              |                           |                    |        |                    |                                    |                   |                                                                                                                                                             |
| 15             |              |                          |              |                           |                    |        |                    |                                    |                   |                                                                                                                                                             |
|                |              |                          |              |                           |                    |        |                    |                                    |                   |                                                                                                                                                             |
|                |              |                          |              |                           |                    |        |                    |                                    |                   |                                                                                                                                                             |
|                | 105.0        |                          |              |                           |                    |        |                    |                                    |                   |                                                                                                                                                             |
| † †            | 195.0        |                          |              |                           |                    |        |                    |                                    |                   |                                                                                                                                                             |
| + +            |              |                          |              |                           |                    |        |                    |                                    |                   |                                                                                                                                                             |
| 20             |              |                          |              |                           |                    |        |                    |                                    |                   |                                                                                                                                                             |
|                | . ]          |                          |              |                           |                    |        |                    |                                    |                   |                                                                                                                                                             |
|                |              |                          |              |                           |                    |        |                    |                                    |                   |                                                                                                                                                             |
| ΓŤ,            | 190.0        |                          |              |                           |                    |        |                    |                                    |                   |                                                                                                                                                             |
|                | 190.0        |                          |              |                           |                    |        |                    |                                    |                   |                                                                                                                                                             |
| + +            |              |                          |              |                           |                    |        |                    |                                    |                   |                                                                                                                                                             |
| 25             |              |                          |              |                           |                    |        |                    |                                    |                   |                                                                                                                                                             |

### **GENERAL NOTES:**

# Green Meadow Elementary School - Early Site Nackage G

Addendum 2117

Lahlaf Geotechnical Consulting, Inc. PROJECT NAME: Proposed Green Meadow Elementary School **CLIENT:** Mount Vernon Group Architects, Inc. **LGCI PROJECT NUMBER: 2201** PROJECT LOCATION: Maynard, MA DATE COMPLETED: 2/19/24 DATE STARTED: 2/19/24 DRILLING SUBCONTRACTOR: Soil X, Corp. **BORING LOCATION:** Within proposed roadway DRILLING FOREMAN: Edwin Fajardo COORDINATES: NA DRILLING METHOD: Hollow Stem Auger (4-1/4" I.D.) SURFACE El.: 211 ft. (see note 1) TOTAL DEPTH: 12 ft. DRILL RIG TYPE/MODEL: Diedrich D-70 turbo WEATHER: 30's / Sunny HAMMER TYPE: Automatic **GROUNDWATER LEVELS:** HAMMER WEIGHT: 140 lb. HAMMER DROP: 30 in. □ DURING DRILLING: Not Encountered **SPLIT SPOON DIA.:** <u>1.375 in. I.D., 2 in</u>. O.D. T AT END OF DRILLING: Not Encountered CORE BARREL SIZE: NA ▼ OTHER: -LOGGED BY: MBH CHECKED BY: SG

| Depth<br>(ft.) | El.<br>(ft.) | Sample<br>Interval (ft.) | Sam<br>Num |    | Blow Counts<br>(N Value) | Pen./Rec. | St St            | rata  | Depth<br>El.(ft.) | Material Description                                                                                                                                                                                                                                             |
|----------------|--------------|--------------------------|------------|----|--------------------------|-----------|------------------|-------|-------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                | 210.0        | 0                        | X          | S1 | 27-12-12-43<br>(24)      | 24/12     |                  |       |                   | S1 - Well Graded SAND with Silt and Gravel (SW-SM), fine to coarse, ~10% fines, 15-20% fine to coarse subrounded gravel, trace of organic soil, trace of roots, brown, moist                                                                                     |
|                |              | 2-                       | X          | S2 | 25-21-27-28<br>(48)      | 24/17     | Fill             |       |                   | S2 - Poorly Graded SAND with Silt (SP-SM), fine to medium, 10-15% fines, 5-10% fine to coarse subrounded gravel, trace of roots, trace of organic soil, brown, moist                                                                                             |
| 5              | 205.0        | 4-                       | X          | S3 | 14-13-11-14<br>(24)      | 24/24     |                  |       |                   | S3 - Silty SAND (SM), fine to medium, 15-20% fines, 0-5% fine to coarse gravel, trace of roots, organic odor, dark brown, moist                                                                                                                                  |
|                |              | 6-                       | X          | S4 | 11-10-9-10<br>(19)       | 24/19     | Subsoi           | 1     | 6.9               | S4 - Top 11": Silty SAND (SM), fine to medium, 15-20% fines, ~5% fine to coarse gravel, trace of roots, organic odor, dark brown, moist  Bot. 8": Silty SAND with Gravel (SM), fine to medium, ~15% fines, 5-10% fine to coarse subangular gravel, orange, moist |
| 10             |              | 8-                       | X          | S5 | 5-8-9-9<br>(17)          | 24/15     | Can dan          | 000   | 8.0<br>203.0      | S5 - Silty SAND with Gravel (SM), fine to coarse, 15-20% fines, ~15% fine to coarse subangular gravel, trace of roots, light brown to orange, moist                                                                                                              |
|                | 200.0        | 10-                      | X          | S6 | 11-10-11-12<br>(21)      | 24/8      | Sand ar<br>Grave |       |                   | S6 - Silty SAND with Gravel (SM), fine to coarse, 15-20% fines, 30-35% fine to coarse subangular gravel, light brown to orange, moist                                                                                                                            |
| -              |              | 12-                      | <u> </u>   |    |                          |           |                  | 1. 10 | 12.0              | Bottom of borehole at 12.0 feet. Backfilled borehole with drill cuttings.                                                                                                                                                                                        |
|                |              |                          |            |    |                          |           |                  |       |                   |                                                                                                                                                                                                                                                                  |
| 15             | 195.0        |                          |            |    |                          |           |                  |       |                   |                                                                                                                                                                                                                                                                  |
| -              |              |                          |            |    |                          |           |                  |       |                   |                                                                                                                                                                                                                                                                  |
| -              |              |                          |            |    |                          |           |                  |       |                   |                                                                                                                                                                                                                                                                  |
| 20             |              |                          |            |    |                          |           |                  |       |                   |                                                                                                                                                                                                                                                                  |
| -              | 190.0        |                          |            |    |                          |           |                  |       |                   |                                                                                                                                                                                                                                                                  |
| -              |              |                          |            |    |                          |           |                  |       |                   |                                                                                                                                                                                                                                                                  |
| -              | -            |                          |            |    |                          |           |                  |       |                   |                                                                                                                                                                                                                                                                  |

### **GENERAL NOTES:**

## Green Meadow Elementary School - Early Ste Nackage G

Lahlaf Geotechnical Consulting, Inc.

Addendur 2118

PAGE 1 OF 1

| CLIENT: Mount Vernon Group Architects, Inc.                           | PROJECT NAME: Proposed Green Meadow Elementary School |
|-----------------------------------------------------------------------|-------------------------------------------------------|
| LGCI PROJECT NUMBER: 2201                                             | PROJECT LOCATION: Maynard, MA                         |
| DATE STARTED:         2/27/24         DATE COMPLETED:         2/27/24 | DRILLING SUBCONTRACTOR: Soil X, Corp.                 |
| BORING LOCATION: Northeast of existing school                         | DRILLING FOREMAN: Edwin Fajardo                       |
| COORDINATES: NA                                                       | DRILLING METHOD: Hollow Stem Auger (4-1/4" I.D.)      |
| SURFACE El.: 207 ft. (see note 1) TOTAL DEPTH: 12 ft.                 | DRILL RIG TYPE/MODEL: Diedrich D-70 turbo             |
| WEATHER: _40's / Sunny                                                | HAMMER TYPE: Automatic                                |
| GROUNDWATER LEVELS:                                                   | HAMMER WEIGHT: 140 lb. HAMMER DROP: 30 in.            |
| abla during drilling:                                                 | SPLIT SPOON DIA.: _1.375 in. I.D., 2 in. O.D.         |
| <b>AT END OF DRILLING:</b> _11.5 ft. / El. 195.5 ft.                  | CORE BARREL SIZE: NA                                  |
| Ţ other:                                                              | LOGGED BY: MBH CHECKED BY: SG                         |
|                                                                       |                                                       |

| Depth<br>(ft.) | El.<br>(ft.) | Sample<br>Interval (ft.) | Sample<br>Number | Blow Counts<br>(N Value) |       | Ren             | irata    | Depth<br>El.(ft.) | Material Description                                                                                                                                                                                                                                                                                      |
|----------------|--------------|--------------------------|------------------|--------------------------|-------|-----------------|----------|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                | <br>205.0    | 0.3-                     | S1               | 12-16-16-11<br>(32)      | 24/19 | Aspha           |          | 206.7             | Top 3": Asphalt S1 - Well Graded SAND with Silt and Gravel (SW-SM), fine to coarse, ~10% fines, 15-20% fine to coarse subangular gravel, light brown with orange stripes, moist                                                                                                                           |
|                | <br>         | 2.3-                     | S2               | 9-11-11-10<br>(22)       | 24/16 |                 | .0.      |                   | S2 - Well Graded SAND with Silt and Gravel (SW-SM), fine to coarse, ~10% fines, 15-20% fine to coarse subangular gravel, light brown with orange stripes, moist                                                                                                                                           |
| 5              | <br>         | 6.3-                     | S3               | 9-13-21-12<br>(34)       | 24/17 | Sand a<br>Grave | nd<br>ol |                   | S3 - Top 13": Well Graded SAND with Silt and Gravel (SW-SM), fine to coarse, ~10% fines, 15-20% fine to coarse subangular gravel, light brown with orange stripes, moist  Bot. 4": Silty SAND with Gravel (SM), fine to coarse, 30-35% fines, 20-25% fine to coarse subangular gravel, olive brown, moist |
|                | 200.0        | 8.3-                     | S4               | 12-20-17-37<br>(37)      | 24/14 |                 | .00      |                   | S4 - Well Graded SAND with Silt and Gravel (SW-SM), fine to coarse, 5-10% fines, 15-20% fine to coarse subangular gravel, brown to orange, moist                                                                                                                                                          |
| 10             | <br>         | 10-                      | \ /              |                          |       |                 |          | 10.0<br>197.0     | S5 - Well Graded GRAVEL (GW), fine to coarse, subangular, 0-5% fines, 0-5%                                                                                                                                                                                                                                |
|                | <br>195.0    | 12-                      | S5               | 29-30-11-29<br>(41)      | 24/4  | Sand a<br>Grave | nd ° ° ° | 12.0              | mostly coarse sand, trace of weathered rock, grey, moist                                                                                                                                                                                                                                                  |
|                |              |                          |                  |                          |       |                 |          |                   | Sampling.  Bottom of borehole at 12.0 feet. Backfilled borehole with drill cuttings.                                                                                                                                                                                                                      |
| 15             | <br>         |                          |                  |                          |       |                 |          |                   |                                                                                                                                                                                                                                                                                                           |
|                | 190.0        |                          |                  |                          |       |                 |          |                   |                                                                                                                                                                                                                                                                                                           |
| 20             |              |                          |                  |                          |       |                 |          |                   |                                                                                                                                                                                                                                                                                                           |
|                | 185.0        |                          |                  |                          |       |                 |          |                   |                                                                                                                                                                                                                                                                                                           |
|                |              |                          |                  |                          |       |                 |          |                   |                                                                                                                                                                                                                                                                                                           |

### **GENERAL NOTES:**

## Green Meadow Elementary School - Early Ste Rackage G

Addendum 2119

Lahlaf Geotechnical Consulting, Inc. **PROJECT NAME:** Proposed Green Meadow Elementary School **CLIENT:** Mount Vernon Group Architects, Inc. LGCI PROJECT NUMBER: 2201 PROJECT LOCATION: Maynard, MA DATE STARTED: 2/27/24 DATE COMPLETED: 2/27/24 DRILLING SUBCONTRACTOR: Soil X, Corp. BORING LOCATION: Near existing driveway entrance from Great Road DRILLING FOREMAN: Edwin Fajardo COORDINATES: NA DRILLING METHOD: Hollow Stem Auger (4-1/4" I.D.) SURFACE El.: 209 ft. (see note 1) TOTAL DEPTH: 12 ft. DRILL RIG TYPE/MODEL: Diedrich D-70 turbo WEATHER: 40's / Sunny **HAMMER TYPE:** Automatic **GROUNDWATER LEVELS: HAMMER WEIGHT:** 140 lb. **HAMMER DROP:** 30 in. □ DURING DRILLING: NE SPLIT SPOON DIA.: 1.375 in. I.D., 2 in. O.D. T AT END OF DRILLING: \_-CORE BARREL SIZE: NA ▼ OTHER: -LOGGED BY: MBH CHECKED BY: SG

| Depth<br>(ft.) | El.<br>(ft.) | Sample<br>Interval (ft.) |           | mple<br>mber | Blow Counts<br>(N Value) | Pen./Rec.<br>(in.) | Remark | Strata          | Depth<br>El.(ft.) | Material Description                                                                                                                   |
|----------------|--------------|--------------------------|-----------|--------------|--------------------------|--------------------|--------|-----------------|-------------------|----------------------------------------------------------------------------------------------------------------------------------------|
|                |              | 0.3-                     |           |              |                          |                    | П      | Asphalt         | 208.7             | Top 3": Asphalt                                                                                                                        |
|                | -<br>-<br>-  | 2.3-                     | $\bigvee$ | S1           | 24-16-15-10<br>(31)      | 24/6               |        | Fill            | 2.0<br>207.0      | S1 - Well Graded SAND with Silt and Gravel (SW-SM), fine to coarse, ~10% fines, 25-30% fine to coarse subangular gravel, brown, moist  |
|                | 205.0        |                          | M         | S2           | 9-6-9-11<br>(15)         | 24/19              |        | .00             |                   | S2 - Sandy SILT (ML), nonplastic, 30-35% fine to medium sand, grey and orange, moist                                                   |
| 5              |              | 4.3                      | M         | S3           | 9-46-11-10<br>(57)       | 24/14              |        | . 0.            |                   | S3 - Well Graded SAND with Silt and Gravel (SW-SM), fine to coarse, 5-10% fines, 15-20% fine to coarse subangular gravel, brown, moist |
| -              |              | 8.3<br>8.8               | M         | S4           | 5-5-6-8<br>(11)          | 24/16              |        | Sand and Gravel |                   | S4 - Well Graded SAND with Silt and Gravel (SW-SM), fine to coarse, 5-10% fines, 15-20% fine to coarse subangular gravel, brown, moist |
| 10             | 200.0        | -                        | M         | S5           | 9-14-7-8<br>(21)         | 24/12              |        |                 |                   | S5 - Well Graded SAND with Silt (SW-SM), fine to coarse, 10-15% fines, 5-10% fine to coarse subangular gravel, brown, moist            |
|                |              | 10-                      |           | S6           | 8-24-45-46<br>(69)       | 24/12              |        | .00             |                   | S6 - Well Graded SAND with Silt and Gravel (SW-SM), fine to coarse, 5-10% fines, 15-20% fine to coarse subangular gravel, brown, moist |
| -              | 195.0        | 12-                      |           |              |                          |                    |        | 10.             | 12.0              | Bottom of borehole at 12.0 feet. Backfilled borehole with drill cuttings and cold patch asphalt to restore the roadway.                |
| 15             |              |                          |           |              |                          |                    |        |                 |                   |                                                                                                                                        |
|                | -<br>-<br>-  |                          |           |              |                          |                    |        |                 |                   |                                                                                                                                        |
|                | 190.0        |                          |           |              |                          |                    |        |                 |                   |                                                                                                                                        |
| _20_           |              |                          |           |              |                          |                    |        |                 |                   |                                                                                                                                        |
|                | <u> </u>     |                          |           |              |                          |                    |        |                 |                   |                                                                                                                                        |
|                | 185.0        |                          |           |              |                          |                    |        |                 |                   |                                                                                                                                        |
|                |              |                          |           |              |                          | [                  |        |                 | 1                 |                                                                                                                                        |

### **GENERAL NOTES:**

<sup>1.</sup> The ground surface elevation was interpolated to the nearest foot from Drawing EX-1 titled: "Site Survey Plan, Schematic Design, Maynard Public Schools, Green Meadow Elementary School," prepared by Samiotes Consultants, Inc., dated September 2, 2022 and provided to LGCI by Brennan via e-mail on February 1, 2024.

Lahlaf Geotechnical Consulting, Inc.

# GROUNDWATER OBSERVATION WELL INSTALLATION REPORT

Boring No. : **B-104-OW** 

| Project Name: Prop      | . Green Meadow Elementary          | School, Maynard, MA         |                                        |  |  |  |
|-------------------------|------------------------------------|-----------------------------|----------------------------------------|--|--|--|
| LGCI Project Number:    | 2201                               |                             |                                        |  |  |  |
| Client: Mount Vernon G  | roup Architects, Inc.              |                             |                                        |  |  |  |
| Drilling Subcontractor: | Soil X, Corp.                      | Date Started: 2/19/24       | Date Started: 2/19/24                  |  |  |  |
| Drilling Foreman:       | Edwin Fajardo                      | Date Completed: 2/20/24     | -                                      |  |  |  |
| LGCI Engineer:          | MBH                                | Location: Near NW corner    | r of eastern wing of proposed building |  |  |  |
| Ground Surface Elevati  | on: 214 feet (see note 1)          | Total Depth of Boring: 19.  | 2 feet                                 |  |  |  |
| Groundwater Depth:      | 19 feet (based on sample moisture) | Drill Rig Type: Diedrich D- | -70 Turbo ATV Drill Rig                |  |  |  |
|                         | 18.5 feet at the end of drilling   | Drilling Method: Hollow St  | em Auger (4-1/4" I.D.)                 |  |  |  |
| GENERAL SOIL            | Riser Stickup ~0                   | .0' above ground surface    |                                        |  |  |  |
| CONDITIONS              | THICKNESS OF SU                    | REACE SEAL                  | 0.8 foot                               |  |  |  |
| (not to scale)          | TYPE OF SURFACE                    |                             | Concrete                               |  |  |  |
| (not to socio)          | THE ST SSIGNOE                     |                             | Concrete                               |  |  |  |
| Topsoil                 | TYPE OF SURFACE                    | CASING                      | Roadway Box                            |  |  |  |
| 0.3 feet                | ID OF SURFACE CA                   |                             | 6 inch                                 |  |  |  |
|                         | DEPTH TO BOTTOM                    | M OF CASING                 | 0.8 foot                               |  |  |  |
| Fill                    |                                    |                             |                                        |  |  |  |
| 4.0 feet                | ID OF RISER PIPE                   |                             | 2 inch                                 |  |  |  |
|                         | TYPE OF RISER PIF                  | PE                          | Schedule 40 PVC                        |  |  |  |
|                         | TYPE OF BACKFILL                   | . AROUND RISER PIPE         | Filter Sand                            |  |  |  |
|                         | DEPTH TO TOP OF                    | SEAL                        | 11 feet                                |  |  |  |
|                         | TYPE OF SEAL                       |                             | Bentonite Chips                        |  |  |  |
|                         | DEPTH TO BOTTOM                    | M OF SEAL                   | 12 feet                                |  |  |  |
| 011-01                  |                                    | PERVIOUS SECTION            | 13.5 feet                              |  |  |  |
| Sand and Gravel         | TYPE OF PERVIOUS                   | S SECTION                   | Schedule 40 PVC                        |  |  |  |
|                         | DESCRIBE OPENIN                    |                             | 0.01 inch slots                        |  |  |  |
|                         | ID OF PERVIOUS S                   |                             | 2 inch                                 |  |  |  |
|                         |                                    |                             |                                        |  |  |  |
|                         | TYPE OF BACKFILL                   | . AROUND PERVIOUS SECTION   | Filter sand                            |  |  |  |
|                         | DEPTH TO BOTTON                    | M OF PERVIOUS SECTION       | 18.5 feet                              |  |  |  |
|                         | DEPTH TO BOTTON                    | M OF SAND COLUMN            | 19 feet                                |  |  |  |
|                         | TYPE OF BACKFILL                   | BELOW PERVIOUS SECTION      | Filter sand                            |  |  |  |
|                         | DIAMETER OF BOR                    | EHOLE                       | 6 inch                                 |  |  |  |
| 19.2 feet               | DEPTH TO BOTTON                    | M OF BOREHOLE               | 19.2 feet                              |  |  |  |

Lahlaf Geotechnical Consulting, Inc.

# GROUNDWATER OBSERVATION WELL INSTALLATION REPORT

Boring No. : **B-114-OW** 

| Project Name: Prop      | . Green Meado        | ow Elementary Sc    | chool, Maynard, MA          |                        |  |
|-------------------------|----------------------|---------------------|-----------------------------|------------------------|--|
| LGCI Project Number:    | 2201                 |                     |                             |                        |  |
| Client: Mount Vernon G  | roup Architects, In- | C.                  |                             |                        |  |
| Drilling Subcontractor: | Soil X, Corp.        |                     | Date Started: 2/20/24       |                        |  |
| Drilling Foreman:       | Edwin Fajardo        |                     | Date Completed: 2/21/24     | ļ.                     |  |
| LGCI Engineer:          | MBH                  |                     | Location: Within proposed   |                        |  |
| Ground Surface Elevati  |                      | note 1)             | Total Depth of Boring: 20   |                        |  |
| Groundwater Depth:      | Not encountered      |                     | Drill Rig Type: Diedrich D- |                        |  |
|                         | 5.0 feet at the en   | d of drilling       | Drilling Method: Hollow St  | em Auger (4-1/4" I.D.) |  |
| GENERAL SOIL            |                      | Riser Stickup ~3.0  | above ground surface        |                        |  |
| CONDITIONS              |                      | THICKNESS OF SURF   | ACE SEAL                    | 1 foot                 |  |
| (not to scale)          |                      | TYPE OF SURFACE S   | EAL                         | Concrete               |  |
|                         |                      |                     |                             |                        |  |
| Topsoil                 |                      | TYPE OF SURFACE C   | ASING                       | Riser Pipe             |  |
| 0.3 feet                |                      | ID OF SURFACE CASI  | NG                          | 4 inch                 |  |
|                         |                      | DEPTH TO BOTTOM (   | OF CASING                   | 2.5 feet               |  |
|                         |                      |                     |                             |                        |  |
|                         |                      | ID OF RISER PIPE    |                             | 2 inch                 |  |
| Subsoil                 |                      | TYPE OF RISER PIPE  |                             | Schedule 40 PVC        |  |
| 2.0 feet                |                      | TYPE OF BACKFILL AI | ROUND RISER PIPE            | Filter Sand            |  |
|                         |                      | DEPTH TO TOP OF SE  | =ΔΙ                         | 1 foot                 |  |
| Sand and Gravel         |                      | TYPE OF SEAL        | -7 \_                       | Bentonite Chips        |  |
| 2.8 feet                |                      | DEPTH TO BOTTOM (   | OF SEAL                     | 3 feet                 |  |
|                         |                      | DEPTH TO TOP OF PE  | ERVIOUS SECTION             | 4 feet                 |  |
| Boulder                 |                      | TYPE OF PERVIOUS S  | SECTION                     | Schedule 40 PVC        |  |
| 5.0 feet                |                      | DESCRIBE OPENINGS   | 3                           | 0.01 inch slots        |  |
|                         |                      | ID OF PERVIOUS SEC  | TION                        | 2 inch                 |  |
|                         |                      |                     |                             |                        |  |
|                         |                      | TYPE OF BACKFILL AI | ROUND PERVIOUS SECTION      | Filter sand            |  |
| Rock                    |                      | DEPTH ТО ВОТТОМ (   | OF PERVIOUS SECTION         | 19 feet                |  |
|                         |                      | DEPTH TO BOTTOM (   | DF SAND COLUMN              | 19 feet                |  |
|                         |                      | TYPE OF BACKFILL BI | ELOW PERVIOUS SECTION       | Filter sand            |  |
|                         |                      | DIAMETER OF BOREH   | HOLE                        | 6 inch                 |  |
| 20 feet                 |                      | DEPTH TO BOTTOM (   | OF BOREHOLE                 | 20 feet                |  |

06/12/2024 Addendum 2

Appendix B – LGCI's Test Pit Logs

Town of Maynard
Green Meadow Elementary School - Early Elementary

Lahlaf Geotechnical Consulting, Inc.

PAGE 1 OF 1

| CLIENT:<br>LGCI PR                                                                |                                  |                                                      |                          |                        |          | tects,            | Inc.                                                   | PROJECT NAME: Proposed Green Meadow Elementary School PROJECT LOCATION: Maynard, MA                                                                                                                 |  |  |
|-----------------------------------------------------------------------------------|----------------------------------|------------------------------------------------------|--------------------------|------------------------|----------|-------------------|--------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| DATE ST<br>TEST PI'<br>COORDI<br>SURFAC<br>GROUNI<br>\( \sum_{\text{D}} \text{DL} | TARTEI T LOCA NATES E EL.: DWATE | D: <u>2/</u><br>ATION<br>: <u>NA</u><br>228<br>R LEY | 6/2<br>l: _<br>ft.<br>VE | 24<br>Within<br>(see n | wester   | rn wing           | g of proposed building  TOTAL DEPTH: 7.5 ft.           | EXCAVATION SUBCONTRACTOR: Saunders Construction  EXCAVATION FOREMAN: Paul Meniates  EXCAVATOR TYPE/MODEL: Takeuchi TB-290  WEATHER: TEST PIT DIMENSIONS: 10.0'x4.0'  LOGGED BY: MBH CHECKED BY: JKW |  |  |
| El. (ft)                                                                          |                                  | ation<br>ort                                         | Remark                   | Stra                   |          | Depth<br>El.(ft.) |                                                        | Material Description                                                                                                                                                                                |  |  |
| 227.5                                                                             | 5 E                              |                                                      |                          | Topsoil                | 14 17. 1 | 0.5<br>227.5      | 0 ft 0.5 ft.: Topsoil<br>0.5 ft 2 ft.: Poorly Graded S | AND (SP), fine to medium, 5-10% fines, trace of roots, moist                                                                                                                                        |  |  |
| +                                                                                 | _ E                              |                                                      | _                        | Subsoil                | . 0 (    | 2.0               | 2ft 75ft Wall Craded SAN                               | ND (SW), fine to coarse, 5-10% fines, 0-5% fine to coarse subrounded                                                                                                                                |  |  |
| 225.0                                                                             | - E                              |                                                      |                          |                        | .00      |                   |                                                        | oulders up to 3' in diameter, light brown, moist                                                                                                                                                    |  |  |
| +                                                                                 | - N                              | 1                                                    |                          |                        | .0.      |                   |                                                        |                                                                                                                                                                                                     |  |  |
| 5.0                                                                               |                                  | )                                                    |                          | Sand<br>and<br>Gravel  |          |                   |                                                        |                                                                                                                                                                                                     |  |  |
| 7.5                                                                               | _ \                              | /                                                    | 1                        |                        |          | 7.5               | REMARK 1: Excavator refusa                             | l at depth of 7.5'.                                                                                                                                                                                 |  |  |
|                                                                                   |                                  |                                                      |                          |                        |          |                   |                                                        | Backfilled test pit with excavated material and tamped in 12" lifts.                                                                                                                                |  |  |

<sup>1.</sup> The ground surface elevation was interpolated to the nearest foot from Drawing EX-1 titled: "Site Survey Plan, Schematic Design, Maynard Public Schools, Green Meadow Elementary School," prepared by Samiotes Consultants, Inc., dated September 2, 2022 and provided to LGCI by Brennan via e-mail on February 1, 2024.

# Town of Maynard Freen Meadow Etementary School - Early Fig ParkateOG

Addendum **7P-2** 

PAGE 1 OF 1

Lahlaf Geotechnical Consulting, Inc. PROJECT NAME: Proposed Green Meadow Elementary School CLIENT: Mount Vernon Group Architects, Inc. LGCI PROJECT NUMBER: 2201 PROJECT LOCATION: Maynard, MA DATE STARTED: 2/6/24 DATE COMPLETED: 2/6/24 **EXCAVATION SUBCONTRACTOR:** Saunders Construction TEST PIT LOCATION: Within western wing of proposed building **EXCAVATION FOREMAN:** Paul Meniates COORDINATES: NA EXCAVATOR TYPE/MODEL: Takeuchi TB-290 SURFACE EL.: 214 ft. (see note 1) TOTAL DEPTH: 10 ft. WEATHER: **GROUNDWATER LEVELS: TEST PIT DIMENSIONS:** 10.0'x4.0'  $\supseteq$  DURING EXCAVATION: NE LOGGED BY: MBH CHECKED BY: JKW

|               | AT I        | END OF EX            | (C     | AVATION         | : <u>-</u>     |                                     |                                                                                                                                                          |  |
|---------------|-------------|----------------------|--------|-----------------|----------------|-------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Depth<br>(ft) | El.<br>(ft) | Excavation<br>Effort | Remark | Strata          |                | Material Description  Depth EL(ft.) |                                                                                                                                                          |  |
|               |             | E                    |        | Topsoil 1/2     | ( <del>'</del> |                                     | ft 0.7 ft.: Topsoil                                                                                                                                      |  |
| <br>          | 212.5       | E                    |        | Subsoil         | 21             | 13.3 0.                             | 7 ft 1.9 ft.: Poorly Graded SAND (SP-SM), fine to medium, 10-15% fines, trace of roots, orange, moist                                                    |  |
|               |             | E                    |        | 0               | 0 0 21         | 1.                                  | 9 ft 5 ft.: Poorly Graded SAND (SP), fine to medium, 5-10% fines, 15% cobbles and boulders up to 3'                                                      |  |
| 2.5           |             | М                    |        | P.              | 000            | in                                  | diameter, light brown, moist                                                                                                                             |  |
| <br><br>5.0   | 210.0       | D                    |        |                 |                |                                     |                                                                                                                                                          |  |
|               | 207.5       | V                    |        | Sand and Gravel |                | 5 to                                | ft 10 ft.: Well Graded SAND with Silt and Gravel (SW-SM), fine to coarse, 10-15% fines, 15-20% fine o coarse subangular gravel, 35% cobbles and boulders |  |
| 10.0          |             |                      |        | <u> </u>        | 10             | 0.0<br>Bo                           | ottom of test pit at 10.0 feet. Backfilled test pit with excavated material and tamped in 12" lifts.                                                     |  |
|               |             |                      |        |                 |                |                                     |                                                                                                                                                          |  |

<sup>1.</sup> The ground surface elevation was interpolated to the nearest foot from Drawing EX-1 titled: "Site Survey Plan, Schematic Design, Maynard Public Schools, Green Meadow Elementary School," prepared by Samiotes Consultants, Inc., dated September 2, 2022 and provided to LGCI by Brennan via e-mail on February 1, 2024.

# Town of Maynard Green Meadow Elementary School - Early Elementary

Addendum **7P-3** 

PAGE 1 OF 1

Lahlaf Geotechnical Consulting, Inc. PROJECT NAME: Proposed Green Meadow Elementary School CLIENT: Mount Vernon Group Architects, Inc. LGCI PROJECT NUMBER: 2201 PROJECT LOCATION: Maynard, MA DATE STARTED: 2/6/24 DATE COMPLETED: 2/6/24 **EXCAVATION SUBCONTRACTOR:** Saunders Construction TEST PIT LOCATION: Within proposed roadway **EXCAVATION FOREMAN:** Paul Meniates COORDINATES: NA EXCAVATOR TYPE/MODEL: Takeuchi TB-290 SURFACE EL.: 214 ft. (see note 1) TOTAL DEPTH: 12 ft. WEATHER: **GROUNDWATER LEVELS: TEST PIT DIMENSIONS:** 11.0'x6.0'  $\veebar$  DURING EXCAVATION: NE LOGGED BY: MBH CHECKED BY: JKW AT END OF EVOAVATION.

|               | <u>-</u> All |                      | (6)    | AVAITON.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                                                                                                                                                                              |
|---------------|--------------|----------------------|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Depth<br>(ft) | El.<br>(ft)  | Excavation<br>Effort | Remark | Strata                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Depth<br>El.(ft.)     | Material Description                                                                                                                                                         |
|               |              | М                    |        | Topsoil \( \frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\fir}{\fin}}}}}}{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac}\f{\fir}{\fire}}}}{\firac{\firec{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\f{\frac{\frac{\frac{\frac{\frac{\ | . <u>il</u><br>.: 0.5 | 0 ft 0.5 ft.: Topsoil                                                                                                                                                        |
|               | 212.5        | М                    |        | Fill                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 213.5                 | 0.5 ft 2.5 ft.: Silty SAND with Gravel (SM), fine to coarse, 15-20% fines, 20-25% fine to coarse subrounded gravel, trace of roots, trace of organic soil, dark brown, moist |
| 2.5           | -            | М                    | 1      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2.5                   | 2.5 ft 7 ft.: Poorly Graded SAND (SP), fine to medium, 5-10% fines, light brown to orange, moist                                                                             |
| 5.0           | 210.0        | E                    |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                       |                                                                                                                                                                              |
| -             | 207.5        | М                    |        | .0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | d                     |                                                                                                                                                                              |
| <br>7.5<br>   | 205.0        | D                    |        | and Gravel 6 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 00000                 | 7 ft 12 ft.: Well Graded SAND (SW), fine to coarse, 5-10% fines, 15% cobbles and boulders up to 1.5 light brown, moist                                                       |
| 10.0          | 202.5        | V                    |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                       |                                                                                                                                                                              |
|               |              |                      |        | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                       | Bottom of test pit at 12.0 feet. Backfilled test pit with excavated material and tamped in 12" lifts.                                                                        |

<sup>1.</sup> The ground surface elevation was interpolated to the nearest foot from Drawing EX-1 titled: "Site Survey Plan, Schematic Design, Maynard Public Schools, Green Meadow Elementary School," prepared by Samiotes Consultants, Inc., dated September 2, 2022 and provided to LGCI by Brennan via e-mail on February 1, 2024.

|               |             |                      |        | VATION:         |                   |                                   | CHECKED B1. SIXVY                                                          |
|---------------|-------------|----------------------|--------|-----------------|-------------------|-----------------------------------|----------------------------------------------------------------------------|
| (#)           | El.<br>(ft) | Excavation<br>Effort | Remark | Strata          | Depth<br>El.(ft.) |                                   | Material Description                                                       |
|               |             | E                    |        | Topsoil         | 0.3               | 0 ft 0.3 ft.: Topsoil             |                                                                            |
| .5            | 212.5       | E                    |        | Fill            | 40                | gravel, trace of roots, orange, r | D with Gravel (SW), fine to coarse, 5-10% fines, ~20% fine to coarse moist |
| 1             | 210.0       | _                    | -      | .00             | 210.0             | 4 ft 12 ft.: Poorly Graded SAI    | ND (SP), fine to medium, 5-10% fines, 10% cobbles, light brown, moist      |
| .0            |             | E                    |        |                 |                   |                                   |                                                                            |
| 7.5<br>       | 207.5       | M                    |        | Sand and Gravel |                   |                                   |                                                                            |
| D.0<br>-<br>- | 202.5       | D                    |        |                 |                   |                                   |                                                                            |
| $\dashv$      |             |                      |        | · 0°            | 12.0              | Bottom of test pit at 12.0 feet   | Backfilled test pit with excavated material and tamped in 12" lifts.       |
|               |             |                      |        |                 |                   |                                   |                                                                            |

<sup>1.</sup> The ground surface elevation was interpolated to the nearest foot from Drawing EX-1 titled: "Site Survey Plan, Schematic Design, Maynard Public Schools, Green Meadow Elementary School," prepared by Samiotes Consultants, Inc., dated September 2, 2022 and provided to LGCI by Brennan via e-mail on February 1, 2024.

PAGE 1 OF 1

| Town of Mavnard                                              |                         |
|--------------------------------------------------------------|-------------------------|
| Green Meadow Elementary Lahluf Geotechnical Consulting, Inc. | School - Early StrateOG |

| CLIENT: Mount Vernon Group Architects, Inc.             | PROJECT NAME: Proposed Green Meadow Elementary School |
|---------------------------------------------------------|-------------------------------------------------------|
| LGCI PROJECT NUMBER: 2201                               | PROJECT LOCATION: Maynard, MA                         |
| DATE STARTED: 2/7/24 DATE COMPLETED: 2/7/24             | EXCAVATION SUBCONTRACTOR: Saunders Construction       |
| TEST PIT LOCATION: Within proposed roadway              | EXCAVATION FOREMAN: Paul Meniates                     |
| COORDINATES: NA                                         | EXCAVATOR TYPE/MODEL: Takeuchi TB-290                 |
| SURFACE EL.: 213 ft. (see note 1) TOTAL DEPTH: 10.1 ft. | WEATHER:                                              |
| GROUNDWATER LEVELS:                                     | TEST PIT DIMENSIONS:                                  |
| $\sqrt{2}$ DURING EXCAVATION: NE                        | LOGGED BY: MBH CHECKED BY: JKW                        |
|                                                         |                                                       |

|               | ∠ AT I      | END OF EX            | (C     | AVATIO                | N:         |                   |                                                                                                      |                                                                                |  |
|---------------|-------------|----------------------|--------|-----------------------|------------|-------------------|------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|--|
| Depth<br>(ft) | El.<br>(ft) | Excavation<br>Effort | Remark | Stra                  |            | Depth<br>El.(ft.) |                                                                                                      | Material Description                                                           |  |
|               | 212.5       | E                    |        | Topsoil               | 71 1/2 1/4 | 0.5               | 0 ft 0.5 ft.: Topsoil                                                                                |                                                                                |  |
| -             |             | E<br>M               |        | Fill                  |            | 212.5             | 0.5 ft 1.5 ft.: Silty SAND (SM) organic soil, trace of roots, brown                                  | , fine to medium, 15-20% fines, 0-5% fine to coarse gravel, trace of vn, moist |  |
| 2.5           | <br>        | M                    |        |                       | .00        | 1.5<br>211.5      | 1.5 ft 5.3 ft.: Well Graded SA to coarse gravel, orange, moist                                       | ND with Silt and Gravel (SW-SM), fine to coarse, ~10% fines, 20-25% fine       |  |
| <br>          | 210.0       | E                    |        |                       |            |                   |                                                                                                      |                                                                                |  |
| 5.0           | -           | М                    |        |                       |            |                   |                                                                                                      |                                                                                |  |
|               | 207.5       | D                    |        |                       | 000        |                   | 5.3 ft 10.1 ft.: Poorly Graded SAND with Silt (SP-SM), fine to medium with trace coarse, ~15% fines, |                                                                                |  |
| <br><br>      |             | D                    |        | Sand<br>and<br>Gravel |            |                   | 0-5% fine to coarse gravel, light brown with orange stripes, moist                                   |                                                                                |  |
| 7.5           | 205.0       | V                    |        |                       |            |                   |                                                                                                      |                                                                                |  |
| 10.0          |             |                      | 1      |                       | . 0 0      | 10.1              | REMARK 1: Excavator refusal                                                                          | at depth of 10.1' on possible large boulders or rock.                          |  |
|               |             |                      |        |                       |            |                   |                                                                                                      | Backfilled test pit with excavated material and tamped in 12" lifts.           |  |

<sup>1.</sup> The ground surface elevation was interpolated to the nearest foot from Drawing EX-1 titled: "Site Survey Plan, Schematic Design, Maynard Public Schools, Green Meadow Elementary School," prepared by Samiotes Consultants, Inc., dated September 2, 2022 and provided to LGCI by Brennan via e-mail on February 1, 2024.

| Lahlaf Geotechnical Consulting, Inc.                        | TAGET OF T                                                                            |
|-------------------------------------------------------------|---------------------------------------------------------------------------------------|
|                                                             | PROJECT NAME: _Proposed Green Meadow Elementary School PROJECT LOCATION: _Maynard, MA |
| DATE STARTED: 2/7/24 DATE COMPLETED: 2/7/24                 | EXCAVATION SUBCONTRACTOR: Saunders Construction                                       |
| TEST PIT LOCATION: Within proposed roadway  COORDINATES: NA | EXCAVATION FOREMAN: Paul Meniates  EXCAVATOR TYPE/MODEL: Takeuchi TB-290              |
| SURFACE EL.: 213 ft. (see note 1) TOTAL DEPTH: 12 ft.       | WEATHER:                                                                              |
| GROUNDWATER LEVELS:                                         | TEST PIT DIMENSIONS: 12.0'x4.0'                                                       |
| ✓ DURING EXCAVATION: NE                                     | LOGGED BY: MBH CHECKED BY: JKW                                                        |
| ▼ AT END OF EXCAVATION: -                                   |                                                                                       |

|               | AT I        | END OF EX            | (C     | AVATION:        |                   |                                                                                                                                                        |
|---------------|-------------|----------------------|--------|-----------------|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|
| Depth<br>(ft) | El.<br>(ft) | Excavation<br>Effort | Remark | Strata          | Depth<br>El.(ft.) | Material Description                                                                                                                                   |
|               | 212.5       | Е                    |        | Topsoil (x1/y x | 0.6               | 0 ft 0.6 ft.: Topsoil                                                                                                                                  |
| <br>          |             | E                    |        | Fill            | 2.0               | 0.6 ft 2 ft.: Silty SAND (SM), fine to medium, 15-20% fines, 0-5% fine gravel, trace of organic soil, trace of wood, trace of roots, dark brown, moist |
| 2.5           | 210.0       | E                    |        | .0.             |                   | 2 ft 4.7 ft.: Poorly Graded SAND (SP), fine to medium, 0-5% fines, light brown with orange stripes, moist                                              |
| <br>          | <br>        | М                    |        | .00             |                   |                                                                                                                                                        |
| 5.0           | 207.5       | М                    |        | .00             |                   | 4.7 ft 12 ft.: Well Graded SAND with Silt and Gravel (SW-SM), fine to coarse, 10-15% fines, 15-20% fine to coarse gravel, 5% cobbles, orange, moist    |
| 7.5           |             | D                    |        | Sand and Gravel |                   |                                                                                                                                                        |
| <br><br>10.0  |             |                      |        | .0.             |                   |                                                                                                                                                        |
| <br>          | 202.5       | V                    |        |                 |                   |                                                                                                                                                        |
|               |             |                      |        |                 |                   | Bottom of test pit at 12.0 feet. Backfilled test pit with excavated material and tamped in 12" lifts.                                                  |

<sup>1.</sup> The ground surface elevation was interpolated to the nearest foot from Drawing EX-1 titled: "Site Survey Plan, Schematic Design, Maynard Public Schools, Green Meadow Elementary School," prepared by Samiotes Consultants, Inc., dated September 2, 2022 and provided to LGCI by Brennan via e-mail on February 1, 2024.

### Town of Maynard en Meadow Elementary School - Early ESTPRIMATEOG

Addendum **7P-7** 

PAGE 1 OF 1

| Laniar Ge                          | Laniar Geotechnical Consulting, Inc.                            |                           |                                       |                                                   |                                                                                                                                                                                                      |  |  |  |
|------------------------------------|-----------------------------------------------------------------|---------------------------|---------------------------------------|---------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| 1                                  |                                                                 | non Group A<br>IBER: 2201 |                                       | Inc.                                              | PROJECT NAME: Proposed Green Meadow Elementary School PROJECT LOCATION: Maynard, MA                                                                                                                  |  |  |  |
| TEST PITCOORDI<br>SURFAC<br>GROUND | NATES: <u>NA</u> EE EL.: <u>234</u><br>DWATER LE'<br>JRING EXCA | I: Within pro             | oposed ro                             | TE COMPLETED: 2/6/24 padway  TOTAL DEPTH: 7.5 ft. | EXCAVATION SUBCONTRACTOR: Saunders Construction  EXCAVATION FOREMAN: Paul Meniates  EXCAVATOR TYPE/MODEL: Takeuchi TB-290  WEATHER:  TEST PIT DIMENSIONS: 10.0'x4.0'  LOGGED BY: MBH CHECKED BY: JKW |  |  |  |
| Depth (ft) (ft)                    | Excavation<br>Effort                                            | Strata                    | Depth<br>El.(ft.)                     |                                                   | Material Description                                                                                                                                                                                 |  |  |  |
|                                    | Е                                                               | Topsoil :                 | 0.5                                   | 0 ft 0.5 ft.: Topsoil                             |                                                                                                                                                                                                      |  |  |  |
| 232.5                              | - E                                                             | Subsoil                   | 233.5                                 | •                                                 | SAND (SP), fine to medium, 0-5% fines, orange, moist                                                                                                                                                 |  |  |  |
| 2.5<br>                            | E M                                                             | Sand<br>and<br>Gravel     | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | to coarse subangular gravel,                      | SAND with Silt and Gravel (SP-SM), fine to medium, ~10% fines, ~15% fine 25-30% cobbles and boulders up to 4.8' in diamter, light brown, moist                                                       |  |  |  |
|                                    |                                                                 |                           |                                       | Bottom of test pit at 7.5 feet.                   | Backfilled test pit with excavated material and tamped in 12" lifts.                                                                                                                                 |  |  |  |

<sup>1.</sup> The ground surface elevation was interpolated to the nearest foot from Drawing EX-1 titled: "Site Survey Plan, Schematic Design, Maynard Public Schools, Green Meadow Elementary School," prepared by Samiotes Consultants, Inc., dated September 2, 2022 and provided to LGCI by Brennan via e-mail on February 1, 2024.

PAGE 1 OF 1

| ### CLIENT: Mount Vernon Group Architects, Inc.  ### PROJECT NAME: Proposed Green Meadow Elementary School  ### PROJECT NAME: Proposed Green Meadow Elementary School  ### PROJECT LOCATION: Maynard, MA |                                                                             |  |  |  |  |  |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|--|--|--|--|--|--|--|--|
| DATE STARTED: 2/6/24 DATE COMPLETED: 2/6/24                                                                                                                                                              | EXCAVATION SUBCONTRACTOR: Saunders Construction                             |  |  |  |  |  |  |  |  |
| TEST PIT LOCATION: Within proposed roadway                                                                                                                                                               | EXCAVATION FOREMAN: Paul Meniates                                           |  |  |  |  |  |  |  |  |
| COORDINATES: NA                                                                                                                                                                                          | EXCAVATOR TYPE/MODEL: Takeuchi TB-290                                       |  |  |  |  |  |  |  |  |
| SURFACE EL.: 227 ft. (see note 1) TOTAL DEPTH: 12 ft.                                                                                                                                                    | WEATHER:                                                                    |  |  |  |  |  |  |  |  |
| GROUNDWATER LEVELS:                                                                                                                                                                                      | TEST PIT DIMENSIONS: _9.0'x3.5'                                             |  |  |  |  |  |  |  |  |
| abla during excavation: NE                                                                                                                                                                               | LOGGED BY: MBH CHECKED BY: JKW                                              |  |  |  |  |  |  |  |  |
| ▼ AT END OF EXCAVATION:                                                                                                                                                                                  |                                                                             |  |  |  |  |  |  |  |  |
|                                                                                                                                                                                                          |                                                                             |  |  |  |  |  |  |  |  |
| EI. Excavation (ft) Effort Strata                                                                                                                                                                        | Material Description                                                        |  |  |  |  |  |  |  |  |
| Strata    Continue                                                                                                                                                                                       | material 2000 ipion                                                         |  |  |  |  |  |  |  |  |
| 0 ft 0.6 ft.: Topsoil                                                                                                                                                                                    |                                                                             |  |  |  |  |  |  |  |  |
| Topsoil 7.2264 0.6 ft 3.5 ft Poorly Grado                                                                                                                                                                |                                                                             |  |  |  |  |  |  |  |  |
|                                                                                                                                                                                                          | d SAND (SP), fine to medium, 5-10% fines, orange, moist                     |  |  |  |  |  |  |  |  |
|                                                                                                                                                                                                          |                                                                             |  |  |  |  |  |  |  |  |
| 225.0                                                                                                                                                                                                    |                                                                             |  |  |  |  |  |  |  |  |
| E Subsoil :::::                                                                                                                                                                                          |                                                                             |  |  |  |  |  |  |  |  |
| 2.5                                                                                                                                                                                                      |                                                                             |  |  |  |  |  |  |  |  |
|                                                                                                                                                                                                          |                                                                             |  |  |  |  |  |  |  |  |
| 3,5                                                                                                                                                                                                      |                                                                             |  |  |  |  |  |  |  |  |
|                                                                                                                                                                                                          | SAND with Silt and Gravel (SW-SM), fine to coarse, 10-15% fines, 10-15%     |  |  |  |  |  |  |  |  |
| fine subrouned gravel, 10%                                                                                                                                                                               | cobbles and boulders, light brown, moist                                    |  |  |  |  |  |  |  |  |
| 222.5                                                                                                                                                                                                    |                                                                             |  |  |  |  |  |  |  |  |
| 5.0                                                                                                                                                                                                      |                                                                             |  |  |  |  |  |  |  |  |
|                                                                                                                                                                                                          |                                                                             |  |  |  |  |  |  |  |  |
| +                                                                                                                                                                                                        |                                                                             |  |  |  |  |  |  |  |  |
|                                                                                                                                                                                                          |                                                                             |  |  |  |  |  |  |  |  |
|                                                                                                                                                                                                          |                                                                             |  |  |  |  |  |  |  |  |
| 220.0                                                                                                                                                                                                    |                                                                             |  |  |  |  |  |  |  |  |
| 7.5                                                                                                                                                                                                      |                                                                             |  |  |  |  |  |  |  |  |
| Sand O                                                                                                                                                                                                   |                                                                             |  |  |  |  |  |  |  |  |
| and Gravel                                                                                                                                                                                               |                                                                             |  |  |  |  |  |  |  |  |
| +                                                                                                                                                                                                        |                                                                             |  |  |  |  |  |  |  |  |
|                                                                                                                                                                                                          |                                                                             |  |  |  |  |  |  |  |  |
| 217.5                                                                                                                                                                                                    |                                                                             |  |  |  |  |  |  |  |  |
|                                                                                                                                                                                                          |                                                                             |  |  |  |  |  |  |  |  |
| 10 ft 12 ft : Silty SAND with                                                                                                                                                                            | h Gravel (SM), fine to coarse, 15-20% fines, 20-25% fine subrounded gravel, |  |  |  |  |  |  |  |  |
| 15% cobbles and boulders,                                                                                                                                                                                | brown, moist                                                                |  |  |  |  |  |  |  |  |
| - V                                                                                                                                                                                                      |                                                                             |  |  |  |  |  |  |  |  |
|                                                                                                                                                                                                          |                                                                             |  |  |  |  |  |  |  |  |
|                                                                                                                                                                                                          |                                                                             |  |  |  |  |  |  |  |  |
| 215.0 0 12.0 Bottom of test pit at 12.0 fee                                                                                                                                                              | et. Backfilled test pit with excavated material and tamped in 12" lifts.    |  |  |  |  |  |  |  |  |
|                                                                                                                                                                                                          |                                                                             |  |  |  |  |  |  |  |  |
|                                                                                                                                                                                                          |                                                                             |  |  |  |  |  |  |  |  |
|                                                                                                                                                                                                          |                                                                             |  |  |  |  |  |  |  |  |
|                                                                                                                                                                                                          |                                                                             |  |  |  |  |  |  |  |  |
|                                                                                                                                                                                                          |                                                                             |  |  |  |  |  |  |  |  |
|                                                                                                                                                                                                          |                                                                             |  |  |  |  |  |  |  |  |
|                                                                                                                                                                                                          |                                                                             |  |  |  |  |  |  |  |  |
| GENERAL COMMENTS: E = Easy, M - Moderate, D = Difficult, V =                                                                                                                                             | : Very Difficult                                                            |  |  |  |  |  |  |  |  |
| 1. The ground surface elevation was interpolated to the nearest for                                                                                                                                      | oot from Drawing EX-1 titled: "Site Survey Plan, Schematic Design, Maynard  |  |  |  |  |  |  |  |  |
| Public Schools, Green Meadow Elementary School," prepared                                                                                                                                                | by Samiotes Consultants, Inc., dated September 2, 2022 and provided to      |  |  |  |  |  |  |  |  |

LGCI by Brennan via e-mail on February 1, 2024.

| CLIENT: Mount Vernon Group Architects, Inc.  LGCI PROJECT NUMBER: 2201 | PROJECT NAME: Proposed Green Meadow Elementary School PROJECT LOCATION: Maynard, MA                                                                  |
|------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                        | PLETED: 2/7/24 EXCAVATION SUBCONTRACTOR: Saunders Construction EXCAVATION FOREMAN: Paul Meniates                                                     |
| COORDINATES: NA                                                        | EXCAVATOR TYPE/MODEL: _Takeuchi TB-290                                                                                                               |
|                                                                        | OTAL DEPTH: 7 ft. WEATHER:                                                                                                                           |
| GROUNDWATER LEVELS:                                                    | TEST PIT DIMENSIONS: _14.0'x4.0'                                                                                                                     |
| DURING EXCAVATION: 7.0 ft. / El. 212.0 ft.                             | LOGGED BY: MBH CHECKED BY: JKW                                                                                                                       |
| ▼ AT END OF EXCAVATION:                                                |                                                                                                                                                      |
|                                                                        |                                                                                                                                                      |
| El. (ft) Excavation Effort Excavation Effort El. (tr.)                 | Material Description                                                                                                                                 |
|                                                                        | 0.5 ft.: Topsoil                                                                                                                                     |
| + +                                                                    | - 2.5 ft.: Well Graded SAND with Silt and Gravel (SW-SM), fine to coarse, 10-15% fines, 15-20% coarse subrounded gravel, orange, moist               |
| 217.5 M                                                                |                                                                                                                                                      |
| 2.5 D                                                                  |                                                                                                                                                      |
| + + 0-5% fi                                                            | - 5.5 ft.: Poorly Graded SAND with Silt (SP-SM), fine to medium with trace coarse, 10-15% fines, ine to coarse subrounded gravel, light brown, moist |
| Sand on O°                                                             |                                                                                                                                                      |
| M Graver 6 C                                                           |                                                                                                                                                      |
| 5.0                                                                    |                                                                                                                                                      |
| 5.5 ft                                                                 | - 7 ft.: Silty SAND with Gravel (SM), fine to coarse, 15-20% fines, 15-20% fine to coarse gravel,                                                    |
| 212.5 V 30% cd                                                         | obbles and boulders up to 3' in diameter, brown, moist                                                                                               |
| 1 0 0 7.0 ▼ REMAI                                                      | RK 1: Refusal on possible large boulder or rock.                                                                                                     |
| Bottom                                                                 | n of test pit at 7.0 feet. Backfilled test pit with excavated material and tamped in 12" lifts.                                                      |
|                                                                        |                                                                                                                                                      |
|                                                                        |                                                                                                                                                      |
|                                                                        |                                                                                                                                                      |
|                                                                        |                                                                                                                                                      |
|                                                                        |                                                                                                                                                      |
|                                                                        |                                                                                                                                                      |
|                                                                        |                                                                                                                                                      |
|                                                                        |                                                                                                                                                      |
|                                                                        |                                                                                                                                                      |
|                                                                        |                                                                                                                                                      |
| GENERAL COMMENTS: E = Easv. M - Model                                  | rate. D = Difficult. V = Very Difficult                                                                                                              |

| TEST PIT LOCATION: Within proposed roadware COORDINATES: NA SURFACE EL.: 221 ft. (see note 1) GROUNDWATER LEVELS:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | TOTAL DEPTH: _8.5 ft.   EXCAVATOR TYPE/MODEL: _Takeuchi TB-290   WEATHER:                                                                                                                         |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ✓ DURING EXCAVATION: 8.5 ft. / El. 212.5 ✓ AT END OF EXCAVATION:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Material Description                                                                                                                                                                              |
| EI. Excavation   X   Strata   Depth   EI.(ft.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                   |
| E Topsoil 2 3 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | t 1 ft.: Topsoil                                                                                                                                                                                  |
| E Subsoil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | t 2.7 ft.: Poorly Graded SAND (SP), fine to medium, 0-5% fines, orange, moist                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ft 7.5 ft.: Poorly Graded SAND with Silt (SP-SM), fine to medium with trace coarse, 10-15% fines,<br>% fine to coarse gravel, light brown, moist                                                  |
| 5.0 - M Sand and Gravel \( \cdot \cd |                                                                                                                                                                                                   |
| fine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ft 8.5 ft.: Well Graded SAND withSilt and Gravel (SW-SM), fine to coarse, 10-15% fines, 20-25% e to coarse subrounded gravel, 25% cobbles and boulders up to 2.5' in diameter, light brown, moist |
| 212.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | MARK 1: Excavator refusal on possible boulder or rock.  ttom of test pit at 8.5 feet. Backfilled test pit with excavated material and tamped in 12" lifts.                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                   |

<sup>1.</sup> The ground surface elevation was interpolated to the nearest foot from Drawing EX-1 titled: "Site Survey Plan, Schematic Design, Maynard Public Schools, Green Meadow Elementary School," prepared by Samiotes Consultants, Inc., dated September 2, 2022 and provided to LGCI by Brennan via e-mail on February 1, 2024.

| PROJECT LOCATION: _Maynard, MA                                                                                                                                                                                                                                                         |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| EXCAVATION SUBCONTRACTOR: Saunders Construction  EXCAVATION FOREMAN: Paul Meniates  EXCAVATOR TYPE/MODEL: Takeuchi TB-290  WEATHER:  TEST PIT DIMENSIONS: 11.0'x5.0'  LOGGED BY: MBH CHECKED BY: JKW                                                                                   |
| Material Description                                                                                                                                                                                                                                                                   |
| en)                                                                                                                                                                                                                                                                                    |
| ND with Silt and Gravel (SP-SM), fine to medium, 10-15% fines, 0-5% fine points                                                                                                                                                                                                        |
| rly Graded SAND with Gravel (SP), medium to coarse with trace fine, 0-5% ubrouned gravel, orange to red with light brown stripes, moist ID with Silt and Gravel (SW-SM), fine to coarse, 5-10% fines, 20-25% fine to % cobbles and boulders up to 1.5' in diameter, light brown, moist |
| oit due to its walls caving in                                                                                                                                                                                                                                                         |
| bit due to its walls caving in.  Backfilled test pit with excavated material and tamped in 12" lifts.                                                                                                                                                                                  |
| /ery Difficult                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                        |

<sup>1.</sup> The ground surface elevation was interpolated to the nearest foot from Drawing EX-1 titled: "Site Survey Plan, Schematic Design, Maynard Public Schools, Green Meadow Elementary School," prepared by Samiotes Consultants, Inc., dated September 2, 2022 and provided to LGCI by Brennan via e-mail on February 1, 2024.

Town of Maynard Graen Meadow Elementary School - Early Eig PalateOG

Lahlaf Geotechnical Consulting, Inc.

Addendum P-12

PAGE 1 OF 1

| CLIENT: _Mount Vernon Group Architects, Inc. LGCI PROJECT NUMBER: _2201                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | PROJECT NAME: Proposed Green Meadow Elementary School PROJECT LOCATION: Maynard, MA                                                                                                                                               |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| DATE STARTED: 2/9/24 DATE COMPLETED: 2/9/24 TEST PIT LOCATION: Within proposed roadway  COORDINATES: NA SURFACE EL.: 203 ft. (see note 1) TOTAL DEPTH: 12 ft.  GROUNDWATER LEVELS:  DURING EXCAVATION: 12.0 ft. / El. 191.0 ft.  AT END OF EXCAVATION: -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | EXCAVATION SUBCONTRACTOR: Saunders Construction  EXCAVATION FOREMAN: Paul Meniates  EXCAVATOR TYPE/MODEL: Takeuchi TB-290  WEATHER:  TEST PIT DIMENSIONS: 13.0'x4.5'  LOGGED BY: MBH CHECKED BY: JKW                              |
| EI. Excavation (ft) Effort Effort Depth EI.(ft.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Material Description                                                                                                                                                                                                              |
| M Fill 10-15% fines, 20-25% mostly  M 10-15% fines, 20-25% mostly  10-15% fines, 20-25% mostly  10-15% fines, 20-25% mostly  10-15% fines, 20-25% mostly  201.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | I SAND with Silt and Gravel (SP-SM), fine to medium with trace coarse, or coarse and fine subangular gravel, light brown, moist  AND with Gravel (SW), fine to coarse, 0-5% fines, 20% cobbles and boulders to light brown, moist |
| 197.5 Sand O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                   |
| 7.5   195.0   O C   O C   O C   O C   O C   O C   O C   O C   O C   O C   O C   O C   O C   O C   O C   O C   O C   O C   O C   O C   O C   O C   O C   O C   O C   O C   O C   O C   O C   O C   O C   O C   O C   O C   O C   O C   O C   O C   O C   O C   O C   O C   O C   O C   O C   O C   O C   O C   O C   O C   O C   O C   O C   O C   O C   O C   O C   O C   O C   O C   O C   O C   O C   O C   O C   O C   O C   O C   O C   O C   O C   O C   O C   O C   O C   O C   O C   O C   O C   O C   O C   O C   O C   O C   O C   O C   O C   O C   O C   O C   O C   O C   O C   O C   O C   O C   O C   O C   O C   O C   O C   O C   O C   O C   O C   O C   O C   O C   O C   O C   O C   O C   O C   O C   O C   O C   O C   O C   O C   O C   O C   O C   O C   O C   O C   O C   O C   O C   O C   O C   O C   O C   O C   O C   O C   O C   O C   O C   O C   O C   O C   O C   O C   O C   O C   O C   O C   O C   O C   O C   O C   O C   O C   O C   O C   O C   O C   O C   O C   O C   O C   O C   O C   O C   O C   O C   O C   O C   O C   O C   O C   O C   O C   O C   O C   O C   O C   O C   O C   O C   O C   O C   O C   O C   O C   O C   O C   O C   O C   O C   O C   O C   O C   O C   O C   O C   O C   O C   O C   O C   O C   O C   O C   O C   O C   O C   O C   O C   O C   O C   O C   O C   O C   O C   O C   O C   O C   O C   O C   O C   O C   O C   O C   O C   O C   O C   O C   O C   O C   O C   O C   O C   O C   O C   O C   O C   O C   O C   O C   O C   O C   O C   O C   O C   O C   O C   O C   O C   O C   O C   O C   O C   O C   O C   O C   O C   O C   O C   O C   O C   O C   O C   O C   O C   O C   O C   O C   O C   O C   O C   O C   O C   O C   O C   O C   O C   O C   O C   O C   O C   O C   O C   O C   O C   O C   O C   O C   O C   O C   O C   O C   O C   O C   O C   O C   O C   O C   O C   O C   O C   O C   O C   O C   O C   O C   O C   O C   O C   O C   O C   O C   O C   O C   O C   O C   O C   O C   O C   O C   O C   O C   O C   O C   O C   O C   O C   O C   O C   O C   O C   O C   O C   O C   O C   O C   O C   O C   O C   O C |                                                                                                                                                                                                                                   |
| Bottom of test pit at 12.0 feet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | . Backfilled test pit with excavated material and tamped in 12" lifts.                                                                                                                                                            |

<sup>1.</sup> The ground surface elevation was interpolated to the nearest foot from Drawing EX-1 titled: "Site Survey Plan, Schematic Design, Maynard Public Schools, Green Meadow Elementary School," prepared by Samiotes Consultants, Inc., dated September 2, 2022 and provided to LGCI by Brennan via e-mail on February 1, 2024.

PAGE 1 OF 1

| Lan           | Lantar Geotecnnicar Consulting, Inc. |                      |        |               |                                       |                    |                                |                                                                                                                                      |
|---------------|--------------------------------------|----------------------|--------|---------------|---------------------------------------|--------------------|--------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|
|               |                                      |                      |        |               |                                       |                    | ic.                            | PROJECT NAME: Proposed Green Meadow Elementary School                                                                                |
| LGC           | I PRC                                | JECT NUM             | 1BE    | R: _220       | 01                                    |                    |                                | PROJECT LOCATION: Maynard, MA                                                                                                        |
| DAT           | E STA                                | ARTED: 2             | 7/2    | 24            | D                                     | ATE                | COMPLETED: 2/7/24              | EXCAVATION SUBCONTRACTOR: Saunders Construction                                                                                      |
|               |                                      | LOCATION             |        |               |                                       |                    |                                | EXCAVATION FOREMAN: Paul Meniates                                                                                                    |
| COC           | RDIN                                 | ATES: NA             | ۹ -    |               |                                       |                    |                                | EXCAVATOR TYPE/MODEL: Takeuchi TB-290                                                                                                |
| SUF           | FACE                                 | <b>EL</b> .: 218     | ft.    | (see no       | ote 1)                                |                    | TOTAL DEPTH: 12 ft.            | WEATHER:                                                                                                                             |
| GRO           | DUND                                 | WATER LE             | VΕ     | LS:           |                                       |                    |                                | TEST PIT DIMENSIONS: 10.0'X3.5'                                                                                                      |
| Ž             | Z DUF                                | RING EXCA            | VA     | TION: _       | 8.0 ft. / E                           | I. 21              | 0.0 ft.                        | LOGGED BY: MBH CHECKED BY: JKW                                                                                                       |
| Ī             | AT I                                 | END OF EX            | CA     | VATION        | N:                                    |                    |                                |                                                                                                                                      |
| Depth<br>(ft) | EI.<br>(ft)                          | Excavation<br>Effort | Remark | Strat         | ta<br>Dep<br>El.(f                    | o <u>th</u><br>t.) |                                | Material Description                                                                                                                 |
|               | 217.5                                | E                    |        | Topsoil       | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |                    | ) ft 0.5 ft.: Topsoil          |                                                                                                                                      |
|               |                                      | E                    |        | Subsoil       | 217.<br>1.0<br>217.                   |                    | 0-5% fine to coarse subrounde  | ND with Silt (SP-SM), fine to medium with trace coarse, 10-15% fines, d gravel, trace of roots, trace of organic soil, orange, moist |
|               |                                      |                      |        |               | . O.                                  |                    |                                | ND with Silt (SP-SM), fine to medium, 10-15% fines, 0-5% fine subrounded                                                             |
|               |                                      | E                    |        |               |                                       | (                  | gravel, light brown, moist     |                                                                                                                                      |
| <br>2.5       |                                      |                      |        |               | .00                                   |                    |                                |                                                                                                                                      |
| 2.0           | <br>215.0                            | E                    | -      |               | 000                                   | :                  | 2.5 ft 12 ft.: Well Graded SAI | ND with Silt and Gravel (SW-SM), fine to coarse, ~10% fines, 15-20% fine 10-15% cobbles and boulders up to 3.5' in diameter          |
| 5.0           |                                      | M                    |        |               |                                       |                    | <b>9</b> ,                     |                                                                                                                                      |
|               |                                      | IVI                  |        | and<br>Gravel | .00                                   |                    |                                |                                                                                                                                      |
| <br>7.5       |                                      |                      |        |               | 000                                   |                    |                                |                                                                                                                                      |
|               | 210.0                                |                      |        | C             | · 0 .                                 |                    |                                |                                                                                                                                      |
| <br><br>      | <u>210.0</u><br><br>                 |                      |        |               |                                       | ፟፟፟፟፟፟፟፟፟          |                                |                                                                                                                                      |
| 10.0          | 207.5                                | D                    |        |               |                                       |                    |                                |                                                                                                                                      |

#### **GENERAL COMMENTS:** E = Easy, M - Moderate, D = Difficult, V = Very Difficult

Bottom of test pit at 12.0 feet. Backfilled test pit with excavated material and tamped in 12" lifts.

<sup>1.</sup> The ground surface elevation was interpolated to the nearest foot from Drawing EX-1 titled: "Site Survey Plan, Schematic Design, Maynard Public Schools, Green Meadow Elementary School," prepared by Samiotes Consultants, Inc., dated September 2, 2022 and provided to LGCI by Brennan via e-mail on February 1, 2024.

| CLIENT: Mount Vernon Group Architects, Inc. |             |                              |        |                     |                                        |                   |                                                             | PROJECT NAME: Proposed Green Meadow Elementary School                                           |
|---------------------------------------------|-------------|------------------------------|--------|---------------------|----------------------------------------|-------------------|-------------------------------------------------------------|-------------------------------------------------------------------------------------------------|
| LG                                          | I PRC       | DJECT NUM                    | ΙB     | ER: _22             | 201                                    |                   |                                                             | PROJECT LOCATION: Maynard, MA                                                                   |
|                                             |             | ARTED: <u>2/</u><br>LOCATION |        |                     | propos                                 | _                 | E COMPLETED: 2/7/24 adway                                   | EXCAVATION SUBCONTRACTOR: Saunders Construction EXCAVATION FOREMAN: Paul Meniates               |
|                                             |             | IATES: NA                    |        |                     |                                        |                   |                                                             | EXCAVATOR TYPE/MODEL: Takeuchi TB-290                                                           |
|                                             |             | EL.: 213                     |        |                     | ote 1)                                 |                   | TOTAL DEPTH: _12 ft.                                        | WEATHER:                                                                                        |
|                                             |             | WATER LE                     |        |                     |                                        |                   |                                                             | TEST PIT DIMENSIONS: 13.0'x2.5'                                                                 |
|                                             |             | RING EXCA                    |        |                     |                                        | / El. 2           | 211.0 ft.                                                   | LOGGED BY: MBH CHECKED BY: JKW                                                                  |
| j                                           | AT I        | END OF EX                    | C      | AVATIO              | N:                                     |                   |                                                             | -                                                                                               |
| Depth<br>(ft)                               | EI.<br>(ft) | Excavation<br>Effort         | Remark | Stra                |                                        | Depth<br>El.(ft.) |                                                             | Material Description                                                                            |
|                                             | 212.5       | E                            |        | Topsoil             | \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | 0.5               | 0 ft 0.5 ft.: Topsoil                                       |                                                                                                 |
| <br><br><br>2.5                             | <br>        | - E                          |        | Subsoil             |                                        | 212.5<br><u>∇</u> | trace of roots,                                             | SAND with Silt (SP-SM), fine to medium, ~10% fines, trace of organic soil,                      |
|                                             | 210.0       | Е                            |        |                     | . 0 .                                  | 210.5             | 2.5 ft 6.5 ft.: Poorly Graded                               | SAND (SP), fine to medium with trace coarse, 0-5% fines, light brown, moist                     |
| <br><br>5.0                                 | 207.5       | - M                          |        |                     |                                        |                   |                                                             |                                                                                                 |
|                                             |             | D                            |        |                     | 000                                    |                   |                                                             |                                                                                                 |
| 7.5                                         | 205.0       | D                            |        | Sand and Gravel • ( |                                        |                   | 6.5 ft 12 ft.: Well Graded SA fine to coarse subrounded gra | AND with Silt and Gravel (SW-SM), fine to coarse, 10-15% fines, 15-20% avel, light brown, moist |
|                                             | 202.5       |                              |        |                     | · 0 .                                  |                   |                                                             |                                                                                                 |
| _                                           |             |                              |        |                     | 000                                    | 1                 |                                                             |                                                                                                 |
|                                             | -           | V                            |        |                     | . 0°                                   |                   |                                                             |                                                                                                 |
|                                             |             | -                            |        |                     | 000                                    |                   |                                                             |                                                                                                 |
|                                             |             |                              |        |                     | , 0 0                                  | 12.0              | D. II                                                       | D 150 11 12 12 13                                                                               |
|                                             |             |                              |        |                     |                                        |                   | Bottom of test pit at 12.0 feet.                            | Backfilled test pit with excavated material and tamped in 12" lifts.                            |
| GE                                          | NERA        | L COMMEN                     | ١T     | S:                  | E = E                                  | asy, M            | - Moderate, D = Difficult, V = V                            | /ery Difficult                                                                                  |

<sup>1.</sup> The ground surface elevation was interpolated to the nearest foot from Drawing EX-1 titled: "Site Survey Plan, Schematic Design, Maynard Public Schools, Green Meadow Elementary School," prepared by Samiotes Consultants, Inc., dated September 2, 2022 and provided to LGCI by Brennan via e-mail on February 1, 2024.

|                                                 | Mount Ver            |       |         |          | tects,            |                                  | PROJECT NAME: Proposed Green Meadow Elementary School                                                                                      |  |
|-------------------------------------------------|----------------------|-------|---------|----------|-------------------|----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|--|
| LGCI PRO                                        | DJECT NUM            | ИB    | ER: _22 | 201      |                   |                                  | PROJECT LOCATION: Maynard, MA                                                                                                              |  |
| DATE ST                                         | ARTED: 2             | 2/7/  | 24      |          | DAT               | TE COMPLETED: 2/7/24             | EXCAVATION SUBCONTRACTOR: Saunders Construction                                                                                            |  |
| TEST PIT                                        | LOCATION             | N:    | Within  | propos   | sed ro            | adway                            | EXCAVATION FOREMAN: Paul Meniates                                                                                                          |  |
| COORDIN                                         | NATES: N             | Α     |         |          |                   |                                  | EXCAVATOR TYPE/MODEL: Takeuchi TB-290                                                                                                      |  |
| SURFACE                                         | E EL.: 212           | 2 ft. | (see n  | ote 1)   |                   | TOTAL DEPTH: 8.5 ft.             | WEATHER:                                                                                                                                   |  |
|                                                 | WATER LE             |       |         |          |                   |                                  | TEST PIT DIMENSIONS: 11.0'x5.0'                                                                                                            |  |
|                                                 | RING EXC             |       |         |          |                   |                                  | LOGGED BY: MBH CHECKED BY: JKW                                                                                                             |  |
| ▼ AT END OF EXCAVATION:                         |                      |       |         |          |                   |                                  |                                                                                                                                            |  |
|                                                 |                      | Ι.,   |         |          |                   |                                  |                                                                                                                                            |  |
| El. (ft)                                        | Excavation<br>Effort | nar   | Stra    | ata      |                   |                                  | Material Description                                                                                                                       |  |
| ייי) ב                                          | Liloit               | Re    |         |          | Depth<br>El.(ft.) |                                  |                                                                                                                                            |  |
|                                                 | Е                    |       | Topsoil | 11 11 11 | 0.5               | 0 ft 0.5 ft.: Topsoil            |                                                                                                                                            |  |
| + -                                             |                      |       |         | 1        | 211.5             | 0.5 ft 2 ft.: Silty SAND (SM),   | fine to medium with trace coarse, 20-25% fines, 5-10% fine to coarse                                                                       |  |
| + -                                             | _                    |       |         |          |                   | gravel, trace of roots, orange,  |                                                                                                                                            |  |
| 1 -                                             | E                    |       | Subsoil |          |                   |                                  |                                                                                                                                            |  |
| 210.0                                           |                      |       |         |          | 2.0               |                                  |                                                                                                                                            |  |
|                                                 |                      |       |         | 000      |                   | 2 ft 5.5 ft.: Silty SAND (SM),   | fine to medium, ~15% fines, light brown, moist,                                                                                            |  |
| 2.5                                             |                      |       |         | .0.      |                   |                                  |                                                                                                                                            |  |
| 1 -                                             |                      |       |         | 000      |                   |                                  |                                                                                                                                            |  |
|                                                 |                      |       |         | · 0 ·    |                   |                                  |                                                                                                                                            |  |
| T                                               | М                    |       |         | 000      |                   |                                  |                                                                                                                                            |  |
| + -                                             | 1                    |       |         | . O .    |                   |                                  |                                                                                                                                            |  |
| 207.5                                           |                      |       |         | ٥٥       |                   |                                  |                                                                                                                                            |  |
| 5.0                                             |                      |       |         | .00      |                   |                                  |                                                                                                                                            |  |
|                                                 |                      |       | Sand    | . O.     |                   |                                  |                                                                                                                                            |  |
| + -                                             | М                    |       | Gravel  | 000      |                   | 5.5 ft 8.5 ft.: Well Graded SA   | AND with Silt and Gravel (SW-SM), fine to coarse, 5-10% fines, 20-25% fine                                                                 |  |
| + -                                             | IVI                  |       |         | .00      |                   | to coarse subrounded gravel,     | 5-10% cobbles and boulders up to 1.5' in diamter, brown to light brown,                                                                    |  |
| 1 -                                             |                      |       |         | 00       |                   | moist                            |                                                                                                                                            |  |
| 205.0                                           | _                    |       |         | .00      |                   |                                  |                                                                                                                                            |  |
| 7.5                                             | D                    |       |         | .00      |                   |                                  |                                                                                                                                            |  |
| 1.5                                             | 1                    |       |         | .00      |                   |                                  |                                                                                                                                            |  |
| + -                                             |                      |       |         | . O.     |                   |                                  |                                                                                                                                            |  |
|                                                 | V                    | 1     |         | 000      | 8.5               | REMARK 1: Excavator refusal      | at depth of 8.5' on possible large boulders or rock.                                                                                       |  |
|                                                 |                      |       |         |          |                   |                                  | Backfilled test pit with excavated material and tamped in 12" lifts.                                                                       |  |
|                                                 |                      |       |         |          |                   |                                  |                                                                                                                                            |  |
|                                                 |                      |       |         |          |                   |                                  |                                                                                                                                            |  |
|                                                 |                      |       |         |          |                   |                                  |                                                                                                                                            |  |
|                                                 |                      |       |         |          |                   |                                  |                                                                                                                                            |  |
|                                                 |                      |       |         |          |                   |                                  |                                                                                                                                            |  |
|                                                 |                      |       |         |          |                   |                                  |                                                                                                                                            |  |
|                                                 |                      |       |         |          |                   |                                  |                                                                                                                                            |  |
|                                                 |                      |       |         |          |                   |                                  |                                                                                                                                            |  |
|                                                 |                      |       |         |          |                   |                                  |                                                                                                                                            |  |
|                                                 |                      |       |         |          |                   |                                  |                                                                                                                                            |  |
|                                                 |                      |       |         |          |                   |                                  |                                                                                                                                            |  |
|                                                 |                      |       |         |          |                   |                                  |                                                                                                                                            |  |
|                                                 |                      |       |         |          |                   |                                  |                                                                                                                                            |  |
|                                                 |                      |       |         |          |                   |                                  |                                                                                                                                            |  |
|                                                 |                      |       |         |          |                   |                                  |                                                                                                                                            |  |
|                                                 |                      |       |         |          |                   |                                  |                                                                                                                                            |  |
|                                                 | AL COMME             |       | _       |          | •                 | - Moderate, D = Difficult, V = V | · ·                                                                                                                                        |  |
|                                                 |                      |       |         |          |                   |                                  | from Drawing EX-1 titled: "Site Survey Plan, Schematic Design, Maynard Samiotes Consultants, Inc., dated September 2, 2022 and provided to |  |
| LGCI by Brennan via e-mail on February 1, 2024. |                      |       |         |          |                   |                                  |                                                                                                                                            |  |

| CLIENT: Mount Vernon Group Architects, Inc.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | PROJECT NAME: Proposed Green Meadow Elementary School                         |  |  |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|--|--|--|--|--|
| LGCI PROJECT NUMBER: 2201                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | PROJECT LOCATION: Maynard, MA                                                 |  |  |  |  |  |
| DATE STARTED: 2/9/24 DATE COMPLETED: 2/9/24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | EXCAVATION SUBCONTRACTOR: Saunders Construction                               |  |  |  |  |  |
| TEST PIT LOCATION: Within proposed roadway                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | EXCAVATION FOREMAN: Paul Meniates                                             |  |  |  |  |  |
| COORDINATES: NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | EXCAVATOR TYPE/MODEL: Takeuchi TB-290                                         |  |  |  |  |  |
| SURFACE EL.: 213 ft. (see note 1) TOTAL DEPTH: 9 ft.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | WEATHER:                                                                      |  |  |  |  |  |
| GROUNDWATER LEVELS:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | TEST PIT DIMENSIONS: 9.5'x2.5'                                                |  |  |  |  |  |
| $\overline{igspace}$ DURING EXCAVATION:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | LOGGED BY: MBH CHECKED BY: SG                                                 |  |  |  |  |  |
| ▼ AT END OF EXCAVATION:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | _                                                                             |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                               |  |  |  |  |  |
| EL. (ft) Excavation (ft) Excav | Material Description                                                          |  |  |  |  |  |
| (ft) Effort   Depth   El.(ft.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                               |  |  |  |  |  |
| 212.5 E Topsoil 3.4 A 0.3 0 ft 0.3 ft.: Topsoil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                               |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | with Silt (SP-SM), mostly fine with trace coarse and medium, 45% fines, trace |  |  |  |  |  |
| of organic soil, trace of roots,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | orange, moist                                                                 |  |  |  |  |  |
| E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                               |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                               |  |  |  |  |  |
| , † 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                               |  |  |  |  |  |
| 2.5   Subsoil 2.5 ft 4.7 ft.: Silty SAND with                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | h Gravel (SM), fine to medium with trace coarse, ~20% fines, ~15% fine to     |  |  |  |  |  |
| coarse subangular gravel, trac                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ce of roots, brown to orange, moist                                           |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                               |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                               |  |  |  |  |  |
| † † <sup>***</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                               |  |  |  |  |  |
| 4.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                               |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Gravel (SM), fine to coarse, 20-25% fines, 20-25% fine to coarse subangular   |  |  |  |  |  |
| gravel, 25% cobbles and boul                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ders up to 3' in diamter, light brown to orange, moist                        |  |  |  |  |  |
| ° o d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                               |  |  |  |  |  |
| + - D     % O°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                               |  |  |  |  |  |
| Cond                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                               |  |  |  |  |  |
| Sand and Oravel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                               |  |  |  |  |  |
| 7.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                               |  |  |  |  |  |
| 205.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                               |  |  |  |  |  |
| V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                               |  |  |  |  |  |
| + -       • • - +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                               |  |  |  |  |  |
| 1 ° ° ° 9.0 REMARK 1: Excavator refusa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | l at depth of 9' on possible large boulder or rock.                           |  |  |  |  |  |
| Bottom of test pit at 9.0 feet. I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Backfilled test pit with excavated material and tamped in 12" lifts.          |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                               |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                               |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                               |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                               |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                               |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                               |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                               |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                               |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                               |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                               |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                               |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                               |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                               |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                               |  |  |  |  |  |
| GENERAL COMMENTS: E = Easy, M - Moderate, D = Difficult, V = V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                               |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | t from Drawing EX-1 titled: "Site Survey Plan, Schematic Design, Maynard      |  |  |  |  |  |
| LGCI by Brennan via e-mail on February 1, 2024.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | y Samiotes Consultants, Inc., dated September 2, 2022 and provided to         |  |  |  |  |  |
| LOGI by Diefilian via e-mail on February 1, 2024.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                               |  |  |  |  |  |

Addendqnp218B

| CLIENT: Mount Vernon Group Architects, Inc.  LGCI PROJECT NUMBER: 2201                                                                                                                                                           | PROJECT NAME: Proposed Green Meadow Elementary School PROJECT LOCATION: Maynard, MA                                                                                                                 |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| DATE STARTED: 2/9/24 DATE COMPLETED: 2/9/24 TEST PIT LOCATION: Within proposed roadway  COORDINATES: NA SURFACE EL.: 213 ft. (see note 1) TOTAL DEPTH: 10 ft.  GROUNDWATER LEVELS:  DURING EXCAVATION: NE  AT END OF EXCAVATION: | EXCAVATION SUBCONTRACTOR: Saunders Construction  EXCAVATION FOREMAN: Paul Meniates  EXCAVATOR TYPE/MODEL: Takeuchi TB-290  WEATHER:  TEST PIT DIMENSIONS: 10.0'x4.0'  LOGGED BY: MBH CHECKED BY: SG |  |
| EL. (ft) Excavation (ft) Strata Depth EI.(ft.)                                                                                                                                                                                   | Material Description                                                                                                                                                                                |  |
| F Torseil 0 ft 0.5 ft.: Topsoil                                                                                                                                                                                                  |                                                                                                                                                                                                     |  |
| [212.5]                                                                                                                                                                                                                          | Gravel (SM), fine to medium, 15-20% fines, 10-15% fine to coarse noist                                                                                                                              |  |
| 2.5 — M 210.0                                                                                                                                                                                                                    |                                                                                                                                                                                                     |  |
| M 210.0 3 ft 10 ft.: Well Graded SA coarse subrounded gravel, 1                                                                                                                                                                  | ND with Silt and Gravel (SW-SM), fine to coarse, 5-10% fines, 15-20% fine to 5% cobbles and boulders up to 2.5' in diameter, orange, moist                                                          |  |
| 5.0                                                                                                                                                                                                                              |                                                                                                                                                                                                     |  |
| 7.5 205.0                                                                                                                                                                                                                        | al at donth of 10' on possible large boulder or rock                                                                                                                                                |  |
| TEMARK 1: Excavator relas                                                                                                                                                                                                        | al at depth of 10' on possible large boulder or rock. t. Backfilled test pit with excavated material and tamped in 12" lifts.                                                                       |  |
| Dottom of test pit at 10.0 fee                                                                                                                                                                                                   | a. Daditimed test pit with excavated material and tamped in 12 lines.                                                                                                                               |  |
| GENERAL COMMENTS: E = Easy. M - Moderate, D = Difficult, V =                                                                                                                                                                     | Very Difficult                                                                                                                                                                                      |  |

Lahlaf Geotechnical Consulting, Inc.

Addendum TP-19

PAGE 1 OF 1

|                          |                                  |                                                            |                      | on Group Arch<br>BER: 2201                             | tects,            |                                                                                        | PROJECT NAME: Proposed Green Meadow Elementary School PROJECT LOCATION: Maynard, MA                                                                                                                |
|--------------------------|----------------------------------|------------------------------------------------------------|----------------------|--------------------------------------------------------|-------------------|----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| TES<br>COC<br>SUR<br>GRC | T PIT<br>ORDIN<br>EFACE<br>OUND! | IATES: <u>N/</u> EEL.: <u>209</u><br>WATER LE<br>RING EXCA | N:<br>A<br>ft.<br>VE | Within propo                                           | sed ro            | re COMPLETED: 2/9/24 adway  TOTAL DEPTH: 12 ft.                                        | EXCAVATION SUBCONTRACTOR: Saunders Construction  EXCAVATION FOREMAN: Paul Meniates  EXCAVATOR TYPE/MODEL: Takeuchi TB-290  WEATHER:  TEST PIT DIMENSIONS: 8.0'x3.0'  LOGGED BY: MBH CHECKED BY: SG |
| Depth<br>(ft)            | El.<br>(ft)                      | Excavation<br>Effort                                       | Remark               | Strata                                                 | Depth<br>El.(ft.) |                                                                                        | Material Description                                                                                                                                                                               |
|                          | 207.5                            | M<br>E                                                     |                      | Topsoil 1/2 3 1/2 3                                    | 1.0 208.0         | 0 ft 1 ft.: Topsoil  1 ft 2.3 ft.: Poorly Graded SA gravel, trace of organic soil, tra | ND with Silt (SP-SM), fine to medium, 15-20% fines, 0-5% fine subangular ce of roots, orange, moist                                                                                                |
| 5.0<br><br><br>7.5       |                                  | E                                                          |                      | Subsoil  23 206.7  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |                   | brown, moist                                                                           | AND with Silt (SP-SM), fine to medium with trace coarse, 5-10% fines, light  Backfilled test pit with excavated material and tamped in 12" lifts.                                                  |
|                          |                                  |                                                            |                      |                                                        |                   |                                                                                        |                                                                                                                                                                                                    |

<sup>1.</sup> The ground surface elevation was interpolated to the nearest foot from Drawing EX-1 titled: "Site Survey Plan, Schematic Design, Maynard Public Schools, Green Meadow Elementary School," prepared by Samiotes Consultants, Inc., dated September 2, 2022 and provided to LGCI by Brennan via e-mail on February 1, 2024.

| CLIENT: Mount Vernon Group Architects, Inc.  LGCI PROJECT NUMBER: 2201                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | PROJECT NAME: Proposed Green Meadow Elementary School PROJECT LOCATION: Maynard, MA                                                                                                                 |  |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| DATE STARTED: 2/8/24 DATE COMPLETED: 2/8/24  TEST PIT LOCATION: East of proposed building  COORDINATES: NA  SURFACE EL.: 202 ft. (see note 1) TOTAL DEPTH: 12 ft.  GROUNDWATER LEVELS:  V DURING EXCAVATION: 2.5 ft. / El. 199.5 ft.  AT END OF EXCAVATION: -                                                                                                                                                                                                                                                                                                                                                                                                                                          | EXCAVATION SUBCONTRACTOR: Saunders Construction  EXCAVATION FOREMAN: Paul Meniates  EXCAVATOR TYPE/MODEL: Takeuchi TB-290  WEATHER:  TEST PIT DIMENSIONS: 12.0'x4.0'  LOGGED BY: MBH CHECKED BY: SG |  |  |  |  |
| EI. (ft) Excavation Effort Strata  Depth EI.(ft.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Material Description                                                                                                                                                                                |  |  |  |  |
| D Topsoil  Topsoil  Off 0.8 ft.: Topsoil | , fine to medium, 25-30% fines, 0-5% fine subrounded gravel, trace of rk brown to black, moist                                                                                                      |  |  |  |  |
| E 3.5 ft 4 ft.: Poorly Graded S 10-15% fines, light brown, mo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | AND with Silt and Gravel (SP-SM), fine to medium with trace coarse, ist, fine to medium with trace coarse, 20-25% fines, light brown, moist                                                         |  |  |  |  |
| + +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | AND (SW), fine to coarse, 0-5% fines, 5-10% fine subrounded gravel, brown                                                                                                                           |  |  |  |  |
| Bottom of test pit at 12.0 feet.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Backfilled test pit with excavated material and tamped in 12" lifts.                                                                                                                                |  |  |  |  |
| GENERAL COMMENTS: E = Easy, M - Moderate, D = Difficult, V = Very Difficult                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                     |  |  |  |  |

<sup>1.</sup> The ground surface elevation was interpolated to the nearest foot from Drawing EX-1 titled: "Site Survey Plan, Schematic Design, Maynard Public Schools, Green Meadow Elementary School," prepared by Samiotes Consultants, Inc., dated September 2, 2022 and provided to LGCI by Brennan via e-mail on February 1, 2024.

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | PROJECT NAME: Proposed Green Meadow Elementary School PROJECT LOCATION: Maynard, MA                                                                                                                 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| DATE STARTED: 2/8/24 DATE COMPLETED: 2/8/24  TEST PIT LOCATION: East of proposed building  COORDINATES: NA  SURFACE EL.: 202 ft. (see note 1) TOTAL DEPTH: 12 ft.  GROUNDWATER LEVELS:  DURING EXCAVATION: -  AT END OF EXCAVATION: -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | EXCAVATION SUBCONTRACTOR: Saunders Construction  EXCAVATION FOREMAN: Paul Meniates  EXCAVATOR TYPE/MODEL: Takeuchi TB-290  WEATHER:  TEST PIT DIMENSIONS: 11.0'x4.0'  LOGGED BY: MBH CHECKED BY: SG |
| El. (ft) Excavation (ft) Effort (ft) Strata (ft) Excavation (f | Material Description                                                                                                                                                                                |
| Topsoil  Topsoil  Topsoil  Topsoil  Topsoil  Topsoil  Topsoil  Topsoil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | D with Silt (SP-SM), fine to medium, 10-15% fines, orange to light brown,                                                                                                                           |
| Urganic 3.5 moist                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | fine to medium, 25-30% fines, trace of organic soil, dark brown to black,                                                                                                                           |
| 3.5 ft 7 ft.: Poorly Graded SA fine to coarse subrounded grav                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ND with Silt (SP-SM), fine to medium with trace coarse, ~10% fines, 0-5% el, light brown, moist                                                                                                     |
| 7.5 7 ft 12 ft.: Sandy SILT (ML), s grey, moist                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | slightly to moderately plastic, 30-35% fine to medium sand, light brown to                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Backfilled test pit with excavated material and tamped in 12" lifts.                                                                                                                                |

<sup>1.</sup> The ground surface elevation was interpolated to the nearest foot from Drawing EX-1 titled: "Site Survey Plan, Schematic Design, Maynard Public Schools, Green Meadow Elementary School," prepared by Samiotes Consultants, Inc., dated September 2, 2022 and provided to LGCI by Brennan via e-mail on February 1, 2024.

Town of Maynard

Green Meadow Elementary School - Early EST PRINGEOG

Lahlaf Geotechnical Consulting, Inc.

Addendum P-23

|                                            |                                                                                           |          |         |                       |        | tects,            |                                                                                                                                                  | PROJECT NAME: Proposed Green Meadow Elementary School                              |  |  |  |  |  |
|--------------------------------------------|-------------------------------------------------------------------------------------------|----------|---------|-----------------------|--------|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|--|--|--|--|--|
|                                            |                                                                                           |          |         |                       | 201    |                   |                                                                                                                                                  | PROJECT LOCATION: Maynard, MA                                                      |  |  |  |  |  |
| TES                                        | DATE STARTED: 2/8/24 DATE COMPLETED: 2/8/24  FEST PIT LOCATION: East of proposed building |          |         |                       |        |                   |                                                                                                                                                  | EXCAVATION SUBCONTRACTOR: Saunders Construction  EXCAVATION FOREMAN: Paul Meniates |  |  |  |  |  |
| COORDINATES: NA                            |                                                                                           |          |         |                       |        |                   |                                                                                                                                                  | EXCAVATOR TYPE/MODEL: _Takeuchi TB-290                                             |  |  |  |  |  |
|                                            |                                                                                           |          |         |                       |        |                   | TOTAL DEPTH: _12 ft                                                                                                                              | WEATHER:                                                                           |  |  |  |  |  |
| GROUNDWATER LEVELS:                        |                                                                                           |          |         |                       |        |                   |                                                                                                                                                  | TEST PIT DIMENSIONS: 12.0'x4.0'                                                    |  |  |  |  |  |
| $\overline{igspace}$ during excavation: NE |                                                                                           |          |         |                       |        |                   |                                                                                                                                                  | LOGGED BY: MBH CHECKED BY: SG                                                      |  |  |  |  |  |
| ▼ AT END OF EXCAVATION:                    |                                                                                           |          |         |                       |        |                   |                                                                                                                                                  |                                                                                    |  |  |  |  |  |
| El. Excavation Effort Strata               |                                                                                           |          |         | Stra                  |        | Denth             |                                                                                                                                                  | Material Description                                                               |  |  |  |  |  |
|                                            |                                                                                           |          | ď       |                       | 141/11 | Depth<br>El.(ft.) | 0.5 0.0 5 Tanasil                                                                                                                                |                                                                                    |  |  |  |  |  |
| _                                          |                                                                                           | E        |         | Topsoil 1/2 1/2       |        | 0.8               | 0 ft 0.8 ft.: Topsoil                                                                                                                            |                                                                                    |  |  |  |  |  |
| _                                          |                                                                                           | Е        |         | Fill                  |        | 199.2             | to coarse subangular gravel, tra                                                                                                                 | ~                                                                                  |  |  |  |  |  |
| _                                          |                                                                                           | E        |         |                       |        | 198.5             | dark brown, moist                                                                                                                                | ND with Gravel (SP), coare, 0-5% fines, 30-35% fine subrounded gravel,             |  |  |  |  |  |
| 2.5_                                       | 197.5                                                                                     | E        |         | Subsoil               |        | 3.0               | 2 ft 3 ft.: Poorly Graded SAND with Silt (SP-SM), fine to medium with trace coarse, 5-10% fines, 0-5% fine subrounded gravel, light brown, moist |                                                                                    |  |  |  |  |  |
| _                                          |                                                                                           |          |         |                       | .00    | 197.0             | 3 ft 12 ft.: Poorly Graded SAN                                                                                                                   | ND with Silt (SP-SM), fine to medium, ~10% fines, light brown, moist               |  |  |  |  |  |
| _                                          |                                                                                           | Е        | 1       |                       | 000    |                   | REMARK 1: Infiltrometer test                                                                                                                     | performed at depth of 4'.                                                          |  |  |  |  |  |
| -<br>5.0                                   | <br>195.0                                                                                 |          |         |                       | 000    |                   |                                                                                                                                                  |                                                                                    |  |  |  |  |  |
| _                                          |                                                                                           |          |         |                       | .00    |                   |                                                                                                                                                  |                                                                                    |  |  |  |  |  |
| _                                          |                                                                                           |          |         |                       | .00    |                   |                                                                                                                                                  |                                                                                    |  |  |  |  |  |
| _                                          |                                                                                           |          |         |                       | .000   |                   |                                                                                                                                                  |                                                                                    |  |  |  |  |  |
| 7.5_                                       | 192.5                                                                                     |          |         | Sand<br>and<br>Gravel |        |                   |                                                                                                                                                  |                                                                                    |  |  |  |  |  |
| _                                          |                                                                                           | М        |         | Giavei                | .00    |                   |                                                                                                                                                  |                                                                                    |  |  |  |  |  |
| _                                          |                                                                                           | IVI      |         |                       | .00    |                   |                                                                                                                                                  |                                                                                    |  |  |  |  |  |
| _<br>10.0                                  | <br>190.0                                                                                 |          |         |                       | .00    |                   |                                                                                                                                                  |                                                                                    |  |  |  |  |  |
| -                                          |                                                                                           | •        |         |                       | 000    |                   |                                                                                                                                                  |                                                                                    |  |  |  |  |  |
| -                                          |                                                                                           |          |         |                       | . 0 0  |                   |                                                                                                                                                  |                                                                                    |  |  |  |  |  |
| _                                          |                                                                                           |          |         |                       | , 0    |                   |                                                                                                                                                  |                                                                                    |  |  |  |  |  |
|                                            | _                                                                                         |          |         |                       | 000    |                   |                                                                                                                                                  |                                                                                    |  |  |  |  |  |
|                                            |                                                                                           |          |         |                       | · 0.   | 12.0              |                                                                                                                                                  |                                                                                    |  |  |  |  |  |
|                                            |                                                                                           |          |         |                       | *      |                   |                                                                                                                                                  |                                                                                    |  |  |  |  |  |
|                                            |                                                                                           |          |         |                       |        |                   |                                                                                                                                                  |                                                                                    |  |  |  |  |  |
|                                            |                                                                                           |          |         |                       |        |                   | Bottom of test pit at 12.0 feet. E                                                                                                               | Backfilled test pit with excavated material and tamped in 12" lifts.               |  |  |  |  |  |
| GE                                         | NERA                                                                                      | L COMMEN | L<br>NT | 'S:                   | E = Ea | asy. M            | - Moderate, D = Difficult, V = Ve                                                                                                                | erv Difficult                                                                      |  |  |  |  |  |

<sup>1.</sup> The ground surface elevation was interpolated to the nearest foot from Drawing EX-1 titled: "Site Survey Plan, Schematic Design, Maynard Public Schools, Green Meadow Elementary School," prepared by Samiotes Consultants, Inc., dated September 2, 2022 and provided to LGCI by Brennan via e-mail on February 1, 2024.

| Elementary School                 |
|-----------------------------------|
| -290 CHECKED BY: SG               |
|                                   |
|                                   |
| edium with trace coarse,<br>moist |
| edium, 10-15% fines, 15-20%       |
| Januari, 10-10 % iiile3, 10-20 %  |
| 5% fines, 15-20% fine to          |
|                                   |
|                                   |
| tamped in 12" lifts.              |
|                                   |
| tampe                             |

<sup>1.</sup> The ground surface elevation was interpolated to the nearest foot from Drawing EX-1 titled: "Site Survey Plan, Schematic Design, Maynard Public Schools, Green Meadow Elementary School," prepared by Samiotes Consultants, Inc., dated September 2, 2022 and provided to LGCI by Brennan via e-mail on February 1, 2024.

Appendix C – Results of Double Ring Infiltrometer Tests

## **Double Ring Infiltrometer Test**

Project: Name: Prop. Green Meadow Elem. School

Location: Maynard, MA

LGCI Project Number: 2201

Test Location: TP-23

Test Procedure: General accordance with ASTM D 3385

**Test Date** 2/8/2024

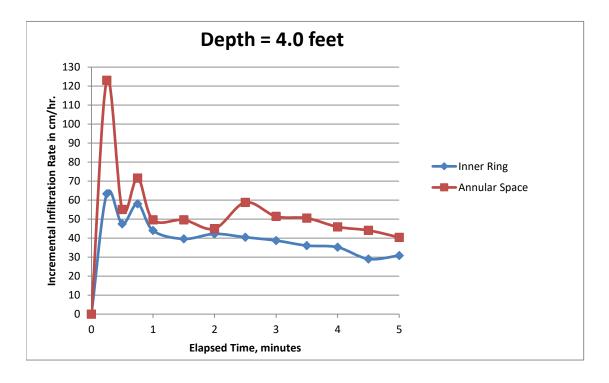
LGCI Representative: OIL

Weather Conditions:

Test Depth: 4.0 feet

Groundwater Depth: NE

Soil Stratum:


Poorly Graded SAND with Silt (SP-SM), mostly fine with trace

medium to coarse, 10% fines

Inner Annular Ring Space Area (sq. cm) 730 2189 Depth Driven (in) 3 3 Water Depth (in) 3 3 Mariotte tube (cc/div.) 53.52 167.53

|              | Time      |         | Inner Ring |              | Annular Space |        |          |
|--------------|-----------|---------|------------|--------------|---------------|--------|----------|
| Elapsed Time | Increment |         |            | Infiltration | Infiltration  |        |          |
|              | morement  | Reading | Volume     | Rate         | Reading       | Volume | Rate     |
| (min)        | (min)     | (div)   | (cc)       | (cm/hr.)     | (div)         | (cc)   | (cm/hr.) |
| 0            | 0         | 58.2    | 0          | 0            | 58.3          | 0      | 0        |
| 0.25         | 0.25      | 54.6    | 193        | 63.3         | 51.6          | 1122   | 123.1    |
| 0.5          | 0.25      | 51.9    | 145        | 47.5         | 48.6          | 503    | 55.1     |
| 0.75         | 0.25      | 48.6    | 177        | 58.1         | 44.7          | 653    | 71.6     |
| 1            | 0.25      | 46.1    | 134        | 44.0         | 42.0          | 452    | 49.6     |
| 1.5          | 0.5       | 41.6    | 241        | 39.6         | 36.6          | 905    | 49.6     |
| 2            | 0.5       | 36.8    | 257        | 42.2         | 31.7          | 821    | 45.0     |
| 2.5          | 0.5       | 32.2    | 246        | 40.5         | 25.3          | 1072   | 58.8     |
| 3            | 0.5       | 27.8    | 235        | 38.7         | 19.7          | 938    | 51.4     |
| 3.5          | 0.5       | 23.7    | 219        | 36.1         | 14.2          | 921    | 50.5     |
| 4            | 0.5       | 19.7    | 214        | 35.2         | 9.2           | 838    | 45.9     |
| 4.5          | 0.5       | 16.4    | 177        | 29.0         | 4.4           | 804    | 44.1     |
| 5            | 0.5       | 12.9    | 187        | 30.8         | 0.0           | 737    | 40.4     |
|              |           |         |            |              |               |        |          |
|              |           |         |            |              |               |        |          |
|              |           |         |            |              |               |        |          |
|              |           |         |            |              |               |        |          |
|              |           |         |            |              |               |        |          |
|              |           |         |            |              |               |        |          |
|              |           |         |            |              |               |        |          |

Notes:



K = 8.3E-03 cm/sec.

### **Double Ring Infiltrometer Test**

Project: Name: Prop. Green Meadow Elem. School

Location: Maynard, MA

LGCI Project Number: 2201

Test Location: TP-26

Test Procedure: General accordance with ASTM D 3385

**Test Date** 2/8/2024

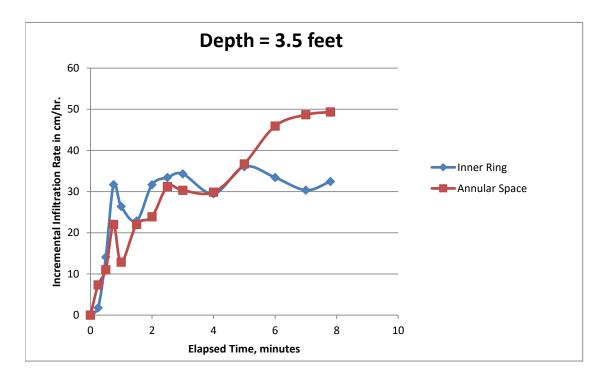
LGCI Representative: OIL

Weather Conditions:

Test Depth: 3.5 feet

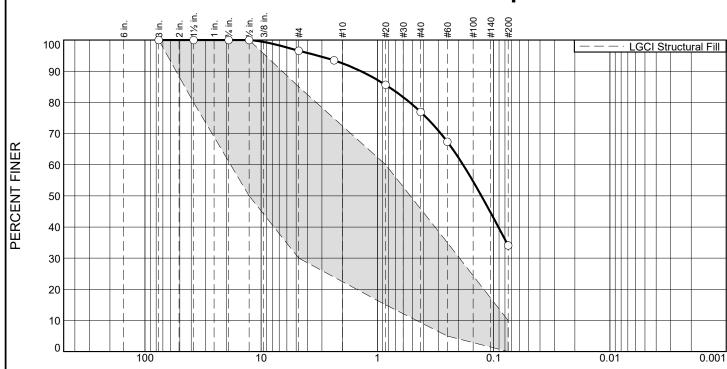
Groundwater Depth: NE

Soil Stratum:


Poorly Graded SAND with Silt (SP-SM), fine to medium with trace

coarse, 5-10% fines, 10% fine subangular gravel

Inner Annular Ring Space Area (sq. cm) 730 2189 Depth Driven (in) 3 3 Water Depth (in) 3 3 Mariotte tube (cc/div.) 53.52 167.53


|              | Time      |         | Inner Ring |              | Annular Space |        |          |
|--------------|-----------|---------|------------|--------------|---------------|--------|----------|
| Elapsed Time | Increment |         |            | Infiltration | Infiltration  |        |          |
|              | morement  | Reading | Volume     | Rate         | Reading       | Volume | Rate     |
| (min)        | (min)     | (div)   | (cc)       | (cm/hr.)     | (div)         | (cc)   | (cm/hr.) |
| 0            | 0         | 58.3    | 0          | 0            | 58.3          | 0      | 0        |
| 0.25         | 0.25      | 58.2    | 5          | 1.8          | 57.9          | 67     | 7.3      |
| 0.5          | 0.25      | 57.4    | 43         | 14.1         | 57.3          | 101    | 11.0     |
| 0.75         | 0.25      | 55.6    | 96         | 31.7         | 56.1          | 201    | 22.0     |
| 1            | 0.25      | 54.1    | 80         | 26.4         | 55.4          | 117    | 12.9     |
| 1.5          | 0.5       | 51.5    | 139        | 22.9         | 53.0          | 402    | 22.0     |
| 2            | 0.5       | 47.9    | 193        | 31.7         | 50.4          | 436    | 23.9     |
| 2.5          | 0.5       | 44.1    | 203        | 33.4         | 47.0          | 570    | 31.2     |
| 3            | 0.5       | 40.2    | 209        | 34.3         | 43.7          | 553    | 30.3     |
| 4            | 1         | 33.5    | 359        | 29.5         | 37.2          | 1089   | 29.8     |
| 5            | 1         | 25.3    | 439        | 36.1         | 29.2          | 1340   | 36.7     |
| 6            | 1         | 17.7    | 407        | 33.4         | 19.2          | 1675   | 45.9     |
| 7            | 1         | 10.8    | 369        | 30.4         | 8.6           | 1776   | 48.7     |
| 7.8          | 0.8       | 4.9     | 316        | 32.4         | 0.0           | 1441   | 49.4     |
|              |           |         |            |              |               |        |          |
|              |           |         |            |              |               |        |          |
|              |           |         |            |              |               |        |          |
|              |           |         |            |              |               |        |          |
|              |           |         |            |              |               |        |          |
|              |           |         |            |              |               |        |          |
|              |           |         |            |              |               |        |          |

Notes:



K = 8.9E-03 cm/sec.

**Appendix D – Laboratory Test Results** 



GRAIN SIZE - mm.

|   | 9/ ±2"       | % G    | ravel |        | % Sand | l    | % Fines |      |
|---|--------------|--------|-------|--------|--------|------|---------|------|
| ı | % <b>+3"</b> | Coarse | Fine  | Coarse | Medium | Fine | Silt    | Clay |
| ı | 0.0          | 0.0    | 3.4   | 4.1    | 15.6   | 42.8 | 34.1    |      |

|         | TEST R  | ESULTS       |          |
|---------|---------|--------------|----------|
| Opening | Percent | Spec.*       | Pass?    |
| Size    | Finer   | (Percent)    | (X=Fail) |
| 3"      | 100.0   | 100.0        |          |
| 1.5"    | 100.0   | 80.0 - 100.0 |          |
| 0.75"   | 100.0   |              |          |
| 0.5"    | 100.0   | 50.0 - 100.0 |          |
| #4      | 96.6    | 30.0 - 85.0  | X        |
| #8      | 93.5    |              |          |
| #20     | 85.6    | 15.0 - 60.0  | X        |
| #40     | 76.9    |              |          |
| #60     | 67.4    | 5.0 - 35.0   | X        |
| #200    | 34.1    | 0.0 - 10.0   | X        |
|         |         |              |          |
|         |         |              |          |
|         |         |              |          |
|         |         |              |          |
|         |         |              |          |
|         |         |              |          |
|         |         |              |          |
|         |         |              |          |
|         |         |              |          |
|         |         |              |          |
|         |         | 1            |          |

#### **Material Description**

ASTM (D 2488) Classification: Silty SAND (SM), fine to medium, 30-35% fines, 0-5% fine subangular gravel, trace of organic soil, light brown

#### **Atterberg Limits (ASTM D 4318)**

PL= LL= PI=

USCS (D 2487)= Classification
AASHTO (M 145)=

Coefficients

D<sub>90</sub>= 1.3826 D<sub>50</sub>= 0.1273 D<sub>10</sub>= 0.1273 D<sub>10</sub>= 0.1833 D<sub>15</sub>= 0.8015 D<sub>15</sub>= 0.1833 D<sub>15</sub>= 0.15= 0.15= 0.15= 0.15= 0.15= 0.15= 0.15= 0.15= 0.15= 0.15= 0.15= 0.15= 0.15= 0.15= 0.15= 0.15= 0.15= 0.15= 0.15= 0.15= 0.15= 0.15= 0.15= 0.15= 0.15= 0.15= 0.15= 0.15= 0.15= 0.15= 0.15= 0.15= 0.15= 0.15= 0.15= 0.15= 0.15= 0.15= 0.15= 0.15= 0.15= 0.15= 0.15= 0.15= 0.15= 0.15= 0.15= 0.15= 0.15= 0.15= 0.15= 0.15= 0.15= 0.15= 0.15= 0.15= 0.15= 0.15= 0.15= 0.15= 0.15= 0.15= 0.15= 0.15= 0.15= 0.15= 0.15= 0.15= 0.15= 0.15= 0.15= 0.15= 0.15= 0.15= 0.15= 0.15= 0.15= 0.15= 0.15= 0.15= 0.15= 0.15= 0.15= 0.15= 0.15= 0.15= 0.15= 0.15= 0.15= 0.15= 0.15= 0.15= 0.15= 0.15= 0.15= 0.15= 0.15= 0.15= 0.15= 0.15= 0.15= 0.15= 0.15= 0.15= 0.15= 0.15= 0.15= 0.15= 0.15= 0.15= 0.15= 0.15= 0.15= 0.15= 0.15= 0.15= 0.15= 0.15= 0.15= 0.15= 0.15= 0.15= 0.15= 0.15= 0.15= 0.15= 0.15= 0.15= 0.15= 0.15= 0.15= 0.15= 0.15= 0.15= 0.15= 0.15= 0.15= 0.15= 0.15= 0.15= 0.15= 0.15= 0.15= 0.15= 0.15= 0.15= 0.15= 0.15= 0.15= 0.15= 0.15= 0.15= 0.15= 0.15= 0.15= 0.15= 0.15= 0.15= 0.15= 0.15= 0.15= 0.15= 0.15= 0.15= 0.15= 0.15= 0.15= 0.15= 0.15= 0.15= 0.15= 0.15= 0.15= 0.15= 0.15= 0.15= 0.15= 0.15= 0.15= 0.15= 0.15= 0.15= 0.15= 0.15= 0.15= 0.15= 0.15= 0.15= 0.15= 0.15= 0.15= 0.15= 0.15= 0.15= 0.15= 0.15= 0.15= 0.15= 0.15= 0.15= 0.15= 0.15= 0.15= 0.15= 0.15= 0.15= 0.15= 0.15= 0.15= 0.15= 0.15= 0.15= 0.15= 0.15= 0.15= 0.15= 0.15= 0.15= 0.15= 0.15= 0.15= 0.15= 0.15= 0.15= 0.15= 0.15= 0.15= 0.15= 0.15= 0.15= 0.15= 0.15= 0.15= 0.15= 0.15= 0.15= 0.15= 0.15= 0.15= 0.15= 0.15= 0.15= 0.15= 0.15= 0.15= 0.15= 0.15= 0.15= 0.15= 0.15= 0.15= 0.15= 0.15= 0.15= 0.15= 0.15= 0.15= 0.15= 0.15= 0.15= 0.15= 0.15= 0.15= 0.15= 0.15= 0.15= 0.15= 0.15= 0.15= 0.15= 0.15= 0.15= 0.15= 0.15= 0.15= 0.15= 0.15= 0.15= 0.15= 0.15= 0.15= 0.15= 0.15= 0.15= 0.15= 0.15= 0.15= 0.15= 0.15= 0.15= 0.15= 0.15= 0.15= 0.15= 0.15= 0.15= 0.15= 0.15= 0.15= 0.15= 0.15= 0.15= 0.15= 0.15= 0.15= 0.15= 0.15= 0.15= 0.15= 0.15= 0.15= 0.15= 0.15= 0.15= 0.15= 0.15= 0.15= 0.15= 0.15= 0.15= 0.15= 0.15= 0.15= 0.15= 0.15=

Remarks

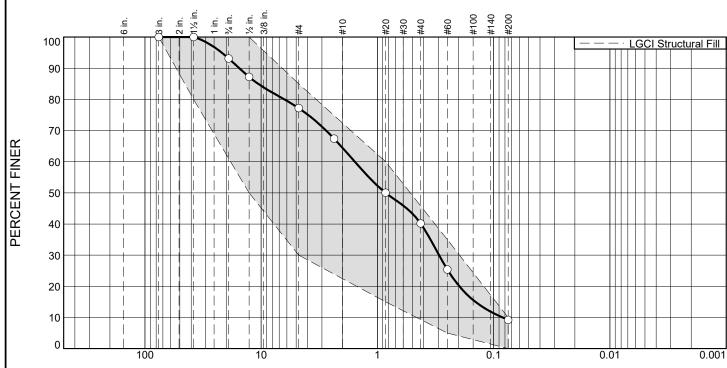
Subsoil sample.

**Date Sampled:** 01/28/2022

Tested By: LB

Checked By: OIL

LGCI Structural Fill


**Location:** Boring B-7 **Sample Number:** S2 Top 13"

**Depth:** 2'-4'

Client: Mount Vernon Group Architects, Inc.

Project: Proposed Green Meadow Elementary School, Maynard, MA





GRAIN SIZE - mm.

| % +3" | % G    | ravel |        | % Sand | i    | % Fines |      |
|-------|--------|-------|--------|--------|------|---------|------|
| % +3" | Coarse | Fine  | Coarse | Medium | Fine | Silt    | Clay |
| 0.0   | 6.9    | 15.9  | 12.7   | 24.3   | 31.0 | 9.2     |      |

|         | TEST RESULTS |              |          |  |  |  |  |  |
|---------|--------------|--------------|----------|--|--|--|--|--|
| Opening | Percent      | Spec.*       | Pass?    |  |  |  |  |  |
| Size    | Finer        | (Percent)    | (X=Fail) |  |  |  |  |  |
| 3"      | 100.0        | 100.0        |          |  |  |  |  |  |
| 1.5"    | 100.0        | 80.0 - 100.0 |          |  |  |  |  |  |
| 0.75"   | 93.1         |              |          |  |  |  |  |  |
| 0.5"    | 87.2         | 50.0 - 100.0 |          |  |  |  |  |  |
| #4      | 77.2         | 30.0 - 85.0  |          |  |  |  |  |  |
| #8      | 67.4         |              |          |  |  |  |  |  |
| #20     | 50.0         | 15.0 - 60.0  |          |  |  |  |  |  |
| #40     | 40.2         |              |          |  |  |  |  |  |
| #60     | 25.4         | 5.0 - 35.0   |          |  |  |  |  |  |
| #200    | 9.2          | 0.0 - 10.0   |          |  |  |  |  |  |
|         |              |              |          |  |  |  |  |  |
|         |              |              |          |  |  |  |  |  |
|         |              |              |          |  |  |  |  |  |
|         |              |              |          |  |  |  |  |  |
|         |              |              |          |  |  |  |  |  |
|         |              |              |          |  |  |  |  |  |
|         |              |              |          |  |  |  |  |  |
|         |              |              |          |  |  |  |  |  |
|         |              |              |          |  |  |  |  |  |
|         |              |              |          |  |  |  |  |  |
|         |              |              |          |  |  |  |  |  |

#### **Material Description**

ASTM (D 2488) Classification: Well Graded SAND with Silt and Gravel (SW-SM), fine to coarse, 5-10% fines, 20-25% fine to coarse subrounded to angular gravel, orange to brown

#### Atterberg Limits (ASTM D 4318)

PL= LL= PI=

Classification USCS (D 2487)= AASHTO (M 145)=

Coefficients

**D<sub>90</sub>=** 15.4210 **D<sub>50</sub>=** 0.8487 **D<sub>10</sub>=** 0.0836 **D<sub>60</sub>=** 1.5641 **D<sub>15</sub>=** 0.1433 **C<sub>c</sub>=** 0.66 **D<sub>85</sub>=** 10.5818 **D<sub>30</sub>=** 0.2944 **C<sub>u</sub>=** 18.72

Remarks

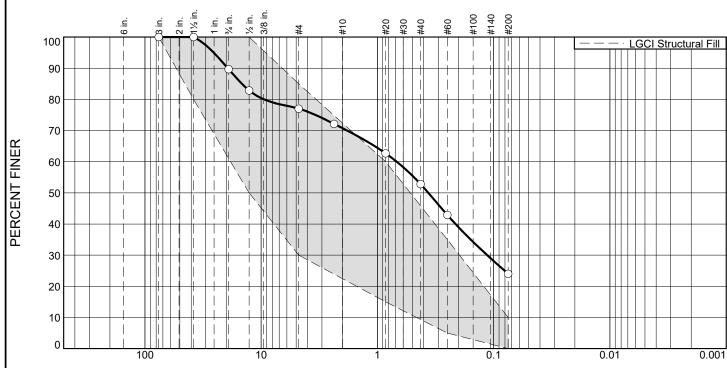
Fill sample.

**Date Received:** 01/28/2022 **Date Tested:** 02/01/2022

**Date Sampled:** 01/28/2022

Tested By: LB

Checked By: OIL


LGCI Structural Fill

Location: Boring B-11 Sample Number: S2

**Depth:** 2'-4'

**Client:** Mount Vernon Group Architects, Inc.

**Project:** Proposed Green Meadow Elementary School, Maynard, MA



GRAIN SIZE - mm.

| % +3" | % G    | ravel |        | % Sand | i    | % Fines |      |
|-------|--------|-------|--------|--------|------|---------|------|
| % +3" | Coarse | Fine  | Coarse | Medium | Fine | Silt    | Clay |
| 0.0   | 10.3   | 12.7  | 6.2    | 18.0   | 28.8 | 24.0    |      |

|         | TEST R  | ESULTS       |          |
|---------|---------|--------------|----------|
| Opening | Percent | Spec.*       | Pass?    |
| Size    | Finer   | (Percent)    | (X=Fail) |
| 3"      | 100.0   | 100.0        |          |
| 1.5"    | 100.0   | 80.0 - 100.0 |          |
| 0.75"   | 89.7    |              |          |
| 0.5"    | 82.9    | 50.0 - 100.0 |          |
| #4      | 77.0    | 30.0 - 85.0  |          |
| #8      | 72.1    |              |          |
| #20     | 62.7    | 15.0 - 60.0  | X        |
| #40     | 52.8    |              |          |
| #60     | 42.9    | 5.0 - 35.0   | X        |
| #200    | 24.0    | 0.0 - 10.0   | X        |
|         |         |              |          |
|         |         |              |          |
|         |         |              |          |
|         |         |              |          |
|         |         |              |          |
|         |         |              |          |
|         |         |              |          |
|         |         |              |          |
|         |         |              |          |
|         |         |              |          |
|         |         |              |          |

#### **Material Description**

ASTM (D 2488) Classification: Silty SAND with Gravel (SM), fine to medium, trace coarse, 20-25% fines, 20-25% fine to coarse subrounded to subangular gravel, trace of organic soil, brown

#### Atterberg Limits (ASTM D 4318)

PL= LL= PI=

USCS (D 2487)= Classification
AASHTO (M 145)=

ISCS (D 2487)= AASHTO (M 145)=

Remarks

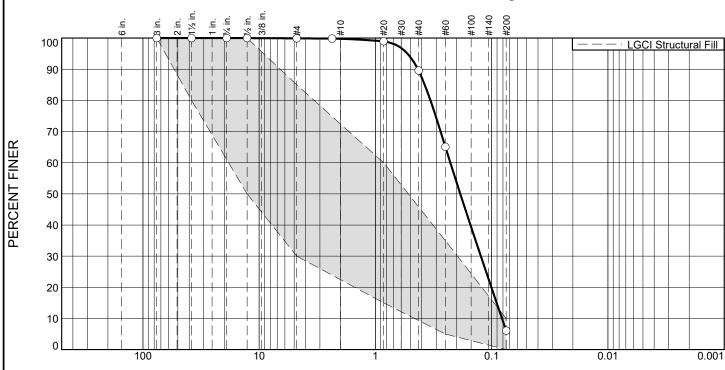
Fill sample.

**Date Sampled:** 02/01/2022

Tested By: LB

Checked By: OIL

LGCI Structural Fill


**Location:** Boring B-1 **Sample Number:** S2

**Depth:** 2'-4'

**Client:** Mount Vernon Group Architects, Inc.

**Project:** Proposed Green Meadow Elementary School, Maynard, MA





GRAIN SIZE - mm.

| % +3" | % G    | ravel |        | % Sand | i    | % Fines |      |
|-------|--------|-------|--------|--------|------|---------|------|
| % +3" | Coarse | Fine  | Coarse | Medium | Fine | Silt    | Clay |
| 0.0   | 0.0    | 0.1   | 0.1    | 10.2   | 83.5 | 6.1     |      |

|         | TEST R  | ESULTS       |          |
|---------|---------|--------------|----------|
| Opening | Percent | Spec.*       | Pass?    |
| Size    | Finer   | (Percent)    | (X=Fail) |
| 3"      | 100.0   | 100.0        |          |
| 1.5"    | 100.0   | 80.0 - 100.0 |          |
| 0.75"   | 100.0   |              |          |
| 0.5"    | 100.0   | 50.0 - 100.0 |          |
| #4      | 99.9    | 30.0 - 85.0  | X        |
| #8      | 99.9    |              |          |
| #20     | 99.0    | 15.0 - 60.0  | X        |
| #40     | 89.6    |              |          |
| #60     | 65.1    | 5.0 - 35.0   | X        |
| #200    | 6.1     | 0.0 - 10.0   |          |
|         |         |              |          |
|         |         |              |          |
|         |         |              |          |
|         |         |              |          |
|         |         |              |          |
|         |         |              |          |
|         |         |              |          |
|         |         |              |          |
|         |         |              |          |
|         |         |              |          |
|         |         |              |          |

#### **Material Description**

ASTM (D 2488) Classification: Poorly Graded SAND with Silt (SP-SM), fine, 5-10% fines, trace gravel, tan

#### **Atterberg Limits (ASTM D 4318)**

PL=

Classification USCS (D 2487)= AASHTO (M 145)=

Coefficients

**D<sub>60</sub>=** 0.2265 **D<sub>90</sub>=** 0.4307  $D_{85} = 0.3758$ D<sub>50</sub>= 0.1859 D<sub>10</sub>= 0.0815  $D_{15}^{15} = 0.0905$   $C_{c}^{15} = 0.83$ D<sub>30</sub>= 0.1237 C<sub>u</sub>= 2.78

Remarks

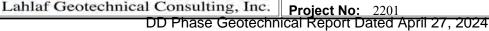
Sand sample.

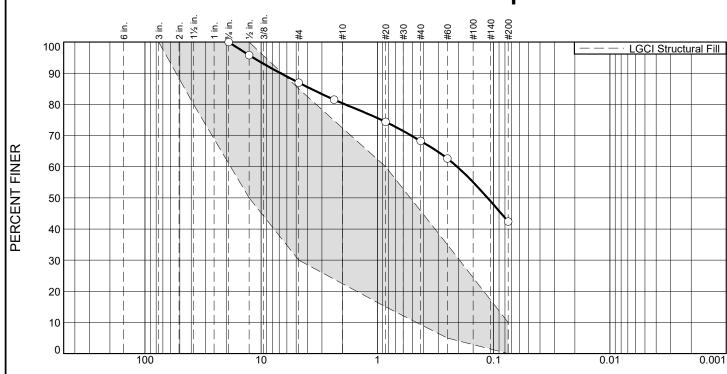
**Date Received:** 01/31/2022 **Date Tested:** 02/02/2022

**Date Sampled:** 01/31/2022

Tested By: LB

Checked By: OIL


LGCI Structural Fill


Location: Boring B-6 Sample Number: S2

Depth: 2'-4'

**Client:** Mount Vernon Group Architects, Inc.

**Project:** Proposed Green Meadow Elementary School, Maynard, MA





GRAIN SIZE - mm.

| 0/ ± <b>2"</b> | % G    | ravel |        | % Sand | 1    | % Fines |      |
|----------------|--------|-------|--------|--------|------|---------|------|
| % +3           | Coarse | Fine  | Coarse | Medium | Fine | Silt    | Clay |
| 0.0            | 0.0    | 13.0  | 6.6    | 12.1   | 25.9 | 42.4    |      |

|         | TEST R  | ESULTS       |          |
|---------|---------|--------------|----------|
| Opening | Percent | Spec.*       | Pass?    |
| Size    | Finer   | (Percent)    | (X=Fail) |
| 0.75"   | 100.0   |              |          |
| 0.5"    | 95.8    | 50.0 - 100.0 |          |
| #4      | 87.0    | 30.0 - 85.0  | X        |
| #8      | 81.5    |              |          |
| #20     | 74.4    | 15.0 - 60.0  | X        |
| #40     | 68.3    |              |          |
| #60     | 62.6    | 5.0 - 35.0   | X        |
| #200    | 42.4    | 0.0 - 10.0   | X        |
|         |         |              |          |
|         |         |              |          |

#### **Material Description**

ASTM (D 2488) Classification: Silty SAND (SM), fine to medium with trace coarse, 40-45% fines, 10-15% fine gravel

#### **Atterberg Limits (ASTM D 4318)**

PL=

Classification

USCS (D 2487)= AASHTO (M 145)=

Coefficients

**D<sub>90</sub>=** 6.7884 **D<sub>60</sub>=** 0.2058 **D<sub>85</sub>=** 3.7286

D<sub>50</sub>= 0.1127 D<sub>10</sub>=

Remarks

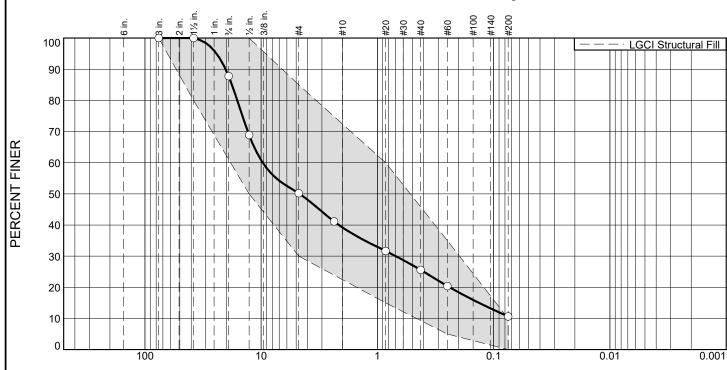
**Date Sampled:** 2/19/24

Date Received: 2/20/24 **Date Tested:** 3/22/24

**Tested By:** AS

Checked By: JKW

LGCI Structural Fill


Location: B-104 Sample Number: S2

**Depth:** 2.0'-4.0'

**Client:** Mount Vernon Group Architects, Inc. **Project:** Proposed Green Meadow School

Project No: 2201 **Figure** 

Lahlaf Geotechnical Consulting, Inc. DD Phase Geotechnical Report Dated April 27, 2024



GRAIN SIZE - mm.

| % +3"           | % Gı   | ravel |        | % Sand | · ·  | % Fines |      |
|-----------------|--------|-------|--------|--------|------|---------|------|
| % <del>+3</del> | Coarse | Fine  | Coarse | Medium | Fine | Silt    | Clay |
| 0.0             | 12.2   | 37.6  | 11.0   | 13.6   | 15.0 | 10.6    |      |

|         | TEST RESULTS |              |          |  |  |  |  |  |  |
|---------|--------------|--------------|----------|--|--|--|--|--|--|
| Opening | Percent      | Spec.*       | Pass?    |  |  |  |  |  |  |
| Size    | Finer        | (Percent)    | (X=Fail) |  |  |  |  |  |  |
| 3"      | 100.0        | 100.0        |          |  |  |  |  |  |  |
| 1.5"    | 100.0        | 80.0 - 100.0 |          |  |  |  |  |  |  |
| 0.75"   | 87.8         |              |          |  |  |  |  |  |  |
| 0.5"    | 68.9         | 50.0 - 100.0 |          |  |  |  |  |  |  |
| #4      | 50.2         | 30.0 - 85.0  |          |  |  |  |  |  |  |
| #8      | 41.1         |              |          |  |  |  |  |  |  |
| #20     | 31.7         | 15.0 - 60.0  |          |  |  |  |  |  |  |
| #40     | 25.6         |              |          |  |  |  |  |  |  |
| #60     | 20.4         | 5.0 - 35.0   |          |  |  |  |  |  |  |
| #200    | 10.6         | 0.0 - 10.0   | X        |  |  |  |  |  |  |
|         |              |              |          |  |  |  |  |  |  |
|         |              |              |          |  |  |  |  |  |  |
|         |              |              |          |  |  |  |  |  |  |
|         |              |              |          |  |  |  |  |  |  |
|         |              |              |          |  |  |  |  |  |  |
|         |              |              |          |  |  |  |  |  |  |
|         |              |              |          |  |  |  |  |  |  |
|         |              |              |          |  |  |  |  |  |  |
|         |              |              |          |  |  |  |  |  |  |
|         |              |              |          |  |  |  |  |  |  |
|         |              |              |          |  |  |  |  |  |  |

#### **Material Description**

ASTM (D 2488) Classification: Poorly Graded Gravel with Silt and Sand (GP-GM), mostly fine with coarse, 10% fines, 40% fine to coarse sand

### **Atterberg Limits (ASTM D 4318)**

PL= LL=

Classification

USCS (D 2487)= AASHTO (M 145)=

Coefficients

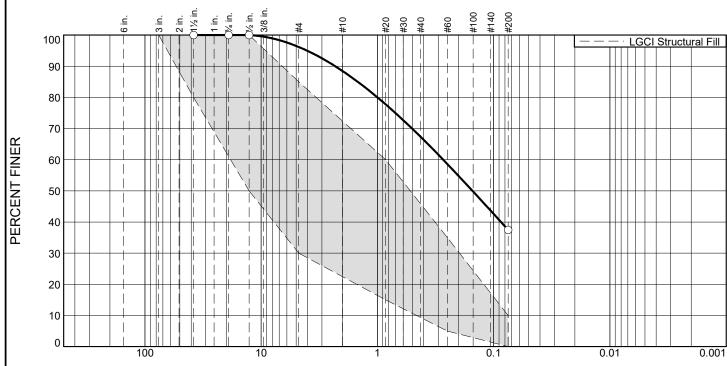
**D<sub>90</sub>=** 20.2222 **D<sub>60</sub>=** 9.6793 **D<sub>85</sub>=** 17.8454 D<sub>50</sub>= 4.6729 D<sub>10</sub>=  $D_{30}^{30} =$ 0.6954 0.1331

Remarks

Date Received: 2/26/24 **Date Tested:** 3/22/24

**Tested By:** AS

Checked By: JKW


LGCI Structural Fill

Location: B-105 Date Sampled: 2/26/24



**Client:** Mount Vernon Group Architects, Inc. **Project:** Proposed Green Meadow School





GRAIN SIZE - mm.

| 9/ ±2"       | % G    | ravel | % Sand |        | % Fines |      |      |
|--------------|--------|-------|--------|--------|---------|------|------|
| % <b>+3"</b> | Coarse | Fine  | Coarse | Medium | Fine    | Silt | Clay |
| 0.0          | 0.0    | 3.8   | 7.7    | 21.2   | 29.8    | 37.5 |      |

| TEST RESULTS |         |           |          |  |  |  |  |  |  |  |
|--------------|---------|-----------|----------|--|--|--|--|--|--|--|
| Opening      | Percent | Spec.*    | Pass?    |  |  |  |  |  |  |  |
| Size         | Finer   | (Percent) | (X=Fail) |  |  |  |  |  |  |  |
|              |         |           |          |  |  |  |  |  |  |  |
|              |         |           |          |  |  |  |  |  |  |  |
|              |         |           |          |  |  |  |  |  |  |  |
|              |         |           |          |  |  |  |  |  |  |  |
|              |         |           |          |  |  |  |  |  |  |  |
|              |         |           |          |  |  |  |  |  |  |  |
|              |         |           |          |  |  |  |  |  |  |  |
|              |         |           |          |  |  |  |  |  |  |  |
|              |         |           |          |  |  |  |  |  |  |  |
|              |         |           |          |  |  |  |  |  |  |  |
|              |         |           |          |  |  |  |  |  |  |  |
|              |         |           |          |  |  |  |  |  |  |  |
|              |         |           |          |  |  |  |  |  |  |  |
|              |         |           |          |  |  |  |  |  |  |  |
|              |         |           |          |  |  |  |  |  |  |  |
|              |         |           |          |  |  |  |  |  |  |  |

#### **Material Description**

ASTM (D 2488) Classification: Silty SAND (SM), fine to coarse, 35-40% fines, 0-5% fine subangular gravel, brown to grey.

#### **Atterberg Limits (ASTM D 4318)**

PL=

Classification

USCS (D 2487)=

AASHTO (M 145)=

Coefficients

D<sub>90</sub>= 2.3045 D<sub>50</sub>= 0.1519 D<sub>10</sub>=

**D<sub>85</sub>=** 1.4758

**D<sub>60</sub>=** 0.2716

Remarks

Date Received: 2/23/24

**Date Tested:** 3/22/24

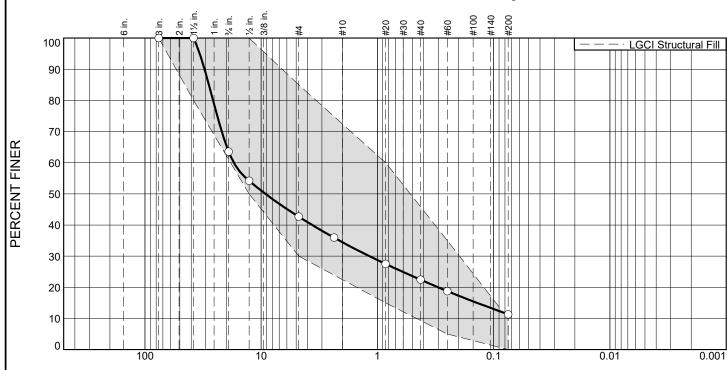
**Tested By:** AS

Checked By:

LGCI Structural Fill

Lahlaf Geotechnical Consulting, Inc.

Location: B-109 Sample Number: S2


**Depth:** 2.0'-4.0'

**Client:** Mount Vernon Group Architects, Inc. Project: Proposed Green Meadow School

Project No: 2201

**Figure** 

Date Sampled: 2/23/24



GRAIN SIZE - mm.

| % +3" | % G    | ravel | % Sand |        | % Fines |      |      |
|-------|--------|-------|--------|--------|---------|------|------|
| % +3  | Coarse | Fine  | Coarse | Medium | Fine    | Silt | Clay |
| 0.0   | 36.5   | 20.8  | 8.2    | 12.1   | 11.1    | 11.3 |      |

| TEST RESULTS |         |              |          |  |  |  |  |  |  |  |
|--------------|---------|--------------|----------|--|--|--|--|--|--|--|
| Opening      | Percent | Spec.*       | Pass?    |  |  |  |  |  |  |  |
| Size         | Finer   | (Percent)    | (X=Fail) |  |  |  |  |  |  |  |
| 3"           | 100.0   | 100.0        |          |  |  |  |  |  |  |  |
| 1.5"         | 100.0   | 80.0 - 100.0 |          |  |  |  |  |  |  |  |
| 0.75"        | 63.5    |              |          |  |  |  |  |  |  |  |
| 0.5"         | 54.2    | 50.0 - 100.0 |          |  |  |  |  |  |  |  |
| #4           | 42.7    | 30.0 - 85.0  |          |  |  |  |  |  |  |  |
| #8           | 35.9    |              |          |  |  |  |  |  |  |  |
| #20          | 27.5    | 15.0 - 60.0  |          |  |  |  |  |  |  |  |
| #40          | 22.4    |              |          |  |  |  |  |  |  |  |
| #60          | 18.8    | 5.0 - 35.0   |          |  |  |  |  |  |  |  |
| #200         | 11.3    | 0.0 - 10.0   | X        |  |  |  |  |  |  |  |
|              |         |              |          |  |  |  |  |  |  |  |
|              |         |              |          |  |  |  |  |  |  |  |
|              |         |              |          |  |  |  |  |  |  |  |
|              |         |              |          |  |  |  |  |  |  |  |
|              |         |              |          |  |  |  |  |  |  |  |
|              |         |              |          |  |  |  |  |  |  |  |
|              |         |              |          |  |  |  |  |  |  |  |
|              |         |              |          |  |  |  |  |  |  |  |
|              |         |              |          |  |  |  |  |  |  |  |
|              |         |              |          |  |  |  |  |  |  |  |
|              |         |              |          |  |  |  |  |  |  |  |

#### **Material Description**

ASTM (D 2488) Classification: Well Graded Gravel with Sand and Silt (GW-GM), fine to coarse subangular gravel, 30-35% fine to coarse sand, 10-15% fines, brown to grey.

#### **Atterberg Limits (ASTM D 4318)**

PL= ĽL= PI=

Classification

USCS (D 2487)= AASHTO (M 145)=

Coefficients **D<sub>90</sub>=** 30.6883 **D<sub>50</sub>=** 9.1729 **D<sub>10</sub>= D<sub>60</sub>=** 17.1867 **D<sub>85</sub>=** 28.1524  $D_{30}^{30} =$ 1.1709 0.1385

Date Received: 2/22/24 **Date Tested:** 3/22/24

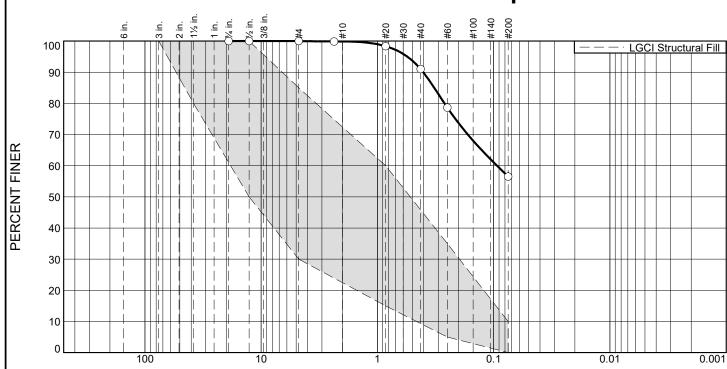
Remarks

**Tested By:** AS

Checked By: SL

LGCI Structural Fill

Location: B-109 **Date Sampled:** 2/21/24 Sample Number: S3 **Depth:** 4.0'-6.0'




**Client:** Mount Vernon Group Architects, Inc. **Project:** Proposed Green Meadow School

56.5

**Date Sampled:** 2/22/24

### Particle Size Distribution Report



GRAIN SIZE - mm. % Gravel % Sand % Fines % +3" Coarse Fine Silt Fine Coarse Medium Clay

34.5

8.9

|         | TEST R  | ESULTS       |          |
|---------|---------|--------------|----------|
| Opening | Percent | Spec.*       | Pass?    |
| Size    | Finer   | (Percent)    | (X=Fail) |
| 0.75"   | 100.0   |              |          |
| 0.5"    | 100.0   | 50.0 - 100.0 |          |
| #4      | 100.0   | 30.0 - 85.0  | X        |
| #8      | 99.9    |              |          |
| #20     | 98.4    | 15.0 - 60.0  | X        |
| #40     | 91.0    |              |          |
| #60     | 78.7    | 5.0 - 35.0   | X        |
| #200    | 56.5    | 0.0 - 10.0   | X        |
|         |         |              |          |
|         |         |              |          |

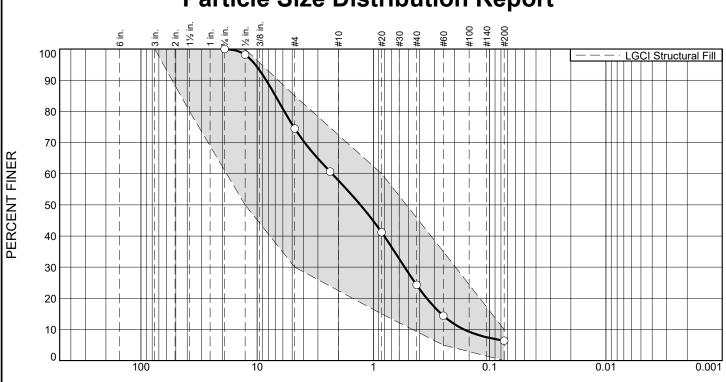
0.0

0.0

0.1

| Material Description                                               |                                                                          |                                                                   |  |  |  |  |  |  |  |
|--------------------------------------------------------------------|--------------------------------------------------------------------------|-------------------------------------------------------------------|--|--|--|--|--|--|--|
| ASTM (D 2488) Classification: Sandy SILT (ML), 40-45% fine sand    |                                                                          |                                                                   |  |  |  |  |  |  |  |
| Atterberg Limits (ASTM D 4318) PL= LL= PI=                         |                                                                          |                                                                   |  |  |  |  |  |  |  |
| USCS (D 2487)= Classification AASHTO (M 145)=                      |                                                                          |                                                                   |  |  |  |  |  |  |  |
| D <sub>90</sub> = 0.4035<br>D <sub>50</sub> =<br>D <sub>10</sub> = | Coefficients D <sub>85</sub> = 0.3239 D <sub>30</sub> = C <sub>u</sub> = | D <sub>60</sub> = 0.0935<br>D <sub>15</sub> =<br>C <sub>c</sub> = |  |  |  |  |  |  |  |
|                                                                    | Remarks                                                                  |                                                                   |  |  |  |  |  |  |  |
|                                                                    |                                                                          |                                                                   |  |  |  |  |  |  |  |
| Date Received: $2a$                                                | /22/24 Date                                                              | Tested: <u>3/22/24</u>                                            |  |  |  |  |  |  |  |
| Tested By: $\underline{\mathbf{A}}$                                | AS                                                                       |                                                                   |  |  |  |  |  |  |  |
| Checked By: Jl                                                     | Checked By: JKW                                                          |                                                                   |  |  |  |  |  |  |  |
|                                                                    |                                                                          |                                                                   |  |  |  |  |  |  |  |

LGCI Structural Fill


0.0

Location: B-110 Sample Number: S2 **Depth:** 2.0'-4.0'

Lahlaf Geotechnical Consulting, Inc.

**Client:** Mount Vernon Group Architects, Inc. **Project:** Proposed Green Meadow School

**Figure** 



GRAIN SIZE - mm.

| % +3" % G |        | ravel | vel % Sand |        | % Fines |      |      |
|-----------|--------|-------|------------|--------|---------|------|------|
| % +3"     | Coarse | Fine  | Coarse     | Medium | Fine    | Silt | Clay |
| 0.0       | 0.0    | 25.5  | 16.7       | 33.5   | 17.9    | 6.4  |      |

| TEST RESULTS |         |              |          |  |  |  |  |  |  |
|--------------|---------|--------------|----------|--|--|--|--|--|--|
| Opening      | Percent | Spec.*       | Pass?    |  |  |  |  |  |  |
| Size         | Finer   | (Percent)    | (X=Fail) |  |  |  |  |  |  |
| 0.75"        | 100.0   |              |          |  |  |  |  |  |  |
| 0.5"         | 98.2    | 50.0 - 100.0 |          |  |  |  |  |  |  |
| #4           | 74.5    | 30.0 - 85.0  |          |  |  |  |  |  |  |
| #8           | 60.7    |              |          |  |  |  |  |  |  |
| #20          | 41.2    | 15.0 - 60.0  |          |  |  |  |  |  |  |
| #40          | 24.3    |              |          |  |  |  |  |  |  |
| #60          | 14.4    | 5.0 - 35.0   |          |  |  |  |  |  |  |
| #200         | 6.4     | 0.0 - 10.0   |          |  |  |  |  |  |  |
|              |         |              |          |  |  |  |  |  |  |
|              |         |              |          |  |  |  |  |  |  |
|              |         |              |          |  |  |  |  |  |  |
|              |         |              |          |  |  |  |  |  |  |
|              |         |              |          |  |  |  |  |  |  |
|              |         |              |          |  |  |  |  |  |  |
|              |         |              |          |  |  |  |  |  |  |
|              |         |              |          |  |  |  |  |  |  |
|              |         |              |          |  |  |  |  |  |  |
|              |         |              |          |  |  |  |  |  |  |
|              |         |              |          |  |  |  |  |  |  |
|              |         |              |          |  |  |  |  |  |  |
|              |         |              |          |  |  |  |  |  |  |

#### **Material Description**

ASTM (D 2488) Classification: Well Graded SAND with Silt and Gravel (SW-SM), fine to coarse, 5-10% fines, 25% fine subangular gravel

**Atterberg Limits (ASTM D 4318)** 

PL=

Classification

USCS (D 2487)= AASHTO (M 145)=

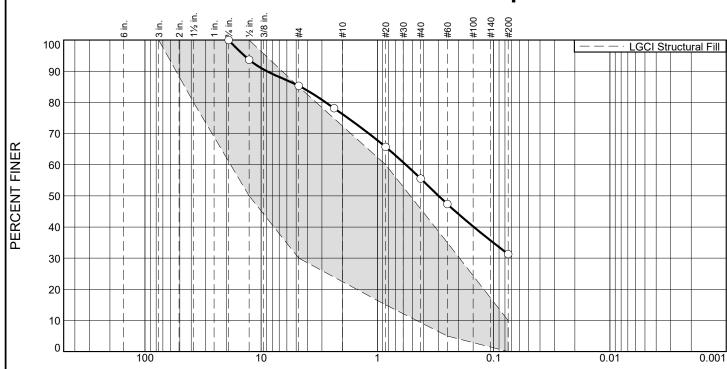
Coefficients

 $\begin{array}{l} \mathbf{D_{60}} = 2.2686 \\ \mathbf{D_{15}} = 0.2606 \\ \mathbf{C_c} = 0.77 \end{array}$ **D<sub>90</sub>=** 8.3517 **D<sub>50</sub>=** 1.2939 **D<sub>10</sub>=** 0.1662 **D<sub>85</sub>=** 6.9519 D<sub>30</sub>= 0.5393 C<sub>u</sub>= 13.65

Remarks

Date Received: 2/22/24 **Date Tested:** 3/22/24

**Tested By:** AS


Checked By:

LGCI Structural Fill

Location: B-110 Date Sampled: 2/22/24 Sample Number: S3 **Depth:** 4.0'-6.0'



**Client:** Mount Vernon Group Architects, Inc. **Project:** Proposed Green Meadow School



GRAIN SIZE - mm.

| % +3" | % G    | avel % Sand |        | i      | % Fines |      |      |
|-------|--------|-------------|--------|--------|---------|------|------|
| % +3  | Coarse | Fine        | Coarse | Medium | Fine    | Silt | Clay |
| 0.0   | 0.0    | 14.7        | 9.1    | 20.7   | 24.2    | 31.3 |      |

| TEST RESULTS |         |              |          |  |  |  |  |  |  |  |
|--------------|---------|--------------|----------|--|--|--|--|--|--|--|
| Opening      | Percent | Spec.*       | Pass?    |  |  |  |  |  |  |  |
| Size         | Finer   | (Percent)    | (X=Fail) |  |  |  |  |  |  |  |
| 0.75"        | 100.0   |              |          |  |  |  |  |  |  |  |
| 0.5"         | 93.7    | 50.0 - 100.0 |          |  |  |  |  |  |  |  |
| #4           | 85.3    | 30.0 - 85.0  | X        |  |  |  |  |  |  |  |
| #8           | 78.1    |              |          |  |  |  |  |  |  |  |
| #20          | 65.7    | 15.0 - 60.0  | X        |  |  |  |  |  |  |  |
| #40          | 55.5    |              |          |  |  |  |  |  |  |  |
| #60          | 47.4    | 5.0 - 35.0   | X        |  |  |  |  |  |  |  |
| #200         | 31.3    | 0.0 - 10.0   | X        |  |  |  |  |  |  |  |
|              |         |              |          |  |  |  |  |  |  |  |
|              |         |              |          |  |  |  |  |  |  |  |
|              |         |              |          |  |  |  |  |  |  |  |
|              |         |              |          |  |  |  |  |  |  |  |
|              |         |              |          |  |  |  |  |  |  |  |
|              |         |              |          |  |  |  |  |  |  |  |
|              |         |              |          |  |  |  |  |  |  |  |
|              |         |              |          |  |  |  |  |  |  |  |
|              |         |              |          |  |  |  |  |  |  |  |
|              |         |              |          |  |  |  |  |  |  |  |
|              |         |              |          |  |  |  |  |  |  |  |

#### **Material Description**

ASTM (D 2488) Classification: Silty SAND with Gravel (SM), fine to coarse, 30-35% fines, 15% fine gravel

#### **Atterberg Limits (ASTM D 4318)**

PL= LL=

Classification USCS (D 2487)= AASHTO (M 145)=

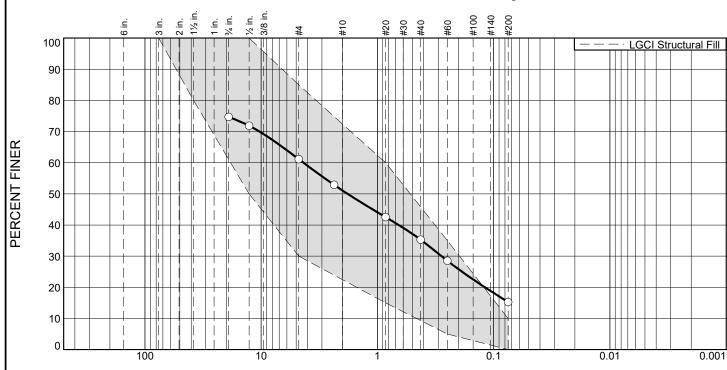
Coefficients

**D<sub>90</sub>=** 8.9103 **D<sub>60</sub>=** 0.5697 **D<sub>85</sub>=** 4.5668 D<sub>50</sub>= 0.2976 D<sub>10</sub>=

Remarks

Date Received: 2/21/24 **Date Tested:** 3/22/24

**Tested By:** AS


Checked By: JKW

LGCI Structural Fill

Location: B-112 **Date Sampled:** 2/21/24



**Client:** Mount Vernon Group Architects, Inc. **Project:** Proposed Green Meadow School



GRAIN SIZE - mm.

| 0/ ±2"        | % G    | ravel | % Sand |        | % Fines |      |      |
|---------------|--------|-------|--------|--------|---------|------|------|
| % <b>+3</b> " | Coarse | Fine  | Coarse | Medium | Fine    | Silt | Clay |
|               |        | 13.6  | 10.0   | 15.8   | 20.0    | 15.3 |      |

| TEST RESULTS |         |              |          |  |  |  |  |  |  |  |
|--------------|---------|--------------|----------|--|--|--|--|--|--|--|
| Opening      | Percent | Spec.*       | Pass?    |  |  |  |  |  |  |  |
| Size         | Finer   | (Percent)    | (X=Fail) |  |  |  |  |  |  |  |
| 0.75"        | 74.7    |              |          |  |  |  |  |  |  |  |
| 0.5"         | 71.9    | 50.0 - 100.0 |          |  |  |  |  |  |  |  |
| #4           | 61.1    | 30.0 - 85.0  |          |  |  |  |  |  |  |  |
| #8           | 52.9    |              |          |  |  |  |  |  |  |  |
| #20          | 42.5    | 15.0 - 60.0  |          |  |  |  |  |  |  |  |
| #40          | 35.3    |              |          |  |  |  |  |  |  |  |
| #60          | 28.5    | 5.0 - 35.0   |          |  |  |  |  |  |  |  |
| #200         | 15.3    | 0.0 - 10.0   | X        |  |  |  |  |  |  |  |
|              |         |              |          |  |  |  |  |  |  |  |
|              |         |              |          |  |  |  |  |  |  |  |
|              |         |              |          |  |  |  |  |  |  |  |

**Material Description** 

ASTM (D 2488) Classification: Silty SAND (SM), fine to coarse, 15% fines, 10-15% fine gravel

**Atterberg Limits (ASTM D 4318)** 

PL= PI=

Classification USCS (D 2487)= AASHTO (M 145)=

Coefficients

**D<sub>60</sub>=** 4.3239  $D_{85}=$  $D_{90} =$ **D**<sub>50</sub>= 1.8031 0.2805  $D_{30}^{30} =$  $D_{10}^{-}$ 

Remarks

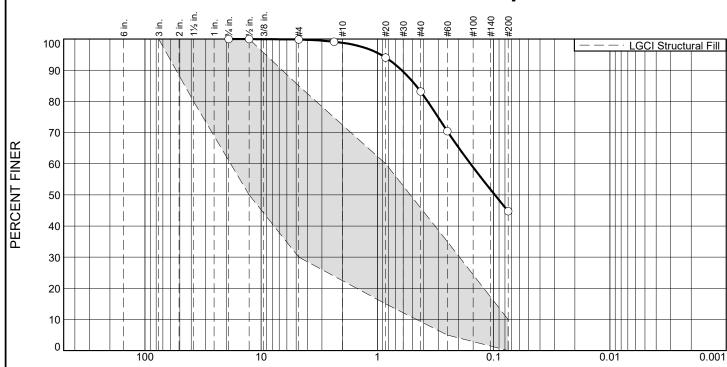
**Date Sampled:** 2/19/24

Date Received: 2/19/24 **Date Tested:** 3/22/24

**Tested By:** AS

Checked By: JKW

LGCI Structural Fill


Location: B-116 Sample Number: S2

**Depth:** 2.0'-4.0'

**Client:** Mount Vernon Group Architects, Inc. Project: Proposed Green Meadow School

Project No: 2201 **Figure** 

Lahlaf Geotechnical Consulting, Inc. DD Phase Geotechnical Report Dated April 27, 2024



GRAIN SIZE - mm.

| % +3" | % Gravel Coarse Fine |      |        | % Sand | i    | % Fines |      |  |  |  |
|-------|----------------------|------|--------|--------|------|---------|------|--|--|--|
| % +3" | Coarse               | Fine | Coarse | Medium | Fine | Silt    | Clay |  |  |  |
| 0.0   | 0.0                  | 0.1  | 1.1    | 15.6   | 38.5 | 44.7    |      |  |  |  |

|         | TEST R  | ESULTS       |          |
|---------|---------|--------------|----------|
| Opening | Percent | Spec.*       | Pass?    |
| Size    | Finer   | (Percent)    | (X=Fail) |
| 0.75"   | 100.0   |              |          |
| 0.5"    | 100.0   | 50.0 - 100.0 |          |
| #4      | 99.9    | 30.0 - 85.0  | X        |
| #8      | 99.1    |              |          |
| #20     | 94.1    | 15.0 - 60.0  | X        |
| #40     | 83.2    |              |          |
| #60     | 70.4    | 5.0 - 35.0   | X        |
| #200    | 44.7    | 0.0 - 10.0   | X        |
|         |         |              |          |
|         |         |              |          |
|         |         |              |          |
|         |         |              |          |
|         |         |              |          |
|         |         |              |          |
|         |         |              |          |
|         |         |              |          |
|         |         |              |          |
|         |         |              |          |
|         |         |              |          |
|         |         |              |          |

#### **Material Description**

ASTM (D 2488) Classification: Poorly Graded SAND with Silt (SP-SM), mostly fine with trace coarse and medium, 45% fines

#### **Atterberg Limits (ASTM D 4318)**

PL=

Classification

USCS (D 2487)= AASHTO (M 145)=

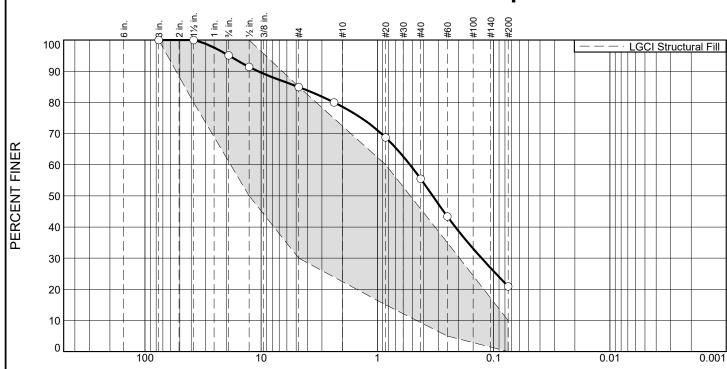
Coefficients

D<sub>90</sub>= 0.6173 D<sub>50</sub>= 0.0977 D<sub>10</sub>= **D<sub>60</sub>=** 0.1583 **D<sub>85</sub>=** 0.4643 D<sub>30</sub>=

Remarks

Date Received: 2/9/24 **Date Tested:** 3/22/24

**Tested By:** AS


Checked By: JKW

LGCI Structural Fill

Location: TP-17 Date Sampled: 2/9/24 Sample Number: G1 **Depth:** 0.3'-2.5'



**Client:** Mount Vernon Group Architects, Inc. **Project:** Proposed Green Meadow School



GRAIN SIZE - mm.

| % +3" | % G    | ravel |        | % Sand | i    | % Fines |      |
|-------|--------|-------|--------|--------|------|---------|------|
| % +3" | Coarse | Fine  | Coarse | Medium | Fine | Silt    | Clay |
| 0.0   | 4.9    | 10.2  | 6.3    | 23.1   | 34.6 | 20.9    |      |

|         | TEST R  | ESULTS       |          |
|---------|---------|--------------|----------|
| Opening | Percent | Spec.*       | Pass?    |
| Size    | Finer   | (Percent)    | (X=Fail) |
| 3"      | 100.0   | 100.0        |          |
| 1.5"    | 100.0   | 80.0 - 100.0 |          |
| 0.75"   | 95.1    |              |          |
| 0.5"    | 91.4    | 50.0 - 100.0 |          |
| #4      | 84.9    | 30.0 - 85.0  |          |
| #8      | 80.0    |              |          |
| #20     | 68.7    | 15.0 - 60.0  | X        |
| #40     | 55.5    |              |          |
| #60     | 43.4    | 5.0 - 35.0   | X        |
| #200    | 20.9    | 0.0 - 10.0   | X        |
|         |         |              |          |
|         |         |              |          |
|         |         |              |          |
|         |         |              |          |
|         |         |              |          |
|         |         |              |          |
|         |         |              |          |
|         |         |              |          |
|         |         |              |          |
|         |         |              |          |
|         |         |              |          |

#### **Material Description**

ASTM (D 2488) Classification: Silty SAND with Gravel (SM), fine to medium with trace coarse, 20% fines, 15% fine to coarse gravel

#### **Atterberg Limits (ASTM D 4318)**

Coefficients

PL=

Classification

USCS (D 2487)= AASHTO (M 145)=

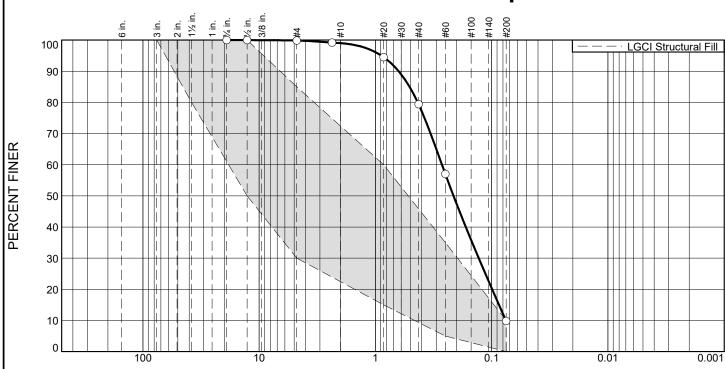
**D<sub>90</sub>=** 10.6281 **D<sub>60</sub>=** 0.5247 **D<sub>85</sub>=** 4.8027  $D_{30}^{30} =$ 0.1268

D<sub>50</sub>= 0.3340 D<sub>10</sub>=

Remarks

Date Received: 2/9/24 **Date Tested:** 3/22/24

**Tested By:** AS


Checked By: JKW

LGCI Structural Fill

Location: TP-17 Date Sampled: 2/9/24 Sample Number: G2 **Depth:** 2.5'-4.7'



**Client:** Mount Vernon Group Architects, Inc. **Project:** Proposed Green Meadow School



GRAIN SIZE - mm.

| 0/ ±3" | % G    | ravei |        | % Sand | 1    | % Fines |      |
|--------|--------|-------|--------|--------|------|---------|------|
| % +3   | Coarse | Fine  | Coarse | Medium | Fine | Silt    | Clay |
| 0.0    | 0.0    | 0.1   | 0.9    | 19.6   | 69.6 | 9.8     |      |

|         | TEST R  | ESULTS       |          |
|---------|---------|--------------|----------|
| Opening | Percent | Spec.*       | Pass?    |
| Size    | Finer   | (Percent)    | (X=Fail) |
| 0.75"   | 100.0   |              |          |
| 0.5"    | 100.0   | 50.0 - 100.0 |          |
| #4      | 99.9    | 30.0 - 85.0  | X        |
| #8      | 99.2    |              |          |
| #20     | 94.5    | 15.0 - 60.0  | X        |
| #40     | 79.4    |              |          |
| #60     | 57.0    | 5.0 - 35.0   | X        |
| #200    | 9.8     | 0.0 - 10.0   |          |
|         |         |              |          |
|         |         |              |          |
|         |         |              |          |
|         |         |              |          |
|         |         |              |          |
|         |         |              |          |
|         |         |              |          |
|         |         |              |          |
|         |         |              |          |
|         |         |              |          |

#### **Material Description**

ASTM (D 2488) Classification: Poorly Graded SAND with Silt (SP-SM), mostly fine with trace medium to coarse, 10% fines

#### **Atterberg Limits (ASTM D 4318)**

PL=

Classification USCS (D 2487)= AASHTO (M 145)=

Coefficients

**D<sub>90</sub>=** 0.6312 **D<sub>50</sub>=** 0.2126 **D<sub>10</sub>=** 0.0754 **D<sub>60</sub>=** 0.2674 **D<sub>85</sub>=** 0.5085  $D_{15}^{15} = 0.0864$   $C_{c}^{15} = 0.83$ D<sub>30</sub>= 0.1291 C<sub>u</sub>= 3.55

Remarks

Infiltrometer Test

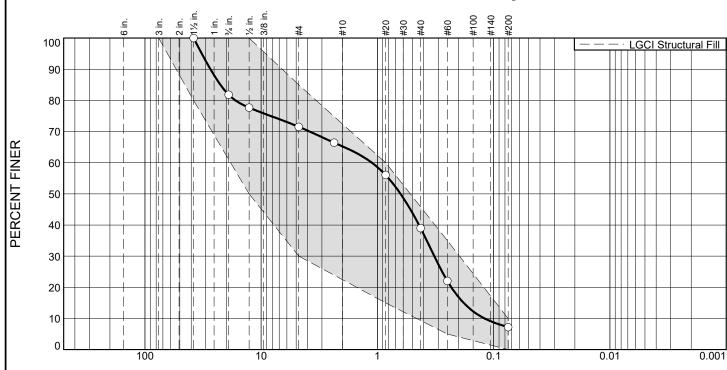
Date Received: 2/8/24 **Date Tested:** 3/22/24

Date Sampled: 2/8/24

**Tested By:** AS

Checked By: JKW

LGCI Structural Fill


Location: TP-23 Sample Number: 4.0'

**Depth:** 4.0'

**Client:** Mount Vernon Group Architects, Inc. **Project:** Proposed Green Meadow School

Project No: 2201 **Figure** 

Lahlaf Geotechnical Consulting, Inc. DD Phase Geotechnical Report Dated April 27, 2024



GRAIN SIZE - mm.

| % +3"           | % Gı   | ravel |        | % Sand | t    | % Fines |      |
|-----------------|--------|-------|--------|--------|------|---------|------|
| % <del>+3</del> | Coarse | Fine  | Coarse | Medium | Fine | Silt    | Clay |
| 0.0             | 18.2   | 10.3  | 6.2    | 26.3   | 31.8 | 7.2     |      |

|         | TEST R  | ESULTS       |          |
|---------|---------|--------------|----------|
| Opening | Percent | Spec.*       | Pass?    |
| Size    | Finer   | (Percent)    | (X=Fail) |
| 1.5     | 100.0   | 80.0 - 100.0 |          |
| 0.75"   | 81.8    |              |          |
| 0.5"    | 77.7    | 50.0 - 100.0 |          |
| #4      | 71.5    | 30.0 - 85.0  |          |
| #8      | 66.4    |              |          |
| #20     | 56.0    | 15.0 - 60.0  |          |
| #40     | 39.0    |              |          |
| #60     | 22.0    | 5.0 - 35.0   |          |
| #200    | 7.2     | 0.0 - 10.0   |          |
|         |         |              |          |
|         |         |              |          |
|         |         |              |          |
|         |         |              |          |
|         |         |              |          |
|         |         |              |          |
|         |         |              |          |
|         |         |              |          |
|         |         |              |          |
|         |         |              |          |
|         |         |              |          |
|         |         |              |          |

#### **Material Description**

ASTM (D 2488) Classification: Poorly Graded SAND with Silt (SP-SM), fine to medium with trace coarse, 5-10% fines, 10% fine subangular gravel

#### **Atterberg Limits (ASTM D 4318)**

PL=

Classification USCS (D 2487)= AASHTO (M 145)=

Coefficients

**D<sub>90</sub>=** 27.3179 **D<sub>50</sub>=** 0.6323 **D<sub>10</sub>=** 0.1197  $\begin{array}{l} \mathbf{D_{60}} = 1.1159 \\ \mathbf{D_{15}} = 0.1810 \\ \mathbf{C_{c}} = 0.79 \end{array}$ D<sub>85</sub>= 22.4211 D<sub>30</sub>= 0.3239 C<sub>u</sub>= 9.33

Remarks

Date Received: 2/8/24 **Date Tested:** 3/22/24

**Tested By:** AS

Checked By: JKW

LGCI Structural Fill

Location: TP-26 Date Sampled: 2/8/24 Sample Number: 3.5' **Depth:** 3.5'



**Client:** Mount Vernon Group Architects, Inc. **Project:** Proposed Green Meadow School

06/12/2024 Addendum 2 1506 Providence Highway - Suite 30 Norwood, MA 02062-4647

> Voice: 781.255.5554 Fax: 781.255.5535 www.lordenv.com

April 8, 2024

Christopher LeBlanc Mount Vernon Group Architects, Inc. 264 Exchange Street, Suite G4 Chicopee, MA 02013

RE: Soil Sampling and Analysis:

Green Meadow Elementary School

5 Tiger Drive

Maynard, Massachusetts

Dear Christopher:

In accordance with the March 27, 2023, proposal, approved by Mount Vernon Group Architects, Inc. (MVG), Lord Environmental, Inc. (LEI) has completed additional soil sampling and analyses at the above-referenced property. The objective of this work was to further evaluate soil at the proposed new building location to determine the extent, if any, of urban fill and submit representative samples to a state-certified laboratory for off-site disposal characterization.

This report supplements our earlier report dated April 5, 2023 that provided the results of samples collected from the north and west perimeter of the playground east of the school where urban fill was identified that contained concentrations of benzo (b) fluoranthene, previously detected on an abutting property as summarized in a report titled "Response Action Outcome Statement, Maynard Public School Department, Green Meadow School Soccer Field, Off Great Road, Maynard, Massachusetts, Release Tracking Number 2-12298", dated July 1998. This report indicated contamination on the soccer field located on Parcel 2, Sheet 24 on the Town of Maynard Assessor's Map. A Site Plan is attached as **Figure 1**.

#### **Soil Sampling and Organic Vapor Screening March 2023**

A total of seventy-three (73) soil borings, designated B-1 to B-73, were advanced at the Site on March 22 and March 24, 2023 to evaluate shallow soil conditions. Soil borings were advanced with a GeoProbe© 6712DT track-mounted, direct-push drill rig in locations as shown on the attached Site Plan (**Figure 1**). Continuous soil samples were collected in acetate sleeves to a depth of 3 feet below surface grade in all borings. Generally, soil encountered during drilling consisted of a loam topsoil to depths ranging from 2-8 inches with underlying coarse to fine sand and varying amounts of gravel and trace silt. Soil sample descriptions are attached in **Table 1**. No groundwater was detected.

All soil samples were screened in the field for total organic vapors (TOV) using a MiniRAE photoionization detector (PID) capable of detecting organic vapors from petroleum and solvents in soil

06/12/2024 Soil Sampling and Augerigum 2 5 Tiger Drive, Maynard, MA April 8, 2024

at concentrations above 0.1 parts per million by volume (ppmv). No organic vapors were detected above the PID detection limit in any of the soil samples.

#### Laboratory Analyses of Soil March 2023

Twelve soil samples were submitted to a Massachusetts certified laboratory for analyses of extractable petroleum hydrocarbons (EPH) with target polycyclic aromatic hydrocarbons (PAH) via MassDEP Methodologies. As is shown in **Table 2** attached, no PAH compounds were detected above their respective laboratory detection limits.

EPH fractions C<sub>19</sub>-C<sub>36</sub> aliphatic hydrocarbons and C<sub>11</sub>-C<sub>22</sub> aromatic hydrocarbons were detected. C<sub>19</sub>-C<sub>36</sub> aliphatics were detected in two soil samples at concentrations of 17.7 milligram per kilogram (mg/kg) in B-2 and 15.7 mg/kg in B-52. Both detected concentrations of C<sub>19</sub>-C<sub>36</sub> aliphatics are slightly above the laboratory detection limit of 15.1 mg/kg and well below the MassDEP S-1 Reportable Concentration of 3,000 mg/kg.

C<sub>11</sub>-C<sub>22</sub> aliphatics were detected in two soil samples at concentrations of 21 mg/kg in B-18 and 8.7 mg/kg in B-52. Both detected concentrations of C<sub>11</sub>-C<sub>22</sub> aliphatics are slightly above the laboratory detection limit of approximately 7.5 mg/kg and well below the MassDEP S-1 Reportable Concentration of 1,000 mg/kg.

#### Soil Sampling and Organic Vapor Screening February 2024

Additional soil samples were collected from the school entrance roadway, rear of the existing school and the hillside slope on February 23 and 27, 2024. These samples were collected from the splitspoon soil sampler driven by Lahlaf Geotechnical's contractor's rig. Generally, soil encountered during drilling consisted of a loam topsoil to depths ranging from 2-8 inches with underlying coarse to fine sand and varying amounts of gravel and trace silt. Detailed soil sample descriptions are provided with the test pit and test boring logs in the geotechnical report. No groundwater was detected.

All soil samples were screened in the field for total organic vapors (TOV) using a MiniRAE photoionization detector (PID) capable of detecting organic vapors from petroleum and solvents in soil at concentrations above 0.1 parts per million by volume (ppmv). No organic vapors were detected above the PID detection limit in any of the soil samples.

#### Laboratory Analyses of Soil February 2024

Six soil samples were submitted to a Massachusetts certified laboratory for disposal characterization analyses including the Comm-97 landfill parameters, MCP 14 metals and RCRA Hazardous Waste parameters. As is shown in **Table 3** attached, no compounds or parameters were detected above their respective MassDEP S-1 Reportable Concentrations or landfill disposal criteria.

#### Conclusions

No organic vapors were detected above the field screening instrument detection limit, and no compounds or parameters were detected above their respective MassDEP S-1 Reportable

Soil Sampling and Adderidum 2 5 Tiger Drive, Maynard, MA April 8, 2024

Concentrations or Massachusetts landfill disposal criteria. Note that not all privately operated landfills utilize these disposal criteria.

Feel free to call with any questions or comments. We appreciate the opportunity to provide our professional environmental consulting and analytical services.

Sincerely,

LORD ENVIRONMENTAL, INC.

Jonathon D. Puliafico, CPG Senior Project Manager

Ralph J. Tella, LSP, CHMM President

Ragh J. Tella

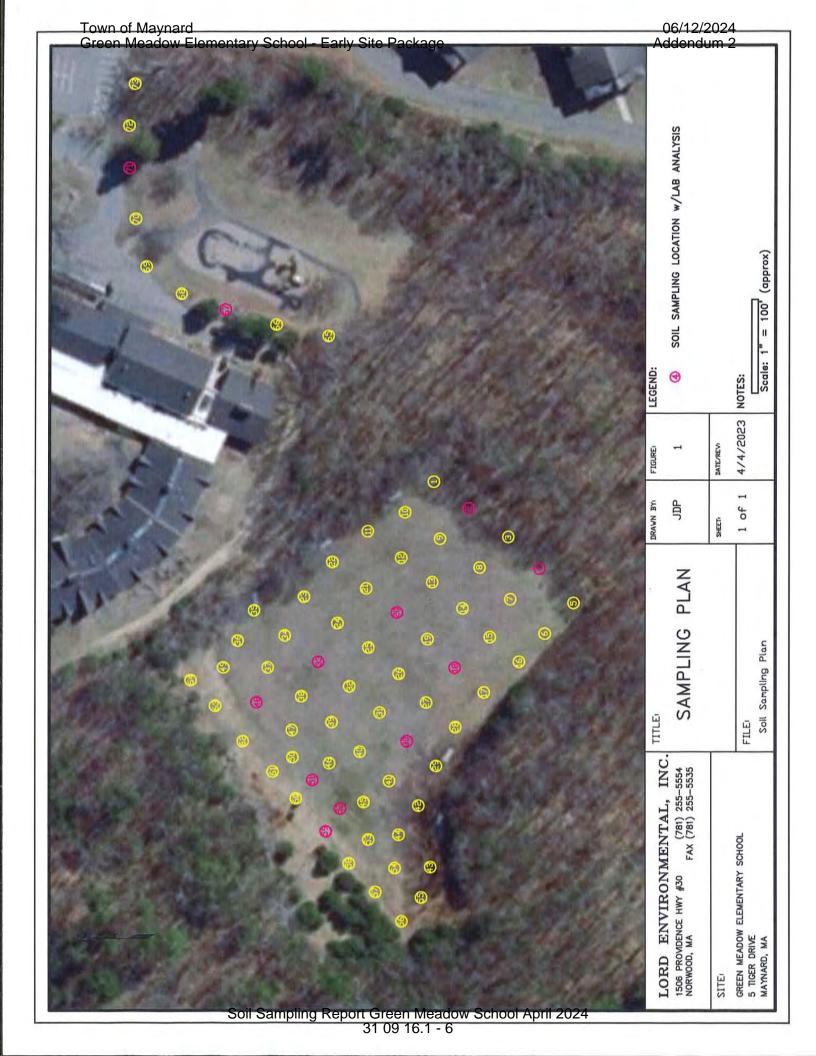
Limitations Enc:

> Site Plan **Tables**

**Laboratory Analysis Report** 

06/12/2024 Soil Sampling and Adde Houm 2 5 Tiger Drive, Maynard, MA April 8, 2024

#### Limitations


No warranty, whether expressed or implied, is given with respect to this report or any opinions expressed herein. It is expressly understood that this report and the opinions expressed herein are based upon Site conditions as they existed only at the time of assessment.

The data reported and the findings, observations, and opinions expressed in the report are limited by the Scope of Work. The Scope of Work was performed based on budgetary, time, and other constraints imposed by the Client, and the agencies and persons reviewed. Due to the fact that geological and soil formations are inherently random, variable and indeterminate (heterogeneous) in nature, the professional services and opinions provided by Lord Environmental, Inc. under our agreement are not guaranteed to be a representation of complete Site conditions, which are variable and subject to change with time or the result of natural or man-made processes.

Although our services are extensive, opinions, findings and conclusions presented are limited to and by the data supplied, reported and obtained. Lord Environmental, Inc. makes no expressed or implied representations, warranties or guarantees regarding any changes in the condition of the premises after the date of the on-site inspection(s).

In preparing this report, Lord Environmental, Inc. has relied upon and presumed accurate certain information about the Site and adjacent properties provided by governmental agencies, the client and others identified in the report. Except as otherwise stated in the report, Lord Environmental, Inc. has not attempted to verify the accuracy or completeness of any such information.

### **FIGURES**



### **TABLES**

### Table 1

#### SOIL BORING LOGS - FIELD SCREENING

#### 5 TIGER DRIVE, MAYNARD, MA

|        | BO         | RING METHOD: Geop | robe 6712DT Track Rig DATEs: March 22 and 24, 2023                                           |
|--------|------------|-------------------|----------------------------------------------------------------------------------------------|
| Boring | Depth (ft) | PID Reading (ppm) | Soil Description                                                                             |
| B-1    | 0-3        | ND                | 3" Loam topsoil. Brown, coarse to fine sand, little gravel, trace silt                       |
| B-2    | 0-3        | ND                | 6" Loam topsoil. Brown, medium to fine sand, little coarse sand, trace silt                  |
| B-3    | 0-3        | ND                | 4" Loam topsoil. Brown, coarse to fine sand, little coarse sand, trace silt                  |
| B-4    | 0-3        | ND                | 3" Loam topsoil. Brown, coarse to fine sand, little gravel, trace silt                       |
| B-5    | 0-3        | ND                | 3" Loam topsoil. Brown, coarse to fine sand, little gravel, trace silt                       |
| B-6    | 0-3        | ND                | 7" Loam topsoil. Brown, coarse to fine sand, little gravel, trace silt                       |
| B-7    | 0-3        | ND                | 2" Loam topsoil. Brown, medium to fine sand, little coarse sand, trace gravel, silt          |
| B-8    | 0-3        | ND                | 7" Loam topsoil. Brown, coarse to fine sand, little gravel, trace silt                       |
| B-9    | 0-3        | ND                | 3" Loam topsoil. Brown, coarse to fine sand and gravel                                       |
| B-10   | 0-3        | ND                | 4" Loam topsoil. Brown, coarse to fine sand and gravel                                       |
| B-11   | 0-3        | ND                | 4" Loam topsoil. Brown, coarse to fine sand and gravel                                       |
| B-12   | 0-3        | ND                | 3" Loam topsoil. Brown, coarse to fine sand, some gravel, trace silt                         |
| B-13   | 0-3        | ND                | 3" Loam topsoil. Brown, coarse to fine sand, little gravel, trace silt                       |
| B-14   | 0-3        | ND                | 2" Loam topsoil. Brown, coarse to fine sand, little gravel, trace silt                       |
| B-15   | 0-3        | ND                | 2" Loam topsoil. Brown, coarse to fine sand, some gravel, trace silt                         |
| B-16   | 0-3        | ND                | 3" Loam topsoil. Brown, coarse to fine sand, some gravel, trace silt                         |
| B-17   | 0-3        | ND                | 2" Loam topsoil. Brown, coarse to fine sand, some gravel, trace silt                         |
| B-18   | 0-3        | ND                | 2" Loam topsoil. Brown, coarse to fine sand, little gravel, trace silt                       |
| B-19   | 0-3        | ND                | 2" Loam topsoil. Brown, coarse to fine sand, little gravel, trace silt                       |
| B-20   | 0-3        | ND                | 2" Loam topsoil. Brown, coarse to fine sand, little gravel, trace silt                       |
| B-21   | 0-3        | ND                | 3" Loam topsoil. Brown, coarse to fine sand, some gravel, trace silt                         |
| B-22   | 0-3        | ND                | 2" Loam topsoil. Brown, coarse to fine sand, little gravel, trace silt                       |
| B-23   | 0-3        | ND                | 3" Loam topsoil. Brown, coarse to fine sand, some gravel, trace silt                         |
| B-24   | 0-3        | ND                | 2" Loam topsoil. Brown, coarse to fine sand, little gravel, trace silt                       |
| B-25   | 0-3        | ND                | 2" Loam topsoil. Brown, coarse to fine sand, little gravel, trace silt                       |
| B-26   | 0-3        | ND                | 2" Loam topsoil. Red brown, coarse to fine sand, some gravel, trace silt                     |
| B-27   | 0-3        | ND                | 2" Loam topsoil. Red brown, coarse to fine sand, some gravel, trace silt                     |
| B-28   | 0-3        | ND                | Brown, coarse to fine sand, some gravel, trace silt                                          |
| B-29   | 0-3        | ND                | 6" Loam topsoil. Red brown, coarse to fine sand, some gravel, trace silt                     |
| B-30   | 0-3        | ND                | 6" Loam topsoil. Red brown, coarse to fine sand, some gravel, trace silt                     |
| B-31   | 0-3        | ND                | 6" Loam topsoil. Red brown, coarse to fine sand, some gravel, trace silt                     |
| B-32   | 0-3        | ND                | 4" Loam topsoil. Red brown, medium to fine sand, some gravel, little coarse sand, trace silt |
| B-33   | 0-3        | ND                | 4" Loam topsoil. Red brown, medium to fine sand, some gravel, little coarse sand, trace silt |
| B-34   | 0-3        | ND                | 4" Loam topsoil. Red brown, medium to fine sand, some gravel, little coarse sand, trace silt |
| B-35   | 0-3        | ND                | Red brown, coarse to fine sand, some gravel, trace silt                                      |
| B-36   | 0-3        | ND                | Red brown, coarse to fine sand, some gravel, trace silt                                      |
| B-37   | 0-3        | ND                | 6" Loam topsoil. Brown, medium to fine sand, little coarse sand, trace silt                  |
| B-38   | 0-3        | ND                | 6" Loam topsoil. Brown, coarse to fine sand and gravel. One 1' boulder                       |
| B-39   | 0-3        | ND                | 3" Loam topsoil. Brown, medium to fine sand, little coarse sand, trace silt                  |
| B-40   | 0-3        | ND                | Brown, coarse to fine sand, little gravel, trace silt                                        |
| B-41   | 0-3        | ND                | Brown, coarse to fine sand, little gravel, trace silt                                        |
| B-42   | 0-3        | ND                | 3" Loam topsoil. Brown, medium to fine sand, little coarse sand, trace silt                  |
| B-43   | 0-3        | ND                | 4" Loam topsoil. Brown, coarse to fine sand, little gravel, trace silt                       |

#### Table 1

#### SOIL BORING LOGS - FIELD SCREENING

#### 5 TIGER DRIVE, MAYNARD, MA

#### BORING METHOD: Geoprobe 6712DT Track Rig DATEs: March 22 and 24, 2023

| Boring | Depth (ft) | PID Reading (ppm) | Soil Description                                                                    |
|--------|------------|-------------------|-------------------------------------------------------------------------------------|
| B-44   | 0-3        | ND                | 4" Loam topsoil. Brown, coarse to fine sand, little gravel, trace silt              |
| B-45   | 0-3        | ND                | 4" Loam topsoil. Brown, coarse to fine sand, little gravel, trace silt              |
| B-46   | 0-3        | ND                | 4" Loam topsoil. Brown, coarse to fine sand, little gravel, trace silt              |
| B-47   | 0-3        | ND                | 8" Loam topsoil. Brown, coarse to fine sand, little gravel, trace silt              |
| B-48   | 0-3        | ND                | 3" Loam topsoil. Brown, medium to fine sand, some silt                              |
| B-49   | 0-3        | ND                | 4" Loam topsoil. Brown, coarse to fine sand, little gravel, trace silt              |
| B-50   | 0-3        | ND                | 10" Loam topsoil. Brown, coarse to fine sand, little gravel, trace silt             |
| B-51   | 0-3        | ND                | 3" Loam topsoil. Brown, coarse to fine sand, trace gravel, silt                     |
| B-52   | 0-3        | ND                | Brown and grey, coarse to fine sand, little gravel, silt                            |
| B-53   | 0-3        | ND                | Brown, coarse to fine sand, little gravel, trace                                    |
| B-54   | 0-3        | ND                | Brown and grey, coarse to fine sand, little gravel, silt                            |
| B-55   | 0-3        | ND                | 4" Loam topsoil. Brown, coarse to fine sand, little gravel, trace silt              |
| B-56   | 0-3        | ND                | 4" Loam topsoil. Brown, coarse to fine sand, little gravel, trace silt              |
| B-57   | 0-3        | ND                | 4" Loam topsoil. Brown, coarse to fine sand, little gravel, trace silt              |
| B-58   | 0-3        | ND                | 3" Loam topsoil. Brown, medium to fine sand, little gravel, coarse sand, trace silt |
| B-59   | 0-3        | ND                | 3" Loam topsoil. Brown, coarse to fine sand, little gravel, trace silt              |
| B-60   | 0-3        | ND                | 3" Loam topsoil. Brown, coarse to fine sand, little gravel, trace silt              |
| B-61   | 0-3        | ND                | 3" Loam topsoil. Brown, coarse to fine sand, little gravel, trace silt              |
| B-62   | 0-3        | ND                | 3" Loam topsoil. Brown, coarse to fine sand, little gravel, trace silt              |
| B-63   | 0-3        | ND                | 4" Loam topsoil. Brown, coarse to fine sand, little gravel, trace silt              |
| B-64   | 0-3        | ND                | 8" Loam topsoil. Brown, coarse to fine sand, little cobbles, gravel, trace silt     |
| B-65   | 0-3        | ND                | 4" Loam topsoil. Brown, coarse to fine sand, little gravel, trace silt              |
| B-66   | 0-3        | ND                | 4" Loam topsoil. Brown, medium to fine sand, trace gravel, coarse sand, silt        |
| B-67   | 0-3        | ND                | 2" Loam topsoil. Brown, coarse to fine sand, little gravel, trace silt              |
| B-68   | 0-3        | ND                | 6" Loam topsoil. Brown, coarse to fine sand, little gravel, trace silt              |
| B-69   | 0-3        | ND                | 2" Loam topsoil. Brown, coarse to fine sand, some gravel, trace silt                |
| B-70   | 0-3        | ND                | 2" Loam topsoil. Brown, coarse to fine sand, some gravel, trace silt                |
| B-71   | 0-3        | ND                | Brown, coarse to fine sand, little gravel, trace silt                               |
| B-72   | 0-3        | ND                | Brown, medium to fine sand, trace gravel, coarse sand, silt                         |
| B-73   | 0-3        | ND                | Brown, coarse to fine sand, little gravel, trace silt                               |

Notes: ND – Not Detected

# Table 2 Soil Analysis Results (mg/kg), 3/24/2023 5 Tiger Drive, Maynard, MA

| Sample                                   | B-2              |      | B-4              |      | B-1              | 8    | B-2              | 0    | B-3              | 0    | B-3              | 3    | B-4              | 8    | B-5              | 1    | B-52             | 2    | B-59             | 9    | B-67             | 7    | B-7:             | 1    | MADED   | Standards  |
|------------------------------------------|------------------|------|------------------|------|------------------|------|------------------|------|------------------|------|------------------|------|------------------|------|------------------|------|------------------|------|------------------|------|------------------|------|------------------|------|---------|------------|
| Date Sampled:                            | 3/22/            | 23   | 3/22/            | 23   | 3/22/            | /23  | 3/22/            | 23   | 3/24/            | /23  | 3/24/            | /23  | 3/24/            | /23  | 3/24/            | 23   | 3/24/            | 23   | 3/24/            | 23   | 3/24/            | 23   | 3/24/            | 23   | WADEF . | italiualus |
| Parameter                                | Sample<br>Result | RL   | RC-S1   | RC-S2      |
|                                          |                  |      |                  |      |                  |      |                  |      |                  |      |                  |      |                  |      |                  |      |                  |      |                  |      |                  |      |                  |      |         |            |
| EPH and PAH                              |                  |      |                  |      |                  |      |                  |      |                  |      |                  |      |                  |      |                  |      |                  |      |                  |      |                  |      |                  |      |         |            |
| Unadjusted C11-C22 Aromatic Hydrocarbons | ND               | 7.59 | ND               | 7.48 | 21               | 8.46 | ND               | 6.99 | ND               | 7.04 | ND               | 7.47 | ND               | 7.57 | ND               | 7.57 | 8.7              | 7.53 | ND               | 7.63 | ND               | 7.26 | ND               | 7.33 |         |            |
| Naphthalene                              | ND               | 0.38 | ND               | 0.37 | ND               | 0.42 | ND               | 0.35 | ND               | 0.35 | ND               | 0.37 | ND               | 0.37 | ND               | 0.37 | ND               | 0.37 | ND               | 0.38 | ND               | 0.36 | ND               | 0.36 | 4       | 20         |
| 2-Methylnaphthalene                      | ND               | 0.38 | ND               | 0.37 | ND               | 0.42 | ND               | 0.35 | ND               | 0.35 | ND               | 0.37 | ND               | 0.37 | ND               | 0.37 | ND               | 0.37 | ND               | 0.38 | ND               | 0.36 | ND               | 0.36 | 0.7     | 80         |
| Phenanthrene                             | ND               | 0.38 | ND               | 0.37 | ND               | 0.42 | ND               | 0.35 | ND               | 0.35 | ND               | 0.37 | ND               | 0.37 | ND               | 0.37 | ND               | 0.37 | ND               | 0.38 | ND               | 0.36 | ND               | 0.36 | 10      | 1000       |
| Acenaphthene                             | ND               | 0.38 | ND               | 0.37 | ND               | 0.42 | ND               | 0.35 | ND               | 0.35 | ND               | 0.37 | ND               | 0.37 | ND               | 0.37 | ND               | 0.37 | ND               | 0.38 | ND               | 0.36 | ND               | 0.36 | 4       | 3000       |
| Acenaphthylene                           | ND               | 0.38 | ND               | 0.37 | ND               | 0.42 | ND               | 0.35 | ND               | 0.35 | ND               | 0.37 | ND               | 0.37 | ND               | 0.37 | ND               | 0.37 | ND               | 0.38 | ND               | 0.36 | ND               | 0.36 | 1       | 10         |
| Fluorene                                 | ND               | 0.38 | ND               | 0.37 | ND               | 0.42 | ND               | 0.35 | ND               | 0.35 | ND               | 0.37 | ND               | 0.37 | ND               | 0.37 | ND               | 0.37 | ND               | 0.38 | ND               | 0.36 | ND               | 0.36 | 1000    | 3000       |
| Anthracene                               | ND               | 0.38 | ND               | 0.37 | ND               | 0.42 | ND               | 0.35 | ND               | 0.35 | ND               | 0.37 | ND               | 0.37 | ND               | 0.37 | ND               | 0.37 | ND               | 0.38 | ND               | 0.36 | ND               | 0.36 | 1000    | 3000       |
| Fluoranthene                             | ND               | 0.38 | ND               | 0.37 | ND               | 0.42 | ND               | 0.35 | ND               | 0.35 | ND               | 0.37 | ND               | 0.37 | ND               | 0.37 | ND               | 0.37 | ND               | 0.38 | ND               | 0.36 | ND               | 0.36 | 1000    | 3000       |
| Pyrene                                   | ND               | 0.38 | ND               | 0.37 | ND               | 0.42 | ND               | 0.35 | ND               | 0.35 | ND               | 0.37 | ND               | 0.37 | ND               | 0.37 | ND               | 0.37 | ND               | 0.38 | ND               | 0.36 | ND               | 0.36 | 1000    | 3000       |
| Benzo(a)anthracene                       | ND               | 0.38 | ND               | 0.37 | ND               | 0.42 | ND               | 0.35 | ND               | 0.35 | ND               | 0.37 | ND               | 0.37 | ND               | 0.37 | ND               | 0.37 | ND               | 0.38 | ND               | 0.36 | ND               | 0.36 | 7       | 40         |
| Chrysene                                 | ND               | 0.38 | ND               | 0.37 | ND               | 0.42 | ND               | 0.35 | ND               | 0.35 | ND               | 0.37 | ND               | 0.37 | ND               | 0.37 | ND               | 0.37 | ND               | 0.38 | ND               | 0.36 | ND               | 0.36 | 70      | 400        |
| Benzo(b)fluoranthene                     | ND               | 0.38 | ND               | 0.37 | ND               | 0.42 | ND               | 0.35 | ND               | 0.35 | ND               | 0.37 | ND               | 0.37 | ND               | 0.37 | ND               | 0.37 | ND               | 0.38 | ND               | 0.36 | ND               | 0.36 | 7       | 40         |
| Benzo(k)fluoranthene                     | ND               | 0.38 | ND               | 0.37 | ND               | 0.42 | ND               | 0.35 | ND               | 0.35 | ND               | 0.37 | ND               | 0.37 | ND               | 0.37 | ND               | 0.37 | ND               | 0.38 | ND               | 0.36 | ND               | 0.36 | 70      | 400        |
| Benzo(a)pyrene                           | ND               | 0.38 | ND               | 0.37 | ND               | 0.42 | ND               | 0.35 | ND               | 0.35 | ND               | 0.37 | ND               | 0.37 | ND               | 0.37 | ND               | 0.37 | ND               | 0.38 | ND               | 0.36 | ND               | 0.36 | 2       | 7          |
| Indeno(1,2,3-cd)pyrene                   | ND               | 0.38 | ND               | 0.37 | ND               | 0.42 | ND               | 0.35 | ND               | 0.35 | ND               | 0.37 | ND               | 0.37 | ND               | 0.37 | ND               | 0.37 | ND               | 0.38 | ND               | 0.36 | ND               | 0.36 | 7       | 40         |
| Dibenz(a,h)anthracene                    | ND               | 0.38 | ND               | 0.37 | ND               | 0.42 | ND               | 0.35 | ND               | 0.35 | ND               | 0.37 | ND               | 0.37 | ND               | 0.37 | ND               | 0.37 | ND               | 0.38 | ND               | 0.36 | ND               | 0.36 | 0.7     | 4          |
| Benzo(g,h,i)perylene                     | ND               | 0.38 | ND               | 0.37 | ND               | 0.42 | ND               | 0.35 | ND               | 0.35 | ND               | 0.37 | ND               | 0.37 | ND               | 0.37 | ND               | 0.37 | ND               | 0.38 | ND               | 0.36 | ND               | 0.36 | 1000    | 3000       |
| C9-C18 Aliphatic Hydrocarbons            | ND               | 15.1 | ND               | 14.9 | ND               | 16.9 | ND               | 13.9 | ND               | 14   | ND               | 14.9 | ND               | 15.1 | ND               | 15.1 | ND               | 15   | ND               | 15.2 | ND               | 14.5 | ND               | 14.6 | 1000    | 3000       |
| C19-C36 Aliphatic Hydrocarbons           | 17.7             | 15.1 | ND               | 14.9 | ND               | 16.9 | ND               | 13.9 | ND               | 14   | ND               | 14.9 | ND               | 15.1 | ND               | 15.1 | 15.7             | 15   | ND               | 15.2 | ND               | 14.5 | ND               | 14.6 | 3000    | 5000       |
| C11-C22 Aromatic Hydrocarbons            | ND               | 7.59 | ND               | 7.48 | 21               | 8.46 | ND               | 6.99 | ND               | 7.04 | ND               | 7.47 | ND               | 7.57 | ND               | 7.57 | 8.7              | 7.53 | ND               | 7.63 | ND               | 7.26 | ND               | 7.33 | 1000    | 3000       |

Notes

mg/kg: Milligrams per kilogram EPH: Extractable Petroleum Hydrocarbons

PAH: Polycyclic Aromatic Hydrocarbons

RL: Reporting Limit

RC-S1: MassDEP Reportable Concentration S-1

RC-S2: MassDEP Reportable Concentration S-2

Detected analytes are highlighted blue

No analytes were detected above their MADEP S-1 Reportable Concentrations

| Sample ID:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | B-108 2-4'                        |            | B-118 2-4'                        |           | TP-      |            | B-103     |            | B-113                |                      | B-112         |            |                    |                   |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|------------|-----------------------------------|-----------|----------|------------|-----------|------------|----------------------|----------------------|---------------|------------|--------------------|-------------------|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|
| Lab Sample Number:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4B27035-01                        |            | 4B27035-02                        |           | 4B2601   |            | 4B2601    |            | 4B2601               |                      | 4B2601        |            |                    |                   |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |
| Date Sampled:<br>Date Received:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2/27/2024 0:00<br>2/27/2024 13:34 |            | 2/27/2024 0:00<br>2/27/2024 13:34 |           | 2/23/202 |            | 2/23/2024 |            | 2/23/202<br>2/26/202 |                      | 2/23/202      |            |                    |                   |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |
| Date Received:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2/2//2024 15:54<br>Sample         | Reporting  | 2/2//2024 13:34<br>Sample         | Reporting | Sample   | Reporting  | Sample    | Reporting  | Sample               | 4 10:36<br>Reporting | Sample        | Reporting  |                    | MOHMI Penortable  | MOHMI Reportable  | MA COMM-97 Disposal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | MA COMM-97 Disposal |
| Parameter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Result                            | Limit      | Result                            | Limit     | Result   | Limit      | Result    | Limit      | Result               | Limit                | Result        | Limit      | Units              | Concentration S-1 | Concentration S-2 | Criteria                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Criteria            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                   |            |                                   |           |          |            |           |            |                      |                      |               |            |                    |                   |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |
| General Chemistry Flashpoint                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | > 200                             | 70         | > 200                             | 70        | > 200    | 70         | > 200     | 70         | > 200                | 70                   | > 200         | 70         | dograne E          |                   |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |
| Specific Conductance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 13.7                              | 2          | > 200<br>296                      | 2         | 56.3     | 2          | 15.9      | 2          | 9.4                  | 2                    | > 200<br>17.4 | 2          | degrees F<br>uS/cm |                   |                   | 8000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4000                |
| nH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 8.1                               |            | 7.1                               |           | 7        |            | 6         |            | 5.1                  |                      | 5.2           |            | SU                 |                   |                   | 8000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4000                |
| рп                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.1                               |            | /.1                               |           |          |            |           |            | 5.1                  |                      | 5.2           |            | 30                 |                   |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |
| Polychlorinated Biphenyls (PCBs)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                   |            |                                   |           |          |            |           |            |                      |                      |               |            |                    |                   |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |
| Aroclor-1016                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ND                                | 71         | ND                                | 69        | ND       | 82         | ND        | 75         | ND                   | 76                   | ND            | 72         | ug/kg              | 1000              | 4000              | see PCBs (Total)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | see PCBs (Total)    |
| Aroclor-1221                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ND                                | 71         | ND                                | 69        | ND       | 82         | ND        | 75         | ND                   | 76                   | ND            | 72         | ug/kg              | 1000              | 4000              | see PCBs (Total)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | see PCBs (Total)    |
| Aroclor-1221<br>Aroclor-1232                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ND ND                             | 71         | ND<br>ND                          | 69        | ND       | 82         | ND        | 75         | ND                   | 76                   | ND            | 72         |                    | 1000              | 4000              | see PCBs (Total)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | see PCBs (Total)    |
| Aroclor-1242                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ND                                | 71         | ND ND                             | 69        | ND       | 82         | ND        | 75         | ND                   | 76                   | ND            | 72         | ug/kg<br>ug/kg     | 1000              | 4000              | see PCBs (Total)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | see PCBs (Total)    |
| Aroclor-1248                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ND                                | 71         | ND                                | 69        | ND       | 82         | ND        | 75         | ND                   | 76                   | ND            | 72         | ug/kg              | 1000              | 4000              | see PCBs (Total)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | see PCBs (Total)    |
| Aroclor-1254                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ND ND                             | 71         | ND ND                             | 69        | ND       | 82         | ND        | 75         | ND                   | 76                   | ND            | 72         | ug/kg              | 1000              | 4000              | see PCBs (Total)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | see PCBs (Total)    |
| Aroclor-1260                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ND ND                             | 71         | ND ND                             | 69        | ND       | 82         | ND        | 75         | ND                   | 76                   | ND            | 72         | ug/kg              | 1000              | 4000              | see PCBs (Total)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | see PCBs (Total)    |
| Aroclor-1262                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ND ND                             | 71         | ND ND                             | 69        | ND       | 82         | ND        | 75         | ND                   | 76                   | ND            | 72         | ug/kg              | 1000              | 1000              | see PCBs (Total)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | see PCBs (Total)    |
| Aroclor-1268                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ND                                | 71         | ND                                | 69        | ND       | 82         | ND        | 75         | ND                   | 76                   | ND            | 72         | ug/kg              |                   |                   | see PCBs (Total)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | see PCBs (Total)    |
| PCBs (Total)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ND ND                             | 71         | ND                                | 69        | ND       | 82         | ND        | 75         | ND                   | 76                   | ND            | 72         | ug/kg              | 1000              | 4000              | 2000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2000                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                   |            |                                   |           |          |            |           |            |                      |                      |               |            |                    |                   |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |
| Reactivity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                   |            |                                   |           |          |            |           |            |                      |                      |               |            |                    |                   |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |
| Cyanide                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ND                                | 0.2        | ND                                | 0.2       | ND       | 0.3        | ND        | 0.2        | ND                   | 0.2                  | ND            | 0.2        | mg/kg              | 30                | 100               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |
| Sulfide                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ND                                | 0.1        | ND                                | 0.1       | ND       | 0.1        | ND        | 0.1        | ND                   | 0.1                  | ND            | 0.1        | mg/kg              |                   |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |
| Combinate and the control of the con |                                   |            |                                   |           |          |            |           |            |                      |                      |               |            |                    |                   | -                 | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                     |
| Semivolatile organic compounds                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                   |            |                                   |           |          |            |           |            |                      |                      |               |            |                    |                   |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |
| 1,2,4-Trichlorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ND ND                             | 141        | ND                                | 137       | ND       | 163        | ND        | 150        | ND                   | 154                  | ND            | 143        | ug/kg              | 2000              | 6000              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |
| 1,2-Dichlorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ND                                | 141        | ND                                | 137       | ND       | 163        | ND        | 150        | ND                   | 154                  | ND            | 143        | ug/kg              | 9000              | 100000            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |
| 1,3-Dichlorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ND                                | 141        | ND                                | 137       | ND       | 163        | ND        | 150        | ND                   | 154                  | ND            | 143        | ug/kg              | 3000              | 200000            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |
| 1,4-Dichlorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ND                                | 141        | ND                                | 137       | ND       | 163        | ND        | 150        | ND                   | 154                  | ND            | 143        | ug/kg              | 700               | 1000              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |
| Phenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ND                                | 141        | ND                                | 137       | ND       | 163        | ND        | 150        | ND                   | 154                  | ND            | 143        | ug/kg              | 900               | 10000             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |
| 2,4,5-Trichlorophenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ND                                | 141        | ND                                | 137       | ND       | 163        | ND        | 150        | ND                   | 154                  | ND            | 143        | ug/kg              | 4000              | 600000            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |
| 2,4,6-Trichlorophenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ND                                | 141        | ND                                | 137       | ND       | 163        | ND        | 150        | ND                   | 154                  | ND            | 143        | ug/kg              | 700               | 20000             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |
| 2,4-Dichlorophenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ND                                | 141        | ND                                | 137       | ND       | 163        | ND        | 150        | ND                   | 154                  | ND            | 143        | ug/kg              | 700               | 40000             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |
| 2,4-Dimethylphenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ND                                | 357        | ND                                | 348       | ND       | 413        | ND        | 380        | ND                   | 391                  | ND            | 363        | ug/kg              | 700               | 100000            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |
| 2,4-Dinitrophenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ND                                | 357        | ND                                | 348       | ND       | 413        | ND        | 380        | ND                   | 391                  | ND            | 363        | ug/kg              | 3000              | 50000             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |
| 2,4-Dinitrotoluene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ND                                | 141        | ND                                | 137       | ND       | 163        | ND        | 150        | ND                   | 154                  | ND            | 143        | ug/kg              | 700               | 10000             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |
| 2,6-Dinitrotoluene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ND                                | 141        | ND                                | 137       | ND       | 163        | ND        | 150        | ND                   | 154                  | ND            | 143        | ug/kg              | 100000            | 1000000           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |
| 2-Chloronaphthalene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ND                                | 141        | ND                                | 137       | ND       | 163        | ND        | 150        | ND                   | 154                  | ND            | 143        | ug/kg              | 1000000           | 1.00E+07          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |
| 2-Chlorophenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ND                                | 141        | ND                                | 137       | ND       | 163        | ND        | 150        | ND                   | 154                  | ND            | 143        | ug/kg              | 700               | 100000            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |
| 2-Methylnaphthalene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ND                                | 141        | ND                                | 137       | ND       | 163        | ND<br>ND  | 150        | ND                   | 154<br>154           | ND            | 143        | ug/kg              | 700               | 80000<br>500000   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |
| Nitrobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ND<br>ND                          | 141        | ND<br>ND                          | 137       | ND<br>ND |            | ND<br>ND  | 150<br>150 | ND<br>ND             | 154                  | ND<br>ND      |            | ug/kg              | 500000<br>500000  | 5000000           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |
| 2-Methylphenol<br>2-Nitroaniline                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ND<br>ND                          | 141        | ND<br>ND                          | 137       | ND<br>ND | 163        |           | 150        |                      | 154                  |               | 143        | ug/kg              | 500000            | 5000000           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |
| 2-Nitroaniline<br>2-Nitrophenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ND<br>ND                          | 141<br>357 | ND<br>ND                          | 348       | ND<br>ND | 163<br>413 | ND<br>ND  | 380        | ND<br>ND             | 391                  | ND<br>ND      | 143<br>363 | ug/kg              | 100000            | 1000000           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ND<br>ND                          |            | ND<br>ND                          | 348       | ND<br>ND | 413        | ND        | 380        | ND<br>ND             |                      | ND<br>ND      | 363        | ug/kg              | 3000              | 20000             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |
| 3,3'-Dichlorobenzidine<br>3-Nitroaniline                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ND<br>ND                          | 357        | ND<br>ND                          | 137       | ND<br>ND |            | ND<br>ND  | 150        | ND<br>ND             | 391<br>154           | ND<br>ND      | 143        | ug/kg              | 3000              | 20000             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |
| 4.6-Dinitro-2-methylphenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ND<br>ND                          | 141<br>357 | ND<br>ND                          | 348       | ND       | 163<br>413 | ND        | 380        | ND                   | 391                  | ND            | 363        | ug/kg<br>ug/kg     | 50000             | 500000            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |
| 4-Bromophenyl phenyl ether                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ND<br>ND                          | 141        | ND<br>ND                          | 137       | ND       | 163        | ND        | 150        | ND                   | 154                  | ND            | 143        | ug/kg              | 100000            | 1000000           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |
| 4-Chloro-3-methylphenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ND ND                             | 141        | ND<br>ND                          | 137       | ND       | 163        | ND        | 150        | ND<br>ND             | 154                  | ND            | 143        | ug/kg              | 100000            | 1.00E+07          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |
| 4-Chloroaniline                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ND<br>ND                          | 141        | ND<br>ND                          | 137       | ND       | 163        | ND        | 150        | ND<br>ND             | 154                  | ND            | 143        |                    | 1000              | 3000              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ND<br>ND                          | 141        | ND<br>ND                          | 137       | ND       | 163        | ND        | 150        | ND                   | 154                  | ND            | 143        | ug/kg              | 1000000           | 1.00E+07          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |
| 4-Chlorophenyl phenyl ether 4-Nitroaniline                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ND<br>ND                          | 141        | ND<br>ND                          | 137       | ND<br>ND | 163        | ND<br>ND  | 150        | ND<br>ND             | 154                  | ND<br>ND      | 143        | ug/kg              | 1000000           | 1.UUE+U/          | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                     |
| 4-Nitroannine<br>4-Nitrophenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ND<br>ND                          | 357        | ND<br>ND                          | 348       | ND       | 413        | ND        | 380        | ND<br>ND             | 391                  | ND            | 363        | ug/kg<br>ug/kg     | 100000            | 1000000           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |
| Acenaphthene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ND<br>ND                          | 141        | ND<br>ND                          | 137       | ND       | 163        | ND        | 150        | ND                   | 154                  | ND            | 143        | ug/kg              | 4000              | 3000000           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |
| Acenaphthylene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ND ND                             | 141        | ND<br>ND                          | 137       | ND       | 163        | ND        | 150        | ND                   | 154                  | ND            | 143        | ug/kg              | 2000              | 10000             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |
| Aniline                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ND ND                             | 141        | ND ND                             | 137       | ND       | 163        | ND        | 150        | ND<br>ND             | 154                  | ND            | 143        | ug/kg              | 1000000           | 1.00E+07          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |
| Anthracene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ND<br>ND                          | 141        | ND ND                             | 137       | ND       | 163        | ND        | 150        | ND<br>ND             | 154                  | ND            | 143        | ug/kg              | 1000000           | 3000000           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |
| Benzo(a)anthracene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ND<br>ND                          | 141        | ND<br>ND                          | 137       | ND<br>ND | 163        | ND ND     | 150        | ND<br>ND             | 154                  | ND<br>ND      | 143        | ug/kg              | 20000             | 300000            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |
| Benzo(a)pyrene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ND                                | 141        | ND                                | 137       | ND       | 163        | ND        | 150        | ND                   | 154                  | ND            | 143        | ug/kg              | 2000              | 30000             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |
| Benzo(b)fluoranthene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ND<br>ND                          | 141        | ND ND                             | 137       | ND       | 163        | ND        | 150        | ND<br>ND             | 154                  | ND            | 143        | ug/kg              | 20000             | 300000            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |
| Benzo(g,h,i)perylene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ND<br>ND                          | 141        | ND<br>ND                          | 137       | ND       | 163        | ND        | 150        | ND                   | 154                  | ND            | 143        | ug/kg              | 1000000           | 300000            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |
| Benzo(k)fluoranthene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ND ND                             | 141        | ND<br>ND                          | 137       | ND       | 163        | ND        | 150        | ND                   | 154                  | ND            | 143        | ug/kg              | 200000            | 3000000           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |
| Benzoic acid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ND ND                             | 1080       | ND                                | 1050      | ND       | 1250       | ND        | 1150       | ND                   | 1180                 | ND            | 1100       | ug/kg              | 1000000           | 1.00E+07          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |
| Biphenyl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ND                                | 22         | ND                                | 21        | ND       | 25         | ND        | 23         | ND                   | 24                   | ND            | 22         | ug/kg              | 50                | 6000              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |
| Bis(2-chloroethoxy)methane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ND ND                             | 141        | ND                                | 137       | ND       | 163        | ND        | 150        | ND                   | 154                  | ND            | 143        | ug/kg              | 500000            | 5000000           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |
| Bis(2-chloroethyl)ether                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ND                                | 141        | ND                                | 137       | ND       | 163        | ND        | 150        | ND                   | 154                  | ND            | 143        | ug/kg              | 700               | 700               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |
| Bis(2-chloroisopropyl)ether                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ND                                | 141        | ND                                | 137       | ND       | 163        | ND        | 150        | ND                   | 154                  | ND            | 143        | ug/kg              | 700               | 700               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |
| Bis(2-ethylhexyl)phthalate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ND                                | 433        | ND                                | 422       | ND       | 501        | ND        | 460        | ND                   | 474                  | ND            | 440        | ug/kg              | 100000            | 700000            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |
| Butyl benzyl phthalate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ND ND                             | 141        | ND                                | 137       | ND       | 163        | ND        | 150        | ND                   | 154                  | ND            | 143        | ug/kg              | 100000            | 1000000           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |
| Chrysene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ND                                | 141        | ND                                | 137       | ND       | 163        | ND        | 150        | ND ND                | 154                  | ND            | 143        | ug/kg              | 200000            | 3000000           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |
| Di-n-octyl phthalate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ND ND                             | 217        | ND ND                             | 211       | ND       | 250        | ND        | 230        | ND                   | 237                  | ND            | 220        | ug/kg              | 1000000           | 1.00E+07          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |
| Dibenz(a,h)anthracene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ND                                | 141        | ND                                | 137       | ND       | 163        | ND        | 150        | ND                   | 154                  | ND            | 143        | ug/kg              | 2000              | 30000             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |
| Dibenzofuran                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ND ND                             | 141        | ND ND                             | 137       | ND       | 163        | ND        | 150        | ND                   | 154                  | ND            | 143        | ug/kg              | 100000            | 1000000           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |
| Diethyl phthalate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ND ND                             | 141        | ND<br>ND                          | 137       | ND       | 163        | ND ND     | 150        | ND                   | 154                  | ND            | 143        | ug/kg              | 10000             | 200000            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |
| Dimethyl phthalate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ND<br>ND                          | 357        | ND<br>ND                          | 348       | ND       | 413        | ND        | 380        | ND                   | 391                  | ND            | 363        | ug/kg              | 700               | 50000             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |
| Di-n-butyl phthalate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ND ND                             | 217        | ND                                | 211       | ND       | 250        | ND        | 230        | ND                   | 237                  | ND            | 220        | ug/kg              | 50000             | 500000            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |
| or in early primitations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | IND                               | 21/        | NU                                | 411       | ND       | 230        | IND       |            | NU                   | 43/                  | ND            | 220        | us/Ng              | 20000             | 200000            | i contraction of the contraction |                     |

| Sample ID:                                 | B-108 2-4'                |            | B-118 2-4'                        |            | TP-6                   | -           | B-103      |            | B-113                |                      | B-112      |            |                |                   |                   |                     |                     |
|--------------------------------------------|---------------------------|------------|-----------------------------------|------------|------------------------|-------------|------------|------------|----------------------|----------------------|------------|------------|----------------|-------------------|-------------------|---------------------|---------------------|
| Lab Sample Number:                         | 4B27035-01                |            | 4B27035-02                        |            | 4B2601                 |             | 4B2601     |            | 4B2601               |                      | 4B2601     |            |                |                   |                   |                     |                     |
| Date Sampled:<br>Date Received:            | 2/27/2024 0:00            |            | 2/27/2024 0:00<br>2/27/2024 13:34 |            | 2/23/2024<br>2/26/2024 |             | 2/23/2024  |            | 2/23/202<br>2/26/202 |                      | 2/23/2024  |            |                |                   |                   |                     |                     |
| Date Received:                             | 2/27/2024 13:34<br>Sample | Reporting  | 2/2//2024 13:34<br>Sample         | Reporting  | Sample                 | Reporting   | Sample     | Reporting  | Sample               | 4 10:36<br>Reporting | Sample     | Reporting  |                | MOHML Reportable  | MOHMI Reportable  | MA COMM-97 Disposal | MA COMM-97 Disposal |
| Parameter                                  | Result                    | Limit      | Result                            | Limit      | Result                 | Limit       | Result     | Limit      | Result               | Limit                | Result     | Limit      | Units          | Concentration S-1 | Concentration S-2 | Criteria            | Criteria            |
|                                            |                           |            |                                   |            |                        |             |            |            |                      |                      |            |            |                |                   |                   |                     |                     |
| Fluoranthene                               | ND                        | 141        | ND                                | 137        | 208                    | 163         | ND         | 150        | ND                   | 154                  | ND         | 143        | ug/kg          | 1000000           | 3000000           |                     |                     |
| Fluorene<br>Hexachlorobenzene              | ND<br>ND                  | 141        | ND<br>ND                          | 137        | ND<br>ND               | 163<br>163  | ND<br>ND   | 150<br>150 | ND<br>ND             | 154<br>154           | ND<br>ND   | 143<br>143 | ug/kg          | 1000000<br>700    | 3000000<br>900    |                     |                     |
| Hexachlorobutadiene                        | ND<br>ND                  | 141<br>141 | ND<br>ND                          | 137        | ND<br>ND               | 163         | ND<br>ND   | 150        | ND<br>ND             | 154                  | ND<br>ND   | 143        | ug/kg          | 30000             | 100000            |                     |                     |
| Hexachlorocyclopentadiene                  | ND<br>ND                  | 357        | ND<br>ND                          | 348        | ND<br>ND               | 413         | ND         | 380        | ND<br>ND             | 391                  | ND         | 363        | ug/kg<br>ug/kg | 50000             | 500000            |                     |                     |
| Hexachloroethane                           | ND ND                     | 141        | ND ND                             | 137        | ND                     | 163         | ND ND      | 150        | ND                   | 154                  | ND         | 143        | ug/kg          | 700               | 3000              |                     |                     |
| Indeno(1,2,3-cd)pyrene                     | ND ND                     | 141        | ND                                | 137        | ND                     | 163         | ND         | 150        | ND                   | 154                  | ND         | 143        | ug/kg          | 20000             | 300000            |                     |                     |
| Isophorone                                 | ND                        | 141        | ND                                | 137        | ND                     | 163         | ND         | 150        | ND                   | 154                  | ND         | 143        | ug/kg          | 100000            | 1000000           |                     |                     |
| Naphthalene                                | ND                        | 141        | ND                                | 137        | ND                     | 163         | ND         | 150        | ND                   | 154                  | ND         | 143        | ug/kg          | 4000              | 20000             |                     |                     |
| N-Nitrosodimethylamine                     | ND                        | 141        | ND                                | 137        | ND                     | 163         | ND         | 150        | ND                   | 154                  | ND         | 143        | ug/kg          | 50000             | 500000            |                     |                     |
| N-Nitrosodi-n-propylamine                  | NĐ                        | 141        | ND                                | 137        | ND                     | 163         | ND         | 150        | ND                   | 154                  | ND         | 143        | ug/kg          | 50000             | 500000            |                     |                     |
| N-Nitrosodiphenylamine                     | ND                        | 141        | ND                                | 137        | ND                     | 163         | ND         | 150        | ND                   | 154                  | ND         | 143        | ug/kg          | 100000            | 1000000           |                     |                     |
| Pentachlorophenol                          | ND                        | 357        | ND                                | 348        | ND                     | 413         | ND         | 380        | ND                   | 391                  | ND         | 363        | ug/kg          | 3000              | 10000             |                     |                     |
| Phenanthrene                               | ND                        | 141        | ND                                | 137        | ND                     | 163         | ND         | 150        | ND                   | 154                  | ND         | 143        | ug/kg          | 10000             | 1000000           |                     |                     |
| Pyrene                                     | ND                        | 141        | ND                                | 137        | 240                    | 163         | ND         | 150        | ND                   | 154                  | ND         | 143        | ug/kg          | 1000000           | 3000000           |                     |                     |
| m&p-Cresol                                 | ND<br>ND                  | 282        | ND                                | 274        | ND                     | 326         | ND         | 299        | ND                   | 308                  | ND         | 286        | ug/kg          | 500000            | 5000000           |                     | -                   |
| Pyridine                                   | ND<br>ND                  | 141        | ND<br>ND                          | 137        | ND                     | 163         | ND         | 150        | ND<br>ND             | 154                  | ND         | 143        | ug/kg          | 500000            | 5000000           |                     | -                   |
| Azobenzene<br>Total Dichlorobenzene        | ND<br>ND                  | 141<br>141 | ND<br>ND                          | 137<br>137 | ND<br>ND               | 163<br>163  | ND<br>ND   | 150<br>150 | ND<br>ND             | 154<br>154           | ND<br>ND   | 143<br>143 | ug/kg          | 700               | 4000              |                     |                     |
| rotal Dichloroperizene                     | NU                        | 141        | ND.                               | 15/        | NU                     | 103         | ND         | 100        | NU                   | 104                  | ND         | 143        | ug/kg          | 700               | 4000              |                     |                     |
| Total Metals                               |                           |            |                                   |            |                        |             |            |            |                      |                      |            |            |                |                   |                   |                     | <u> </u>            |
| Antimony                                   | ND                        | 0.81       | ND                                | 0.77       | 1.09                   | 0.86        | ND         | 0.88       | ND                   | 0.95                 | ND         | 0.88       | mg/kg          | 20                | 40                |                     |                     |
| Arsenic                                    | 8.77                      | 1.22       | 6.64                              | 1.17       | 10.5                   | 1.3         | 5.92       | 1.33       | 9.73                 | 1.44                 | 6.4        | 1.33       | mg/kg          | 20                | 20                | 40                  | 40                  |
| Barium                                     | 29.1                      | 0.4        | 55.4                              | 0.39       | 32.5                   | 0.43        | 38         | 0.44       | 13.6                 | 0.48                 | 65.3       | 0.44       | mg/kg          | 1000              | 3000              |                     |                     |
| Beryllium                                  | ND                        | 0.4        | ND                                | 0.39       | ND                     | 0.43        | ND         | 0.44       | ND                   | 0.48                 | ND         | 0.44       | mg/kg          | 100               | 200               |                     |                     |
| Cadmium                                    | 2.43                      | 0.61       | 4.49                              | 0.58       | 3.42                   | 0.65        | 4.33       | 0.66       | 2.54                 | 0.72                 | 5.34       | 0.66       | mg/kg          | 80                | 80                | 80                  | 30                  |
| Chromium                                   | 10.6                      | 0.61       | 22.8                              | 0.58       | 13.7                   | 0.65        | 19.5       | 0.66       | 13                   | 0.72                 | 21.8       | 0.66       | mg/kg          | 100               | 200               | 1000                | 1000                |
| Lead                                       | 3.35                      | 0.61       | 5.7                               | 0.58       | 38.7                   | 0.65        | 5.29       | 0.66       | 3.91                 | 0.72                 | 5.94       | 0.66       | mg/kg          | 200               | 600               | 2000                | 1000                |
| Nickel                                     | 6.35                      | 0.61       | 13.7                              | 0.58       | 9.11                   | 0.65        | 9.06       | 0.66       | 8.94                 | 0.72                 | 9.97       | 0.66       | mg/kg          | 700               | 1000              |                     |                     |
| Selenium                                   | ND                        | 1.22       | ND                                | 1.17       | ND                     | 1.3         | ND         | 1.33       | ND                   | 1.44                 | ND         | 1.33       | mg/kg          | 400               | 800               |                     |                     |
| Silver                                     | ND<br>12.4                | 0.4        | ND<br>26.1                        | 0.39       | ND<br>21.4             | 1.3         | ND<br>24.4 | 0.44       | ND<br>14.4           | 0.48                 | ND<br>36.7 | 1.33       | mg/kg          | 100<br>500        | 200<br>800        |                     |                     |
| Vanadium<br>Zinc                           | 12.4                      | 2.4        | 26.1                              | 2.3        | 48.6                   | 0.43<br>2.6 | 22.9       | 2.7        | 18.4                 | 2.9                  | 26.3       | 2.7        | mg/kg<br>mg/kg | 1000              | 3000              |                     |                     |
| Thallium                                   | ND                        | 0.4        | ND                                | 0.39       | ND                     | 0.43        | ND         | 0.44       | ND ND                | 0.48                 | ND         | 0.44       | mg/kg          | 8                 | 70                |                     |                     |
| Mercury                                    | ND<br>ND                  | 0.104      | ND ND                             | 0.09       | 0.129                  | 0.43        | 0.184      | 0.111      | ND                   | 0.46                 | ND         | 0.097      | mg/kg          | 20                | 40                | 10                  | 10                  |
|                                            |                           |            |                                   |            |                        | 0.000       |            |            |                      | V                    |            |            |                |                   |                   |                     |                     |
| Total Petroleum Hydrocarbons               |                           |            |                                   |            |                        |             |            |            |                      |                      |            |            |                |                   |                   |                     |                     |
| Total Petroleum Hydrocarbons               | ND                        | 29         | ND                                | 28         | ND                     | 33          | ND         | 30         | ND                   | 31                   | ND         | 28         | mg/kg          | 1000              | 3000              | 5000                | 2500                |
|                                            |                           |            |                                   |            |                        |             |            |            |                      |                      |            |            |                |                   |                   |                     |                     |
| Volatile Organic Compounds 8260C (5035-LL) | ND.                       |            |                                   |            |                        | 400         | ND.        | 400        |                      | 022                  | ND.        | 427        | . 0 .          | 5000              | 50000             |                     |                     |
| Acetone                                    | ND<br>ND                  | 93         | ND<br>ND                          | 92<br>5    | ND<br>ND               | 103         | ND<br>ND   | 106<br>5   | ND<br>ND             | 823<br>6             | ND<br>ND   | 137        | ug/kg          | 6000<br>2000      | 50000<br>200000   |                     |                     |
| Benzene<br>Bromohonzono                    | ND<br>ND                  | 5          | ND<br>ND                          |            | ND                     |             | ND<br>ND   | 5          | ND<br>ND             | 6                    | ND         | 7          | ug/kg          |                   | 1000000           |                     |                     |
| Bromobenzene<br>Bromochloromethane         | ND<br>ND                  | 5          | ND<br>ND                          | 5          | ND                     | 5           | ND         | 5          | ND                   | 6                    | ND         | 7          | ug/kg<br>ug/kg | 100000            | 1000000           |                     |                     |
| Bromodichloromethane                       | ND ND                     | 5          | ND                                | 5          | ND                     | 5           | ND         | 5          | ND                   | 6                    | ND         | 7          | ug/kg          | 100               | 100               |                     |                     |
| Bromoform                                  | ND ND                     | 5          | ND                                | 5          | ND                     | 5           | ND         | 5          | ND ND                | 6                    | ND         | 7          | ug/kg          | 100               | 1000              |                     |                     |
| Bromomethane                               | ND                        | 5          | ND                                | 5          | ND                     | 5           | ND         | 5          | ND                   | 6                    | ND         | 7          | ug/kg          | 500               | 500               |                     |                     |
| 2-Butanone                                 | ND                        | 93         | ND                                | 92         | ND                     | 103         | ND         | 106        | ND                   | 118                  | ND         | 137        | ug/kg          | 4000              | 50000             |                     |                     |
| tert-Butyl alcohol                         | ND                        | 5          | ND                                | 5          | ND                     | 5           | ND         | 5          | ND                   | 6                    | ND         | 7          | ug/kg          | 100000            | 1000000           |                     |                     |
| sec-Butylbenzene                           | ND                        | 5          | ND                                | 5          | ND                     | 5           | ND         | 5          | ND                   | 6                    | ND         | 7          | ug/kg          |                   |                   |                     |                     |
| n-Butylbenzene                             | ND                        | 5          | ND                                | 5          | ND                     | 5           | ND         | 5          | ND                   | 6                    | ND         | 7          | ug/kg          |                   |                   |                     |                     |
| tert-Butylbenzene                          | ND                        | 5          | ND                                | 5          | ND                     | 5           | ND         | 5          | ND                   | 6                    | ND         | 7          | ug/kg          | 100000            | 1000000           |                     |                     |
| Methyl t-butyl ether (MTBE)                | ND                        | 5          | ND                                | 5          | ND                     | 5           | ND         | 5          | ND                   | 6                    | ND         | 7          | ug/kg          | 100               | 100000            |                     |                     |
| Carbon Disulfide                           | ND<br>ND                  | 5          | ND ND                             | 5          | ND                     | 5           | ND         | 5          | ND                   | 6                    | ND         | 7          | ug/kg          | 100000            | 1000000           |                     |                     |
| Carbon Tetrachloride                       | ND<br>ND                  | 5          | ND                                | 5          | ND                     | 5           | ND         | 5          | ND                   | 6                    | ND         | 7          | ug/kg          | 5000              | 5000              |                     | -                   |
| Chlorobenzene                              | ND<br>ND                  | 5          | ND<br>ND                          | 5          | ND                     | 5           | ND         | 5          | ND<br>ND             | 6                    | ND<br>ND   | 7          | ug/kg          | 1000              | 3000              |                     |                     |
| Chloroethane<br>Chloroform                 | ND<br>ND                  | 5          | ND<br>ND                          | 5          | ND<br>ND               | 5           | ND<br>ND   | 5          | ND<br>ND             | 6                    | ND<br>ND   | 7          | ug/kg          | 100000<br>200     | 1000000<br>200    |                     |                     |
| Chloromethane                              | ND<br>ND                  | 5          | ND<br>ND                          | 5          | ND<br>ND               | 5           | ND         | 5          | ND<br>ND             | 6                    | ND         | 7          | ug/kg<br>ug/kg | 100000            | 1000000           |                     |                     |
| 4-Chlorotoluene                            | ND<br>ND                  | 5          | ND ND                             | 5          | ND<br>ND               | 5           | ND         | 5          | ND<br>ND             | 6                    | ND         | 7          | ug/kg          | 20000             | 100000            |                     |                     |
| 2-Chlorotoluene                            | ND<br>ND                  | 5          | ND                                | 5          | ND                     | 5           | ND         | 5          | ND                   | 6                    | ND         | 7          | ug/kg          | 100000            | 1000000           |                     |                     |
| 1,2-Dibromo-3-chloropropane (DBCP)         | ND                        | 5          | ND                                | 5          | ND                     | 5           | ND         | 5          | ND                   | 6                    | ND         | 7          | ug/kg          | 10000             | 100000            |                     | T                   |
| Dibromochloromethane                       | ND                        | 5          | ND                                | 5          | ND                     | 5           | ND         | 5          | ND                   | 6                    | ND         | 7          | ug/kg          | 5                 | 30                |                     |                     |
| 1,2-Dibromoethane (EDB)                    | ND                        | 5          | ND                                | 5          | ND                     | 5           | ND         | 5          | ND                   | 6                    | ND         | 7          | ug/kg          | 100               | 100               |                     |                     |
| Dibromomethane                             | ND                        | 5          | ND                                | 5          | ND                     | 5           | ND         | 5          | ND                   | 6                    | ND         | 7          | ug/kg          | 500000            | 5000000           |                     |                     |
| 1,2-Dichlorobenzene                        | ND                        | 5          | ND                                | 5          | ND                     | 5           | ND         | 5          | ND                   | 6                    | ND         | 7          | ug/kg          | 9000              | 100000            |                     |                     |
| 1,3-Dichlorobenzene                        | ND                        | 5          | ND                                | 5          | ND                     | 5           | ND         | 5          | ND                   | 6                    | ND         | 7          | ug/kg          | 3000              | 200000            |                     |                     |
| 1,4-Dichlorobenzene                        | ND                        | 5          | ND                                | 5          | ND                     | 5           | ND         | 5          | ND                   | 6                    | ND         | 7          | ug/kg          | 700               | 1000              |                     |                     |
| 1,1-Dichloroethane                         | ND                        | 5          | ND                                | 5          | ND                     | 5           | ND         | 5          | ND                   | 6                    | ND         | 7          | ug/kg          | 400               | 9000              |                     |                     |
| 1,2-Dichloroethane                         | ND                        | 5          | ND                                | 5          | ND                     | 5           | ND         | 5          | ND                   | 6                    | ND         | 7          | ug/kg          | 100               | 100               |                     |                     |
| 1,2 Dichloroethene, Total                  | ND                        | 5          | ND                                | 5          | ND                     | 5           | ND         | 5          | ND                   | 6                    | ND         | 7          | ug/kg          | 300               | 400               |                     |                     |
| trans-1,2-Dichloroethene                   | ND                        | 5          | ND                                | 5          | ND                     | 5           | ND         | 5          | ND                   | 6                    | ND         | 7          | ug/kg          | 1000              | 1000              |                     |                     |
| cis-1,2-Dichloroethene                     | ND                        | 5          | ND                                | 5          | ND                     | 5           | ND         | 5          | ND                   | 6                    | ND         | 7          | ug/kg          | 100               | 100               |                     | 1                   |

| Sample ID:                        | B-108 2-4'      |           | B-118 2-4'      |           | TP-             | 6         | B-103           | 0-6'      | B-113           | 2-4'      | B-112           | 2-6'      |       |                   |                   |                           |                       |
|-----------------------------------|-----------------|-----------|-----------------|-----------|-----------------|-----------|-----------------|-----------|-----------------|-----------|-----------------|-----------|-------|-------------------|-------------------|---------------------------|-----------------------|
| ab Sample Number:                 | 4B27035-01      |           | 4B27035-02      |           | 4B260:          | 10-01     | 4B260           | 10-02     | 4B260           | 10-03     | 4B2601          | 10-04     |       |                   |                   |                           |                       |
| Date Sampled:                     | 2/27/2024 0:00  |           | 2/27/2024 0:00  |           | 2/23/202        | 4 10:30   | 2/23/202        | 24 10:00  | 2/23/202        | 4 10:45   | 2/23/202        | 4 11:00   |       |                   |                   |                           |                       |
| Date Received:                    | 2/27/2024 13:34 |           | 2/27/2024 13:34 |           | 2/26/2024 10:38 |           | 2/26/2024 10:38 |           | 2/26/2024 10:38 |           | 2/26/2024 10:38 |           |       |                   |                   |                           |                       |
|                                   | Sample          | Reporting |       | MOHML Reportable  | MOHML Reportable  | MA COMM-97 Disposal       | MA COMM-97 Dispo      |
| Parameter                         | Result          | Limit     | Units | Concentration S-1 | Concentration S-2 | Criteria                  | Criteria              |
| 1,1-Dichloroethene                | ND              | 5         | ND              | 5         | ND              | 5         | ND              | 5         | ND              | 6         | ND              | 7         | ug/kg | 3000              | 40000             |                           |                       |
| 1,2-Dichloropropane               | ND              | 5         | ND              | 5         | ND              | 5         | ND              | 5         | ND              | 6         | ND              | 7         | ug/kg | 100               | 100               |                           |                       |
| 2,2-Dichloropropane               | ND              | 5         | ND              | 5         | ND              | 5         | ND              | 5         | ND              | 6         | ND              | 7         | ug/kg |                   |                   |                           |                       |
| is-1,3-Dichloropropene            | ND              | 5         | ND              | 5         | ND              | 5         | ND              | 5         | ND              | 6         | ND              | 7         | ug/kg | 10                | 100               | ,3-Dichloropropene (cis + | ,3-Dichloropropene (c |
| rans-1,3-Dichloropropene          | ND              | 5         | ND              | 5         | ND              | 5         | ND              | 5         | ND              | 6         | ND              | 7         | ug/kg | 10                | 100               | ,3-Dichloropropene (cis + | ,3-Dichloropropene (c |
| ,1-Dichloropropene                | ND              | 5         | ND              | 5         | ND              | 5         | ND              | 5         | ND              | 6         | ND              | 7         | ug/kg |                   |                   |                           |                       |
| 1,3-Dichloropropene (cis + trans) | ND              | 5         | ND              | 5         | ND              | 5         | ND              | 5         | ND              | 6         | ND              | 7         | ug/kg | 10                | 400               |                           |                       |
| Diethyl ether                     | ND              | 5         | ND              | 5         | ND              | 5         | ND              | 5         | ND              | 6         | ND              | 7         | ug/kg | 100000            | 1000000           |                           |                       |
| I,4-Dioxane                       | ND              | 93        | ND              | 92        | ND              | 103       | ND              | 106       | ND              | 118       | ND              | 137       | ug/kg | 200               | 5000              |                           |                       |
| thylbenzene                       | ND              | 5         | ND              | 5         | ND              | 5         | ND              | 5         | ND              | 6         | ND              | 7         | ug/kg | 40000             | 1000000           |                           |                       |
| Hexachlorobutadiene               | ND              | 5         | ND              | 5         | ND              | 5         | ND              | 5         | ND              | 6         | ND              | 7         | ug/kg | 30000             | 100000            |                           |                       |
| 2-Hexanone                        | ND              | 93        | ND              | 92        | ND              | 103       | ND              | 106       | ND              | 118       | ND              | 137       | ug/kg | 100000            | 1000000           |                           |                       |
| sopropylbenzene                   | ND.             | 5         | ND              | 5         | ND              | 5         | ND              | 5         | ND              | 6         | ND              | 7         | ug/kg | 1000000           | 1.00E+07          |                           |                       |
| o-Isopropyltoluene                | ND ND           | 5         | ND              | 5         | ND              | 5         | ND              | 5         | ND              | 6         | ND              | 7         | ug/kg | 100000            | 1000000           |                           |                       |
| Methylene Chloride                | ND.             | 5         | ND              | 5         | ND              | 5         | ND              | 5         | ND              | 6         | ND              | 7         | ug/kg | 100               | 3000              |                           |                       |
| I-Methyl-2-pentanone              | ND ND           | 93        | ND              | 92        | ND              | 103       | ND              | 106       | ND              | 118       | ND              | 137       | ug/kg | 400               | 50000             |                           |                       |
| Naphthalene                       | ND              | 5         | ND              | 5         | ND              | 5         | ND              | 5         | ND              | 6         | ND              | 7         | ug/kg | 4000              | 20000             |                           |                       |
| n-Propylbenzene                   | ND ND           | 5         | ND              | 5         | ND              | 5         | ND              | 5         | ND ND           | 6         | ND              | 7         | ug/kg | 100000            | 1000000           |                           |                       |
| Styrene                           | ND ND           | 5         | ND              | 5         | ND              | 5         | ND              | 5         | ND              | 6         | ND              | 7         | ug/kg | 3000              | 4000              |                           |                       |
| 1.1.1.2-Tetrachloroethane         | ND ND           | 5         | ND              | 5         | ND              | 5         | ND              | 5         | ND              | 6         | ND              | 7         | ug/kg | 100               | 100               |                           |                       |
| Tetrachloroethene                 | ND ND           | 5         | ND              | 5         | ND              | 5         | ND              | 5         | ND ND           | 6         | ND              | 7         | ug/kg | 1000              | 4000              |                           |                       |
| Tetrahydrofuran                   | ND ND           | 5         | ND ND           | 5         | ND              | 5         | ND              | 5         | ND              | 6         | ND              | 7         | ug/kg | 500000            | 5000000           |                           |                       |
| Toluene                           | ND ND           | 5         | ND              | 5         | ND              | 5         | ND              | 5         | ND              | 6         | ND              | 7         | ug/kg | 30000             | 1000000           |                           |                       |
| 1,2,4-Trichlorobenzene            | ND ND           | 5         | ND ND           | 5         | ND              | 5         | ND              | 5         | ND              | 6         | ND ND           | 7         | ug/kg | 2000              | 6000              |                           |                       |
| 1,2,3-Trichlorobenzene            | ND<br>ND        | 5         | ND              | 5         | ND              | 5         | ND              | 5         | ND              | 6         | ND              | 7         | ug/kg | 2000              | 0000              |                           |                       |
| 1,1,2-Trichloroethane             | ND<br>ND        | 5         | ND ND           | 5         | ND              | 5         | ND              | 5         | ND              | 6         | ND              | 7         | ug/kg | 100               | 2000              |                           |                       |
| 1,1,1-Trichloroethane             | ND<br>ND        | 5         | ND<br>ND        | 5         | ND<br>ND        | 5         | ND<br>ND        | 5         | ND<br>ND        |           | ND              | 7         |       | 30000             | 600000            |                           |                       |
| richloroethene                    | ND<br>ND        | 5         | ND<br>ND        | 5         | ND<br>ND        | 5         | ND              | 5         | ND              | 6         | ND              | - /       | ug/kg | 300               | 300               |                           |                       |
|                                   | ND<br>ND        | 5         | ND<br>ND        | 5         | ND<br>ND        | 5         | ND<br>ND        | 5         | ND<br>ND        | 6         | ND<br>ND        | - /       | ug/kg |                   | 1000000           |                           |                       |
| 1,2,3-Trichloropropane            | ND<br>ND        | 5         | ND<br>ND        | 5         | ND<br>ND        | 5         | ND<br>ND        | 5         | ND<br>ND        | 6         | ND<br>ND        | /         | ug/kg | 100000<br>10000   | 100000            |                           |                       |
| 1,3,5-Trimethylbenzene            |                 | -         | ND<br>ND        | _         | ND<br>ND        |           |                 |           |                 | -         | ND<br>ND        | /         | ug/kg |                   |                   |                           |                       |
| 1,2,4-Trimethylbenzene            | ND              | 5         |                 | 5         |                 | 5         | ND              | 5         | ND              | 6         |                 |           | ug/kg | 1000000           | 1.00E+07          |                           |                       |
| /inyl Chloride                    | ND              | 5         | ND              | 5         | ND              | 5         | ND              | 5         | ND              | 6         | ND              |           | ug/kg | 300               | 700               |                           |                       |
| -Xylene                           | ND              | 5         | ND              | 5         | ND              | 5         | ND              | 5         | ND              | 6         | ND              | /         | ug/kg | see Total xylenes | see Total xylenes | see Total xylenes         | see Total xylenes     |
| n&p-Xylene                        | ND              | 9         | ND              | 9         | ND              | 10        | ND              | 11        | ND              | 12        | ND              | 14        | ug/kg | see Total xylenes | see Total xylenes | see Total xylenes         | see Total xylenes     |
| otal xylenes                      | ND              | 5         | ND              | 5         | ND              | 5         | ND              | 5         | ND              | 6         | ND              | 7         | ug/kg | 100000            | 100000            |                           |                       |
| ,1,2,2-Tetrachloroethane          | ND              | 5         | ND              | 5         | ND              | 5         | ND              | 5         | ND              | 6         | ND              | 7         | ug/kg | 5                 | 20                |                           |                       |
| ert-Amyl methyl ether             | ND              | 5         | ND              | 5         | ND              | 5         | ND              | 5         | ND              | 6         | ND              | 7         | ug/kg |                   |                   |                           |                       |
| 1,3-Dichloropropane               | ND              | 5         | ND              | 5         | ND              | 5         | ND              | 5         | ND              | 6         | ND              | 7         | ug/kg | 500000            | 5000000           |                           |                       |
| thyl tert-butyl ether             | ND              | 5         | ND              | 5         | ND              | 5         | ND              | 5         | ND              | 6         | ND              | 7         | ug/kg |                   |                   |                           |                       |
| Diisopropyl ether                 | ND              | 5         | ND              | 5         | ND              | 5         | ND              | 5         | ND              | 6         | ND              | 7         | ug/kg | 100000            | 1000000           |                           |                       |
| Frichlorofluoromethane            | ND              | 5         | ND              | 5         | ND              | 5         | ND              | 5         | ND              | 6         | ND              | 7         | ug/kg | 1000000           | 1.00E+07          |                           |                       |
| Dichlorodifluoromethane           | ND              | 5         | ND              | 5         | ND              | 5         | ND              | 5         | ND              | 6         | ND              | 7         | ue/ke | 1000000           | 1.00E+07          |                           |                       |

### **LABORATORY REPORTS**



### REPORT OF ANALYTICAL RESULTS

NETLAB Work Order Number: 3C27022 Client Project: 3096 - MVG Green

Report Date: 04-April-2023

Prepared for:

Jon Puliafico Lord Environmental, Inc. 1506 Providence Highway, Suite 30 Norwood, MA 02062

> Richard Warila, Laboratory Director New England Testing Laboratory, Inc. 59 Greenhill Street West Warwick, RI 02893 rich.warila@newenglandtesting.com

### Samples Submitted:

The samples listed below were submitted to New England Testing Laboratory on 03/27/23. The group of samples appearing in this report was assigned an internal identification number (case number) for laboratory information management purposes. The client's designations for the individual samples, along with our case numbers, are used to identify the samples in this report. This report of analytical results pertains only to the sample(s) provided to us by the client which are indicated on the custody record. The case number for this sample submission is 3C27022. Custody records are included in this report.

| Lab ID     | Sample | Matrix | Date Sampled | Date Received |
|------------|--------|--------|--------------|---------------|
| 3C27022-01 | B-2    | Soil   | 03/22/2023   | 03/27/2023    |
| 3C27022-02 | B-4    | Soil   | 03/22/2023   | 03/27/2023    |
| 3C27022-03 | B-18   | Soil   | 03/22/2023   | 03/27/2023    |
| 3C27022-04 | B-20   | Soil   | 03/22/2023   | 03/27/2023    |
| 3C27022-05 | B-30   | Soil   | 03/24/2023   | 03/27/2023    |
| 3C27022-06 | B-33   | Soil   | 03/24/2023   | 03/27/2023    |
| 3C27022-07 | B-48   | Soil   | 03/24/2023   | 03/27/2023    |
| 3C27022-08 | B-51   | Soil   | 03/24/2023   | 03/27/2023    |
| 3C27022-09 | B-52   | Soil   | 03/24/2023   | 03/27/2023    |
| 3C27022-10 | B-59   | Soil   | 03/24/2023   | 03/27/2023    |
| 3C27022-11 | B-67   | Soil   | 03/24/2023   | 03/27/2023    |
| 3C27022-12 | B-71   | Soil   | 03/24/2023   | 03/27/2023    |

### Request for Analysis

At the client's request, the analyses presented in the following table were performed on the samples submitted.

B-18 (Lab Number: 3C27022-03)

**Analysis** Method MADEP EPH MADEP EPH

**B-2 (Lab Number: 3C27022-01)** 

**Analysis Method** MADEP EPH MADEP EPH

B-20 (Lab Number: 3C27022-04)

**Analysis Method** MADEP EPH MADEP EPH

B-30 (Lab Number: 3C27022-05)

**Analysis Method** MADEP EPH MADEP EPH

B-33 (Lab Number: 3C27022-06)

**Analysis** Method MADEP EPH MADEP EPH

B-4 (Lab Number: 3C27022-02)

**Analysis Method** MADEP EPH MADEP EPH

B-48 (Lab Number: 3C27022-07)

**Analysis Method** MADEP EPH MADEP EPH

B-51 (Lab Number: 3C27022-08)

**Analysis** Method MADEP EPH MADEP EPH

B-52 (Lab Number: 3C27022-09)

**Analysis Method** MADEP EPH MADEP EPH

B-59 (Lab Number: 3C27022-10)

**Analysis Method** MADEP EPH MADEP EPH

B-67 (Lab Number: 3C27022-11)

**Analysis Method** MADEP EPH MADEP EPH

B-71 (Lab Number: 3C27022-12)

Soil Sampling Report Green Meadow School April 2024 31 09 16.1 - 17 MADEP EPH **Analysis** 

#### **Method References**

Method for the Determination of Extractable Petroleum Hydrocarbons, Rev. 2.1, Massachusetts Department of Environmental Protection, 2004

Test Methods for Evaluating Solid Waste, Physical/Chemical Methods, SW846, USEPA

#### **Case Narrative**

# Sample Receipt:

The samples associated with this work order were received in appropriately cooled and preserved containers. The chain of custody was adequately completed and corresponded to the samples submitted.

Exceptions: None

## **Analysis:**

All samples were prepared and analyzed within method specified holding times and according to NETLAB's documented standard operating procedures. The results for the associated calibration, method blank and laboratory control sample (LCS) were within method specified quality control requirements and allowances. Results for all soil samples, unless otherwise indicated, are reported on a dry weight basis.

Exceptions: None

# **Extractable Petroleum Hydrocarbons** Sample: B-2 (3C27022-01)

### **SAMPLE INFORMATION**

| Matrix                | Soil                                  |
|-----------------------|---------------------------------------|
| Containers            | Satisfactory                          |
| Aqueous Preservatives | NA                                    |
| Temperature           | Received on Ice Received at: 4+/-2 C° |
| Extraction Method     | EPA Method 3546                       |

| EPH ANALYTICAL RESU                               | ILTS                               |          |       |              |            |                |
|---------------------------------------------------|------------------------------------|----------|-------|--------------|------------|----------------|
| Method for Ranges: MADEP E                        | Method for Ranges: MADEP EPH 4-1.1 |          |       | Client ID    | B-2        |                |
| Method for Target Analytes:                       | MADEP EPH 4-1.1                    | Lab ID   |       |              | 3C27022-01 |                |
| EPH Surrogate Standards:                          |                                    |          | Da    | te Collected | 03/22/23   |                |
| Aliphatic: Chlorooctadecane                       |                                    |          | Da    | te Received  | 03/27/23   |                |
| Aromatic: o-Terphenyl                             |                                    |          | D     | ate Thawed   | NA         |                |
|                                                   |                                    |          | Dat   | e Extracted  | 03/30/23   |                |
| EPH Fractionation Surrogates (1) 2-Fluorobiphenyl | :                                  |          | Perce | nt Moisture  | 12.70      |                |
| (2) 2-Bromonaphthalene                            |                                    |          |       |              |            |                |
| RANGE/TARGET ANALYTE                              |                                    | Dilution | RL    | Units        | Result     | Analyzed       |
| Unadjusted C11-C22 Arom                           | natic Hydrocarbons [1]             | 1X       | 7.59  | mg/kg        | <7.59      | 04/03/23 17:27 |
|                                                   | Naphthalene                        | 1X       | 0.38  | mg/kg        | <0.38      | 04/03/23 17:27 |
| Diesel PAH                                        | 2-Methylnaphthalene                | 1X       | 0.38  | mg/kg        | <0.38      | 04/03/23 17:27 |
| Analytes                                          | Phenanthrene                       | 1X       | 0.38  | mg/kg        | <0.38      | 04/03/23 17:27 |
|                                                   | Acenaphthene                       | 1X       | 0.38  | mg/kg        | <0.38      | 04/03/23 17:27 |
|                                                   | Acenaphthylene                     | 1X       | 0.38  | mg/kg        | <0.38      | 04/03/23 17:27 |
|                                                   | Fluorene                           | 1X       | 0.38  | mg/kg        | <0.38      | 04/03/23 17:27 |
|                                                   | Anthracene                         | 1X       | 0.38  | mg/kg        | <0.38      | 04/03/23 17:27 |
|                                                   | Fluoranthene                       | 1X       | 0.38  | mg/kg        | <0.38      | 04/03/23 17:27 |
|                                                   | Pyrene                             | 1X       | 0.38  | mg/kg        | <0.38      | 04/03/23 17:27 |
|                                                   | Benzo(a)anthracene                 | 1X       | 0.38  | mg/kg        | <0.38      | 04/03/23 17:27 |
| Other                                             | Chrysene                           | 1X       | 0.38  | mg/kg        | <0.38      | 04/03/23 17:27 |
| Target PAH                                        | Benzo(b)fluoranthene               | 1X       | 0.38  | mg/kg        | <0.38      | 04/03/23 17:27 |
| Analytes                                          | Benzo(k)fluoranthene               | 1X       | 0.38  | mg/kg        | <0.38      | 04/03/23 17:27 |
|                                                   | Benzo(a)pyrene                     | 1X       | 0.38  | mg/kg        | <0.38      | 04/03/23 17:27 |
|                                                   | Indeno(1,2,3-cd)pyrene             | 1X       | 0.38  | mg/kg        | <0.38      | 04/03/23 17:27 |
|                                                   | Dibenz(a,h)anthracene              | 1X       | 0.38  | mg/kg        | <0.38      | 04/03/23 17:27 |
|                                                   | Benzo(g,h,i)perylene               | 1X       | 0.38  | mg/kg        | <0.38      | 04/03/23 17:27 |
| C9-C18 Aliphatic Hydrocar                         | bons [1]                           | 1X       | 15.1  | mg/kg        | <15.1      | 04/03/23 23:00 |
| C19-C36 Aliphatic Hydrocarbons [1]                |                                    | 1X       | 15.1  | mg/kg        | 17.7       | 04/03/23 23:00 |
| C11-C22 Aromatic Hydrocarbons [1,2]               |                                    | 1X       | 7.59  | mg/kg        | <7.59      | 04/03/23 17:27 |
| Chlorooctadecane (Sample                          | e Surrogate)                       |          |       | %            | 90.3       | 04/03/23 23:00 |
| o-Terphenyl (Sample Surrogate)                    |                                    |          |       | %            | 76.0       | 04/03/23 17:27 |
| 2-Fluorobiphenyl (Fraction                        | ation Surrogate)                   |          |       | %            | 99.8       | 04/03/23 17:27 |
| 2-Bromonaphthalene (Fra                           |                                    |          |       | %            | 97.6       | 04/03/23 17:27 |
| Surrogate Acceptance Range [                      | 3]                                 |          |       | %            | 40 - 140   |                |

<sup>[1]</sup> Hydrocarbon range data excludes area counts of any surrogate(s) and/or internal standards eluting in that range.

 $<sup>\</sup>hbox{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\footnote{\f$ 

<sup>[3]</sup> See the case narrative in cases where a dash (-) is entered in the surrogate recovery block.

# **Extractable Petroleum Hydrocarbons Sample: B-4 (3C27022-02)**

### **SAMPLE INFORMATION**

| Matrix                | Soil                                  |
|-----------------------|---------------------------------------|
| Containers            | Satisfactory                          |
| Aqueous Preservatives | NA                                    |
| Temperature           | Received on Ice Received at: 4+/-2 C° |
| Extraction Method     | EPA Method 3546                       |

| EPH ANALYTICAL RESU                               | JLTS                           |           |       |              |            |                |
|---------------------------------------------------|--------------------------------|-----------|-------|--------------|------------|----------------|
| Method for Ranges: MADEP EPH 4-1.1                |                                | Client ID |       |              | B-4        |                |
| Method for Target Analytes:                       | MADEP EPH 4-1.1                | Lab ID    |       |              | 3C27022-02 |                |
| EPH Surrogate Standards:                          | EPH Surrogate Standards:       |           | Dai   | te Collected | 03/22/23   |                |
| Aliphatic: Chlorooctadecane                       |                                |           | Da    | te Received  | 03/27/23   |                |
| Aromatic: o-Terphenyl                             |                                |           | D     | ate Thawed   | NA         |                |
|                                                   |                                |           | Dat   | e Extracted  | 03/30/23   |                |
| EPH Fractionation Surrogates (1) 2-Fluorobiphenyl | <b>3:</b>                      | -         | Perce | ent Moisture | 11.40      |                |
| (2) 2-Bromonaphthalene                            |                                |           |       |              |            |                |
| RANGE/TARGET ANALYTE                              |                                | Dilution  | RL    | Units        | Result     | Analyzed       |
| Unadjusted C11-C22 Aron                           | natic Hydrocarbons [1]         | 1X        | 7.48  | mg/kg        | <7.48      | 04/03/23 17:04 |
|                                                   | Naphthalene                    | 1X        | 0.37  | mg/kg        | <0.37      | 04/03/23 17:04 |
| Diesel PAH                                        | 2-Methylnaphthalene            | 1X        | 0.37  | mg/kg        | <0.37      | 04/03/23 17:04 |
| Analytes                                          | Phenanthrene                   | 1X        | 0.37  | mg/kg        | <0.37      | 04/03/23 17:04 |
|                                                   | Acenaphthene                   | 1X        | 0.37  | mg/kg        | <0.37      | 04/03/23 17:04 |
|                                                   | Acenaphthylene                 | 1X        | 0.37  | mg/kg        | <0.37      | 04/03/23 17:04 |
|                                                   | Fluorene                       | 1X        | 0.37  | mg/kg        | <0.37      | 04/03/23 17:04 |
|                                                   | Anthracene                     | 1X        | 0.37  | mg/kg        | <0.37      | 04/03/23 17:04 |
|                                                   | Fluoranthene                   | 1X        | 0.37  | mg/kg        | <0.37      | 04/03/23 17:04 |
|                                                   | Pyrene                         | 1X        | 0.37  | mg/kg        | <0.37      | 04/03/23 17:04 |
|                                                   | Benzo(a)anthracene             | 1X        | 0.37  | mg/kg        | <0.37      | 04/03/23 17:04 |
| Other                                             | Chrysene                       | 1X        | 0.37  | mg/kg        | <0.37      | 04/03/23 17:04 |
| Target PAH                                        | Benzo(b)fluoranthene           | 1X        | 0.37  | mg/kg        | <0.37      | 04/03/23 17:04 |
| Analytes                                          | Benzo(k)fluoranthene           | 1X        | 0.37  | mg/kg        | <0.37      | 04/03/23 17:04 |
|                                                   | Benzo(a)pyrene                 | 1X        | 0.37  | mg/kg        | <0.37      | 04/03/23 17:04 |
|                                                   | Indeno(1,2,3-cd)pyrene         | 1X        | 0.37  | mg/kg        | <0.37      | 04/03/23 17:04 |
|                                                   | Dibenz(a,h)anthracene          | 1X        | 0.37  | mg/kg        | <0.37      | 04/03/23 17:04 |
|                                                   | Benzo(g,h,i)perylene           | 1X        | 0.37  | mg/kg        | <0.37      | 04/03/23 17:04 |
| C9-C18 Aliphatic Hydrocar                         | bons [1]                       | 1X        | 14.9  | mg/kg        | <14.9      | 04/03/23 23:24 |
| C19-C36 Aliphatic Hydroca                         | arbons [1]                     | 1X        | 14.9  | mg/kg        | <14.9      | 04/03/23 23:24 |
| C11-C22 Aromatic Hydroc                           | arbons [1,2]                   | 1X        | 7.48  | mg/kg        | <7.48      | 04/03/23 17:04 |
| Chlorooctadecane (Sample                          | e Surrogate)                   |           |       | %            | 71.3       | 04/03/23 23:24 |
| o-Terphenyl (Sample Surr                          | o-Terphenyl (Sample Surrogate) |           |       | %            | 68.3       | 04/03/23 17:04 |
| 2-Fluorobiphenyl (Fraction                        | nation Surrogate)              |           |       | %            | 92.2       | 04/03/23 17:04 |
| 2-Bromonaphthalene (Fra                           | ctionation Surrogate)          |           |       | %            | 89.8       | 04/03/23 17:04 |
| Surrogate Acceptance Range [                      | [3]                            |           |       | %            | 40 - 140   |                |

<sup>[1]</sup> Hydrocarbon range data excludes area counts of any surrogate(s) and/or internal standards eluting in that range.

<sup>[2]</sup> C11-C22 Aromatic Hydrocarbons excludes the concentration of Target PAH Analytes.

<sup>[3]</sup> See the case narrative in cases where a dash (-) is entered in the surrogate recovery block.

# **Extractable Petroleum Hydrocarbons Sample: B-18 (3C27022-03)**

### **SAMPLE INFORMATION**

| Matrix                | Soil                                  |
|-----------------------|---------------------------------------|
| Containers            | Satisfactory                          |
| Aqueous Preservatives | NA                                    |
| Temperature           | Received on Ice Received at: 4+/-2 C° |
| Extraction Method     | EPA Method 3546                       |

| EPH ANALYTICAL RESU                               | JLIS                   |                |              |              |                                       |                |
|---------------------------------------------------|------------------------|----------------|--------------|--------------|---------------------------------------|----------------|
| Method for Ranges: MADEP EPH 4-1.1                |                        | Client ID      |              |              | B-18                                  |                |
| Method for Target Analytes:                       | MADEP EPH 4-1.1        | Lab ID         |              |              | 3C27022-03                            |                |
| EPH Surrogate Standards:                          |                        | Date Collected |              |              | 03/22/23                              |                |
| Aliphatic: Chlorooctadecane                       |                        |                | Da           | te Received  | 03/27/23                              |                |
| Aromatic: o-Terphenyl                             |                        |                | D            | ate Thawed   | NA                                    |                |
|                                                   |                        |                |              | e Extracted  | 03/30/23                              |                |
| EPH Fractionation Surrogates (1) 2-Fluorobiphenyl | <b>3:</b>              |                | Perce        | ent Moisture | 21.70                                 |                |
| (2) 2-Bromonaphthalene                            |                        |                |              |              |                                       |                |
| RANGE/TARGET ANALYTE                              |                        | Dilution       | RL           | Units        | Result                                | Analyzed       |
| Unadjusted C11-C22 Arom                           | natic Hydrocarbons [1] | 1X             | 8.46         | mg/kg        | 21.0                                  | 04/03/23 17:50 |
|                                                   | Naphthalene            | 1X             | 0.42         | mg/kg        | <0.42                                 | 04/03/23 17:50 |
| Diesel PAH                                        | 2-Methylnaphthalene    | 1X             | 0.42         | mg/kg        | <0.42                                 | 04/03/23 17:50 |
| Analytes                                          | Phenanthrene           | 1X             | 0.42         | mg/kg        | <0.42                                 | 04/03/23 17:50 |
| ·                                                 | Acenaphthene           | 1X             | 0.42         | mg/kg        | <0.42                                 | 04/03/23 17:50 |
|                                                   | Acenaphthylene         | 1X             | 0.42         | mg/kg        | <0.42                                 | 04/03/23 17:50 |
|                                                   | Fluorene               | 1X             | 0.42         | mg/kg        | <0.42                                 | 04/03/23 17:50 |
|                                                   | Anthracene             | 1X             | 0.42         | mg/kg        | <0.42                                 | 04/03/23 17:50 |
|                                                   | Fluoranthene           | 1X             | 0.42         | mg/kg        | <0.42                                 | 04/03/23 17:50 |
|                                                   | Pyrene                 | 1X             | 0.42         | mg/kg        | <0.42                                 | 04/03/23 17:50 |
|                                                   | Benzo(a)anthracene     | 1X             | 0.42         | mg/kg        | <0.42                                 | 04/03/23 17:50 |
| Other                                             | Chrysene               | 1X             | 0.42         | mg/kg        | <0.42                                 | 04/03/23 17:50 |
| Target PAH                                        | Benzo(b)fluoranthene   | 1X             | 0.42         | mg/kg        | <0.42                                 | 04/03/23 17:50 |
| Analytes                                          | Benzo(k)fluoranthene   | 1X             | 0.42         | mg/kg        | <0.42                                 | 04/03/23 17:50 |
| ritarytes                                         | Benzo(a)pyrene         | 1X<br>1X       | 0.42         | mg/kg        | <0.42                                 | 04/03/23 17:50 |
|                                                   | Indeno(1,2,3-cd)pyrene |                |              |              |                                       | 04/03/23 17:50 |
|                                                   | Dibenz(a,h)anthracene  | 1X             | 0.42         | mg/kg        | <0.42                                 | 04/03/23 17:50 |
|                                                   | ( ) ,                  | 1X<br>1X       | 0.42<br>0.42 | mg/kg        | <0.42<br><0.42                        | 04/03/23 17:50 |
| CO C10 Alimbetic I budge com                      | Benzo(g,h,i)perylene   |                | -            | mg/kg        | · · · · · · · · · · · · · · · · · · · | 04/03/23 17:30 |
| C9-C18 Aliphatic Hydrocar                         |                        | 1X             | 16.9         | mg/kg        | <16.9                                 | 04/03/23 23:49 |
| C19-C36 Aliphatic Hydrocarbons [1]                |                        | 1X             | 16.9         | mg/kg        | <16.9                                 | 04/03/23 23:49 |
| Chlorocatadosano (Sample                          |                        | 1X             | 8.46         | mg/kg        | 21.0                                  | 04/03/23 17:50 |
| Chlorooctadecane (Sample                          |                        |                |              | %            | 74.2                                  | 04/03/23 23:49 |
| o-Terphenyl (Sample Surrogate)                    |                        |                |              | %            | 62.8                                  | 04/03/23 17:50 |
| 2-Fluorobiphenyl (Fraction                        |                        |                |              |              | 89.2                                  | 04/03/23 17:50 |
| 2-Bromonaphthalene (Fra                           |                        |                |              | %            | 85.6                                  | 07/03/23 17.30 |
| Surrogate Acceptance Range [                      | .၁]                    | ļ              |              | %            | 40 - 140                              |                |

<sup>[1]</sup> Hydrocarbon range data excludes area counts of any surrogate(s) and/or internal standards eluting in that range.

<sup>[2]</sup> C11-C22 Aromatic Hydrocarbons excludes the concentration of Target PAH Analytes.

<sup>[3]</sup> See the case narrative in cases where a dash (-) is entered in the surrogate recovery block.

# **Extractable Petroleum Hydrocarbons Sample: B-20 (3C27022-04)**

### **SAMPLE INFORMATION**

| Matrix                | Soil                                  |
|-----------------------|---------------------------------------|
| Containers            | Satisfactory                          |
| Aqueous Preservatives | NA                                    |
| Temperature           | Received on Ice Received at: 4+/-2 C° |
| Extraction Method     | EPA Method 3546                       |

| EPH ANALYTICAL RESU                               | JLTS                           |           |       |              |            |                |
|---------------------------------------------------|--------------------------------|-----------|-------|--------------|------------|----------------|
| Method for Ranges: MADEP EPH 4-1.1                |                                | Client ID |       |              | B-20       |                |
| Method for Target Analytes:                       | MADEP EPH 4-1.1                | Lab ID    |       |              | 3C27022-04 |                |
| EPH Surrogate Standards:                          |                                |           | Dai   | te Collected | 03/22/23   |                |
| Aliphatic: Chlorooctadecane                       |                                |           | Da    | te Received  | 03/27/23   |                |
| Aromatic: o-Terphenyl                             |                                |           | D     | ate Thawed   | NA         |                |
|                                                   |                                |           | Dat   | e Extracted  | 03/30/23   |                |
| EPH Fractionation Surrogates (1) 2-Fluorobiphenyl | <b>3:</b>                      | -         | Perce | ent Moisture | 5.10       |                |
| (2) 2-Bromonaphthalene                            |                                |           |       |              |            |                |
| RANGE/TARGET ANALYTE                              |                                | Dilution  | RL    | Units        | Result     | Analyzed       |
| Unadjusted C11-C22 Arom                           | natic Hydrocarbons [1]         | 1X        | 6.99  | mg/kg        | <6.99      | 04/03/23 16:42 |
|                                                   | Naphthalene                    | 1X        | 0.35  | mg/kg        | <0.35      | 04/03/23 16:42 |
| Diesel PAH                                        | 2-Methylnaphthalene            | 1X        | 0.35  | mg/kg        | <0.35      | 04/03/23 16:42 |
| Analytes                                          | Phenanthrene                   | 1X        | 0.35  | mg/kg        | <0.35      | 04/03/23 16:42 |
|                                                   | Acenaphthene                   | 1X        | 0.35  | mg/kg        | <0.35      | 04/03/23 16:42 |
|                                                   | Acenaphthylene                 | 1X        | 0.35  | mg/kg        | <0.35      | 04/03/23 16:42 |
|                                                   | Fluorene                       | 1X        | 0.35  | mg/kg        | <0.35      | 04/03/23 16:42 |
|                                                   | Anthracene                     | 1X        | 0.35  | mg/kg        | <0.35      | 04/03/23 16:42 |
|                                                   | Fluoranthene                   | 1X        | 0.35  | mg/kg        | <0.35      | 04/03/23 16:42 |
|                                                   | Pyrene                         | 1X        | 0.35  | mg/kg        | <0.35      | 04/03/23 16:42 |
|                                                   | Benzo(a)anthracene             | 1X        | 0.35  | mg/kg        | <0.35      | 04/03/23 16:42 |
| Other                                             | Chrysene                       | 1X        | 0.35  | mg/kg        | <0.35      | 04/03/23 16:42 |
| Target PAH                                        | Benzo(b)fluoranthene           | 1X        | 0.35  | mg/kg        | <0.35      | 04/03/23 16:42 |
| Analytes                                          | Benzo(k)fluoranthene           | 1X        | 0.35  | mg/kg        | <0.35      | 04/03/23 16:42 |
|                                                   | Benzo(a)pyrene                 | 1X        | 0.35  | mg/kg        | <0.35      | 04/03/23 16:42 |
|                                                   | Indeno(1,2,3-cd)pyrene         | 1X        | 0.35  | mg/kg        | <0.35      | 04/03/23 16:42 |
|                                                   | Dibenz(a,h)anthracene          | 1X        | 0.35  | mg/kg        | <0.35      | 04/03/23 16:42 |
|                                                   | Benzo(g,h,i)perylene           | 1X        | 0.35  | mg/kg        | <0.35      | 04/03/23 16:42 |
| C9-C18 Aliphatic Hydrocar                         | bons [1]                       | 1X        | 13.9  | mg/kg        | <13.9      | 04/04/23 00:14 |
| C19-C36 Aliphatic Hydroca                         | arbons [1]                     | 1X        | 13.9  | mg/kg        | <13.9      | 04/04/23 00:14 |
| C11-C22 Aromatic Hydroc                           | arbons [1,2]                   | 1X        | 6.99  | mg/kg        | <6.99      | 04/03/23 16:42 |
| Chlorooctadecane (Sample                          | e Surrogate)                   |           |       | %            | 98.5       | 04/04/23 00:14 |
| o-Terphenyl (Sample Surr                          | o-Terphenyl (Sample Surrogate) |           |       | %            | 80.3       | 04/03/23 16:42 |
| 2-Fluorobiphenyl (Fraction                        | nation Surrogate)              |           |       | %            | 99.5       | 04/03/23 16:42 |
| 2-Bromonaphthalene (Fra                           | ctionation Surrogate)          |           |       | %            | 96.1       | 04/03/23 16:42 |
| Surrogate Acceptance Range [                      | [3]                            |           |       | %            | 40 - 140   |                |

<sup>[1]</sup> Hydrocarbon range data excludes area counts of any surrogate(s) and/or internal standards eluting in that range.

<sup>[2]</sup> C11-C22 Aromatic Hydrocarbons excludes the concentration of Target PAH Analytes.

<sup>[3]</sup> See the case narrative in cases where a dash (-) is entered in the surrogate recovery block.

# **Extractable Petroleum Hydrocarbons** Sample: B-30 (3C27022-05)

### SAMPLE INFORMATION

| Matrix                | Soil                                  |
|-----------------------|---------------------------------------|
| Containers            | Satisfactory                          |
| Aqueous Preservatives | NA                                    |
| Temperature           | Received on Ice Received at: 4+/-2 C° |
| Extraction Method     | EPA Method 3546                       |

| EPH ANALYTICAL RESU                               | JLTS                   |           |       |              |            |                |
|---------------------------------------------------|------------------------|-----------|-------|--------------|------------|----------------|
| Method for Ranges: MADEP E                        | EPH 4-1.1              | Client ID |       |              | B-30       |                |
| Method for Target Analytes:                       | MADEP EPH 4-1.1        | Lab ID    |       |              | 3C27022-05 |                |
| EPH Surrogate Standards:                          |                        |           | Dai   | te Collected | 03/24/23   |                |
| Aliphatic: Chlorooctadecane                       |                        |           | Da    | te Received  | 03/27/23   |                |
| Aromatic: o-Terphenyl                             |                        |           | D     | ate Thawed   | NA         |                |
|                                                   |                        |           | Dat   | e Extracted  | 03/30/23   |                |
| EPH Fractionation Surrogates (1) 2-Fluorobiphenyl | <b>3:</b>              | -         | Perce | ent Moisture | 5.90       |                |
| (2) 2-Bromonaphthalene                            |                        |           |       |              |            |                |
| RANGE/TARGET ANALYTE                              |                        | Dilution  | RL    | Units        | Result     | Analyzed       |
| Unadjusted C11-C22 Arom                           | natic Hydrocarbons [1] | 1X        | 7.04  | mg/kg        | <7.04      | 04/04/23 01:52 |
|                                                   | Naphthalene            | 1X        | 0.35  | mg/kg        | <0.35      | 04/04/23 01:52 |
| Diesel PAH                                        | 2-Methylnaphthalene    | 1X        | 0.35  | mg/kg        | <0.35      | 04/04/23 01:52 |
| Analytes                                          | Phenanthrene           | 1X        | 0.35  | mg/kg        | <0.35      | 04/04/23 01:52 |
|                                                   | Acenaphthene           | 1X        | 0.35  | mg/kg        | <0.35      | 04/04/23 01:52 |
|                                                   | Acenaphthylene         | 1X        | 0.35  | mg/kg        | <0.35      | 04/04/23 01:52 |
|                                                   | Fluorene               | 1X        | 0.35  | mg/kg        | <0.35      | 04/04/23 01:52 |
|                                                   | Anthracene             | 1X        | 0.35  | mg/kg        | <0.35      | 04/04/23 01:52 |
|                                                   | Fluoranthene           | 1X        | 0.35  | mg/kg        | <0.35      | 04/04/23 01:52 |
|                                                   | Pyrene                 | 1X        | 0.35  | mg/kg        | <0.35      | 04/04/23 01:52 |
|                                                   | Benzo(a)anthracene     | 1X        | 0.35  | mg/kg        | <0.35      | 04/04/23 01:52 |
| Other                                             | Chrysene               | 1X        | 0.35  | mg/kg        | <0.35      | 04/04/23 01:52 |
| Target PAH                                        | Benzo(b)fluoranthene   | 1X        | 0.35  | mg/kg        | <0.35      | 04/04/23 01:52 |
| Analytes                                          | Benzo(k)fluoranthene   | 1X        | 0.35  | mg/kg        | <0.35      | 04/04/23 01:52 |
|                                                   | Benzo(a)pyrene         | 1X        | 0.35  | mg/kg        | <0.35      | 04/04/23 01:52 |
|                                                   | Indeno(1,2,3-cd)pyrene | 1X        | 0.35  | mg/kg        | <0.35      | 04/04/23 01:52 |
|                                                   | Dibenz(a,h)anthracene  | 1X        | 0.35  | mg/kg        | <0.35      | 04/04/23 01:52 |
|                                                   | Benzo(g,h,i)perylene   | 1X        | 0.35  | mg/kg        | <0.35      | 04/04/23 01:52 |
| C9-C18 Aliphatic Hydrocar                         | bons [1]               | 1X        | 14.0  | mg/kg        | <14.0      | 04/04/23 03:56 |
| C19-C36 Aliphatic Hydroca                         | arbons [1]             | 1X        | 14.0  | mg/kg        | <14.0      | 04/04/23 03:56 |
| C11-C22 Aromatic Hydroc                           | arbons [1,2]           | 1X        | 7.04  | mg/kg        | <7.04      | 04/04/23 01:52 |
| Chlorooctadecane (Sample                          | e Surrogate)           |           |       | %            | 109        | 04/04/23 03:56 |
| o-Terphenyl (Sample Surrogate)                    |                        |           |       | %            | 94.6       | 04/04/23 01:52 |
| 2-Fluorobiphenyl (Fraction                        | nation Surrogate)      |           |       | %            | 111        | 04/04/23 01:52 |
| 2-Bromonaphthalene (Fra                           | ctionation Surrogate)  |           |       | %            | 107        | 04/04/23 01:52 |
| Surrogate Acceptance Range [                      | [3]                    |           |       | %            | 40 - 140   |                |

<sup>[1]</sup> Hydrocarbon range data excludes area counts of any surrogate(s) and/or internal standards eluting in that range.

<sup>[2]</sup> C11-C22 Aromatic Hydrocarbons excludes the concentration of Target PAH Analytes.

<sup>[3]</sup> See the case narrative in cases where a dash (-) is entered in the surrogate recovery block.

# **Extractable Petroleum Hydrocarbons Sample: B-33 (3C27022-06)**

### **SAMPLE INFORMATION**

| Matrix                | Soil                                  |
|-----------------------|---------------------------------------|
| Containers            | Satisfactory                          |
| Aqueous Preservatives | NA                                    |
| Temperature           | Received on Ice Received at: 4+/-2 C° |
| Extraction Method     | EPA Method 3546                       |

| EPH ANALYTICAL RES                               | UL13                   |                |       |             |            |                |
|--------------------------------------------------|------------------------|----------------|-------|-------------|------------|----------------|
| Method for Ranges: MADEP EPH 4-1.1               |                        | Client ID      |       |             | B-33       |                |
| Method for Target Analytes:                      | MADEP EPH 4-1.1        | Lab ID         |       |             | 3C27022-06 |                |
| EPH Surrogate Standards:                         |                        | Date Collected |       |             | 03/24/23   |                |
| Aliphatic: Chlorooctadecane                      |                        |                | Da    | te Received | 03/27/23   |                |
| Aromatic: o-Terphenyl                            |                        |                | D     | ate Thawed  | NA         |                |
|                                                  |                        |                | Dat   | e Extracted | 03/30/23   |                |
| EPH Fractionation Surrogate (1) 2-Fluorobiphenyl | es:                    |                | Perce | nt Moisture | 11.30      |                |
| (2) 2-Bromonaphthalene                           |                        |                |       |             |            |                |
| RANGE/TARGET ANALYT                              | 'E                     | Dilution       | RL    | Units       | Result     | Analyzed       |
| Unadjusted C11-C22 Aro                           | matic Hydrocarbons [1] | 1X             | 7.47  | mg/kg       | <7.47      | 04/04/23 13:14 |
| ·                                                | Naphthalene            | 1X             | 0.37  | mg/kg       | <0.37      | 04/04/23 13:14 |
| Diesel PAH                                       | 2-Methylnaphthalene    | 1X             | 0.37  | mg/kg       | <0.37      | 04/04/23 13:14 |
| Analytes                                         | Phenanthrene           | 1X             | 0.37  | mg/kg       | <0.37      | 04/04/23 13:14 |
| ,                                                | Acenaphthene           | 1X             | 0.37  | mg/kg       | <0.37      | 04/04/23 13:14 |
|                                                  | Acenaphthylene         | 1X             | 0.37  | mg/kg       | <0.37      | 04/04/23 13:14 |
|                                                  | Fluorene               | 1X             | 0.37  | mg/kg       | <0.37      | 04/04/23 13:14 |
|                                                  | Anthracene             | 1X             | 0.37  | mg/kg       | <0.37      | 04/04/23 13:14 |
|                                                  | Fluoranthene           | 1X             | 0.37  | mg/kg       | <0.37      | 04/04/23 13:14 |
|                                                  | Pyrene                 | 1X             | 0.37  | mg/kg       | <0.37      | 04/04/23 13:14 |
|                                                  | Benzo(a)anthracene     | 1X             | 0.37  | mg/kg       | <0.37      | 04/04/23 13:14 |
| Other                                            | Chrysene               | 1X             | 0.37  | mg/kg       | <0.37      | 04/04/23 13:14 |
| Target PAH                                       | Benzo(b)fluoranthene   | 1X             | 0.37  | mg/kg       | <0.37      | 04/04/23 13:14 |
| Analytes                                         | Benzo(k)fluoranthene   | 1X             | 0.37  | mg/kg       | <0.37      | 04/04/23 13:14 |
| · ···· <b>, ·-·</b>                              | Benzo(a)pyrene         | 1X             | 0.37  | mg/kg       | <0.37      | 04/04/23 13:14 |
|                                                  | Indeno(1,2,3-cd)pyrene | 1X             | 0.37  | mg/kg       | <0.37      | 04/04/23 13:14 |
|                                                  | Dibenz(a,h)anthracene  | 1X             | 0.37  | mg/kg       | <0.37      | 04/04/23 13:14 |
|                                                  | Benzo(g,h,i)perylene   | 1X             | 0.37  | mg/kg       | <0.37      | 04/04/23 13:14 |
| C9-C18 Aliphatic Hydroca                         | 1 (5/ / // /           | 1X             | 14.9  | mg/kg       | <14.9      | 04/04/23 04:20 |
| C19-C36 Aliphatic Hydro                          |                        | 1X             | 14.9  | mg/kg       | <14.9      | 04/04/23 04:20 |
| C11-C22 Aromatic Hydro                           |                        | 1X             | 7.47  | mg/kg       | <7.47      | 04/04/23 13:14 |
| Chlorooctadecane (Samp                           |                        |                |       | %           | 103        | 04/04/23 04:20 |
| o-Terphenyl (Sample Sur                          |                        |                |       | %           | 80.9       | 04/04/23 13:14 |
| 2-Fluorobiphenyl (Fractionation Surrogate)       |                        |                |       | %           | 97.7       | 04/04/23 13:14 |
| 2-Bromonaphthalene (Fr                           |                        |                |       | %           | 91.3       | 04/04/23 13:14 |
| Surrogate Acceptance Range                       | [3]                    |                |       | %           | 40 - 140   |                |

<sup>[1]</sup> Hydrocarbon range data excludes area counts of any surrogate(s) and/or internal standards eluting in that range.

<sup>[2]</sup> C11-C22 Aromatic Hydrocarbons excludes the concentration of Target PAH Analytes.

<sup>[3]</sup> See the case narrative in cases where a dash (-) is entered in the surrogate recovery block.

# **Extractable Petroleum Hydrocarbons Sample: B-48 (3C27022-07)**

### **SAMPLE INFORMATION**

| Matrix                | Soil                                  |
|-----------------------|---------------------------------------|
| Containers            | Satisfactory                          |
| Aqueous Preservatives | NA                                    |
| Temperature           | Received on Ice Received at: 4+/-2 C° |
| Extraction Method     | EPA Method 3546                       |

| EPH ANALYTICAL RESU                               | JL15                   |                |       |              |            |                |
|---------------------------------------------------|------------------------|----------------|-------|--------------|------------|----------------|
| Method for Ranges: MADEP I                        | EPH 4-1.1              | Client ID      |       |              | B-48       |                |
| Method for Target Analytes:                       | MADEP EPH 4-1.1        | Lab ID         |       |              | 3C27022-07 |                |
| EPH Surrogate Standards:                          |                        | Date Collected |       |              | 03/24/23   |                |
| Aliphatic: Chlorooctadecane                       |                        | Date Received  |       |              | 03/27/23   |                |
| Aromatic: o-Terphenyl                             |                        |                | D     | ate Thawed   | NA         |                |
|                                                   |                        |                | Dat   | e Extracted  | 03/30/23   |                |
| EPH Fractionation Surrogates (1) 2-Fluorobiphenyl | S:                     |                | Perce | ent Moisture | 12.50      |                |
| (2) 2-Bromonaphthalene                            |                        |                |       |              |            |                |
| RANGE/TARGET ANALYTI                              |                        | Dilution       | RL    | Units        | Result     | Analyzed       |
| Unadjusted C11-C22 Aron                           | natic Hydrocarbons [1] | 1X             | 7.57  | mg/kg        | <7.57      | 04/04/23 13:37 |
| •                                                 | Naphthalene            | 1X             | 0.37  | mg/kg        | <0.37      | 04/04/23 13:37 |
| Diesel PAH                                        | 2-Methylnaphthalene    | 1X             | 0.37  | mg/kg        | <0.37      | 04/04/23 13:37 |
| Analytes                                          | Phenanthrene           | 1X             | 0.37  | mg/kg        | <0.37      | 04/04/23 13:37 |
| , ,                                               | Acenaphthene           | 1X             | 0.37  | mg/kg        | <0.37      | 04/04/23 13:37 |
|                                                   | Acenaphthylene         | 1X             | 0.37  | mg/kg        | <0.37      | 04/04/23 13:37 |
|                                                   | Fluorene               | 1X             | 0.37  | mg/kg        | <0.37      | 04/04/23 13:37 |
|                                                   | Anthracene             | 1X             | 0.37  | mg/kg        | <0.37      | 04/04/23 13:37 |
|                                                   | Fluoranthene           | 1X             | 0.37  | mg/kg        | <0.37      | 04/04/23 13:37 |
|                                                   | Pyrene                 |                |       | mg/kg        |            | 04/04/23 13:37 |
|                                                   | Benzo(a)anthracene     | 1X             | 0.37  |              | <0.37      | 04/04/23 13:37 |
| Other                                             | Chrysene               | 1X             | 0.37  | mg/kg        | <0.37      | 04/04/23 13:37 |
|                                                   | ,                      | 1X             | 0.37  | mg/kg        | <0.37      | 1              |
| Target PAH                                        | Benzo(b)fluoranthene   | 1X             | 0.37  | mg/kg        | <0.37      | 04/04/23 13:37 |
| Analytes                                          | Benzo(k)fluoranthene   | 1X             | 0.37  | mg/kg        | <0.37      | 04/04/23 13:37 |
|                                                   | Benzo(a)pyrene         | 1X             | 0.37  | mg/kg        | <0.37      | 04/04/23 13:37 |
|                                                   | Indeno(1,2,3-cd)pyrene | 1X             | 0.37  | mg/kg        | <0.37      | 04/04/23 13:37 |
|                                                   | Dibenz(a,h)anthracene  | 1X             | 0.37  | mg/kg        | <0.37      | 04/04/23 13:37 |
|                                                   | Benzo(g,h,i)perylene   | 1X             | 0.37  | mg/kg        | <0.37      | 04/04/23 13:37 |
| C9-C18 Aliphatic Hydrocar                         | bons [1]               | 1X             | 15.1  | mg/kg        | <15.1      | 04/04/23 04:45 |
| C19-C36 Aliphatic Hydroca                         | arbons [1]             | 1X             | 15.1  | mg/kg        | <15.1      | 04/04/23 04:45 |
| C11-C22 Aromatic Hydroc                           |                        | 1X             | 7.57  | mg/kg        | <7.57      | 04/04/23 13:37 |
| Chlorooctadecane (Sample                          | e Surrogate)           |                |       | %            | 98.6       | 04/04/23 04:45 |
| o-Terphenyl (Sample Surr                          | ogate)                 |                |       | %            | 83.4       | 04/04/23 13:37 |
| 2-Fluorobiphenyl (Fraction                        | nation Surrogate)      |                |       | %            | 104        | 04/04/23 13:37 |
| 2-Bromonaphthalene (Fra                           | ctionation Surrogate)  |                |       | %            | 99.7       | 04/04/23 13:37 |
| Surrogate Acceptance Range                        | [3]                    |                |       | %            | 40 - 140   |                |

<sup>[1]</sup> Hydrocarbon range data excludes area counts of any surrogate(s) and/or internal standards eluting in that range.

<sup>[2]</sup> C11-C22 Aromatic Hydrocarbons excludes the concentration of Target PAH Analytes.

<sup>[3]</sup> See the case narrative in cases where a dash (-) is entered in the surrogate recovery block.

# **Extractable Petroleum Hydrocarbons Sample: B-51 (3C27022-08)**

### **SAMPLE INFORMATION**

| Matrix                | Soil                                  |
|-----------------------|---------------------------------------|
| Containers            | Satisfactory                          |
| Aqueous Preservatives | NA                                    |
| Temperature           | Received on Ice Received at: 4+/-2 C° |
| Extraction Method     | EPA Method 3546                       |

| EPH ANALYTICAL RESU                               | JLTS                     |           |       |              |            |                |
|---------------------------------------------------|--------------------------|-----------|-------|--------------|------------|----------------|
| Method for Ranges: MADEP E                        | EPH 4-1.1                | Client ID |       |              | B-51       |                |
| Method for Target Analytes:                       | MADEP EPH 4-1.1          | Lab ID    |       |              | 3C27022-08 |                |
| EPH Surrogate Standards:                          | EPH Surrogate Standards: |           | Dai   | te Collected | 03/24/23   |                |
| Aliphatic: Chlorooctadecane                       |                          |           | Da    | te Received  | 03/27/23   |                |
| Aromatic: o-Terphenyl                             |                          |           | D     | ate Thawed   | NA         |                |
|                                                   |                          |           | Dat   | e Extracted  | 03/30/23   |                |
| EPH Fractionation Surrogates (1) 2-Fluorobiphenyl | <b>3:</b>                | -         | Perce | ent Moisture | 12.40      |                |
| (2) 2-Bromonaphthalene                            |                          |           |       |              |            |                |
| RANGE/TARGET ANALYTE                              |                          | Dilution  | RL    | Units        | Result     | Analyzed       |
| Unadjusted C11-C22 Arom                           | natic Hydrocarbons [1]   | 1X        | 7.57  | mg/kg        | <7.57      | 04/04/23 03:45 |
|                                                   | Naphthalene              | 1X        | 0.37  | mg/kg        | <0.37      | 04/04/23 03:45 |
| Diesel PAH                                        | 2-Methylnaphthalene      | 1X        | 0.37  | mg/kg        | <0.37      | 04/04/23 03:45 |
| Analytes                                          | Phenanthrene             | 1X        | 0.37  | mg/kg        | <0.37      | 04/04/23 03:45 |
|                                                   | Acenaphthene             | 1X        | 0.37  | mg/kg        | <0.37      | 04/04/23 03:45 |
|                                                   | Acenaphthylene           | 1X        | 0.37  | mg/kg        | <0.37      | 04/04/23 03:45 |
|                                                   | Fluorene                 | 1X        | 0.37  | mg/kg        | <0.37      | 04/04/23 03:45 |
|                                                   | Anthracene               | 1X        | 0.37  | mg/kg        | <0.37      | 04/04/23 03:45 |
|                                                   | Fluoranthene             | 1X        | 0.37  | mg/kg        | <0.37      | 04/04/23 03:45 |
|                                                   | Pyrene                   | 1X        | 0.37  | mg/kg        | <0.37      | 04/04/23 03:45 |
|                                                   | Benzo(a)anthracene       | 1X        | 0.37  | mg/kg        | <0.37      | 04/04/23 03:45 |
| Other                                             | Chrysene                 | 1X        | 0.37  | mg/kg        | <0.37      | 04/04/23 03:45 |
| Target PAH                                        | Benzo(b)fluoranthene     | 1X        | 0.37  | mg/kg        | <0.37      | 04/04/23 03:45 |
| Analytes                                          | Benzo(k)fluoranthene     | 1X        | 0.37  | mg/kg        | <0.37      | 04/04/23 03:45 |
|                                                   | Benzo(a)pyrene           | 1X        | 0.37  | mg/kg        | <0.37      | 04/04/23 03:45 |
|                                                   | Indeno(1,2,3-cd)pyrene   | 1X        | 0.37  | mg/kg        | <0.37      | 04/04/23 03:45 |
|                                                   | Dibenz(a,h)anthracene    | 1X        | 0.37  | mg/kg        | <0.37      | 04/04/23 03:45 |
|                                                   | Benzo(g,h,i)perylene     | 1X        | 0.37  | mg/kg        | <0.37      | 04/04/23 03:45 |
| C9-C18 Aliphatic Hydrocar                         | bons [1]                 | 1X        | 15.1  | mg/kg        | <15.1      | 04/04/23 05:09 |
| C19-C36 Aliphatic Hydroca                         | arbons [1]               | 1X        | 15.1  | mg/kg        | <15.1      | 04/04/23 05:09 |
| C11-C22 Aromatic Hydroc                           | arbons [1,2]             | 1X        | 7.57  | mg/kg        | <7.57      | 04/04/23 03:45 |
| Chlorooctadecane (Sample                          | e Surrogate)             |           |       | %            | 115        | 04/04/23 05:09 |
| o-Terphenyl (Sample Surr                          | ogate)                   |           |       | %            | 102        | 04/04/23 03:45 |
| 2-Fluorobiphenyl (Fraction                        | nation Surrogate)        |           |       | %            | 113        | 04/04/23 03:45 |
| 2-Bromonaphthalene (Fra                           | 5 ,                      |           |       | %            | 108        | 04/04/23 03:45 |
| Surrogate Acceptance Range [                      | [3]                      |           |       | %            | 40 - 140   |                |

<sup>[1]</sup> Hydrocarbon range data excludes area counts of any surrogate(s) and/or internal standards eluting in that range.

<sup>[2]</sup> C11-C22 Aromatic Hydrocarbons excludes the concentration of Target PAH Analytes.

<sup>[3]</sup> See the case narrative in cases where a dash (-) is entered in the surrogate recovery block.

# **Extractable Petroleum Hydrocarbons** Sample: B-52 (3C27022-09)

### **SAMPLE INFORMATION**

| Matrix                | Soil                                  |
|-----------------------|---------------------------------------|
| Containers            | Satisfactory                          |
| Aqueous Preservatives | NA                                    |
| Temperature           | Received on Ice Received at: 4+/-2 C° |
| Extraction Method     | EPA Method 3546                       |

| EPH ANALYTICAL RESU                               | JLTS                     |           |       |              |            |                |
|---------------------------------------------------|--------------------------|-----------|-------|--------------|------------|----------------|
| Method for Ranges: MADEP E                        | EPH 4-1.1                | Client ID |       |              | B-52       |                |
| Method for Target Analytes:                       | MADEP EPH 4-1.1          | Lab ID    |       |              | 3C27022-09 |                |
| EPH Surrogate Standards:                          | EPH Surrogate Standards: |           | Dat   | te Collected | 03/24/23   |                |
| Aliphatic: Chlorooctadecane                       |                          |           | Da    | te Received  | 03/27/23   |                |
| Aromatic: o-Terphenyl                             |                          |           | D     | ate Thawed   | NA         |                |
|                                                   |                          |           | Dat   | e Extracted  | 03/30/23   |                |
| EPH Fractionation Surrogates (1) 2-Fluorobiphenyl | 5:                       |           | Perce | ent Moisture | 12.00      |                |
| (2) 2-Bromonaphthalene                            |                          |           |       |              |            |                |
| RANGE/TARGET ANALYTE                              |                          | Dilution  | RL    | Units        | Result     | Analyzed       |
| Unadjusted C11-C22 Aron                           | natic Hydrocarbons [1]   | 1X        | 7.53  | mg/kg        | 8.70       | 04/04/23 02:37 |
|                                                   | Naphthalene              | 1X        | 0.37  | mg/kg        | <0.37      | 04/04/23 02:37 |
| Diesel PAH                                        | 2-Methylnaphthalene      | 1X        | 0.37  | mg/kg        | <0.37      | 04/04/23 02:37 |
| Analytes                                          | Phenanthrene             | 1X        | 0.37  | mg/kg        | <0.37      | 04/04/23 02:37 |
|                                                   | Acenaphthene             | 1X        | 0.37  | mg/kg        | <0.37      | 04/04/23 02:37 |
|                                                   | Acenaphthylene           | 1X        | 0.37  | mg/kg        | <0.37      | 04/04/23 02:37 |
|                                                   | Fluorene                 | 1X        | 0.37  | mg/kg        | <0.37      | 04/04/23 02:37 |
|                                                   | Anthracene               | 1X        | 0.37  | mg/kg        | <0.37      | 04/04/23 02:37 |
|                                                   | Fluoranthene             | 1X        | 0.37  | mg/kg        | <0.37      | 04/04/23 02:37 |
|                                                   | Pyrene                   | 1X        | 0.37  | mg/kg        | <0.37      | 04/04/23 02:37 |
|                                                   | Benzo(a)anthracene       | 1X        | 0.37  | mg/kg        | <0.37      | 04/04/23 02:37 |
| Other                                             | Chrysene                 | 1X        | 0.37  | mg/kg        | <0.37      | 04/04/23 02:37 |
| Target PAH                                        | Benzo(b)fluoranthene     | 1X        | 0.37  | mg/kg        | <0.37      | 04/04/23 02:37 |
| Analytes                                          | Benzo(k)fluoranthene     | 1X        | 0.37  | mg/kg        | <0.37      | 04/04/23 02:37 |
|                                                   | Benzo(a)pyrene           | 1X        | 0.37  | mg/kg        | <0.37      | 04/04/23 02:37 |
|                                                   | Indeno(1,2,3-cd)pyrene   | 1X        | 0.37  | mg/kg        | <0.37      | 04/04/23 02:37 |
|                                                   | Dibenz(a,h)anthracene    | 1X        | 0.37  | mg/kg        | <0.37      | 04/04/23 02:37 |
|                                                   | Benzo(g,h,i)perylene     | 1X        | 0.37  | mg/kg        | <0.37      | 04/04/23 02:37 |
| C9-C18 Aliphatic Hydrocar                         | bons [1]                 | 1X        | 15.0  | mg/kg        | <15.0      | 04/04/23 05:34 |
| C19-C36 Aliphatic Hydroca                         | arbons [1]               | 1X        | 15.0  | mg/kg        | 15.7       | 04/04/23 05:34 |
| C11-C22 Aromatic Hydroc                           | arbons [1,2]             | 1X        | 7.53  | mg/kg        | 8.70       | 04/04/23 02:37 |
| Chlorooctadecane (Sample                          | e Surrogate)             |           |       | %            | 89.2       | 04/04/23 05:34 |
| o-Terphenyl (Sample Surrogate)                    |                          |           |       | %            | 70.4       | 04/04/23 02:37 |
| 2-Fluorobiphenyl (Fraction                        | nation Surrogate)        |           |       | %            | 98.7       | 04/04/23 02:37 |
| 2-Bromonaphthalene (Fra                           | 5 ,                      |           |       | %            | 96.4       | 04/04/23 02:37 |
| Surrogate Acceptance Range [                      | [3]                      |           |       | %            | 40 - 140   |                |

<sup>[1]</sup> Hydrocarbon range data excludes area counts of any surrogate(s) and/or internal standards eluting in that range.

<sup>[2]</sup> C11-C22 Aromatic Hydrocarbons excludes the concentration of Target PAH Analytes.

<sup>[3]</sup> See the case narrative in cases where a dash (-) is entered in the surrogate recovery block.

# **Extractable Petroleum Hydrocarbons** Sample: B-59 (3C27022-10)

### **SAMPLE INFORMATION**

| Matrix                | Soil                                  |
|-----------------------|---------------------------------------|
| Containers            | Satisfactory                          |
| Aqueous Preservatives | NA                                    |
| Temperature           | Received on Ice Received at: 4+/-2 C° |
| Extraction Method     | EPA Method 3546                       |

| EPH ANALYTICAL RESU                               | JLTS                     |           |       |              |            |                |
|---------------------------------------------------|--------------------------|-----------|-------|--------------|------------|----------------|
| Method for Ranges: MADEP E                        | EPH 4-1.1                | Client ID |       |              | B-59       |                |
| Method for Target Analytes:                       | MADEP EPH 4-1.1          | Lab ID    |       |              | 3C27022-10 |                |
| EPH Surrogate Standards:                          | EPH Surrogate Standards: |           | Dai   | te Collected | 03/24/23   |                |
| Aliphatic: Chlorooctadecane                       |                          |           | Da    | te Received  | 03/27/23   |                |
| Aromatic: o-Terphenyl                             |                          |           | D     | ate Thawed   | NA         |                |
|                                                   |                          |           | Dat   | e Extracted  | 03/30/23   |                |
| EPH Fractionation Surrogates (1) 2-Fluorobiphenyl | <b>3:</b>                | -         | Perce | ent Moisture | 13.20      |                |
| (2) 2-Bromonaphthalene                            |                          |           |       |              |            |                |
| RANGE/TARGET ANALYTE                              |                          | Dilution  | RL    | Units        | Result     | Analyzed       |
| Unadjusted C11-C22 Aron                           | natic Hydrocarbons [1]   | 1X        | 7.63  | mg/kg        | <7.63      | 04/04/23 02:15 |
|                                                   | Naphthalene              | 1X        | 0.38  | mg/kg        | <0.38      | 04/04/23 02:15 |
| Diesel PAH                                        | 2-Methylnaphthalene      | 1X        | 0.38  | mg/kg        | <0.38      | 04/04/23 02:15 |
| Analytes                                          | Phenanthrene             | 1X        | 0.38  | mg/kg        | <0.38      | 04/04/23 02:15 |
|                                                   | Acenaphthene             | 1X        | 0.38  | mg/kg        | <0.38      | 04/04/23 02:15 |
|                                                   | Acenaphthylene           | 1X        | 0.38  | mg/kg        | <0.38      | 04/04/23 02:15 |
|                                                   | Fluorene                 | 1X        | 0.38  | mg/kg        | <0.38      | 04/04/23 02:15 |
|                                                   | Anthracene               | 1X        | 0.38  | mg/kg        | <0.38      | 04/04/23 02:15 |
|                                                   | Fluoranthene             | 1X        | 0.38  | mg/kg        | <0.38      | 04/04/23 02:15 |
|                                                   | Pyrene                   | 1X        | 0.38  | mg/kg        | <0.38      | 04/04/23 02:15 |
|                                                   | Benzo(a)anthracene       | 1X        | 0.38  | mg/kg        | <0.38      | 04/04/23 02:15 |
| Other                                             | Chrysene                 | 1X        | 0.38  | mg/kg        | <0.38      | 04/04/23 02:15 |
| Target PAH                                        | Benzo(b)fluoranthene     | 1X        | 0.38  | mg/kg        | <0.38      | 04/04/23 02:15 |
| Analytes                                          | Benzo(k)fluoranthene     | 1X        | 0.38  | mg/kg        | <0.38      | 04/04/23 02:15 |
|                                                   | Benzo(a)pyrene           | 1X        | 0.38  | mg/kg        | <0.38      | 04/04/23 02:15 |
|                                                   | Indeno(1,2,3-cd)pyrene   | 1X        | 0.38  | mg/kg        | <0.38      | 04/04/23 02:15 |
|                                                   | Dibenz(a,h)anthracene    | 1X        | 0.38  | mg/kg        | <0.38      | 04/04/23 02:15 |
|                                                   | Benzo(g,h,i)perylene     | 1X        | 0.38  | mg/kg        | <0.38      | 04/04/23 02:15 |
| C9-C18 Aliphatic Hydrocar                         | bons [1]                 | 1X        | 15.2  | mg/kg        | <15.2      | 04/04/23 05:58 |
| C19-C36 Aliphatic Hydroca                         | arbons [1]               | 1X        | 15.2  | mg/kg        | <15.2      | 04/04/23 05:58 |
| C11-C22 Aromatic Hydroc                           | arbons [1,2]             | 1X        | 7.63  | mg/kg        | <7.63      | 04/04/23 02:15 |
| Chlorooctadecane (Sample                          | e Surrogate)             |           |       | %            | 96.2       | 04/04/23 05:58 |
| o-Terphenyl (Sample Surr                          | ogate)                   |           |       | %            | 54.3       | 04/04/23 02:15 |
| 2-Fluorobiphenyl (Fraction                        | nation Surrogate)        |           |       | %            | 65.9       | 04/04/23 02:15 |
| 2-Bromonaphthalene (Fra                           | 5 ,                      |           |       | %            | 63.1       | 04/04/23 02:15 |
| Surrogate Acceptance Range [                      | [3]                      |           |       | %            | 40 - 140   |                |

<sup>[1]</sup> Hydrocarbon range data excludes area counts of any surrogate(s) and/or internal standards eluting in that range.

<sup>[2]</sup> C11-C22 Aromatic Hydrocarbons excludes the concentration of Target PAH Analytes.

<sup>[3]</sup> See the case narrative in cases where a dash (-) is entered in the surrogate recovery block.

# **Extractable Petroleum Hydrocarbons Sample: B-67 (3C27022-11)**

### **SAMPLE INFORMATION**

| Matrix                | Soil                                  |
|-----------------------|---------------------------------------|
| Containers            | Satisfactory                          |
| Aqueous Preservatives | NA                                    |
| Temperature           | Received on Ice Received at: 4+/-2 C° |
| Extraction Method     | EPA Method 3546                       |

| EPH ANALYTICAL RESU                               | JLTS                           |          |       |              |            |                |
|---------------------------------------------------|--------------------------------|----------|-------|--------------|------------|----------------|
| Method for Ranges: MADEP                          | EPH 4-1.1                      |          |       | Client ID    | B-67       |                |
| Method for Target Analytes:                       | MADEP EPH 4-1.1                | Lab ID   |       |              | 3C27022-11 |                |
| EPH Surrogate Standards:                          |                                |          | Da    | te Collected | 03/24/23   |                |
| Aliphatic: Chlorooctadecane                       |                                |          | Da    | te Received  | 03/27/23   |                |
| Aromatic: o-Terphenyl                             |                                |          | D     | ate Thawed   | NA         |                |
|                                                   |                                |          |       | e Extracted  | 03/30/23   |                |
| EPH Fractionation Surrogates (1) 2-Fluorobiphenyl | 5:                             |          | Perce | ent Moisture | 8.80       |                |
| (2) 2-Bromonaphthalene                            |                                |          |       |              |            |                |
| RANGE/TARGET ANALYTI                              |                                | Dilution | RL    | Units        | Result     | Analyzed       |
| Unadjusted C11-C22 Aron                           | natic Hydrocarbons [1]         | 1X       | 7.26  | mg/kg        | <7.26      | 04/04/23 13:59 |
|                                                   | Naphthalene                    | 1X       | 0.36  | mg/kg        | <0.36      | 04/04/23 13:59 |
| Diesel PAH                                        | 2-Methylnaphthalene            | 1X       | 0.36  | mg/kg        | <0.36      | 04/04/23 13:59 |
| Analytes                                          | Phenanthrene                   | 1X       | 0.36  | mg/kg        | <0.36      | 04/04/23 13:59 |
|                                                   | Acenaphthene                   | 1X       | 0.36  | mg/kg        | <0.36      | 04/04/23 13:59 |
|                                                   | Acenaphthylene                 | 1X       | 0.36  | mg/kg        | <0.36      | 04/04/23 13:59 |
|                                                   | Fluorene                       | 1X       | 0.36  | mg/kg        | <0.36      | 04/04/23 13:59 |
|                                                   | Anthracene                     | 1X       | 0.36  | mg/kg        | <0.36      | 04/04/23 13:59 |
|                                                   | Fluoranthene                   | 1X       | 0.36  | mg/kg        | <0.36      | 04/04/23 13:59 |
|                                                   | Pyrene                         | 1X       | 0.36  | mg/kg        | <0.36      | 04/04/23 13:59 |
|                                                   | Benzo(a)anthracene             | 1X       | 0.36  | mg/kg        | <0.36      | 04/04/23 13:59 |
| Other                                             | Chrysene                       | 1X       | 0.36  | mg/kg        | <0.36      | 04/04/23 13:59 |
| Target PAH                                        | Benzo(b)fluoranthene           | 1X       | 0.36  | mg/kg        | <0.36      | 04/04/23 13:59 |
| Analytes                                          | Benzo(k)fluoranthene           | 1X       | 0.36  | mg/kg        | <0.36      | 04/04/23 13:59 |
|                                                   | Benzo(a)pyrene                 | 1X       | 0.36  | mg/kg        | <0.36      | 04/04/23 13:59 |
|                                                   | Indeno(1,2,3-cd)pyrene         | 1X       | 0.36  | mg/kg        | <0.36      | 04/04/23 13:59 |
|                                                   | Dibenz(a,h)anthracene          | 1X       | 0.36  | mg/kg        | <0.36      | 04/04/23 13:59 |
|                                                   | Benzo(g,h,i)perylene           | 1X       | 0.36  | mg/kg        | <0.36      | 04/04/23 13:59 |
| C9-C18 Aliphatic Hydroca                          | rbons [1]                      | 1X       | 14.5  | mg/kg        | <14.5      | 04/04/23 06:23 |
| C19-C36 Aliphatic Hydroc                          | arbons [1]                     | 1X       | 14.5  | mg/kg        | <14.5      | 04/04/23 06:23 |
| C11-C22 Aromatic Hydroc                           | arbons [1,2]                   | 1X       | 7.26  | mg/kg        | <7.26      | 04/04/23 13:59 |
| Chlorooctadecane (Sampl                           | e Surrogate)                   |          |       | %            | 112        | 04/04/23 06:23 |
| o-Terphenyl (Sample Surrogate)                    |                                |          |       | %            | 71.3       | 04/04/23 13:59 |
| 2-Fluorobiphenyl (Fraction                        | nation Surrogate)              |          |       | %            | 78.9       | 04/04/23 13:59 |
| 2-Bromonaphthalene (Fra                           | ctionation Surrogate)          |          |       | %            | 75.1       | 04/04/23 13:59 |
| Surrogate Acceptance Range                        | Surrogate Acceptance Range [3] |          |       | %            | 40 - 140   |                |

<sup>[1]</sup> Hydrocarbon range data excludes area counts of any surrogate(s) and/or internal standards eluting in that range.

<sup>[2]</sup> C11-C22 Aromatic Hydrocarbons excludes the concentration of Target PAH Analytes.

<sup>[3]</sup> See the case narrative in cases where a dash (-) is entered in the surrogate recovery block.

# **Extractable Petroleum Hydrocarbons** Sample: B-71 (3C27022-12)

### **SAMPLE INFORMATION**

| Matrix                | Soil                                  |
|-----------------------|---------------------------------------|
| Containers            | Satisfactory                          |
| Aqueous Preservatives | NA                                    |
| Temperature           | Received on Ice Received at: 4+/-2 C° |
| Extraction Method     | EPA Method 3546                       |

| EPH ANALYTICAL RES                               | ULTS                   |           |       |              |            |                |
|--------------------------------------------------|------------------------|-----------|-------|--------------|------------|----------------|
| Method for Ranges: MADEP                         | EPH 4-1.1              | Client ID |       |              | B-71       |                |
| Method for Target Analytes:                      | MADEP EPH 4-1.1        | Lab ID    |       |              | 3C27022-12 |                |
| EPH Surrogate Standards:                         |                        |           | Da    | te Collected | 03/24/23   |                |
| Aliphatic: Chlorooctadecane                      |                        |           | Da    | te Received  | 03/27/23   |                |
| Aromatic: o-Terphenyl                            |                        |           | D     | ate Thawed   | NA         |                |
|                                                  |                        |           | Dat   | e Extracted  | 03/30/23   |                |
| EPH Fractionation Surrogate (1) 2-Fluorobiphenyl | S:                     |           | Perce | nt Moisture  | 9.70       |                |
| (2) 2-Bromonaphthalene                           |                        |           |       |              |            |                |
| RANGE/TARGET ANALYT                              | E                      | Dilution  | RL    | Units        | Result     | Analyzed       |
| Unadjusted C11-C22 Aron                          | matic Hydrocarbons [1] | 1X        | 7.33  | mg/kg        | <7.33      | 04/04/23 03:22 |
|                                                  | Naphthalene            | 1X        | 0.36  | mg/kg        | <0.36      | 04/04/23 03:22 |
| Diesel PAH                                       | 2-Methylnaphthalene    | 1X        | 0.36  | mg/kg        | <0.36      | 04/04/23 03:22 |
| Analytes                                         | Phenanthrene           | 1X        | 0.36  | mg/kg        | <0.36      | 04/04/23 03:22 |
|                                                  | Acenaphthene           | 1X        | 0.36  | mg/kg        | <0.36      | 04/04/23 03:22 |
|                                                  | Acenaphthylene         | 1X        | 0.36  | mg/kg        | <0.36      | 04/04/23 03:22 |
|                                                  | Fluorene               | 1X        | 0.36  | mg/kg        | <0.36      | 04/04/23 03:22 |
|                                                  | Anthracene             | 1X        | 0.36  | mg/kg        | <0.36      | 04/04/23 03:22 |
|                                                  | Fluoranthene           | 1X        | 0.36  | mg/kg        | <0.36      | 04/04/23 03:22 |
|                                                  | Pyrene                 | 1X        | 0.36  | mg/kg        | <0.36      | 04/04/23 03:22 |
|                                                  | Benzo(a)anthracene     | 1X        | 0.36  | mg/kg        | <0.36      | 04/04/23 03:22 |
| Other                                            | Chrysene               | 1X        | 0.36  | mg/kg        | <0.36      | 04/04/23 03:22 |
| Target PAH                                       | Benzo(b)fluoranthene   | 1X        | 0.36  | mg/kg        | <0.36      | 04/04/23 03:22 |
| Analytes                                         | Benzo(k)fluoranthene   | 1X        | 0.36  | mg/kg        | <0.36      | 04/04/23 03:22 |
|                                                  | Benzo(a)pyrene         | 1X        | 0.36  | mg/kg        | <0.36      | 04/04/23 03:22 |
|                                                  | Indeno(1,2,3-cd)pyrene | 1X        | 0.36  | mg/kg        | <0.36      | 04/04/23 03:22 |
|                                                  | Dibenz(a,h)anthracene  | 1X        | 0.36  | mg/kg        | <0.36      | 04/04/23 03:22 |
|                                                  | Benzo(g,h,i)perylene   | 1X        | 0.36  | mg/kg        | <0.36      | 04/04/23 03:22 |
| C9-C18 Aliphatic Hydroca                         | rbons [1]              | 1X        | 14.6  | mg/kg        | <14.6      | 04/04/23 06:47 |
| C19-C36 Aliphatic Hydroc                         | arbons [1]             | 1X        | 14.6  | mg/kg        | <14.6      | 04/04/23 06:47 |
| C11-C22 Aromatic Hydro                           | carbons [1,2]          | 1X        | 7.33  | mg/kg        | <7.33      | 04/04/23 03:22 |
| Chlorooctadecane (Samp                           | le Surrogate)          |           |       | %            | 100        | 04/04/23 06:47 |
| o-Terphenyl (Sample Sur                          | rogate)                |           |       | %            | 82.6       | 04/04/23 03:22 |
| 2-Fluorobiphenyl (Fractio                        | nation Surrogate)      |           |       | %            | 96.6       | 04/04/23 03:22 |
| 2-Bromonaphthalene (Fra                          | actionation Surrogate) |           |       | %            | 93.2       | 04/04/23 03:22 |
| Surrogate Acceptance Range                       | [3]                    |           |       | %            | 40 - 140   |                |

<sup>[1]</sup> Hydrocarbon range data excludes area counts of any surrogate(s) and/or internal standards eluting in that range.

<sup>[2]</sup> C11-C22 Aromatic Hydrocarbons excludes the concentration of Target PAH Analytes.

<sup>[3]</sup> See the case narrative in cases where a dash (-) is entered in the surrogate recovery block.

# **Quality Control**

## **Extractable Petroleum Hydrocarbons (MADEP-EPH)**

| Result | Qual Limit                               | Units                                                                                                                                                                                                                                                                                                                   | Level                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Result         | %REC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Limits                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | RPD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Lim |
|--------|------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
|        |                                          |                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
|        |                                          | Pr                                                                                                                                                                                                                                                                                                                      | epared: 03/3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 30/23 Analyzed | d: 04/03/23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
| ND     | 6.63                                     | mg/kg                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
|        |                                          |                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
| ND     | 0.33                                     | mg/kg                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
| ND     | 0.33                                     | mg/kg                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
| ND     | 0.33                                     | mg/kg                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
| ND     | 0.33                                     | mg/kg                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
| ND     | 0.33                                     | mg/kg                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
| ND     | 0.33                                     | mg/kg                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
| ND     | 0.33                                     | mg/kg                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
|        |                                          |                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
|        |                                          |                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
|        |                                          |                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
|        |                                          |                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
|        |                                          |                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
|        |                                          |                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
|        |                                          |                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
|        |                                          |                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
|        |                                          |                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
|        |                                          |                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
|        |                                          |                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
|        |                                          |                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
|        |                                          |                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
| ND     | 6.63                                     | mg/kg                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
|        | 7.41                                     | mg/kg                                                                                                                                                                                                                                                                                                                   | 8.28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                | 89.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 40-140                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
|        | 5.29                                     |                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
|        |                                          |                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
|        |                                          |                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
|        | 2.70                                     |                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 30/23 Analyze  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 70 170                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
| 1 66   | 0.33                                     |                                                                                                                                                                                                                                                                                                                         | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 70,20 7,200    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 40-140                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
|        |                                          |                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
|        |                                          |                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
|        |                                          |                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
|        |                                          |                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
|        |                                          |                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
|        |                                          |                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
|        |                                          |                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
|        |                                          |                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
|        |                                          |                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                | 72.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 40-140                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
| 1.92   | 0.33                                     |                                                                                                                                                                                                                                                                                                                         | 2.65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                | 72.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 40-140                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
| 2.03   | 0.33                                     | mg/kg                                                                                                                                                                                                                                                                                                                   | 2.65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                | 76.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 40-140                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
| 1.88   | 0.33                                     | mg/kg                                                                                                                                                                                                                                                                                                                   | 2.65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                | 71.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 40-140                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
| 1.98   | 0.33                                     | mg/kg                                                                                                                                                                                                                                                                                                                   | 2.65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                | 74.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 40-140                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
| 1.86   | 0.33                                     | mg/kg                                                                                                                                                                                                                                                                                                                   | 2.65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                | 70.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 40-140                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
| 1.84   | 0.33                                     | mg/kg                                                                                                                                                                                                                                                                                                                   | 2.65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                | 69.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 40-140                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
| 1.91   | 0.33                                     | mg/kg                                                                                                                                                                                                                                                                                                                   | 2.65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                | 72.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 40-140                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
| 1.85   | 0.33                                     | mg/kg                                                                                                                                                                                                                                                                                                                   | 2.65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                | 69.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 40-140                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
| 14.6   | 0.00                                     | mg/kg                                                                                                                                                                                                                                                                                                                   | 21.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                | 68.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 40-140                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
| 8.48   | 0.00                                     | mg/kg                                                                                                                                                                                                                                                                                                                   | 15.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                | 53.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 40-140                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
|        |                                          |                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                | 69.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 40-140                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
|        |                                          |                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
|        |                                          |                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
|        |                                          |                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
|        |                                          |                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
|        |                                          |                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
|        |                                          |                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
| 1./0   | 0.33                                     | mg/kg                                                                                                                                                                                                                                                                                                                   | ۷.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                | U <del>1</del> .U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 40-140                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
|        | ND N | ND 0.33 ND 13.2 ND 13.2 ND 6.63 | ND 6.63 mg/kg  ND 0.33 mg/kg  ND 13.2 mg/kg  ND 13. | ND             | ND 6.63 mg/kg  ND 0.33 mg/kg  ND 13.2 mg/kg  ND 13.2 mg/kg  2.65  1.66 0.33 mg/kg 2.65  1.66 0.33 mg/kg 2.65  1.66 0.33 mg/kg 2.65  1.71 0.33 mg/kg 2.65  1.81 0.33 mg/kg 2.65  1.83 0.33 mg/kg 2.65  1.81 0.33 mg/kg 2.65  1.73 0.33 mg/kg 2.65  1.74 0.33 mg/kg 2.65  1.79 0.33 mg/kg 2.65  1.79 0.33 mg/kg 2.65  1.99 0.33 mg/kg 2.65  1.98 0.33 mg/kg 2.65  1.98 0.33 mg/kg 2.65  1.98 0.33 mg/kg 2.65  1.88 0.33 mg/kg 2.65  1.89 0.33 mg/kg 2.65  1.80 0.33 mg/kg 2.65  1.81 0.00 mg/kg 2.65  1.85 0.33 mg/kg 2.65  1.86 0.00 mg/kg 2.12  8.48 0.00 mg/kg 45.0  0.88 0.33 mg/kg 2.65  1.55 0.33 mg/kg 2.65 | ND 0.33 mg/kg ND 13.2 mg/kg ND 13.3 mg/kg ND 13.2 mg/kg ND 13.2 mg/kg ND 13.2 mg/kg ND 13.2 mg/kg ND 13.3 mg/kg 2.65 62.8 1.81 0.33 mg/kg 2.65 62.8 1.83 0.33 mg/kg 2.65 68.2 1.71 0.33 mg/kg 2.65 68.1 1.71 0.33 mg/kg 2.65 68.1 1.73 0.33 mg/kg 2.65 65.5 1.73 0.33 mg/kg 2.65 65.5 1.73 0.33 mg/kg 2.65 65.5 1.74 0.33 mg/kg 2.65 67.0 1.93 0.33 mg/kg 2.65 72.7 1.94 0.35 mg/kg 2.65 72.7 1.95 0.33 mg/kg 2.65 72.6 1.86 0.33 mg/kg 2.65 72.7 1.97 0.39 0.39 mg/kg 2.65 72.7 1.98 0.33 mg/kg 2.65 72.7 1.99 0.33 mg/kg 2.65 72.0 1.86 0.33 mg/kg 2.65 72.0 1.86 0.33 mg/kg 2.65 72.0 1.86 0.33 mg/kg 2.65 72.0 1.87 0.38 0.39 mg/kg 2.65 72.0 1.88 0.39 mg/kg 2.65 72.0 1.89 0.33 mg/kg 2.65 69.4 1.80 0.30 mg/kg 2.65 69.4 1.81 0.30 mg/kg 2.65 69.4 1.82 0.33 mg/kg 2.65 69.4 1.83 0.33 mg/kg 2.65 69.5 1.84 0.00 mg/kg 2.55 66.8 1.85 0.33 mg/kg 2.65 65.8 1.86 0.33 mg/kg 2.65 65.8 1.87 0.33 mg/kg 2.65 65.8 1.88 0.33 mg/kg 2.65 65.8 1.89 0.33 mg/kg 2.65 65.8 1.80 0.33 mg/kg 2. | ND 6.63 mg/kg ND 0.33 mg/kg ND 0.40-40 2.95 mg/kg ND 0.56 6.2 40-140 1.71 0.33 mg/kg 2.65 6.2 40-140 1.72 0.33 mg/kg 2.65 6.5 6.2 40-140 1.73 0.33 mg/kg 2.65 6.5 4.5 40-140 1.74 0.33 mg/kg 2.65 6.5 72.7 40-140 1.75 0.33 mg/kg 2.65 72.6 40-140 1.79 0.33 mg/kg 2.65 72.6 40-140 1.99 0.33 mg/kg 2.65 72.7 40-140 1.99 0.33 mg/kg 2.65 72.6 40-140 1.99 0.33 mg/kg 2.65 72.0 40-140 1.86 0.33 mg/kg 2.65 72.0 40-140 1.86 0.33 mg/kg 2.65 72.0 40-140 1.86 0.33 mg/kg 2.65 72.0 40-140 1.87 0.33 mg/kg 2.65 72.0 40-140 1.88 0.33 mg/kg 2.65 72.0 40-140 1.89 0.33 mg/kg 2.65 72.0 40-140 1.80 0.33 mg/kg 2.65 72.0 40-140 1.80 0.33 mg/kg 2.65 72.0 40-140 1.81 0.33 mg/kg 2.65 72.0 40-140 1.82 0.33 mg/kg 2.65 72.0 40-140 1.86 0.33 mg/kg 2.65 72.0 40-140 1.87 0.33 mg/kg 2.65 72.0 40-140 1.88 0.33 mg/kg 2.65 72.0 40-140 1.89 0.33 mg/kg 2.65 72.0 40-140 1.99 0.33 mg/kg 2.65 72.0 40-140 1.99 0.33 mg/kg | ND  |

# Extractable Petroleum Hydrocarbons (MADEP-EPH) (Continued)

| Analyte                       | Result    | Qual | Reporting<br>Limit | Units          | Spike<br>Level | Source<br>Result | %REC        | %REC<br>Limits | RPD          | RPD<br>Limit |
|-------------------------------|-----------|------|--------------------|----------------|----------------|------------------|-------------|----------------|--------------|--------------|
| ·                             |           |      |                    |                |                |                  |             |                |              |              |
| Batch: B3C1293 - EPA 3546 (Cd | ontinuea) |      |                    | D              | onaradı 02/3   | 20/22 Analyza    | 4. 04/02/22 |                |              |              |
| LCS (B3C1293-BS1)             | 1.01      |      | 0.22               | mg/kg          |                | 30/23 Analyze    |             | 40 140         |              |              |
| Eicosane                      | 1.81      |      | 0.33               |                | 2.65           |                  | 68.5        | 40-140         |              |              |
| Docosane                      | 1.88      |      | 0.33               | mg/kg          | 2.65           |                  | 71.0        | 40-140         |              |              |
| Tetracosane                   | 1.91      |      | 0.33               | mg/kg<br>mg/kg | 2.65           |                  | 72.2        | 40-140         |              |              |
| Hexacosane                    | 1.91      |      | 0.33               |                | 2.65           |                  | 71.9        | 40-140         |              |              |
| Octacosane                    | 1.89      |      | 0.33               | mg/kg          | 2.65           |                  | 71.3        | 40-140         |              |              |
| Triacontane                   | 1.85      |      | 0.33               | mg/kg          | 2.65           |                  | 69.9        | 40-140         |              |              |
| Hexatriacontane               | 1.57      |      | 0.33               | mg/kg          | 2.65           |                  | 59.4        | 40-140         |              |              |
| Surrogate: Chlorooctadecane   |           |      | 6.48               | mg/kg          | 8.28           |                  | 78.3        | 40-140         |              |              |
| Surrogate: o-Terphenyl        |           |      | 6.31               | mg/kg          | 8.28           |                  | 76.2        | 40-140         |              |              |
| Surrogate: 2-Fluorobiphenyl   |           |      | 3.15               | mg/kg          | 3.31           |                  | 95.1        | 40-140         |              |              |
| Surrogate: 2-Bromonaphthalene |           |      | 3.05               | mg/kg          | 3.31           |                  | 92.1        | 40-140         |              |              |
| LCS Dup (B3C1293-BSD1)        |           |      |                    | Pr             | epared: 03/3   | 30/23 Analyze    | d: 04/03/23 |                |              |              |
| Naphthalene                   | 1.66      |      | 0.33               | mg/kg          | 2.65           |                  | 62.5        | 40-140         | 0.439        | 25           |
| 2-Methylnaphthalene           | 1.63      |      | 0.33               | mg/kg          | 2.65           |                  | 61.6        | 40-140         | 1.57         | 25           |
| Phenanthrene                  | 1.81      |      | 0.33               | mg/kg          | 2.65           |                  | 68.2        | 40-140         | 1.35         | 25           |
| Acenaphthene                  | 1.79      |      | 0.33               | mg/kg          | 2.65           |                  | 67.6        | 40-140         | 0.847        | 25           |
| Acenaphthylene                | 1.72      |      | 0.33               | mg/kg          | 2.65           |                  | 65.1        | 40-140         | 0.926        | 25           |
| Fluorene                      | 1.75      |      | 0.33               | mg/kg          | 2.65           |                  | 66.1        | 40-140         | 1.03         | 25           |
| Anthracene                    | 1.84      |      | 0.33               | mg/kg          | 2.65           |                  | 69.4        | 40-140         | 3.52         | 25           |
| Fluoranthene                  | 1.87      |      | 0.33               | mg/kg          | 2.65           |                  | 70.7        | 40-140         | 2.82         | 25           |
| Pyrene                        | 1.90      |      | 0.33               | mg/kg          | 2.65           |                  | 71.7        | 40-140         | 1.42         | 25           |
| Benzo(a)anthracene            | 1.79      |      | 0.33               | mg/kg          | 2.65           |                  | 67.6        | 40-140         | 7.02         | 25           |
| Chrysene                      | 2.01      |      | 0.33               | mg/kg          | 2.65           |                  | 75.7        | 40-140         | 1.38         | 25           |
| Benzo(b)fluoranthene          | 1.79      |      | 0.33               | mg/kg          | 2.65           |                  | 67.4        | 40-140         | 5.27         | 25           |
| Benzo(k)fluoranthene          | 1.92      |      | 0.33               | mg/kg          | 2.65           |                  | 72.3        | 40-140         | 3.40         | 25           |
| Benzo(a)pyrene                | 1.73      |      | 0.33               | mg/kg          | 2.65           |                  | 65.2        | 40-140         | 7.13         | 25           |
| Indeno(1,2,3-cd)pyrene        | 1.53      |      | 0.33               | mg/kg          | 2.65           |                  | 57.9        | 40-140         | 18.1         | 25           |
| Dibenz(a,h)anthracene         | 1.75      |      | 0.33               | mg/kg          | 2.65           |                  | 66.1        | 40-140         | 8.62         | 25           |
| Benzo(g,h,i)perylene          | 1.77      |      | 0.33               | mg/kg          | 2.65           |                  | 66.7        | 40-140         | 4.65         | 25           |
| EPH_LCS_Aliphatic_C19-C36     | 13.5      |      | 0.00               | mg/kg          | 21.2           |                  | 63.7        | 40-140         | 7.71         | 25           |
| EPH_LCS_Aliphatic_C9-C18      | 7.46      |      | 0.00               | mg/kg          | 15.9           |                  | 46.9        | 40-140         | 12.8         | 25           |
| EPH LCS Aromatic C11-C22      | 30.2      |      | 0.00               | mg/kg          | 45.0           |                  | 67.2        | 40-140         | 3.42         | 25           |
| Nonane                        | 0.81      |      | 0.33               | mg/kg          | 2.65           |                  | 30.4        | 30-140         | 8.72         | 25           |
| Decane                        | 1.10      |      | 0.33               | mg/kg          | 2.65           |                  | 41.4        | 40-140         | 13.3         | 25           |
| Dodecane                      | 1.30      |      | 0.33               | mg/kg          | 2.65           |                  | 49.2        | 40-140         | 14.3         | 25           |
| Tetradecane                   | 1.30      |      | 0.33               | mg/kg          | 2.65           |                  | 49.1        | 40-140         | 17.6         | 25           |
| Hexadecane                    | 1.42      |      | 0.33               | mg/kg          | 2.65           |                  | 53.4        | 40-140         | 12.0         | 25           |
| Octadecane                    | 1.54      |      | 0.33               | mg/kg          | 2.65           |                  | 58.0        | 40-140         | 9.83         | 25           |
| Nonadecane                    | 1.62      |      | 0.33               | mg/kg          | 2.65           |                  | 61.0        | 40-140         | 8.29         | 25           |
| Eicosane                      | 1.68      |      | 0.33               | mg/kg          | 2.65           |                  | 63.2        | 40-140         | 7.93         | 25           |
| Docosane                      | 1.75      |      | 0.33               | mg/kg          | 2.65           |                  | 66.1        | 40-140         | 7.26         | 25           |
| Tetracosane                   | 1.79      |      | 0.33               | mg/kg          | 2.65           |                  | 67.4        | 40-140         | 6.95         | 25           |
| Hexacosane                    | 1.79      |      | 0.33               | mg/kg          | 2.65           |                  | 67.4        | 40-140         | 7.01         | 25           |
| Octacosane                    | 1.75      |      | 0.33               | mg/kg          | 2.65           |                  | 66.1        | 40-140         | 7.01<br>7.53 | 25           |
| Triacontane                   | 1.73      |      | 0.33               | mg/kg          | 2.65           |                  | 64.7        | 40-140         | 7.33<br>7.80 | 25           |
| Hexatriacontane               | 1.71      |      | 0.33               | mg/kg          | 2.65           |                  | 54.1        | 40-140         | 9.29         | 2:           |
|                               | ст.1      |      |                    |                |                |                  |             |                | J. Z J       |              |
| Surrogate: Chlorooctadecane   |           |      | 5.94               | mg/kg          | 8.28           |                  | 71.8        | 40-140         |              |              |
| Surrogate: o-Terphenyl        |           |      | 6.53               | mg/kg          | 8.28           |                  | 78.9        | 40-140         |              |              |
| Surrogate: 2-Fluorobiphenyl   |           |      | 3.27               | mg/kg          | 3.31           |                  | 98.8        | 40-140         |              |              |

# Extractable Petroleum Hydrocarbons (MADEP-EPH) (Continued)

| Analyte                        | Result Qual     | Reporting<br>Limit | Units | Spike<br>Level | Source<br>Result | %REC               | %REC<br>Limits | RPD | RPI<br>Lim |
|--------------------------------|-----------------|--------------------|-------|----------------|------------------|--------------------|----------------|-----|------------|
| Batch: B3C1325 - EPA 3546      |                 |                    |       |                |                  |                    |                |     |            |
| Blank (B3C1325-BLK1)           |                 |                    | Pi    | epared: 03/3   | 30/23 Analyze    | d: 04/04/23        |                |     |            |
| Unadjusted C11-C22 Aromatic    | ND              | 6.63               | mg/kg | .,,            | , , , , , ,      | , . ,              |                |     |            |
| Hydrocarbons                   |                 |                    |       |                |                  |                    |                |     |            |
| Naphthalene                    | ND              | 0.33               | mg/kg |                |                  |                    |                |     |            |
| 2-Methylnaphthalene            | ND              | 0.33               | mg/kg |                |                  |                    |                |     |            |
| Phenanthrene                   | ND              | 0.33               | mg/kg |                |                  |                    |                |     |            |
| Acenaphthene                   | ND              | 0.33               | mg/kg |                |                  |                    |                |     |            |
| Acenaphthylene                 | ND              | 0.33               | mg/kg |                |                  |                    |                |     |            |
| Fluorene                       | ND              | 0.33               | mg/kg |                |                  |                    |                |     |            |
| Anthracene                     | ND              | 0.33               | mg/kg |                |                  |                    |                |     |            |
| Fluoranthene                   | ND              | 0.33               | mg/kg |                |                  |                    |                |     |            |
|                                |                 | 0.33               | mg/kg |                |                  |                    |                |     |            |
| Pyrene                         | ND              |                    |       |                |                  |                    |                |     |            |
| Benzo(a)anthracene             | ND              | 0.33               | mg/kg |                |                  |                    |                |     |            |
| Chrysene                       | ND              | 0.33               | mg/kg |                |                  |                    |                |     |            |
| Benzo(b)fluoranthene           | ND              | 0.33               | mg/kg |                |                  |                    |                |     |            |
| Benzo(k)fluoranthene           | ND              | 0.33               | mg/kg |                |                  |                    |                |     |            |
| Benzo(a)pyrene                 | ND              | 0.33               | mg/kg |                |                  |                    |                |     |            |
| Indeno(1,2,3-cd)pyrene         | ND              | 0.33               | mg/kg |                |                  |                    |                |     |            |
| Dibenz(a,h)anthracene          | ND              | 0.33               | mg/kg |                |                  |                    |                |     |            |
| Benzo(g,h,i)perylene           | ND              | 0.33               | mg/kg |                |                  |                    |                |     |            |
| C9-C18 Aliphatic Hydrocarbons  | ND              | 13.2               | mg/kg |                |                  |                    |                |     |            |
| C19-C36 Aliphatic Hydrocarbons | ND              | 13.2               | mg/kg |                |                  |                    |                |     |            |
| C11-C22 Aromatic Hydrocarbons  | ND              | 6.63               | mg/kg |                |                  |                    |                |     |            |
|                                |                 |                    |       |                |                  |                    |                |     |            |
| Surrogate: Chlorooctadecane    |                 | 9.65               | mg/kg | 8.28           |                  | 117                | 40-140         |     |            |
| Surrogate: o-Terphenyl         |                 | 6.57               | mg/kg | 8.28           |                  | 79.4               | 40-140         |     |            |
| Surrogate: 2-Fluorobiphenyl    |                 | 2.78               | mg/kg | 3.31           |                  | 83.9               | 40-140         |     |            |
| Surrogate: 2-Bromonaphthalene  |                 | 2.63               | mg/kg | 3.31           |                  | <i>79.4</i>        | 40-140         |     |            |
| LCS (B3C1325-BS1)              |                 |                    | Pi    | epared: 03/3   | 30/23 Analyze    | d: 04/04/23        |                |     |            |
| Naphthalene                    | 2.15            | 0.33               | mg/kg | 2.65           | , , , , ,        | 81.2               | 40-140         |     |            |
| 2-Methylnaphthalene            | 2.09            | 0.33               | mg/kg | 2.65           |                  | 78.9               | 40-140         |     |            |
| Phenanthrene                   | 2.22            | 0.33               | mg/kg | 2.65           |                  | 83.6               | 40-140         |     |            |
|                                |                 |                    | mg/kg |                |                  |                    |                |     |            |
| Acenaphthene                   | 2.17            | 0.33               |       | 2.65           |                  | 82.0               | 40-140         |     |            |
| Acenaphthylene                 | 2.14            | 0.33               | mg/kg | 2.65           |                  | 80.9               | 40-140         |     |            |
| Fluorene                       | 2.14            | 0.33               | mg/kg | 2.65           |                  | 80.9               | 40-140         |     |            |
| Anthracene                     | 2.25            | 0.33               | mg/kg | 2.65           |                  | 85.0               | 40-140         |     |            |
| Fluoranthene                   | 2.35            | 0.33               | mg/kg | 2.65           |                  | 88.6               | 40-140         |     |            |
| Pyrene                         | 2.34            | 0.33               | mg/kg | 2.65           |                  | 88.4               | 40-140         |     |            |
| Benzo(a)anthracene             | 2.30            | 0.33               | mg/kg | 2.65           |                  | 87.0               | 40-140         |     |            |
| Chrysene                       | 2.44            | 0.33               | mg/kg | 2.65           |                  | 92.0               | 40-140         |     |            |
| Benzo(b)fluoranthene           | 2.26            | 0.33               | mg/kg | 2.65           |                  | 85.4               | 40-140         |     |            |
| Benzo(k)fluoranthene           | 2.31            | 0.33               | mg/kg | 2.65           |                  | 87.3               | 40-140         |     |            |
| Benzo(a)pyrene                 | 2.15            | 0.33               | mg/kg | 2.65           |                  | 81.1               | 40-140         |     |            |
| Indeno(1,2,3-cd)pyrene         | 2.05            | 0.33               | mg/kg | 2.65           |                  | 77.3               | 40-140         |     |            |
| Dibenz(a,h)anthracene          | 2.05            | 0.33               | mg/kg | 2.65           |                  | 77.3<br>77.2       | 40-140         |     |            |
|                                | 2.13            | 0.33               | mg/kg | 2.65           |                  | 80.5               | 40-140         |     |            |
| Benzo(g,h,i)perylene           |                 |                    |       |                |                  |                    |                |     |            |
| EPH_LCS_Aliphatic_C19-C36      | 18.7            | 0.00               | mg/kg | 21.2           |                  | 88.0               | 40-140         |     |            |
| EPH_LCS_Aliphatic_C9-C18       | 10.3            | 0.00               | mg/kg | 15.9           |                  | 65.0               | 40-140         |     |            |
| EPH_LCS_Aromatic_C11-C22       | 37.5            | 0.00               | mg/kg | 45.0           |                  | 83.4               | 40-140         |     |            |
| Nonane                         | 1.04            | 0.33               | mg/kg | 2.65           |                  | 39.1               | 30-140         |     |            |
| Decane                         | 1.50            | 0.33               | mg/kg | 2.65           |                  | 56.8               | 40-140         |     |            |
| Dodecane                       | 1.84            | 0.33               | mg/kg | 2.65           |                  | 69.3               | 40-140         |     |            |
| Tetradecane                    | 1.86            | 0.33               | mg/kg | 2.65           |                  | 70.2               | 40-140         |     |            |
| Hexadecane                     | 1.96            | 0.33               | mg/kg | 2.65           |                  | 74.0               | 40-140         |     |            |
| Octadecane                     | 2.14            | 0.33               | mg/kg | 2.65           |                  | 80.9               | 40-140         |     |            |
| Nonadecane                     | 2.25            | 0.33               | mg/kg | 2.65           |                  | 85.1               | 40-140         |     |            |
| Eicosane                       | 2.31            | 0.33               | mg/kg | 2.65           |                  | 87.3               | 40-140         |     |            |
| Docosane                       |                 |                    |       |                |                  |                    | 40-140         |     |            |
| Docodulic                      | Soil Sanpling R | enort Green        | Meado | w ട്ര്ന്ററ     | L April 201      | 24 <sub>90.9</sub> | 40-140         |     | 20 o       |

## Extractable Petroleum Hydrocarbons (MADEP-EPH) (Continued)

|          |                                                                                                                               | Reporting                                                                                                                                                                                      |                         | Spike            | Source         |                                   | %REC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                         | RPD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|----------|-------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|------------------|----------------|-----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Result   | Qual                                                                                                                          | Limit                                                                                                                                                                                          | Units                   | Level            | Result         | %REC                              | Limits                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | RPD                                     | Limi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| ntinued) |                                                                                                                               |                                                                                                                                                                                                |                         |                  |                |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|          |                                                                                                                               |                                                                                                                                                                                                | Pr                      | epared: 03/3     | 0/23 Analyze   | d: 04/04/23                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 2.42     |                                                                                                                               | 0.33                                                                                                                                                                                           | mg/kg                   | 2.65             |                | 91.2                              | 40-140                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 2.40     |                                                                                                                               | 0.33                                                                                                                                                                                           | mg/kg                   | 2.65             |                | 90.7                              | 40-140                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 2.38     |                                                                                                                               | 0.33                                                                                                                                                                                           | mg/kg                   | 2.65             |                | 90.0                              | 40-140                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 2.11     |                                                                                                                               | 0.33                                                                                                                                                                                           | mg/kg                   | 2.65             |                | 79.5                              | 40-140                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|          |                                                                                                                               | 8.41                                                                                                                                                                                           | mg/kg                   | 8.28             |                | 102                               | 40-140                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|          |                                                                                                                               | 7.92                                                                                                                                                                                           | mg/kg                   | 8.28             |                | 95.7                              | 40-140                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|          |                                                                                                                               | 3.61                                                                                                                                                                                           | mg/kg                   | 3.31             |                | 109                               | 40-140                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|          |                                                                                                                               | 3.49                                                                                                                                                                                           | mg/kg                   | 3.31             |                | 105                               | 40-140                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|          |                                                                                                                               |                                                                                                                                                                                                | Pr                      | epared: 03/3     | 0/23 Analyze   | d: 04/04/23                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 2.24     |                                                                                                                               | 0.33                                                                                                                                                                                           | mg/kg                   | 2.65             |                | 84.4                              | 40-140                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3.90                                    | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 2.16     |                                                                                                                               | 0.33                                                                                                                                                                                           | mg/kg                   | 2.65             |                | 81.7                              | 40-140                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3.49                                    | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 2.20     |                                                                                                                               | 0.33                                                                                                                                                                                           | mg/kg                   | 2.65             |                | 83.1                              | 40-140                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.630                                   | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 2.23     |                                                                                                                               | 0.33                                                                                                                                                                                           | mg/kg                   | 2.65             |                | 84.0                              | 40-140                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2.44                                    | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 2.20     |                                                                                                                               | 0.33                                                                                                                                                                                           | mg/kg                   | 2.65             |                | 83.1                              | 40-140                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2.71                                    | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 2.17     |                                                                                                                               | 0.33                                                                                                                                                                                           | mg/kg                   | 2.65             |                | 81.9                              | 40-140                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.29                                    | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 2.23     |                                                                                                                               | 0.33                                                                                                                                                                                           | mg/kg                   | 2.65             |                | 84.2                              | 40-140                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.886                                   | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 2.28     |                                                                                                                               | 0.33                                                                                                                                                                                           | mg/kg                   | 2.65             |                | 86.0                              | 40-140                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3.01                                    | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 2.28     |                                                                                                                               | 0.33                                                                                                                                                                                           | mg/kg                   | 2.65             |                | 86.0                              | 40-140                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2.72                                    | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 2.24     |                                                                                                                               | 0.33                                                                                                                                                                                           | mg/kg                   | 2.65             |                | 84.7                              | 40-140                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2.71                                    | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 2.38     |                                                                                                                               | 0.33                                                                                                                                                                                           | mg/kg                   | 2.65             |                | 89.8                              | 40-140                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2.47                                    | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 2.23     |                                                                                                                               | 0.33                                                                                                                                                                                           | mg/kg                   | 2.65             |                | 84.2                              | 40-140                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.36                                    | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 2.32     |                                                                                                                               | 0.33                                                                                                                                                                                           | mg/kg                   | 2.65             |                | 87.4                              | 40-140                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.172                                   | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 2.14     |                                                                                                                               | 0.33                                                                                                                                                                                           | mg/kg                   | 2.65             |                | 80.8                              | 40-140                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.402                                   | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 2.02     |                                                                                                                               | 0.33                                                                                                                                                                                           | mg/kg                   | 2.65             |                | 76.3                              | 40-140                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.37                                    | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 2.03     |                                                                                                                               | 0.33                                                                                                                                                                                           |                         | 2.65             |                | 76.7                              | 40-140                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.617                                   | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 2.19     |                                                                                                                               | 0.33                                                                                                                                                                                           |                         | 2.65             |                | 82.5                              | 40-140                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2.45                                    | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 20.4     |                                                                                                                               | 0.00                                                                                                                                                                                           |                         | 21.2             |                | 96.2                              | 40-140                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 8.84                                    | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 11.9     |                                                                                                                               | 0.00                                                                                                                                                                                           |                         | 15.9             |                | 74.6                              | 40-140                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 13.7                                    | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|          |                                                                                                                               |                                                                                                                                                                                                |                         |                  |                |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 1.34     |                                                                                                                               |                                                                                                                                                                                                |                         |                  |                |                                   | 30-140                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                         | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|          |                                                                                                                               |                                                                                                                                                                                                |                         |                  |                |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|          |                                                                                                                               |                                                                                                                                                                                                |                         |                  |                |                                   | 40-140                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                         | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|          |                                                                                                                               |                                                                                                                                                                                                |                         |                  |                |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|          |                                                                                                                               |                                                                                                                                                                                                |                         |                  |                |                                   | 40-140                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                         | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|          |                                                                                                                               |                                                                                                                                                                                                |                         |                  |                |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|          |                                                                                                                               |                                                                                                                                                                                                |                         |                  |                |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|          |                                                                                                                               |                                                                                                                                                                                                |                         |                  |                |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|          |                                                                                                                               |                                                                                                                                                                                                |                         |                  |                |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|          |                                                                                                                               |                                                                                                                                                                                                |                         |                  |                |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|          |                                                                                                                               |                                                                                                                                                                                                |                         |                  |                |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|          |                                                                                                                               |                                                                                                                                                                                                |                         |                  |                |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|          |                                                                                                                               |                                                                                                                                                                                                |                         |                  |                |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         | 25<br>25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 2.32     |                                                                                                                               |                                                                                                                                                                                                |                         |                  |                |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3.01                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|          |                                                                                                                               | 8.87                                                                                                                                                                                           | mg/kg                   | 8.28             |                | 107                               | 40-140                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|          |                                                                                                                               |                                                                                                                                                                                                | mg/kg                   |                  |                | 92.4                              | 40-140                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|          |                                                                                                                               | 3.30                                                                                                                                                                                           |                         |                  |                | 99.5                              | 40-140                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|          | 2.44 2.38 2.11  2.24 2.16 2.20 2.23 2.20 2.17 2.23 2.28 2.28 2.24 2.38 2.24 2.38 2.23 2.32 2.14 2.02 2.03 2.19 20.4 11.9 37.5 | 2.42 2.40 2.38 2.11  2.24 2.16 2.20 2.23 2.20 2.17 2.23 2.28 2.28 2.28 2.24 2.38 2.21 2.02 2.14 2.02 2.03 2.19 20.4 11.9 37.5 1.34 1.83 2.11 2.10 2.17 2.31 2.42 2.50 2.60 2.65 2.65 2.64 2.61 | Result Qual Limit  2.42 | Protinued)  2.42 | Prepared: 03/3 | Prepared: 03/30/23 Analyze   2.42 | ### Prepared: 03/30/23 Analyzed: 04/04/23 ### Prepared: 03/30/23 ### Prepared: 03/30/23 ### Prepared: 03/30/23 ### | Prepared: 03/30/23   Analyzed: 04/04/23 | ### Result   Qual   Limit   Units   Level   Result   %REC   Limits   RPD   ### Result   Result   Result   Result   RPD   ### Result   Result   RPD   ### Result   Result   Result   Result   RPD   ### Result   Result   Result   Result   Result   Result   ### Result   Result   Result   Result   Result   ### Result   Result   Result   Result   Result   Result   Result   ### Result   Result   Result   Result   Result   Result   Result   ### Result   Result   Result   Result   Result   Result   Result   Result   ### Result   ### Result   Re |

06/12/2024 Addendum 2

### Item Definition

Wet Sample results reported on a wet weight basis.

ND Analyte NOT DETECTED at or above the reporting limit.

Town of Maynard
Green Meadow Elementary School - Early Site I
NEW ENGLAND TESTING LABORATO

3 C 2 7022

59 Greenhill Street West Warwick, RI 02893

1-888-863-8522 PROJ. NO. PROJECT NAME/LOCATION NO. REPORT TO: INVOICE TO: REMARKS CONTAINERS COMP GRAB DATE TIME SAMPLE I.D. 9:00 B-2 P(D = 0 10:00 23 9:00 3-30 B-33 . 10:00 B-51 ID: 20 11:00 11:30 B-67 12:30 B-7 1:00 Received by: (Signature) Date/Time Date/Time Laboratory Remarks: Special Instructions: List Specific Detection Temp. received: Limit Requirements: Cooled □ Received by: (Signature) Date/Time Received for Laboratory by: (Signature) Teums 3/27/23 1500 Turnaround (Business Days)

<sup>\*\*</sup>Netlab subcontracts the following tests: Radiologicals, Radon, Asbestos, UCMRs, Perchlorate, Bromate, Bromide, Sieve, Salmonella, Carbamates, CT ETPH

Town of Maynard 06/12/2024 Green Meadow Elementary School - Early Site Package Addendum 2 MassDEP Analytical Protocol Certification Form Laboratory Name: New England Testing Laboratory, Inc. Project #: 3096 Project Location: MVG Green RTN: This Form provides certifications for the following data set: list Laboratory Sample ID Number(s): Matrices: ☐ Groundwater/Surface Water ☒ Soil/Sediment ☐ Drinking Water ☐ Air ☐ Other: **CAM Protocol** (check all that apply below): 9014 Total Cyanide/PAC MassDEP VPH (GC/PID/FID) 8260 VOC 7470/7471 Hg 8082 PCB 6860 Perchlorate CAM II A CAM III B CAM V A CAM VIII B CAM VI A П CAM IV A MassDEP VPH 8270 SVOC 8081 Pesticides 7196 Hex Cr MassDEP APH 7010 Metals (GC/MS) CAM II B CAM III C CAM V B CAM VI B CAM IX A П CAM IV C MassDEP EPH 8151 Herbicides 8330 Explosives TO-15 VOC CAM IX B 6010 Metals 6020 Metals П CAM III A CAM III D CAM IV B ⊠ CAM V C CAM VIII A Affirmative Responses to Questions A through F are required for "Presumptive Certainty" status Were all samples received in a condition consistent with those described on the Chain-of-Custody, properly preserved (including temperature) in the field or laboratory, and prepared/analyzed within method holding times? Were the analytical method(s) and all associated QC requirements specified in the selected CAM protocol(s) followed? Were all required corrective actions and analytical response actions specified in the selected CAM protocol(s) implemented for all identified performance standard non-conformances? Does the laboratory report comply with all the reporting requirements specified in CAM VII A, "Quality Assurance and Quality Control Guidelines for the Acquisition and Reporting of Analytical Data"? VPH, EPH, APH, and TO-15 only a. VPH, EPH, and APH Methods only: Was each method conducted without significant modification(s)? (Refer to the individual method(s) for a list of significant modifications). ☐ Yes ☐ No b. APH and TO-15 Methods only: Was the complete analyte list reported for each method?

Were all applicable CAM protocol QC and performance standard non-conformances identified F and evaluated in a laboratory narrative (including all "No" responses to Questions A through E)? Responses to Questions G, H and I below are required for "Presumptive Certainty" status Were the reporting limits at or below all CAM reporting limits specified in the selected CAM G protocol(s)? Data User Note: Data that achieve "Presumptive Certainty" status may not necessarily meet the data usability and representativeness requirements described in 310 CMR 40. 1056 (2)(k) and WSC-07-350. Н Were all QC performance standards specified in the CAM protocol(s) achieved? Were results reported for the complete analyte list specified in the selected CAM protocol(s)? 

I, the undersigned, attest under the pains and penalties of perjury that, based upon my personal inquiry of those responsible for obtaining the information, the material contained in this analytical report is, to the best of my knowledge and belief, is accurate and complete.

<sup>1</sup>All negative responses must be addressed in an attached laboratory narrative.

| Signature: | Position: <u>Laboratory Director</u> |
|------------|--------------------------------------|
|            |                                      |

Printed Name: Richard Warila

Α

В

C

D

F



# REPORT OF ANALYTICAL RESULTS

NETLAB Work Order Number: 4B26010 Client Project: 3096 - Maynard

Report Date: 06-March-2024

Prepared for:

Ralph Tella Lord Environmental, Inc. 1506 Providence Highway, Suite 30 Norwood, MA 02062

> Richard Warila, Laboratory Director New England Testing Laboratory, Inc. 59 Greenhill Street West Warwick, RI 02893 rich.warila@newenglandtesting.com

# Samples Submitted:

The samples listed below were submitted to New England Testing Laboratory on 02/26/24. The group of samples appearing in this report was assigned an internal identification number (case number) for laboratory information management purposes. The client's designations for the individual samples, along with our case numbers, are used to identify the samples in this report. This report of analytical results pertains only to the sample(s) provided to us by the client which are indicated on the custody record. The case number for this sample submission is 4B26010. Custody records are included in this report.

| Lab ID     | Sample     | Matrix | Date Sampled | Date Received |
|------------|------------|--------|--------------|---------------|
| 4B26010-01 | TP-6       | Soil   | 02/23/2024   | 02/26/2024    |
| 4B26010-02 | B-103 0-6' | Soil   | 02/23/2024   | 02/26/2024    |
| 4B26010-03 | B-113 2-4' | Soil   | 02/23/2024   | 02/26/2024    |
| 4B26010-04 | B-112 2-6' | Soil   | 02/23/2024   | 02/26/2024    |

# **Request for Analysis**

At the client's request, the analyses presented in the following table were performed on the samples submitted.

# B-103 0-6' (Lab Number: 4B26010-02)

|                                | <u>Method</u>     |
|--------------------------------|-------------------|
| Antimony                       | EPA 6010C         |
| Arsenic                        | EPA 6010C         |
| Barium                         | EPA 6010C         |
| Beryllium                      | EPA 6010C         |
| Cadmium                        | EPA 6010C         |
| Chromium                       | EPA 6010C         |
| Flashpoint                     | EPA 1010A-Mod     |
| Lead                           | EPA 6010C         |
| Mercury                        | EPA 7471B         |
| Nickel                         | EPA 6010C         |
| PCBs                           | EPA 8082A         |
| рН                             | SM4500-H-B (11)   |
| Reactive Cyanide               | NETL Internal     |
| Reactive Sulfide               | NETL Internal     |
| Selenium                       | EPA 6010C         |
| Semivolatile Organic Compounds | EPA 8270D         |
| Silver                         | EPA 6010C         |
| Specific Conductance           | SM2510 - Modified |
| Thallium                       | EPA 6010C         |
| Total Petroleum Hydrocarbons   | EPA-8100-mod      |
| Vanadium                       | EPA 6010C         |
| Volatile Organic Compounds     | EPA 8260C         |
| Zinc                           | EPA 6010C         |

## B-112 2-6' (Lab Number: 4B26010-04)

|                               |                                   | <u>Method</u>      |
|-------------------------------|-----------------------------------|--------------------|
| Antimony                      |                                   | EPA 6010C          |
| Arsenic                       |                                   | EPA 6010C          |
| Barium                        |                                   | EPA 6010C          |
| Beryllium                     |                                   | EPA 6010C          |
| Cadmium                       |                                   | EPA 6010C          |
| Chromium                      |                                   | EPA 6010C          |
| Flashpoint                    |                                   | EPA 1010A-Mod      |
| Lead                          |                                   | EPA 6010C          |
| Mercury                       |                                   | EPA 7471B          |
| Nickel                        |                                   | EPA 6010C          |
| PCBs                          |                                   | EPA 8082A          |
| pH                            |                                   | SM4500-H-B (11)    |
| Reactive Cyanide              |                                   | NETL Internal      |
| Reactive Sulfide              |                                   | NETL Internal      |
| Selenium                      |                                   | EPA 6010C          |
| Semivolatile Organic Compound | ds                                | EPA 8270D          |
| Silver                        |                                   | EPA 6010C          |
| Specific Conductance          |                                   | SM2510 - Modified  |
| Thallium                      |                                   | EPA 6010C          |
| Total Petroleum Hydrocarbons  |                                   | EPA-8100-mod       |
| Vanadium                      |                                   | EPA 6010C          |
| Volatile Organic Compounds    |                                   | EPA 8260C          |
| Zinc                          | Soil Sampling Report Green Meadow | / 5246969 April 20 |

Soil Sampling Report Green Meadow School April 2024 31 09 16.1 - 41

# B-113 2-4' (Lab Number: 4B26010-03)

|                                | <u>Method</u>     |
|--------------------------------|-------------------|
| Antimony                       | EPA 6010C         |
| Arsenic                        | EPA 6010C         |
| Barium                         | EPA 6010C         |
| Beryllium                      | EPA 6010C         |
| Cadmium                        | EPA 6010C         |
| Chromium                       | EPA 6010C         |
| Flashpoint                     | EPA 1010A-Mod     |
| Lead                           | EPA 6010C         |
| Mercury                        | EPA 7471B         |
| Nickel                         | EPA 6010C         |
| PCBs                           | EPA 8082A         |
| рН                             | SM4500-H-B (11)   |
| Reactive Cyanide               | NETL Internal     |
| Reactive Sulfide               | NETL Internal     |
| Selenium                       | EPA 6010C         |
| Semivolatile Organic Compounds | EPA 8270D         |
| Silver                         | EPA 6010C         |
| Specific Conductance           | SM2510 - Modified |
| Thallium                       | EPA 6010C         |
| Total Petroleum Hydrocarbons   | EPA-8100-mod      |
| Vanadium                       | EPA 6010C         |
| Volatile Organic Compounds     | EPA 8260C         |
| Zinc                           | EPA 6010C         |

# TP-6 (Lab Number: 4B26010-01)

|                                | <u>Method</u>     |
|--------------------------------|-------------------|
| Antimony                       | EPA 6010C         |
| Arsenic                        | EPA 6010C         |
| Barium                         | EPA 6010C         |
| Beryllium                      | EPA 6010C         |
| Cadmium                        | EPA 6010C         |
| Chromium                       | EPA 6010C         |
| Flashpoint                     | EPA 1010A-Mod     |
| Lead                           | EPA 6010C         |
| Mercury                        | EPA 7471B         |
| Nickel                         | EPA 6010C         |
| PCBs                           | EPA 8082A         |
| pH                             | SM4500-H-B (11)   |
| Reactive Cyanide               | NETL Internal     |
| Reactive Sulfide               | NETL Internal     |
| Selenium                       | EPA 6010C         |
| Semivolatile Organic Compounds | EPA 8270D         |
| Silver                         | EPA 6010C         |
| Specific Conductance           | SM2510 - Modified |
| Thallium                       | EPA 6010C         |
| Total Petroleum Hydrocarbons   | EPA-8100-mod      |
| Vanadium                       | EPA 6010C         |
| Volatile Organic Compounds     | EPA 8260C         |
| Zinc                           | EPA 6010C         |

### **Method References**

Reactive Cyanide, Standard Operating Procedure 407, New England Testing Laboratory Inc.

Reactive Sulfide, Standard Operating Procedure 426, New England Testing Laboratory Inc.

Standard Methods for the Examination of Water and Wastewater, 20th Edition, APHA/ AWWA-WPCF, 1998

Test Methods for Evaluating Solid Waste, Physical/Chemical Methods, SW846, USEPA

#### **Case Narrative**

# Sample Receipt:

The samples associated with this work order were received in appropriately cooled and preserved containers. The chain of custody was adequately completed and corresponded to the samples submitted.

Exceptions: None

# **Analysis:**

All samples were prepared and analyzed within method specified holding times and according to NETLAB's documented standard operating procedures. The results for the associated calibration, method blank and laboratory control sample (LCS) were within method specified quality control requirements and allowances. Results for all soil samples, unless otherwise indicated, are reported on a dry weight basis.

**Exceptions: None** 

VOA 8260: Sample 'TP-6' and 'B-113 2-4" were prepared and analyzed utilizing bulk material provided by the client due to matrix interference.

Sample: TP-6

Lab Number: 4B26010-01 (Soil)

| Reporting            |        |      |       |           |               |               |  |  |
|----------------------|--------|------|-------|-----------|---------------|---------------|--|--|
| Analyte              | Result | Qual | Limit | Units     | Date Prepared | Date Analyzed |  |  |
| Flashpoint           | > 200  |      | 70    | degrees F | 03/01/24      | 03/01/24      |  |  |
| рН                   | 7.0    |      |       | SU        | 02/28/24      | 02/28/24      |  |  |
| Specific Conductance | 56.3   |      | 2.0   | uS/cm     | 02/28/24      | 02/28/24      |  |  |

Sample: B-103 0-6'

Lab Number: 4B26010-02 (Soil)

| Reporting            |        |      |       |           |               |               |  |  |
|----------------------|--------|------|-------|-----------|---------------|---------------|--|--|
| Analyte              | Result | Qual | Limit | Units     | Date Prepared | Date Analyzed |  |  |
| Flashpoint           | > 200  |      | 70    | degrees F | 03/01/24      | 03/01/24      |  |  |
| pH                   | 6.0    |      |       | SU        | 02/28/24      | 02/28/24      |  |  |
| Specific Conductance | 15.9   |      | 2.0   | uS/cm     | 02/28/24      | 02/28/24      |  |  |

Sample: B-113 2-4' Lab Number: 4B26010-03 (Soil)

|                      |        |      | Reporting |           |               |               |
|----------------------|--------|------|-----------|-----------|---------------|---------------|
| Analyte              | Result | Qual | Limit     | Units     | Date Prepared | Date Analyzed |
| Flashpoint           | > 200  |      | 70        | degrees F | 03/01/24      | 03/01/24      |
| рН                   | 5.1    |      |           | SU        | 02/28/24      | 02/28/24      |
| Specific Conductance | 9.4    |      | 2.0       | uS/cm     | 02/28/24      | 02/28/24      |

Sample: B-112 2-6'

Lab Number: 4B26010-04 (Soil)

|                      |        |      | Reporting |           |               |               |
|----------------------|--------|------|-----------|-----------|---------------|---------------|
| Analyte              | Result | Qual | Limit     | Units     | Date Prepared | Date Analyzed |
| Flashpoint           | > 200  |      | 70        | degrees F | 03/01/24      | 03/01/24      |
| pH                   | 5.2    |      |           | SU        | 02/28/24      | 02/28/24      |
| Specific Conductance | 17.4   |      | 2.0       | uS/cm     | 02/28/24      | 02/28/24      |

Sample: TP-6

Lab Number: 4B26010-01 (Soil)

| Reporting        |        |      |       |       |               |               |  |
|------------------|--------|------|-------|-------|---------------|---------------|--|
| Analyte          | Result | Qual | Limit | Units | Date Prepared | Date Analyzed |  |
| Reactive Cyanide | ND     |      | 0.3   | mg/kg | 02/29/24      | 02/29/24      |  |
| Reactive Sulfide | ND     |      | 0.1   | mg/kg | 02/29/24      | 02/29/24      |  |

Sample: B-103 0-6'

Lab Number: 4B26010-02 (Soil)

|                  |        |      | Reporting |       |               |               |
|------------------|--------|------|-----------|-------|---------------|---------------|
| Analyte          | Result | Qual | Limit     | Units | Date Prepared | Date Analyzed |
| Reactive Cyanide | ND     |      | 0.2       | mg/kg | 02/29/24      | 02/29/24      |
| Reactive Sulfide | ND     |      | 0.1       | mg/kg | 02/29/24      | 02/29/24      |

Sample: B-113 2-4'

Lab Number: 4B26010-03 (Soil)

| Analyte          | Result | Qual | Limit | Units | Date Prepared | Date Analyzed |
|------------------|--------|------|-------|-------|---------------|---------------|
| Reactive Cyanide | ND     |      | 0.2   | mg/kg | 02/29/24      | 02/29/24      |
| Reactive Sulfide | ND     |      | 0.1   | mg/kg | 02/29/24      | 02/29/24      |

Sample: B-112 2-6'

Lab Number: 4B26010-04 (Soil)

|                  |        |      | Reporting |       |               |               |
|------------------|--------|------|-----------|-------|---------------|---------------|
| Analyte          | Result | Qual | Limit     | Units | Date Prepared | Date Analyzed |
| Reactive Cyanide | ND     |      | 0.2       | mg/kg | 02/29/24      | 02/29/24      |
| Reactive Sulfide | ND     |      | 0.1       | mg/kg | 02/29/24      | 02/29/24      |

## **Results: Total Metals**

Sample: TP-6

Lab Number: 4B26010-01 (Soil)

|           |        |      | Reporting |       |               |               |
|-----------|--------|------|-----------|-------|---------------|---------------|
| Analyte   | Result | Qual | Limit     | Units | Date Prepared | Date Analyzed |
| Antimony  | 1.09   |      | 0.86      | mg/kg | 02/27/24      | 03/01/24      |
| Arsenic   | 10.5   |      | 1.30      | mg/kg | 02/27/24      | 03/01/24      |
| Barium    | 32.5   |      | 0.43      | mg/kg | 02/27/24      | 03/01/24      |
| Beryllium | ND     |      | 0.43      | mg/kg | 02/27/24      | 03/01/24      |
| Cadmium   | 3.42   |      | 0.65      | mg/kg | 02/27/24      | 03/01/24      |
| Chromium  | 13.7   |      | 0.65      | mg/kg | 02/27/24      | 03/01/24      |
| Lead      | 38.7   |      | 0.65      | mg/kg | 02/27/24      | 03/01/24      |
| Mercury   | 0.129  |      | 0.118     | mg/kg | 02/28/24      | 02/28/24      |
| Nickel    | 9.11   |      | 0.65      | mg/kg | 02/27/24      | 03/01/24      |
| Selenium  | ND     |      | 1.30      | mg/kg | 02/27/24      | 03/01/24      |
| Silver    | ND     |      | 1.30      | mg/kg | 02/27/24      | 03/01/24      |
| Vanadium  | 21.4   |      | 0.43      | mg/kg | 02/27/24      | 03/01/24      |
| Zinc      | 48.6   |      | 2.6       | mg/kg | 02/27/24      | 03/01/24      |
| Thallium  | ND     |      | 0.43      | mg/kg | 02/27/24      | 03/01/24      |

## **Results: Total Metals**

Sample: B-103 0-6'

Lab Number: 4B26010-02 (Soil)

|           |        | Reporting |       |       |               |               |  |
|-----------|--------|-----------|-------|-------|---------------|---------------|--|
| Analyte   | Result | Qual      | Limit | Units | Date Prepared | Date Analyzed |  |
| Antimony  | ND     |           | 0.88  | mg/kg | 02/27/24      | 03/01/24      |  |
| Arsenic   | 5.92   |           | 1.33  | mg/kg | 02/27/24      | 03/01/24      |  |
| Barium    | 38.0   |           | 0.44  | mg/kg | 02/27/24      | 03/01/24      |  |
| Beryllium | ND     |           | 0.44  | mg/kg | 02/27/24      | 03/01/24      |  |
| Cadmium   | 4.33   |           | 0.66  | mg/kg | 02/27/24      | 03/01/24      |  |
| Chromium  | 19.5   |           | 0.66  | mg/kg | 02/27/24      | 03/01/24      |  |
| Lead      | 5.29   |           | 0.66  | mg/kg | 02/27/24      | 03/01/24      |  |
| Mercury   | 0.184  |           | 0.111 | mg/kg | 02/28/24      | 02/28/24      |  |
| Nickel    | 9.06   |           | 0.66  | mg/kg | 02/27/24      | 03/01/24      |  |
| Selenium  | ND     |           | 1.33  | mg/kg | 02/27/24      | 03/01/24      |  |
| Silver    | ND     |           | 1.33  | mg/kg | 02/27/24      | 03/01/24      |  |
| Vanadium  | 24.4   |           | 0.44  | mg/kg | 02/27/24      | 03/01/24      |  |
| Zinc      | 22.9   |           | 2.7   | mg/kg | 02/27/24      | 03/01/24      |  |
| Thallium  | ND     |           | 0.44  | mg/kg | 02/27/24      | 03/01/24      |  |
|           |        |           |       |       |               |               |  |

#### **Results: Total Metals**

Sample: B-113 2-4' Lab Number: 4B26010-03 (Soil)

|           |        |      | Reporting |       |               |               |
|-----------|--------|------|-----------|-------|---------------|---------------|
| Analyte   | Result | Qual | Limit     | Units | Date Prepared | Date Analyzed |
| Antimony  | ND     |      | 0.95      | mg/kg | 02/27/24      | 03/01/24      |
| Arsenic   | 9.73   |      | 1.44      | mg/kg | 02/27/24      | 03/01/24      |
| Barium    | 13.6   |      | 0.48      | mg/kg | 02/27/24      | 03/01/24      |
| Beryllium | ND     |      | 0.48      | mg/kg | 02/27/24      | 03/01/24      |
| Cadmium   | 2.54   |      | 0.72      | mg/kg | 02/27/24      | 03/01/24      |
| Chromium  | 13.0   |      | 0.72      | mg/kg | 02/27/24      | 03/01/24      |
| Lead      | 3.91   |      | 0.72      | mg/kg | 02/27/24      | 03/01/24      |
| Mercury   | ND     |      | 0.110     | mg/kg | 02/28/24      | 02/28/24      |
| Nickel    | 8.94   |      | 0.72      | mg/kg | 02/27/24      | 03/01/24      |
| Selenium  | ND     |      | 1.44      | mg/kg | 02/27/24      | 03/01/24      |
| Silver    | ND     |      | 1.44      | mg/kg | 02/27/24      | 03/01/24      |
| Vanadium  | 14.4   |      | 0.48      | mg/kg | 02/27/24      | 03/01/24      |
| Zinc      | 18.0   |      | 2.9       | mg/kg | 02/27/24      | 03/01/24      |
| Thallium  | ND     |      | 0.48      | mg/kg | 02/27/24      | 03/01/24      |
|           |        |      |           |       |               |               |

#### **Results: Total Metals**

Sample: B-112 2-6'

|           |        |      | Reporting |       |               |               |
|-----------|--------|------|-----------|-------|---------------|---------------|
| Analyte   | Result | Qual | Limit     | Units | Date Prepared | Date Analyzed |
| Antimony  | ND     |      | 0.88      | mg/kg | 02/27/24      | 03/01/24      |
| Arsenic   | 6.40   |      | 1.33      | mg/kg | 02/27/24      | 03/01/24      |
| Barium    | 65.3   |      | 0.44      | mg/kg | 02/27/24      | 03/01/24      |
| Beryllium | ND     |      | 0.44      | mg/kg | 02/27/24      | 03/01/24      |
| Cadmium   | 5.34   |      | 0.66      | mg/kg | 02/27/24      | 03/01/24      |
| Chromium  | 21.8   |      | 0.66      | mg/kg | 02/27/24      | 03/01/24      |
| Lead      | 5.94   |      | 0.66      | mg/kg | 02/27/24      | 03/01/24      |
| Mercury   | ND     |      | 0.097     | mg/kg | 02/28/24      | 02/28/24      |
| Nickel    | 9.97   |      | 0.66      | mg/kg | 02/27/24      | 03/01/24      |
| Selenium  | ND     |      | 1.33      | mg/kg | 02/27/24      | 03/01/24      |
| Silver    | ND     |      | 1.33      | mg/kg | 02/27/24      | 03/01/24      |
| Vanadium  | 36.7   |      | 0.44      | mg/kg | 02/27/24      | 03/01/24      |
| Zinc      | 26.3   |      | 2.7       | mg/kg | 02/27/24      | 03/01/24      |
| Thallium  | ND     |      | 0.44      | mg/kg | 02/27/24      | 03/01/24      |

# **Results: Volatile Organic Compounds 8260C (5035-LL)**

Sample: TP-6

| Analyte                           | Result           | Reporting<br>Qual Limit       | Units          | Date Prepared              | Date Analyzed        |
|-----------------------------------|------------------|-------------------------------|----------------|----------------------------|----------------------|
| Acetone                           | ND               | 103                           | ug/kg          | 03/05/24                   | 03/05/24             |
| Benzene                           | ND               | 5                             | ug/kg          | 03/05/24                   | 03/05/24             |
| Bromobenzene                      | ND               | 5                             | ug/kg          | 03/05/24                   | 03/05/24             |
| Bromochloromethane                | ND               | 5                             | ug/kg          | 03/05/24                   | 03/05/24             |
| Bromodichloromethane              | ND               | 5                             | ug/kg          | 03/05/24                   | 03/05/24             |
| Bromoform                         | ND               | 5                             | ug/kg          | 03/05/24                   | 03/05/24             |
| Bromomethane                      | ND               | 5                             | ug/kg          | 03/05/24                   | 03/05/24             |
| 2-Butanone                        | ND               | 103                           | ug/kg          | 03/05/24                   | 03/05/24             |
| ert-Butyl alcohol                 | ND               | 5                             | ug/kg          | 03/05/24                   | 03/05/24             |
| ec-Butylbenzene                   | ND               | 5                             | ug/kg          | 03/05/24                   | 03/05/24             |
| n-Butylbenzene                    | ND               | 5                             | ug/kg          | 03/05/24                   | 03/05/24             |
| ert-Butylbenzene                  | ND               | 5                             | ug/kg          | 03/05/24                   | 03/05/24             |
| Nethyl t-butyl ether (MTBE)       | ND               | 5                             | ug/kg          | 03/05/24                   | 03/05/24             |
| Carbon Disulfide                  | ND               | 5                             | ug/kg          | 03/05/24                   | 03/05/24             |
| Carbon Tetrachloride              | ND               | 5                             | ug/kg          | 03/05/24                   | 03/05/24             |
| Chlorobenzene                     | ND               | 5                             | ug/kg          | 03/05/24                   | 03/05/24             |
| Chloroethane                      | ND               | 5                             | ug/kg          | 03/05/24                   | 03/05/24             |
| Chloroform                        | ND               | 5                             | ug/kg          | 03/05/24                   | 03/05/24             |
| Chloromethane                     | ND               | 5                             | ug/kg          | 03/05/24                   | 03/05/24             |
| l-Chlorotoluene                   | ND               | 5                             | ug/kg          | 03/05/24                   | 03/05/24             |
| 2-Chlorotoluene                   | ND               | 5                             | ug/kg          | 03/05/24                   | 03/05/24             |
| ,2-Dibromo-3-chloropropane (DBCP) | ND               | 5                             | ug/kg          | 03/05/24                   | 03/05/24             |
| Dibromochloromethane              | ND               | 5                             | ug/kg          | 03/05/24                   | 03/05/24             |
| .,2-Dibromoethane (EDB)           | ND               | 5                             | ug/kg          | 03/05/24                   | 03/05/24             |
| Dibromomethane                    | ND               | 5                             | ug/kg          | 03/05/24                   | 03/05/24             |
| .,2-Dichlorobenzene               | ND               | 5                             | ug/kg          | 03/05/24                   | 03/05/24             |
| .,3-Dichlorobenzene               | ND               | 5                             | ug/kg          | 03/05/24                   | 03/05/24             |
| .,4-Dichlorobenzene               | ND               | 5                             | ug/kg          | 03/05/24                   | 03/05/24             |
| .,1-Dichloroethane                | ND               | 5                             | ug/kg          | 03/05/24                   | 03/05/24             |
| .,2-Dichloroethane                | ND               | 5                             | ug/kg          | 03/05/24                   | 03/05/24             |
| .,2 Dichloroethene, Total         | ND               | 5                             | ug/kg          | 03/05/24                   | 03/05/24             |
| rans-1,2-Dichloroethene           | ND               | 5                             | ug/kg<br>ug/kg | 03/05/24                   | 03/05/24             |
| is-1,2-Dichloroethene             | ND               | 5                             | ug/kg<br>ug/kg | 03/05/24                   | 03/05/24             |
| .,1-Dichloroethene                | ND<br>ND         | 5                             | ug/kg<br>ug/kg | 03/05/24                   | 03/05/24             |
| .,2-Dichloropropane               | ND               | 5                             | ug/kg<br>ug/kg | 03/05/24                   | 03/05/24             |
| 2,2-Dichloropropane               | ND               | 5                             | ug/kg<br>ug/kg | 03/05/24                   | 03/05/24             |
| is-1,3-Dichloropropene            | ND               | 5                             | ug/kg<br>ug/kg | 03/05/24                   | 03/05/24             |
| rans-1,3-Dichloropropene          | ND<br>ND         | 5                             | ug/kg<br>ug/kg | 03/05/24                   | 03/05/24             |
| .,1-Dichloropropene               | ND<br>ND         | 5                             | ug/kg<br>ug/kg | 03/05/24                   | 03/05/24             |
| .,3-Dichloropropene (cis + trans) | ND               | 5                             | ug/kg<br>ug/kg | 03/05/24                   | 03/05/24             |
| Diethyl ether                     | ND<br>ND         | 5                             | ug/kg<br>ug/kg | 03/05/24                   | 03/05/24             |
| .,4-Dioxane                       | ND<br>ND         | 103                           | ug/kg<br>ug/kg | 03/05/24                   | 03/05/24             |
| thylbenzene                       | ND<br>ND         | 5                             | ug/kg<br>ug/kg | 03/05/24                   | 03/05/24             |
| Hexachlorobutadiene               | ND<br>ND         | 5                             |                | 03/05/24                   | 03/05/24             |
| !-Hexanone                        |                  | 103                           | ug/kg<br>ug/kg | 03/05/24                   | 03/05/24             |
|                                   | ND<br>ND         | g Report Green M<br>31 09 16. | ug/kg          | 03/03/27                   | 03/05/24             |
| sopropylbenzene                   | O - 'I O - '' I' | . D 1 O 1 M                   | and and Cab.   | 03/03/24<br>00/ April 2024 | 03/03/2 <del>1</del> |

Sample: TP-6 (Continued) Lab Number: 4B26010-01 (Soil)

| Analyte                   | Result    | Repor<br>Qual Lim | -      | Date Prepared | Date Analyzed |
|---------------------------|-----------|-------------------|--------|---------------|---------------|
| Methylene Chloride        | ND        | 5                 | ug/kg  | 03/05/24      | 03/05/24      |
| 4-Methyl-2-pentanone      | ND        | 103               | ug/kg  | 03/05/24      | 03/05/24      |
| Naphthalene               | ND        | 5                 | ug/kg  | 03/05/24      | 03/05/24      |
| n-Propylbenzene           | ND        | 5                 | ug/kg  | 03/05/24      | 03/05/24      |
| Styrene                   | ND        | 5                 | ug/kg  | 03/05/24      | 03/05/24      |
| 1,1,1,2-Tetrachloroethane | ND        | 5                 | ug/kg  | 03/05/24      | 03/05/24      |
| Tetrachloroethene         | ND        | 5                 | ug/kg  | 03/05/24      | 03/05/24      |
| Tetrahydrofuran           | ND        | 5                 | ug/kg  | 03/05/24      | 03/05/24      |
| Toluene                   | ND        | 5                 | ug/kg  | 03/05/24      | 03/05/24      |
| 1,2,4-Trichlorobenzene    | ND        | 5                 | ug/kg  | 03/05/24      | 03/05/24      |
| 1,2,3-Trichlorobenzene    | ND        | 5                 | ug/kg  | 03/05/24      | 03/05/24      |
| 1,1,2-Trichloroethane     | ND        | 5                 | ug/kg  | 03/05/24      | 03/05/24      |
| 1,1,1-Trichloroethane     | ND        | 5                 | ug/kg  | 03/05/24      | 03/05/24      |
| Trichloroethene           | ND        | 5                 | ug/kg  | 03/05/24      | 03/05/24      |
| 1,2,3-Trichloropropane    | ND        | 5                 | ug/kg  | 03/05/24      | 03/05/24      |
| 1,3,5-Trimethylbenzene    | ND        | 5                 | ug/kg  | 03/05/24      | 03/05/24      |
| 1,2,4-Trimethylbenzene    | ND        | 5                 | ug/kg  | 03/05/24      | 03/05/24      |
| Vinyl Chloride            | ND        | 5                 | ug/kg  | 03/05/24      | 03/05/24      |
| o-Xylene                  | ND        | 5                 | ug/kg  | 03/05/24      | 03/05/24      |
| m&p-Xylene                | ND        | 10                | ug/kg  | 03/05/24      | 03/05/24      |
| Total xylenes             | ND        | 5                 | ug/kg  | 03/05/24      | 03/05/24      |
| 1,1,2,2-Tetrachloroethane | ND        | 5                 | ug/kg  | 03/05/24      | 03/05/24      |
| tert-Amyl methyl ether    | ND        | 5                 | ug/kg  | 03/05/24      | 03/05/24      |
| 1,3-Dichloropropane       | ND        | 5                 | ug/kg  | 03/05/24      | 03/05/24      |
| Ethyl tert-butyl ether    | ND        | 5                 | ug/kg  | 03/05/24      | 03/05/24      |
| Diisopropyl ether         | ND        | 5                 | ug/kg  | 03/05/24      | 03/05/24      |
| Trichlorofluoromethane    | ND        | 5                 | ug/kg  | 03/05/24      | 03/05/24      |
| Dichlorodifluoromethane   | ND        | 5                 | ug/kg  | 03/05/24      | 03/05/24      |
| Surrogate(s)              | Recovery% |                   | Limits |               |               |
| 4-Bromofluorobenzene      | 81.1%     |                   | 70-130 | 03/05/24      | 03/05/24      |
| 1,2-Dichloroethane-d4     | 103%      |                   | 70-130 | 03/05/24      | 03/05/24      |
| Toluene-d8                | 92.5%     |                   | 70-130 | 03/05/24      | 03/05/24      |

# **Results: Volatile Organic Compounds 8260C (5035-LL)**

Sample: B-103 0-6'

| Analyte                            | Result       | Qual    | Reporting<br>Limit | Units     | Date Prepared | Date Analyzed |
|------------------------------------|--------------|---------|--------------------|-----------|---------------|---------------|
| Acetone                            | ND           |         | 106                | ug/kg     | 03/04/24      | 03/04/24      |
| Benzene                            | ND           |         | 5                  | ug/kg     | 03/04/24      | 03/04/24      |
| Bromobenzene                       | ND           |         | 5                  | ug/kg     | 03/04/24      | 03/04/24      |
| Bromochloromethane                 | ND           |         | 5                  | ug/kg     | 03/04/24      | 03/04/24      |
| Bromodichloromethane               | ND           |         | 5                  | ug/kg     | 03/04/24      | 03/04/24      |
| Bromoform                          | ND           |         | 5                  | ug/kg     | 03/04/24      | 03/04/24      |
| Bromomethane                       | ND           |         | 5                  | ug/kg     | 03/04/24      | 03/04/24      |
| 2-Butanone                         | ND           |         | 106                | ug/kg     | 03/04/24      | 03/04/24      |
| tert-Butyl alcohol                 | ND           |         | 5                  | ug/kg     | 03/04/24      | 03/04/24      |
| sec-Butylbenzene                   | ND           |         | 5                  | ug/kg     | 03/04/24      | 03/04/24      |
| n-Butylbenzene                     | ND           |         | 5                  | ug/kg     | 03/04/24      | 03/04/24      |
| tert-Butylbenzene                  | ND           |         | 5                  | ug/kg     | 03/04/24      | 03/04/24      |
| Methyl t-butyl ether (MTBE)        | ND           |         | 5                  | ug/kg     | 03/04/24      | 03/04/24      |
| Carbon Disulfide                   | ND           |         | 5                  | ug/kg     | 03/04/24      | 03/04/24      |
| Carbon Tetrachloride               | ND           |         | 5                  | ug/kg     | 03/04/24      | 03/04/24      |
| Chlorobenzene                      | ND           |         | 5                  | ug/kg     | 03/04/24      | 03/04/24      |
| Chloroethane                       | ND           |         | 5                  | ug/kg     | 03/04/24      | 03/04/24      |
| Chloroform                         | ND           |         | 5                  | ug/kg     | 03/04/24      | 03/04/24      |
| Chloromethane                      | ND           |         | 5                  | ug/kg     | 03/04/24      | 03/04/24      |
| 4-Chlorotoluene                    | ND           |         | 5                  | ug/kg     | 03/04/24      | 03/04/24      |
| 2-Chlorotoluene                    | ND           |         | 5                  | ug/kg     | 03/04/24      | 03/04/24      |
| 1,2-Dibromo-3-chloropropane (DBCP) | ND           |         | 5                  | ug/kg     | 03/04/24      | 03/04/24      |
| Dibromochloromethane               | ND           |         | 5                  | ug/kg     | 03/04/24      | 03/04/24      |
| 1,2-Dibromoethane (EDB)            | ND           |         | 5                  | ug/kg     | 03/04/24      | 03/04/24      |
| Dibromomethane                     | ND           |         | 5                  | ug/kg     | 03/04/24      | 03/04/24      |
| 1,2-Dichlorobenzene                | ND           |         | 5                  | ug/kg     | 03/04/24      | 03/04/24      |
| 1,3-Dichlorobenzene                | ND           |         | 5                  | ug/kg     | 03/04/24      | 03/04/24      |
| 1,4-Dichlorobenzene                | ND           |         | 5                  | ug/kg     | 03/04/24      | 03/04/24      |
| 1,1-Dichloroethane                 | ND           |         | 5                  | ug/kg     | 03/04/24      | 03/04/24      |
| 1,2-Dichloroethane                 | ND           |         | 5                  | ug/kg     | 03/04/24      | 03/04/24      |
| 1,2 Dichloroethene, Total          | ND           |         | 5                  | ug/kg     | 03/04/24      | 03/04/24      |
| trans-1,2-Dichloroethene           | ND           |         | 5                  | ug/kg     | 03/04/24      | 03/04/24      |
| cis-1,2-Dichloroethene             | ND           |         | 5                  | ug/kg     | 03/04/24      | 03/04/24      |
| 1,1-Dichloroethene                 | ND           |         | 5                  | ug/kg     | 03/04/24      | 03/04/24      |
| 1,2-Dichloropropane                | ND           |         | 5                  | ug/kg     | 03/04/24      | 03/04/24      |
| 2,2-Dichloropropane                | ND           |         | 5                  | ug/kg     | 03/04/24      | 03/04/24      |
| cis-1,3-Dichloropropene            | ND           |         | 5                  | ug/kg     | 03/04/24      | 03/04/24      |
| trans-1,3-Dichloropropene          | ND           |         | 5                  | ug/kg     | 03/04/24      | 03/04/24      |
| 1,1-Dichloropropene                | ND           |         | 5                  | ug/kg     | 03/04/24      | 03/04/24      |
| 1,3-Dichloropropene (cis + trans)  | ND           |         | 5                  | ug/kg     | 03/04/24      | 03/04/24      |
| Diethyl ether                      | ND           |         | 5                  | ug/kg     | 03/04/24      | 03/04/24      |
| 1,4-Dioxane                        | ND           |         | 106                | ug/kg     | 03/04/24      | 03/04/24      |
| Ethylbenzene                       | ND           |         | 5                  | ug/kg     | 03/04/24      | 03/04/24      |
| Hexachlorobutadiene                | ND           |         | 5                  | ug/kg     | 03/04/24      | 03/04/24      |
| 2-Hexanone                         | ND           |         | 106                | ug/kg     | 03/04/24      | 03/04/24      |
| Isopropylbenzene                   |              |         |                    |           |               | 03/04/24      |
| p-Isopropyltoluene                 | Soil Samplin | a Danar | Croon Ma           | adaw Saha | od April 2024 | 30,0.,2.      |

Sample: B-103 0-6' (Continued)

| Analyte                   | Result    | Report<br>Qual Limi | -      | Date Prepared | Date Analyzed |
|---------------------------|-----------|---------------------|--------|---------------|---------------|
| Methylene Chloride        | ND        | 5                   | ug/kg  | 03/04/24      | 03/04/24      |
| 4-Methyl-2-pentanone      | ND        | 106                 | ug/kg  | 03/04/24      | 03/04/24      |
| Naphthalene               | ND        | 5                   | ug/kg  | 03/04/24      | 03/04/24      |
| n-Propylbenzene           | ND        | 5                   | ug/kg  | 03/04/24      | 03/04/24      |
| Styrene                   | ND        | 5                   | ug/kg  | 03/04/24      | 03/04/24      |
| 1,1,1,2-Tetrachloroethane | ND        | 5                   | ug/kg  | 03/04/24      | 03/04/24      |
| Tetrachloroethene         | ND        | 5                   | ug/kg  | 03/04/24      | 03/04/24      |
| Tetrahydrofuran           | ND        | 5                   | ug/kg  | 03/04/24      | 03/04/24      |
| Toluene                   | ND        | 5                   | ug/kg  | 03/04/24      | 03/04/24      |
| 1,2,4-Trichlorobenzene    | ND        | 5                   | ug/kg  | 03/04/24      | 03/04/24      |
| 1,2,3-Trichlorobenzene    | ND        | 5                   | ug/kg  | 03/04/24      | 03/04/24      |
| 1,1,2-Trichloroethane     | ND        | 5                   | ug/kg  | 03/04/24      | 03/04/24      |
| 1,1,1-Trichloroethane     | ND        | 5                   | ug/kg  | 03/04/24      | 03/04/24      |
| Trichloroethene           | ND        | 5                   | ug/kg  | 03/04/24      | 03/04/24      |
| 1,2,3-Trichloropropane    | ND        | 5                   | ug/kg  | 03/04/24      | 03/04/24      |
| 1,3,5-Trimethylbenzene    | ND        | 5                   | ug/kg  | 03/04/24      | 03/04/24      |
| 1,2,4-Trimethylbenzene    | ND        | 5                   | ug/kg  | 03/04/24      | 03/04/24      |
| Vinyl Chloride            | ND        | 5                   | ug/kg  | 03/04/24      | 03/04/24      |
| o-Xylene                  | ND        | 5                   | ug/kg  | 03/04/24      | 03/04/24      |
| m&p-Xylene                | ND        | 11                  | ug/kg  | 03/04/24      | 03/04/24      |
| Total xylenes             | ND        | 5                   | ug/kg  | 03/04/24      | 03/04/24      |
| 1,1,2,2-Tetrachloroethane | ND        | 5                   | ug/kg  | 03/04/24      | 03/04/24      |
| tert-Amyl methyl ether    | ND        | 5                   | ug/kg  | 03/04/24      | 03/04/24      |
| 1,3-Dichloropropane       | ND        | 5                   | ug/kg  | 03/04/24      | 03/04/24      |
| Ethyl tert-butyl ether    | ND        | 5                   | ug/kg  | 03/04/24      | 03/04/24      |
| Diisopropyl ether         | ND        | 5                   | ug/kg  | 03/04/24      | 03/04/24      |
| Trichlorofluoromethane    | ND        | 5                   | ug/kg  | 03/04/24      | 03/04/24      |
| Dichlorodifluoromethane   | ND        | 5                   | ug/kg  | 03/04/24      | 03/04/24      |
| Surrogate(s)              | Recovery% |                     | Limits |               |               |
| 4-Bromofluorobenzene      | 99.1%     |                     | 70-130 | 03/04/24      | 03/04/24      |
| 1,2-Dichloroethane-d4     | 106%      |                     | 70-130 | 03/04/24      | 03/04/24      |
| Toluene-d8                | 98.5%     |                     | 70-130 | 03/04/24      | 03/04/24      |

# Results: Volatile Organic Compounds 8260C (5035-LL)

Sample: B-113 2-4'

| Analyte                            | Result        | Reporting<br>Qual Limit         | Units     | Date Prepared | Date Analyzed |
|------------------------------------|---------------|---------------------------------|-----------|---------------|---------------|
| Acetone                            | ND            | 823                             | ug/kg     | 03/05/24      | 03/05/24      |
| Benzene                            | ND            | 6                               | ug/kg     | 03/05/24      | 03/05/24      |
| Bromobenzene                       | ND            | 6                               | ug/kg     | 03/05/24      | 03/05/24      |
| Bromochloromethane                 | ND            | 6                               | ug/kg     | 03/05/24      | 03/05/24      |
| Bromodichloromethane               | ND            | 6                               | ug/kg     | 03/05/24      | 03/05/24      |
| Bromoform                          | ND            | 6                               | ug/kg     | 03/05/24      | 03/05/24      |
| Bromomethane                       | ND            | 6                               | ug/kg     | 03/05/24      | 03/05/24      |
| 2-Butanone                         | ND            | 118                             | ug/kg     | 03/05/24      | 03/05/24      |
| ert-Butyl alcohol                  | ND            | 6                               | ug/kg     | 03/05/24      | 03/05/24      |
| sec-Butylbenzene                   | ND            | 6                               | ug/kg     | 03/05/24      | 03/05/24      |
| n-Butylbenzene                     | ND            | 6                               | ug/kg     | 03/05/24      | 03/05/24      |
| ert-Butylbenzene                   | ND            | 6                               | ug/kg     | 03/05/24      | 03/05/24      |
| Methyl t-butyl ether (MTBE)        | ND            | 6                               | ug/kg     | 03/05/24      | 03/05/24      |
| Carbon Disulfide                   | ND            | 6                               | ug/kg     | 03/05/24      | 03/05/24      |
| Carbon Tetrachloride               | ND            | 6                               | ug/kg     | 03/05/24      | 03/05/24      |
| Chlorobenzene                      | ND            | 6                               | ug/kg     | 03/05/24      | 03/05/24      |
| Chloroethane                       | ND            | 6                               | ug/kg     | 03/05/24      | 03/05/24      |
| Chloroform                         | ND            | 6                               | ug/kg     | 03/05/24      | 03/05/24      |
| Chloromethane                      | ND            | 6                               | ug/kg     | 03/05/24      | 03/05/24      |
| 4-Chlorotoluene                    | ND            | 6                               | ug/kg     | 03/05/24      | 03/05/24      |
| 2-Chlorotoluene                    | ND            | 6                               | ug/kg     | 03/05/24      | 03/05/24      |
| 1,2-Dibromo-3-chloropropane (DBCP) | ND            | 6                               | ug/kg     | 03/05/24      | 03/05/24      |
| Dibromochloromethane               | ND            | 6                               | ug/kg     | 03/05/24      | 03/05/24      |
| 1,2-Dibromoethane (EDB)            | ND            | 6                               | ug/kg     | 03/05/24      | 03/05/24      |
| Dibromomethane                     | ND            | 6                               | ug/kg     | 03/05/24      | 03/05/24      |
| 1,2-Dichlorobenzene                | ND            | 6                               | ug/kg     | 03/05/24      | 03/05/24      |
| 1,3-Dichlorobenzene                | ND            | 6                               | ug/kg     | 03/05/24      | 03/05/24      |
| 1,4-Dichlorobenzene                | ND            | 6                               | ug/kg     | 03/05/24      | 03/05/24      |
| 1,1-Dichloroethane                 | ND            | 6                               | ug/kg     | 03/05/24      | 03/05/24      |
| 1,2-Dichloroethane                 | ND            | 6                               | ug/kg     | 03/05/24      | 03/05/24      |
| 1,2 Dichloroethene, Total          | ND            | 6                               | ug/kg     | 03/05/24      | 03/05/24      |
| crans-1,2-Dichloroethene           | ND            | 6                               | ug/kg     | 03/05/24      | 03/05/24      |
| cis-1,2-Dichloroethene             | ND            | 6                               | ug/kg     | 03/05/24      | 03/05/24      |
| 1,1-Dichloroethene                 | ND            | 6                               | ug/kg     | 03/05/24      | 03/05/24      |
| 1,2-Dichloropropane                | ND            | 6                               | ug/kg     | 03/05/24      | 03/05/24      |
| 2,2-Dichloropropane                | ND            | 6                               | ug/kg     | 03/05/24      | 03/05/24      |
| cis-1,3-Dichloropropene            | ND            | 6                               | ug/kg     | 03/05/24      | 03/05/24      |
| rans-1,3-Dichloropropene           | ND            | 6                               | ug/kg     | 03/05/24      | 03/05/24      |
| 1,1-Dichloropropene                | ND            | 6                               | ug/kg     | 03/05/24      | 03/05/24      |
| 1,3-Dichloropropene (cis + trans)  | ND            | 6                               | ug/kg     | 03/05/24      | 03/05/24      |
| Diethyl ether                      | ND            | 6                               | ug/kg     | 03/05/24      | 03/05/24      |
| 1,4-Dioxane                        | ND            | 118                             | ug/kg     | 03/05/24      | 03/05/24      |
| Ethylbenzene                       | ND            | 6                               | ug/kg     | 03/05/24      | 03/05/24      |
| Hexachlorobutadiene                | ND            | 6                               | ug/kg     | 03/05/24      | 03/05/24      |
| 2-Hexanone                         | ND            | 118                             | ug/kg     | 03/05/24      | 03/05/24      |
| (sopropylbenzene                   |               | g Report Green Mo<br>31 09 16.1 |           |               | 03/05/24      |
| o-Isopropyltoluene                 | Soil Sampline | Report Groon M                  | 2040W Sch | ad Apřil ŽĎ24 | 03,03,21      |

Sample: B-113 2-4' (Continued)

| Analyte                   | Result    | Qual | Reporting<br>Limit | Units | Date Prepared | Date Analyzed |
|---------------------------|-----------|------|--------------------|-------|---------------|---------------|
| Methylene Chloride        | ND        |      | 6                  | ug/kg | 03/05/24      | 03/05/24      |
| 4-Methyl-2-pentanone      | ND        |      | 118                | ug/kg | 03/05/24      | 03/05/24      |
| Naphthalene               | ND        |      | 6                  | ug/kg | 03/05/24      | 03/05/24      |
| n-Propylbenzene           | ND        |      | 6                  | ug/kg | 03/05/24      | 03/05/24      |
| Styrene                   | ND        |      | 6                  | ug/kg | 03/05/24      | 03/05/24      |
| 1,1,1,2-Tetrachloroethane | ND        |      | 6                  | ug/kg | 03/05/24      | 03/05/24      |
| Tetrachloroethene         | ND        |      | 6                  | ug/kg | 03/05/24      | 03/05/24      |
| Tetrahydrofuran           | ND        |      | 6                  | ug/kg | 03/05/24      | 03/05/24      |
| Toluene                   | ND        |      | 6                  | ug/kg | 03/05/24      | 03/05/24      |
| 1,2,4-Trichlorobenzene    | ND        |      | 6                  | ug/kg | 03/05/24      | 03/05/24      |
| 1,2,3-Trichlorobenzene    | ND        |      | 6                  | ug/kg | 03/05/24      | 03/05/24      |
| 1,1,2-Trichloroethane     | ND        |      | 6                  | ug/kg | 03/05/24      | 03/05/24      |
| 1,1,1-Trichloroethane     | ND        |      | 6                  | ug/kg | 03/05/24      | 03/05/24      |
| Trichloroethene           | ND        |      | 6                  | ug/kg | 03/05/24      | 03/05/24      |
| 1,2,3-Trichloropropane    | ND        |      | 6                  | ug/kg | 03/05/24      | 03/05/24      |
| 1,3,5-Trimethylbenzene    | ND        |      | 6                  | ug/kg | 03/05/24      | 03/05/24      |
| 1,2,4-Trimethylbenzene    | ND        |      | 6                  | ug/kg | 03/05/24      | 03/05/24      |
| Vinyl Chloride            | ND        |      | 6                  | ug/kg | 03/05/24      | 03/05/24      |
| o-Xylene                  | ND        |      | 6                  | ug/kg | 03/05/24      | 03/05/24      |
| m&p-Xylene                | ND        |      | 12                 | ug/kg | 03/05/24      | 03/05/24      |
| Total xylenes             | ND        |      | 6                  | ug/kg | 03/05/24      | 03/05/24      |
| 1,1,2,2-Tetrachloroethane | ND        |      | 6                  | ug/kg | 03/05/24      | 03/05/24      |
| tert-Amyl methyl ether    | ND        |      | 6                  | ug/kg | 03/05/24      | 03/05/24      |
| 1,3-Dichloropropane       | ND        |      | 6                  | ug/kg | 03/05/24      | 03/05/24      |
| Ethyl tert-butyl ether    | ND        |      | 6                  | ug/kg | 03/05/24      | 03/05/24      |
| Diisopropyl ether         | ND        |      | 6                  | ug/kg | 03/05/24      | 03/05/24      |
| Trichlorofluoromethane    | ND        |      | 6                  | ug/kg | 03/05/24      | 03/05/24      |
| Dichlorodifluoromethane   | ND        |      | 6                  | ug/kg | 03/05/24      | 03/05/24      |
| Surrogate(s)              | Recovery% |      | Limits             | ;     |               |               |
| 4-Bromofluorobenzene      | 99.7%     |      | 70-130             | )     | 03/05/24      | 03/05/24      |
| 1,2-Dichloroethane-d4     | 101%      |      | 70-130             | )     | 03/05/24      | 03/05/24      |
| Toluene-d8                | 96.0%     |      | 70-130             | 7     | 03/05/24      | 03/05/24      |

# Results: Volatile Organic Compounds 8260C (5035-LL)

Sample: B-112 2-6'

| Analyte                             | Result        | Reporting<br>Qual Limit         | Units          | Date Prepared | Date Analyzed |
|-------------------------------------|---------------|---------------------------------|----------------|---------------|---------------|
| Acetone                             | ND            | 137                             | ug/kg          | 03/04/24      | 03/04/24      |
| Benzene                             | ND            | 7                               | ug/kg          | 03/04/24      | 03/04/24      |
| Bromobenzene                        | ND            | 7                               | ug/kg          | 03/04/24      | 03/04/24      |
| Bromochloromethane                  | ND            | 7                               | ug/kg          | 03/04/24      | 03/04/24      |
| Bromodichloromethane                | ND            | 7                               | ug/kg          | 03/04/24      | 03/04/24      |
| Bromoform                           | ND            | 7                               | ug/kg          | 03/04/24      | 03/04/24      |
| Bromomethane                        | ND            | 7                               | ug/kg          | 03/04/24      | 03/04/24      |
| 2-Butanone                          | ND            | 137                             | ug/kg          | 03/04/24      | 03/04/24      |
| tert-Butyl alcohol                  | ND            | 7                               | ug/kg          | 03/04/24      | 03/04/24      |
| sec-Butylbenzene                    | ND            | 7                               | ug/kg          | 03/04/24      | 03/04/24      |
| n-Butylbenzene                      | ND            | 7                               | ug/kg          | 03/04/24      | 03/04/24      |
| tert-Butylbenzene                   | ND            | 7                               | ug/kg          | 03/04/24      | 03/04/24      |
| Methyl t-butyl ether (MTBE)         | ND            | 7                               | ug/kg          | 03/04/24      | 03/04/24      |
| Carbon Disulfide                    | ND            | 7                               | ug/kg          | 03/04/24      | 03/04/24      |
| Carbon Tetrachloride                | ND            | 7                               | ug/kg          | 03/04/24      | 03/04/24      |
| Chlorobenzene                       | ND            | 7                               | ug/kg          | 03/04/24      | 03/04/24      |
| Chloroethane                        | ND            | 7                               | ug/kg          | 03/04/24      | 03/04/24      |
| Chloroform                          | ND            | 7                               | ug/kg          | 03/04/24      | 03/04/24      |
| Chloromethane                       | ND            | 7                               | ug/kg          | 03/04/24      | 03/04/24      |
| 4-Chlorotoluene                     | ND            | 7                               | ug/kg          | 03/04/24      | 03/04/24      |
| 2-Chlorotoluene                     | ND            | 7                               | ug/kg          | 03/04/24      | 03/04/24      |
| 1,2-Dibromo-3-chloropropane (DBCP)  | ND            | 7                               | ug/kg          | 03/04/24      | 03/04/24      |
| Dibromochloromethane                | ND            | 7                               | ug/kg          | 03/04/24      | 03/04/24      |
| 1,2-Dibromoethane (EDB)             | ND            | 7                               | ug/kg          | 03/04/24      | 03/04/24      |
| Dibromomethane                      | ND            | 7                               | ug/kg          | 03/04/24      | 03/04/24      |
| 1,2-Dichlorobenzene                 | ND            | 7                               | ug/kg          | 03/04/24      | 03/04/24      |
| 1,3-Dichlorobenzene                 | ND            | ,<br>7                          | ug/kg          | 03/04/24      | 03/04/24      |
| 1,4-Dichlorobenzene                 | ND            | 7                               | ug/kg          | 03/04/24      | 03/04/24      |
| 1,1-Dichloroethane                  | ND            | ,<br>7                          | ug/kg          | 03/04/24      | 03/04/24      |
| 1,2-Dichloroethane                  | ND            | 7                               | ug/kg          | 03/04/24      | 03/04/24      |
| 1,2 Dichloroethene, Total           | ND            | 7                               | ug/kg          | 03/04/24      | 03/04/24      |
| trans-1,2-Dichloroethene            | ND            | 7                               | ug/kg          | 03/04/24      | 03/04/24      |
| cis-1,2-Dichloroethene              | ND            | 7                               | ug/kg          | 03/04/24      | 03/04/24      |
| 1,1-Dichloroethene                  | ND            | 7                               | ug/kg<br>ug/kg | 03/04/24      | 03/04/24      |
| 1,2-Dichloropropane                 | ND<br>ND      | 7                               | ug/kg<br>ug/kg | 03/04/24      | 03/04/24      |
| 2,2-Dichloropropane                 | ND<br>ND      | 7                               | ug/kg<br>ug/kg | 03/04/24      | 03/04/24      |
| cis-1,3-Dichloropropene             | ND<br>ND      | 7                               | ug/kg<br>ug/kg | 03/04/24      | 03/04/24      |
| trans-1,3-Dichloropropene           | ND<br>ND      | 7                               | ug/kg<br>ug/kg | 03/04/24      | 03/04/24      |
| 1,1-Dichloropropene                 | ND<br>ND      | 7                               |                | 03/04/24      | 03/04/24      |
| 1,3-Dichloropropene (cis + trans)   |               | 7                               | ug/kg<br>ug/kg | 03/04/24      | 03/04/24      |
| Diethyl ether                       | ND<br>ND      | 7                               |                |               |               |
| •                                   | ND<br>ND      |                                 | ug/kg          | 03/04/24      | 03/04/24      |
| 1,4-Dioxane                         | ND<br>ND      | 137<br>7                        | ug/kg          | 03/04/24      | 03/04/24      |
| Ethylbenzene<br>Hovachlorobutadiono | ND<br>ND      | 7                               | ug/kg          | 03/04/24      | 03/04/24      |
| Hexachlorobutadiene                 | ND<br>ND      |                                 | ug/kg          | 03/04/24      | 03/04/24      |
| 2-Hexanone                          | ND            | g Report Green Me<br>31 09 16.1 | ug/kg          | 03/04/24      | 03/04/24      |
| Isopropylbenzene                    | Soil Sampline | Bonort Croon M                  | adow Sch       | 03/04/24      | 03/04/24      |

Sample: B-112 2-6' (Continued)

| Analyte                   | Result    | Reporting<br>Qual Limit | Units | Date Prepared | Date Analyzed |
|---------------------------|-----------|-------------------------|-------|---------------|---------------|
| Methylene Chloride        | ND        | 7                       | ug/kg | 03/04/24      | 03/04/24      |
| 4-Methyl-2-pentanone      | ND        | 137                     | ug/kg | 03/04/24      | 03/04/24      |
| Naphthalene               | ND        | 7                       | ug/kg | 03/04/24      | 03/04/24      |
| n-Propylbenzene           | ND        | 7                       | ug/kg | 03/04/24      | 03/04/24      |
| Styrene                   | ND        | 7                       | ug/kg | 03/04/24      | 03/04/24      |
| 1,1,1,2-Tetrachloroethane | ND        | 7                       | ug/kg | 03/04/24      | 03/04/24      |
| Tetrachloroethene         | ND        | 7                       | ug/kg | 03/04/24      | 03/04/24      |
| Tetrahydrofuran           | ND        | 7                       | ug/kg | 03/04/24      | 03/04/24      |
| Toluene                   | ND        | 7                       | ug/kg | 03/04/24      | 03/04/24      |
| 1,2,4-Trichlorobenzene    | ND        | 7                       | ug/kg | 03/04/24      | 03/04/24      |
| 1,2,3-Trichlorobenzene    | ND        | 7                       | ug/kg | 03/04/24      | 03/04/24      |
| 1,1,2-Trichloroethane     | ND        | 7                       | ug/kg | 03/04/24      | 03/04/24      |
| 1,1,1-Trichloroethane     | ND        | 7                       | ug/kg | 03/04/24      | 03/04/24      |
| Trichloroethene           | ND        | 7                       | ug/kg | 03/04/24      | 03/04/24      |
| 1,2,3-Trichloropropane    | ND        | 7                       | ug/kg | 03/04/24      | 03/04/24      |
| 1,3,5-Trimethylbenzene    | ND        | 7                       | ug/kg | 03/04/24      | 03/04/24      |
| 1,2,4-Trimethylbenzene    | ND        | 7                       | ug/kg | 03/04/24      | 03/04/24      |
| Vinyl Chloride            | ND        | 7                       | ug/kg | 03/04/24      | 03/04/24      |
| o-Xylene                  | ND        | 7                       | ug/kg | 03/04/24      | 03/04/24      |
| m&p-Xylene                | ND        | 14                      | ug/kg | 03/04/24      | 03/04/24      |
| Total xylenes             | ND        | 7                       | ug/kg | 03/04/24      | 03/04/24      |
| 1,1,2,2-Tetrachloroethane | ND        | 7                       | ug/kg | 03/04/24      | 03/04/24      |
| tert-Amyl methyl ether    | ND        | 7                       | ug/kg | 03/04/24      | 03/04/24      |
| 1,3-Dichloropropane       | ND        | 7                       | ug/kg | 03/04/24      | 03/04/24      |
| Ethyl tert-butyl ether    | ND        | 7                       | ug/kg | 03/04/24      | 03/04/24      |
| Diisopropyl ether         | ND        | 7                       | ug/kg | 03/04/24      | 03/04/24      |
| Trichlorofluoromethane    | ND        | 7                       | ug/kg | 03/04/24      | 03/04/24      |
| Dichlorodifluoromethane   | ND        | 7                       | ug/kg | 03/04/24      | 03/04/24      |
| Surrogate(s)              | Recovery% | Lin                     | nits  |               |               |
| 4-Bromofluorobenzene      | 99.4%     | <i>70-</i>              | 130   | 03/04/24      | 03/04/24      |
| 1,2-Dichloroethane-d4     | 105%      | 70-                     | 130   | 03/04/24      | 03/04/24      |
| Toluene-d8                | 97.8%     | <i>70-</i>              | 130   | 03/04/24      | 03/04/24      |

# **Results: Semivolatile organic compounds**

Sample: TP-6

| Analyte                     | Result          | Qual Limit                    | Units     | Date Prepared  | Date Analyzed |
|-----------------------------|-----------------|-------------------------------|-----------|----------------|---------------|
| 1,2,4-Trichlorobenzene      | ND              | 163                           | ug/kg     | 02/28/24       | 02/29/24      |
| 1,2-Dichlorobenzene         | ND              | 163                           | ug/kg     | 02/28/24       | 02/29/24      |
| 1,3-Dichlorobenzene         | ND              | 163                           | ug/kg     | 02/28/24       | 02/29/24      |
| L,4-Dichlorobenzene         | ND              | 163                           | ug/kg     | 02/28/24       | 02/29/24      |
| Phenol                      | ND              | 163                           | ug/kg     | 02/28/24       | 02/29/24      |
| 2,4,5-Trichlorophenol       | ND              | 163                           | ug/kg     | 02/28/24       | 02/29/24      |
| 2,4,6-Trichlorophenol       | ND              | 163                           | ug/kg     | 02/28/24       | 02/29/24      |
| 2,4-Dichlorophenol          | ND              | 163                           | ug/kg     | 02/28/24       | 02/29/24      |
| 2,4-Dimethylphenol          | ND              | 413                           | ug/kg     | 02/28/24       | 02/29/24      |
| 2,4-Dinitrophenol           | ND              | 413                           | ug/kg     | 02/28/24       | 02/29/24      |
| 2,4-Dinitrotoluene          | ND              | 163                           | ug/kg     | 02/28/24       | 02/29/24      |
| 2,6-Dinitrotoluene          | ND              | 163                           | ug/kg     | 02/28/24       | 02/29/24      |
| 2-Chloronaphthalene         | ND              | 163                           | ug/kg     | 02/28/24       | 02/29/24      |
| 2-Chlorophenol              | ND              | 163                           | ug/kg     | 02/28/24       | 02/29/24      |
| 2-Methylnaphthalene         | ND              | 163                           | ug/kg     | 02/28/24       | 02/29/24      |
| Nitrobenzene                | ND              | 163                           | ug/kg     | 02/28/24       | 02/29/24      |
| 2-Methylphenol              | ND              | 163                           | ug/kg     | 02/28/24       | 02/29/24      |
| 2-Nitroaniline              | ND              | 163                           | ug/kg     | 02/28/24       | 02/29/24      |
| 2-Nitrophenol               | ND              | 413                           | ug/kg     | 02/28/24       | 02/29/24      |
| 3,3'-Dichlorobenzidine      | ND              | 413                           | ug/kg     | 02/28/24       | 02/29/24      |
| 3-Nitroaniline              | ND              | 163                           | ug/kg     | 02/28/24       | 02/29/24      |
| 1,6-Dinitro-2-methylphenol  | ND              | 413                           | ug/kg     | 02/28/24       | 02/29/24      |
| 1-Bromophenyl phenyl ether  | ND              | 163                           | ug/kg     | 02/28/24       | 02/29/24      |
| 1-Chloro-3-methylphenol     | ND              | 163                           | ug/kg     | 02/28/24       | 02/29/24      |
| 1-Chloroaniline             | ND              | 163                           | ug/kg     | 02/28/24       | 02/29/24      |
| 1-Chlorophenyl phenyl ether | ND              | 163                           | ug/kg     | 02/28/24       | 02/29/24      |
| 1-Nitroaniline              | ND              | 163                           | ug/kg     | 02/28/24       | 02/29/24      |
| 1-Nitrophenol               | ND              | 413                           | ug/kg     | 02/28/24       | 02/29/24      |
| Acenaphthene                | ND              | 163                           | ug/kg     | 02/28/24       | 02/29/24      |
| Acenaphthylene              | ND              | 163                           | ug/kg     | 02/28/24       | 02/29/24      |
| Aniline                     | ND              | 163                           | ug/kg     | 02/28/24       | 02/29/24      |
| Anthracene                  | ND              | 163                           | ug/kg     | 02/28/24       | 02/29/24      |
| Benzo(a)anthracene          | ND              | 163                           | ug/kg     | 02/28/24       | 02/29/24      |
| Benzo(a)pyrene              | ND              | 163                           | ug/kg     | 02/28/24       | 02/29/24      |
| Benzo(b)fluoranthene        | ND              | 163                           | ug/kg     | 02/28/24       | 02/29/24      |
| Benzo(g,h,i)perylene        | ND              | 163                           | ug/kg     | 02/28/24       | 02/29/24      |
| Benzo(k)fluoranthene        | ND              | 163                           | ug/kg     | 02/28/24       | 02/29/24      |
| Benzoic acid                | ND              | 1250                          | ug/kg     | 02/28/24       | 02/29/24      |
| Biphenyl                    | ND              | 25                            | ug/kg     | 02/28/24       | 02/29/24      |
| Bis(2-chloroethoxy)methane  | ND              | 163                           | ug/kg     | 02/28/24       | 02/29/24      |
| Bis(2-chloroethyl)ether     | ND              | 163                           | ug/kg     | 02/28/24       | 02/29/24      |
| Bis(2-chloroisopropyl)ether | ND              | 163                           | ug/kg     | 02/28/24       | 02/29/24      |
| Bis(2-ethylhexyl)phthalate  | ND              | 501                           | ug/kg     | 02/28/24       | 02/29/24      |
| Butyl benzyl phthalate      | ND              | 163                           | ug/kg     | 02/28/24       | 02/29/24      |
| Chrysene                    | ND              | 163                           | ug/kg     | 02/28/24       | 02/29/24      |
| Di-n-octyl phthalate        |                 | Report Green Me<br>31 09 16.1 |           |                | 02/29/24      |
| ,anaco                      | Soil Sampling I | Papart Graan Ma               | ADZ Woher | ool April 2024 | 02/29 🕞       |

Sample: TP-6 (Continued) Lab Number: 4B26010-01 (Soil)

| Analyte                   | Result    | Qual | Reporting<br>Limit | Units | Date Prepared | Date Analyzed |
|---------------------------|-----------|------|--------------------|-------|---------------|---------------|
| Dibenzofuran              | ND        |      | 163                | ug/kg | 02/28/24      | 02/29/24      |
| Diethyl phthalate         | ND        |      | 163                | ug/kg | 02/28/24      | 02/29/24      |
| Dimethyl phthalate        | ND        |      | 413                | ug/kg | 02/28/24      | 02/29/24      |
| Di-n-butyl phthalate      | ND        |      | 250                | ug/kg | 02/28/24      | 02/29/24      |
| Fluoranthene              | 208       |      | 163                | ug/kg | 02/28/24      | 02/29/24      |
| Fluorene                  | ND        |      | 163                | ug/kg | 02/28/24      | 02/29/24      |
| Hexachlorobenzene         | ND        |      | 163                | ug/kg | 02/28/24      | 02/29/24      |
| Hexachlorobutadiene       | ND        |      | 163                | ug/kg | 02/28/24      | 02/29/24      |
| Hexachlorocyclopentadiene | ND        |      | 413                | ug/kg | 02/28/24      | 02/29/24      |
| Hexachloroethane          | ND        |      | 163                | ug/kg | 02/28/24      | 02/29/24      |
| Indeno(1,2,3-cd)pyrene    | ND        |      | 163                | ug/kg | 02/28/24      | 02/29/24      |
| Isophorone                | ND        |      | 163                | ug/kg | 02/28/24      | 02/29/24      |
| Naphthalene               | ND        |      | 163                | ug/kg | 02/28/24      | 02/29/24      |
| N-Nitrosodimethylamine    | ND        |      | 163                | ug/kg | 02/28/24      | 02/29/24      |
| N-Nitrosodi-n-propylamine | ND        |      | 163                | ug/kg | 02/28/24      | 02/29/24      |
| N-Nitrosodiphenylamine    | ND        |      | 163                | ug/kg | 02/28/24      | 02/29/24      |
| Pentachlorophenol         | ND        |      | 413                | ug/kg | 02/28/24      | 02/29/24      |
| Phenanthrene              | ND        |      | 163                | ug/kg | 02/28/24      | 02/29/24      |
| Pyrene                    | 240       |      | 163                | ug/kg | 02/28/24      | 02/29/24      |
| m&p-Cresol                | ND        |      | 326                | ug/kg | 02/28/24      | 02/29/24      |
| Pyridine                  | ND        |      | 163                | ug/kg | 02/28/24      | 02/29/24      |
| Azobenzene                | ND        |      | 163                | ug/kg | 02/28/24      | 02/29/24      |
| Total Dichlorobenzene     | ND        |      | 163                | ug/kg | 02/28/24      | 02/29/24      |
| Surrogate(s)              | Recovery% |      | Limits             | ;     |               |               |
| Nitrobenzene-d5           | 55.7%     |      | 30-120             | 5     | 02/28/24      | 02/29/24      |
| p-Terphenyl-d14           | 90.1%     |      | 47-130             | 7     | 02/28/24      | 02/29/24      |
| 2-Fluorobiphenyl          | 50.1%     |      | 34-136             | 7     | 02/28/24      | 02/29/24      |
| Phenol-d6                 | 53.2%     |      | 30-130             | 7     | 02/28/24      | 02/29/24      |
| 2,4,6-Tribromophenol      | 52.1%     |      | 30-130             | 7     | 02/28/24      | 02/29/24      |
| 2-Fluorophenol            | 60.9%     |      | 30-130             | 7     | 02/28/24      | 02/29/24      |

# **Results: Semivolatile organic compounds**

Sample: B-103 0-6'

| Analyte                              | Result          | Reporting<br>Qual Limit              | Units          | Date Prepared  | Date Analyzed         |
|--------------------------------------|-----------------|--------------------------------------|----------------|----------------|-----------------------|
| 1,2,4-Trichlorobenzene               | ND              | 150                                  | ug/kg          | 02/28/24       | 02/29/24              |
| 1,2-Dichlorobenzene                  | ND              | 150                                  | ug/kg          | 02/28/24       | 02/29/24              |
| 1,3-Dichlorobenzene                  | ND              | 150                                  | ug/kg          | 02/28/24       | 02/29/24              |
| 1,4-Dichlorobenzene                  | ND              | 150                                  | ug/kg          | 02/28/24       | 02/29/24              |
| Phenol                               | ND              | 150                                  | ug/kg          | 02/28/24       | 02/29/24              |
| 2,4,5-Trichlorophenol                | ND              | 150                                  | ug/kg          | 02/28/24       | 02/29/24              |
| 2,4,6-Trichlorophenol                | ND              | 150                                  | ug/kg          | 02/28/24       | 02/29/24              |
| 2,4-Dichlorophenol                   | ND              | 150                                  | ug/kg          | 02/28/24       | 02/29/24              |
| 2,4-Dimethylphenol                   | ND              | 380                                  | ug/kg          | 02/28/24       | 02/29/24              |
| 2,4-Dinitrophenol                    | ND              | 380                                  | ug/kg          | 02/28/24       | 02/29/24              |
| 2,4-Dinitrotoluene                   | ND              | 150                                  | ug/kg          | 02/28/24       | 02/29/24              |
| 2,6-Dinitrotoluene                   | ND              | 150                                  | ug/kg          | 02/28/24       | 02/29/24              |
| 2-Chloronaphthalene                  | ND              | 150                                  | ug/kg          | 02/28/24       | 02/29/24              |
| 2-Chlorophenol                       | ND              | 150                                  | ug/kg          | 02/28/24       | 02/29/24              |
| 2-Methylnaphthalene                  | ND              | 150                                  | ug/kg          | 02/28/24       | 02/29/24              |
| Nitrobenzene                         | ND              | 150                                  | ug/kg          | 02/28/24       | 02/29/24              |
| 2-Methylphenol                       | ND              | 150                                  | ug/kg          | 02/28/24       | 02/29/24              |
| 2-Nitroaniline                       | ND              | 150                                  | ug/kg          | 02/28/24       | 02/29/24              |
| 2-Nitrophenol                        | ND              | 380                                  | ug/kg          | 02/28/24       | 02/29/24              |
| 3,3'-Dichlorobenzidine               | ND              | 380                                  | ug/kg          | 02/28/24       | 02/29/24              |
| 3-Nitroaniline                       | ND              | 150                                  | ug/kg          | 02/28/24       | 02/29/24              |
| 4,6-Dinitro-2-methylphenol           | ND              | 380                                  | ug/kg          | 02/28/24       | 02/29/24              |
| 4-Bromophenyl phenyl ether           | ND              | 150                                  | ug/kg          | 02/28/24       | 02/29/24              |
| 4-Chloro-3-methylphenol              | ND              | 150                                  | ug/kg          | 02/28/24       | 02/29/24              |
| 4-Chloroaniline                      | ND              | 150                                  | ug/kg          | 02/28/24       | 02/29/24              |
| 4-Chlorophenyl phenyl ether          | ND              | 150                                  | ug/kg          | 02/28/24       | 02/29/24              |
| 4-Nitroaniline                       | ND              | 150                                  | ug/kg          | 02/28/24       | 02/29/24              |
| 4-Nitrophenol                        | ND              | 380                                  | ug/kg          | 02/28/24       | 02/29/24              |
| Acenaphthene                         | ND              | 150                                  | ug/kg<br>ug/kg | 02/28/24       | 02/29/24              |
| Acenaphthylene                       | ND              | 150                                  | ug/kg<br>ug/kg | 02/28/24       | 02/29/24              |
| Aniline                              | ND              | 150                                  | ug/kg<br>ug/kg | 02/28/24       | 02/29/24              |
| Anthracene                           | ND<br>ND        | 150                                  | ug/kg<br>ug/kg | 02/28/24       | 02/29/24              |
| Benzo(a)anthracene                   | ND              | 150                                  | ug/kg<br>ug/kg | 02/28/24       | 02/29/24              |
| Benzo(a)pyrene                       | ND<br>ND        | 150                                  | ug/kg<br>ug/kg | 02/28/24       | 02/29/24              |
| Benzo(b)fluoranthene                 | ND              | 150                                  |                | 02/28/24       | 02/29/24              |
| Benzo(g,h,i)perylene                 |                 | 150                                  | ug/kg          | 02/28/24       | 02/29/24              |
|                                      | ND<br>ND        | 150                                  | ug/kg          | 02/28/24       | 02/29/24              |
| Benzo(k)fluoranthene<br>Benzoic acid | ND<br>ND        | 1150                                 | ug/kg          | 02/28/24       | 02/29/24              |
|                                      | ND<br>ND        | 23                                   | ug/kg          |                | • •                   |
| Biphenyl                             | ND<br>ND        |                                      | ug/kg          | 02/28/24       | 02/29/24<br>02/29/24  |
| Bis(2-chloroethoxy)methane           | ND<br>ND        | 150                                  | ug/kg          | 02/28/24       |                       |
| Bis(2-chloroethyl)ether              | ND<br>ND        | 150                                  | ug/kg          | 02/28/24       | 02/29/24<br>02/29/24  |
| Bis(2-chloroisopropyl)ether          | ND<br>ND        | 150                                  | ug/kg          | 02/28/24       |                       |
| Bis(2-ethylhexyl)phthalate           | ND              | 460                                  | ug/kg          | 02/28/24       | 02/29/24              |
| Butyl benzyl phthalate               | ND              | 150                                  | ug/kg          | 02/28/24       | 02/29/24              |
| Chrysene                             | ND<br>ND        | 150                                  | ug/kg          | 02/28/24       | 02/29/24              |
| Di-n-octyl phthalate                 | Soil Sampling I | Report Green Me                      | eadow.Scho     | ool April 2024 | 02/29/24              |
| Dibenz(a,h)anthracene                | NDI 9 .         | 230<br>Report Green Me<br>31 09 16.1 | - 67           | 1 UZ/20724 ·   | <sup>02/29</sup> Page |

Sample: B-103 0-6' (Continued)

| Analyte                   | Result    | Qual | Reporting<br>Limit | Units | Date Prepared | Date Analyzed |
|---------------------------|-----------|------|--------------------|-------|---------------|---------------|
| Dibenzofuran              | ND        |      | 150                | ug/kg | 02/28/24      | 02/29/24      |
| Diethyl phthalate         | ND        |      | 150                | ug/kg | 02/28/24      | 02/29/24      |
| Dimethyl phthalate        | ND        |      | 380                | ug/kg | 02/28/24      | 02/29/24      |
| Di-n-butyl phthalate      | ND        |      | 230                | ug/kg | 02/28/24      | 02/29/24      |
| Fluoranthene              | ND        |      | 150                | ug/kg | 02/28/24      | 02/29/24      |
| Fluorene                  | ND        |      | 150                | ug/kg | 02/28/24      | 02/29/24      |
| Hexachlorobenzene         | ND        |      | 150                | ug/kg | 02/28/24      | 02/29/24      |
| Hexachlorobutadiene       | ND        |      | 150                | ug/kg | 02/28/24      | 02/29/24      |
| Hexachlorocyclopentadiene | ND        |      | 380                | ug/kg | 02/28/24      | 02/29/24      |
| Hexachloroethane          | ND        |      | 150                | ug/kg | 02/28/24      | 02/29/24      |
| Indeno(1,2,3-cd)pyrene    | ND        |      | 150                | ug/kg | 02/28/24      | 02/29/24      |
| Isophorone                | ND        |      | 150                | ug/kg | 02/28/24      | 02/29/24      |
| Naphthalene               | ND        |      | 150                | ug/kg | 02/28/24      | 02/29/24      |
| N-Nitrosodimethylamine    | ND        |      | 150                | ug/kg | 02/28/24      | 02/29/24      |
| N-Nitrosodi-n-propylamine | ND        |      | 150                | ug/kg | 02/28/24      | 02/29/24      |
| N-Nitrosodiphenylamine    | ND        |      | 150                | ug/kg | 02/28/24      | 02/29/24      |
| Pentachlorophenol         | ND        |      | 380                | ug/kg | 02/28/24      | 02/29/24      |
| Phenanthrene              | ND        |      | 150                | ug/kg | 02/28/24      | 02/29/24      |
| Pyrene                    | ND        |      | 150                | ug/kg | 02/28/24      | 02/29/24      |
| m&p-Cresol                | ND        |      | 299                | ug/kg | 02/28/24      | 02/29/24      |
| Pyridine                  | ND        |      | 150                | ug/kg | 02/28/24      | 02/29/24      |
| Azobenzene                | ND        |      | 150                | ug/kg | 02/28/24      | 02/29/24      |
| Total Dichlorobenzene     | ND        |      | 150                | ug/kg | 02/28/24      | 02/29/24      |
| Surrogate(s)              | Recovery% |      | Limit              | s     |               |               |
| Nitrobenzene-d5           | 55.0%     |      | <br>30-12          | 6     | 02/28/24      | 02/29/24      |
| p-Terphenyl-d14           | 80.8%     |      | 47-13              | 0     | 02/28/24      | 02/29/24      |
| 2-Fluorobiphenyl          | 50.9%     |      | 34-13              | 0     | 02/28/24      | 02/29/24      |
| Phenol-d6                 | 53.2%     |      | 30-13              | 0     | 02/28/24      | 02/29/24      |
| 2,4,6-Tribromophenol      | 51.6%     |      | 30-13              | 0     | 02/28/24      | 02/29/24      |
| 2-Fluorophenol            | 61.9%     |      | 30-13              | 0     | 02/28/24      | 02/29/24      |

# **Results: Semivolatile organic compounds**

Sample: B-113 2-4'

| Analyte                                       | Result Qual       | Reporting<br>Limit | Units               | Date Prepared               | Date Analyzed       |
|-----------------------------------------------|-------------------|--------------------|---------------------|-----------------------------|---------------------|
| 1,2,4-Trichlorobenzene                        | ND                | 154                | ug/kg               | 02/28/24                    | 02/29/24            |
| 1,2-Dichlorobenzene                           | ND                | 154                | ug/kg               | 02/28/24                    | 02/29/24            |
| 1,3-Dichlorobenzene                           | ND                | 154                | ug/kg               | 02/28/24                    | 02/29/24            |
| 1,4-Dichlorobenzene                           | ND                | 154                | ug/kg               | 02/28/24                    | 02/29/24            |
| Phenol                                        | ND                | 154                | ug/kg               | 02/28/24                    | 02/29/24            |
| 2,4,5-Trichlorophenol                         | ND                | 154                | ug/kg               | 02/28/24                    | 02/29/24            |
| 2,4,6-Trichlorophenol                         | ND                | 154                | ug/kg               | 02/28/24                    | 02/29/24            |
| 2,4-Dichlorophenol                            | ND                | 154                | ug/kg               | 02/28/24                    | 02/29/24            |
| 2,4-Dimethylphenol                            | ND                | 391                | ug/kg               | 02/28/24                    | 02/29/24            |
| 2,4-Dinitrophenol                             | ND                | 391                | ug/kg               | 02/28/24                    | 02/29/24            |
| 2,4-Dinitrotoluene                            | ND                | 154                | ug/kg               | 02/28/24                    | 02/29/24            |
| 2,6-Dinitrotoluene                            | ND                | 154                | ug/kg               | 02/28/24                    | 02/29/24            |
| 2-Chloronaphthalene                           | ND                | 154                | ug/kg               | 02/28/24                    | 02/29/24            |
| 2-Chlorophenol                                | ND                | 154                | ug/kg               | 02/28/24                    | 02/29/24            |
| 2-Methylnaphthalene                           | ND<br>ND          | 154                | ug/kg<br>ug/kg      | 02/28/24                    | 02/29/24            |
| Nitrobenzene                                  | ND<br>ND          | 154                | ug/kg<br>ug/kg      | 02/28/24                    | 02/29/24            |
| 2-Methylphenol                                | ND<br>ND          | 154                | ug/kg<br>ug/kg      | 02/28/24                    | 02/29/24            |
| 2-Nitroaniline                                | ND                | 154                | ug/kg               | 02/28/24                    | 02/29/24            |
| 2-Nitrophenol                                 | ND                | 391                | ug/kg               | 02/28/24                    | 02/29/24            |
| 3,3'-Dichlorobenzidine                        | ND<br>ND          | 391                | ug/kg<br>ug/kg      | 02/28/24                    | 02/29/24            |
| 3-Nitroaniline                                | ND<br>ND          | 154                | ug/kg<br>ug/kg      | 02/28/24                    | 02/29/24            |
| 4,6-Dinitro-2-methylphenol                    | ND<br>ND          | 391                | ug/kg<br>ug/kg      | 02/28/24                    | 02/29/24            |
| 4-Bromophenyl phenyl ether                    | ND                | 154                | ug/kg<br>ug/kg      | 02/28/24                    | 02/29/24            |
| 4-Chloro-3-methylphenol                       | ND<br>ND          | 154                | ug/kg<br>ug/kg      | 02/28/24                    | 02/29/24            |
| 4-Chloroaniline                               | ND<br>ND          | 154                | ug/kg<br>ug/kg      | 02/28/24                    | 02/29/24            |
|                                               |                   | 154                |                     |                             | 02/29/24            |
| 4-Chlorophenyl phenyl ether<br>4-Nitroaniline | ND                | 154                | ug/kg               | 02/28/24                    | 02/29/24            |
|                                               | ND                |                    | ug/kg               | 02/28/24                    |                     |
| 4-Nitrophenol                                 | ND                | 391                | ug/kg               | 02/28/24                    | 02/29/24            |
| Acenaphthene                                  | ND                | 154                | ug/kg               | 02/28/24                    | 02/29/24            |
| Acenaphthylene                                | ND                | 154                | ug/kg               | 02/28/24                    | 02/29/24            |
| Aniline                                       | ND                | 154                | ug/kg               | 02/28/24                    | 02/29/24            |
| Anthracene                                    | ND                | 154                | ug/kg               | 02/28/24                    | 02/29/24            |
| Benzo(a)anthracene                            | ND                | 154                | ug/kg               | 02/28/24                    | 02/29/24            |
| Benzo(a)pyrene                                | ND                | 154                | ug/kg               | 02/28/24                    | 02/29/24            |
| Benzo(b)fluoranthene                          | ND                | 154                | ug/kg               | 02/28/24                    | 02/29/24            |
| Benzo(g,h,i)perylene                          | ND                | 154                | ug/kg               | 02/28/24                    | 02/29/24            |
| Benzo(k)fluoranthene                          | ND                | 154                | ug/kg               | 02/28/24                    | 02/29/24            |
| Benzoic acid                                  | ND                | 1180               | ug/kg               | 02/28/24                    | 02/29/24            |
| Biphenyl                                      | ND                | 24                 | ug/kg               | 02/28/24                    | 02/29/24            |
| Bis(2-chloroethoxy)methane                    | ND                | 154                | ug/kg               | 02/28/24                    | 02/29/24            |
| Bis(2-chloroethyl)ether                       | ND                | 154                | ug/kg               | 02/28/24                    | 02/29/24            |
| Bis(2-chloroisopropyl)ether                   | ND                | 154                | ug/kg               | 02/28/24                    | 02/29/24            |
| Bis(2-ethylhexyl)phthalate                    | ND                | 474                | ug/kg<br>"          | 02/28/24                    | 02/29/24            |
| Butyl benzyl phthalate                        | ND                | 154                | ug/kg<br>           | 02/28/24                    | 02/29/24            |
| Chrysene                                      | ND                | 154                | ug/kg               | 02/28/24                    | 02/29/24            |
| Di-n-octyl phthalate                          | Soil Sampling Ren | ort Green Ma       | ug/kg<br>eadow Scho | 02/28/24<br>anil 2024       | 02/29/24            |
| ibenz(a,h)anthracene                          | Soil Sampling Rep | 31 09 16.1         | I - 69              | ' 'ru2/2 <del>8/24-</del> ' | <sup>02/29</sup> Pa |

Sample: B-113 2-4' (Continued)

| Analyte                   | Result    | Qual | Reporting<br>Limit | Units | Date Prepared | Date Analyzed |
|---------------------------|-----------|------|--------------------|-------|---------------|---------------|
| Dibenzofuran              | ND        |      | 154                | ug/kg | 02/28/24      | 02/29/24      |
| Diethyl phthalate         | ND        |      | 154                | ug/kg | 02/28/24      | 02/29/24      |
| Dimethyl phthalate        | ND        |      | 391                | ug/kg | 02/28/24      | 02/29/24      |
| Di-n-butyl phthalate      | ND        |      | 237                | ug/kg | 02/28/24      | 02/29/24      |
| Fluoranthene              | ND        |      | 154                | ug/kg | 02/28/24      | 02/29/24      |
| Fluorene                  | ND        |      | 154                | ug/kg | 02/28/24      | 02/29/24      |
| Hexachlorobenzene         | ND        |      | 154                | ug/kg | 02/28/24      | 02/29/24      |
| Hexachlorobutadiene       | ND        |      | 154                | ug/kg | 02/28/24      | 02/29/24      |
| Hexachlorocyclopentadiene | ND        |      | 391                | ug/kg | 02/28/24      | 02/29/24      |
| Hexachloroethane          | ND        |      | 154                | ug/kg | 02/28/24      | 02/29/24      |
| Indeno(1,2,3-cd)pyrene    | ND        |      | 154                | ug/kg | 02/28/24      | 02/29/24      |
| Isophorone                | ND        |      | 154                | ug/kg | 02/28/24      | 02/29/24      |
| Naphthalene               | ND        |      | 154                | ug/kg | 02/28/24      | 02/29/24      |
| N-Nitrosodimethylamine    | ND        |      | 154                | ug/kg | 02/28/24      | 02/29/24      |
| N-Nitrosodi-n-propylamine | ND        |      | 154                | ug/kg | 02/28/24      | 02/29/24      |
| N-Nitrosodiphenylamine    | ND        |      | 154                | ug/kg | 02/28/24      | 02/29/24      |
| Pentachlorophenol         | ND        |      | 391                | ug/kg | 02/28/24      | 02/29/24      |
| Phenanthrene              | ND        |      | 154                | ug/kg | 02/28/24      | 02/29/24      |
| Pyrene                    | ND        |      | 154                | ug/kg | 02/28/24      | 02/29/24      |
| m&p-Cresol                | ND        |      | 308                | ug/kg | 02/28/24      | 02/29/24      |
| Pyridine                  | ND        |      | 154                | ug/kg | 02/28/24      | 02/29/24      |
| Azobenzene                | ND        |      | 154                | ug/kg | 02/28/24      | 02/29/24      |
| Total Dichlorobenzene     | ND        |      | 154                | ug/kg | 02/28/24      | 02/29/24      |
| Surrogate(s)              | Recovery% |      | Limit              | s     |               |               |
| Nitrobenzene-d5           | 55.6%     |      | 30-12              | 6     | 02/28/24      | 02/29/24      |
| p-Terphenyl-d14           | 76.7%     |      | 47-13              | 0     | 02/28/24      | 02/29/24      |
| 2-Fluorobiphenyl          | 48.1%     |      | 34-13              | 0     | 02/28/24      | 02/29/24      |
| Phenol-d6                 | 47.2%     |      | 30-13              | 0     | 02/28/24      | 02/29/24      |
| 2,4,6-Tribromophenol      | 51.8%     |      | 30-13              | 0     | 02/28/24      | 02/29/24      |
| 2-Fluorophenol            | 56.6%     |      | 30-13              | 0     | 02/28/24      | 02/29/24      |

# **Results: Semivolatile organic compounds**

Sample: B-112 2-6'

| Analyte                     | Result        | Qual Limit                    | Units     | Date Prepared  | Date Analyzed      |
|-----------------------------|---------------|-------------------------------|-----------|----------------|--------------------|
| .,2,4-Trichlorobenzene      | ND            | 143                           | ug/kg     | 02/28/24       | 02/29/24           |
| .,2-Dichlorobenzene         | ND            | 143                           | ug/kg     | 02/28/24       | 02/29/24           |
| .,3-Dichlorobenzene         | ND            | 143                           | ug/kg     | 02/28/24       | 02/29/24           |
| .,4-Dichlorobenzene         | ND            | 143                           | ug/kg     | 02/28/24       | 02/29/24           |
| Phenol                      | ND            | 143                           | ug/kg     | 02/28/24       | 02/29/24           |
| 2,4,5-Trichlorophenol       | ND            | 143                           | ug/kg     | 02/28/24       | 02/29/24           |
| 2,4,6-Trichlorophenol       | ND            | 143                           | ug/kg     | 02/28/24       | 02/29/24           |
| 2,4-Dichlorophenol          | ND            | 143                           | ug/kg     | 02/28/24       | 02/29/24           |
| 2,4-Dimethylphenol          | ND            | 363                           | ug/kg     | 02/28/24       | 02/29/24           |
| 2,4-Dinitrophenol           | ND            | 363                           | ug/kg     | 02/28/24       | 02/29/24           |
| 2,4-Dinitrotoluene          | ND            | 143                           | ug/kg     | 02/28/24       | 02/29/24           |
| 2,6-Dinitrotoluene          | ND            | 143                           | ug/kg     | 02/28/24       | 02/29/24           |
| 2-Chloronaphthalene         | ND            | 143                           | ug/kg     | 02/28/24       | 02/29/24           |
| 2-Chlorophenol              | ND            | 143                           | ug/kg     | 02/28/24       | 02/29/24           |
| -Methylnaphthalene          | ND            | 143                           | ug/kg     | 02/28/24       | 02/29/24           |
| Vitrobenzene                | ND            | 143                           | ug/kg     | 02/28/24       | 02/29/24           |
| -Methylphenol               | ND            | 143                           | ug/kg     | 02/28/24       | 02/29/24           |
| ?-Nitroaniline              | ND            | 143                           | ug/kg     | 02/28/24       | 02/29/24           |
| 2-Nitrophenol               | ND            | 363                           | ug/kg     | 02/28/24       | 02/29/24           |
| 3,3'-Dichlorobenzidine      | ND            | 363                           | ug/kg     | 02/28/24       | 02/29/24           |
| B-Nitroaniline              | ND            | 143                           | ug/kg     | 02/28/24       | 02/29/24           |
| l,6-Dinitro-2-methylphenol  | ND            | 363                           | ug/kg     | 02/28/24       | 02/29/24           |
| I-Bromophenyl phenyl ether  | ND            | 143                           | ug/kg     | 02/28/24       | 02/29/24           |
| I-Chloro-3-methylphenol     | ND            | 143                           | ug/kg     | 02/28/24       | 02/29/24           |
| I-Chloroaniline             | ND            | 143                           | ug/kg     | 02/28/24       | 02/29/24           |
| I-Chlorophenyl phenyl ether | ND            | 143                           | ug/kg     | 02/28/24       | 02/29/24           |
| l-Nitroaniline              | ND            | 143                           | ug/kg     | 02/28/24       | 02/29/24           |
| I-Nitrophenol               | ND            | 363                           | ug/kg     | 02/28/24       | 02/29/24           |
| Acenaphthene                | ND            | 143                           | ug/kg     | 02/28/24       | 02/29/24           |
| Acenaphthylene              | ND            | 143                           | ug/kg     | 02/28/24       | 02/29/24           |
| Aniline                     | ND            | 143                           | ug/kg     | 02/28/24       | 02/29/24           |
| Anthracene                  | ND            | 143                           | ug/kg     | 02/28/24       | 02/29/24           |
| Benzo(a)anthracene          | ND            | 143                           | ug/kg     | 02/28/24       | 02/29/24           |
| Benzo(a)pyrene              | ND            | 143                           | ug/kg     | 02/28/24       | 02/29/24           |
| Benzo(b)fluoranthene        | ND            | 143                           | ug/kg     | 02/28/24       | 02/29/24           |
| Benzo(g,h,i)perylene        | ND            | 143                           | ug/kg     | 02/28/24       | 02/29/24           |
| Benzo(k)fluoranthene        | ND            | 143                           | ug/kg     | 02/28/24       | 02/29/24           |
| Benzoic acid                | ND            | 1100                          | ug/kg     | 02/28/24       | 02/29/24           |
| Biphenyl                    | ND            | 22                            | ug/kg     | 02/28/24       | 02/29/24           |
| Bis(2-chloroethoxy)methane  | ND            | 143                           | ug/kg     | 02/28/24       | 02/29/24           |
| Bis(2-chloroethyl)ether     | ND            | 143                           | ug/kg     | 02/28/24       | 02/29/24           |
| Bis(2-chloroisopropyl)ether | ND            | 143                           | ug/kg     | 02/28/24       | 02/29/24           |
| Bis(2-ethylhexyl)phthalate  | ND            | 440                           | ug/kg     | 02/28/24       | 02/29/24           |
| Butyl benzyl phthalate      | ND            | 143                           | ug/kg     | 02/28/24       | 02/29/24           |
| Chrysene                    | ND            | 143                           | ug/kg     | 02/28/24       | 02/29/24           |
| Di-n-octyl phthalate        |               | Report Green Me<br>31 09 16.1 |           |                | 02/29/24           |
| Dibenz(a,h)anthracene       | Soil Sampling | Report Green Me               | adow Scho | ool April 2024 | 02/2 <b>9 P</b> 20 |

Sample: B-112 2-6' (Continued)

| Analyte                   | Result    | Qual | Reporting<br>Limit | Units | Date Prepared | Date Analyzed |
|---------------------------|-----------|------|--------------------|-------|---------------|---------------|
| Dibenzofuran              | ND        |      | 143                | ug/kg | 02/28/24      | 02/29/24      |
| Diethyl phthalate         | ND        |      | 143                | ug/kg | 02/28/24      | 02/29/24      |
| Dimethyl phthalate        | ND        |      | 363                | ug/kg | 02/28/24      | 02/29/24      |
| Di-n-butyl phthalate      | ND        |      | 220                | ug/kg | 02/28/24      | 02/29/24      |
| Fluoranthene              | ND        |      | 143                | ug/kg | 02/28/24      | 02/29/24      |
| Fluorene                  | ND        |      | 143                | ug/kg | 02/28/24      | 02/29/24      |
| Hexachlorobenzene         | ND        |      | 143                | ug/kg | 02/28/24      | 02/29/24      |
| Hexachlorobutadiene       | ND        |      | 143                | ug/kg | 02/28/24      | 02/29/24      |
| Hexachlorocyclopentadiene | ND        |      | 363                | ug/kg | 02/28/24      | 02/29/24      |
| Hexachloroethane          | ND        |      | 143                | ug/kg | 02/28/24      | 02/29/24      |
| Indeno(1,2,3-cd)pyrene    | ND        |      | 143                | ug/kg | 02/28/24      | 02/29/24      |
| Isophorone                | ND        |      | 143                | ug/kg | 02/28/24      | 02/29/24      |
| Naphthalene               | ND        |      | 143                | ug/kg | 02/28/24      | 02/29/24      |
| N-Nitrosodimethylamine    | ND        |      | 143                | ug/kg | 02/28/24      | 02/29/24      |
| N-Nitrosodi-n-propylamine | ND        |      | 143                | ug/kg | 02/28/24      | 02/29/24      |
| N-Nitrosodiphenylamine    | ND        |      | 143                | ug/kg | 02/28/24      | 02/29/24      |
| Pentachlorophenol         | ND        |      | 363                | ug/kg | 02/28/24      | 02/29/24      |
| Phenanthrene              | ND        |      | 143                | ug/kg | 02/28/24      | 02/29/24      |
| Pyrene                    | ND        |      | 143                | ug/kg | 02/28/24      | 02/29/24      |
| m&p-Cresol                | ND        |      | 286                | ug/kg | 02/28/24      | 02/29/24      |
| Pyridine                  | ND        |      | 143                | ug/kg | 02/28/24      | 02/29/24      |
| Azobenzene                | ND        |      | 143                | ug/kg | 02/28/24      | 02/29/24      |
| Total Dichlorobenzene     | ND        |      | 143                | ug/kg | 02/28/24      | 02/29/24      |
| Surrogate(s)              | Recovery% |      | Limit              | S     |               |               |
| Nitrobenzene-d5           | 61.5%     |      | 30-12              | 6     | 02/28/24      | 02/29/24      |
| p-Terphenyl-d14           | 86.8%     |      | 47-13              | 0     | 02/28/24      | 02/29/24      |
| 2-Fluorobiphenyl          | 53.5%     |      | 34-13              | 0     | 02/28/24      | 02/29/24      |
| Phenol-d6                 | 57.5%     |      | 30-13              | 0     | 02/28/24      | 02/29/24      |
| 2,4,6-Tribromophenol      | 56.2%     |      | 30-13              | 0     | 02/28/24      | 02/29/24      |
| 2-Fluorophenol            | 64.5%     |      | 30-13              | 0     | 02/28/24      | 02/29/24      |

Sample: TP-6

| Reporting                            |           |      |        |       |               |               |  |  |  |
|--------------------------------------|-----------|------|--------|-------|---------------|---------------|--|--|--|
| Analyte                              | Result    | Qual | Limit  | Units | Date Prepared | Date Analyzed |  |  |  |
| Aroclor-1016                         | ND        |      | 82     | ug/kg | 02/28/24      | 03/01/24      |  |  |  |
| Aroclor-1221                         | ND        |      | 82     | ug/kg | 02/28/24      | 03/01/24      |  |  |  |
| Aroclor-1232                         | ND        |      | 82     | ug/kg | 02/28/24      | 03/01/24      |  |  |  |
| Aroclor-1242                         | ND        |      | 82     | ug/kg | 02/28/24      | 03/01/24      |  |  |  |
| Aroclor-1248                         | ND        |      | 82     | ug/kg | 02/28/24      | 03/01/24      |  |  |  |
| Aroclor-1254                         | ND        |      | 82     | ug/kg | 02/28/24      | 03/01/24      |  |  |  |
| Aroclor-1260                         | ND        |      | 82     | ug/kg | 02/28/24      | 03/01/24      |  |  |  |
| Aroclor-1262                         | ND        |      | 82     | ug/kg | 02/28/24      | 03/01/24      |  |  |  |
| Aroclor-1268                         | ND        |      | 82     | ug/kg | 02/28/24      | 03/01/24      |  |  |  |
| PCBs (Total)                         | ND        |      | 82     | ug/kg | 02/28/24      | 03/01/24      |  |  |  |
| Surrogate(s)                         | Recovery% |      | Limits |       |               |               |  |  |  |
| 2,4,5,6-Tetrachloro-m-xylene (TCMX ) | 61.6%     |      | 36.2-1 | 30    | 02/28/24      | 03/01/24      |  |  |  |
| Decachlorobiphenyl (DCBP)            | 52.0%     |      | 43.3-1 | 30    | 02/28/24      | 03/01/24      |  |  |  |

Sample: B-103 0-6'

| Reporting                            |           |      |          |       |               |               |  |  |  |
|--------------------------------------|-----------|------|----------|-------|---------------|---------------|--|--|--|
| Analyte                              | Result    | Qual | Limit    | Units | Date Prepared | Date Analyzed |  |  |  |
| Aroclor-1016                         | ND        |      | 75       | ug/kg | 02/28/24      | 03/01/24      |  |  |  |
| Aroclor-1221                         | ND        |      | 75       | ug/kg | 02/28/24      | 03/01/24      |  |  |  |
| Aroclor-1232                         | ND        |      | 75       | ug/kg | 02/28/24      | 03/01/24      |  |  |  |
| Aroclor-1242                         | ND        |      | 75       | ug/kg | 02/28/24      | 03/01/24      |  |  |  |
| Aroclor-1248                         | ND        |      | 75       | ug/kg | 02/28/24      | 03/01/24      |  |  |  |
| Aroclor-1254                         | ND        |      | 75       | ug/kg | 02/28/24      | 03/01/24      |  |  |  |
| Aroclor-1260                         | ND        |      | 75       | ug/kg | 02/28/24      | 03/01/24      |  |  |  |
| Aroclor-1262                         | ND        |      | 75       | ug/kg | 02/28/24      | 03/01/24      |  |  |  |
| Aroclor-1268                         | ND        |      | 75       | ug/kg | 02/28/24      | 03/01/24      |  |  |  |
| PCBs (Total)                         | ND        |      | 75       | ug/kg | 02/28/24      | 03/01/24      |  |  |  |
| Surrogate(s)                         | Recovery% |      | Limits   |       |               |               |  |  |  |
| 2,4,5,6-Tetrachloro-m-xylene (TCMX ) | 61.9%     |      | 36.2-1.  | 30    | 02/28/24      | 03/01/24      |  |  |  |
| Decachlorobiphenyl (DCBP)            | 50.3%     |      | 43.3-130 |       | 02/28/24      | 03/01/24      |  |  |  |

Sample: B-113 2-4'

| Reporting                            |           |      |          |       |               |               |  |  |  |
|--------------------------------------|-----------|------|----------|-------|---------------|---------------|--|--|--|
| Analyte                              | Result    | Qual | Limit    | Units | Date Prepared | Date Analyzed |  |  |  |
| Aroclor-1016                         | ND        |      | 76       | ug/kg | 02/28/24      | 03/02/24      |  |  |  |
| Aroclor-1221                         | ND        |      | 76       | ug/kg | 02/28/24      | 03/02/24      |  |  |  |
| Aroclor-1232                         | ND        |      | 76       | ug/kg | 02/28/24      | 03/02/24      |  |  |  |
| Aroclor-1242                         | ND        |      | 76       | ug/kg | 02/28/24      | 03/02/24      |  |  |  |
| Aroclor-1248                         | ND        |      | 76       | ug/kg | 02/28/24      | 03/02/24      |  |  |  |
| Aroclor-1254                         | ND        |      | 76       | ug/kg | 02/28/24      | 03/02/24      |  |  |  |
| Aroclor-1260                         | ND        |      | 76       | ug/kg | 02/28/24      | 03/02/24      |  |  |  |
| Aroclor-1262                         | ND        |      | 76       | ug/kg | 02/28/24      | 03/02/24      |  |  |  |
| Aroclor-1268                         | ND        |      | 76       | ug/kg | 02/28/24      | 03/02/24      |  |  |  |
| PCBs (Total)                         | ND        |      | 76       | ug/kg | 02/28/24      | 03/02/24      |  |  |  |
| Surrogate(s)                         | Recovery% |      | Limits   |       |               |               |  |  |  |
| 2,4,5,6-Tetrachloro-m-xylene (TCMX ) | 56.4%     |      | 36.2-1   | 30    | 02/28/24      | 03/02/24      |  |  |  |
| Decachlorobiphenyl (DCBP)            | 48.0%     |      | 43.3-130 |       | 02/28/24      | 03/02/24      |  |  |  |

Sample: B-112 2-6'

| Reporting                            |           |      |        |       |               |               |  |  |  |
|--------------------------------------|-----------|------|--------|-------|---------------|---------------|--|--|--|
| Analyte                              | Result    | Qual | Limit  | Units | Date Prepared | Date Analyzed |  |  |  |
| Aroclor-1016                         | ND        |      | 72     | ug/kg | 02/28/24      | 03/01/24      |  |  |  |
| Aroclor-1221                         | ND        |      | 72     | ug/kg | 02/28/24      | 03/01/24      |  |  |  |
| Aroclor-1232                         | ND        |      | 72     | ug/kg | 02/28/24      | 03/01/24      |  |  |  |
| Aroclor-1242                         | ND        |      | 72     | ug/kg | 02/28/24      | 03/01/24      |  |  |  |
| Aroclor-1248                         | ND        |      | 72     | ug/kg | 02/28/24      | 03/01/24      |  |  |  |
| Aroclor-1254                         | ND        |      | 72     | ug/kg | 02/28/24      | 03/01/24      |  |  |  |
| Aroclor-1260                         | ND        |      | 72     | ug/kg | 02/28/24      | 03/01/24      |  |  |  |
| Aroclor-1262                         | ND        |      | 72     | ug/kg | 02/28/24      | 03/01/24      |  |  |  |
| Aroclor-1268                         | ND        |      | 72     | ug/kg | 02/28/24      | 03/01/24      |  |  |  |
| PCBs (Total)                         | ND        |      | 72     | ug/kg | 02/28/24      | 03/01/24      |  |  |  |
| Surrogate(s)                         | Recovery% |      | Limits |       |               |               |  |  |  |
| 2,4,5,6-Tetrachloro-m-xylene (TCMX ) | 65.0%     |      | 36.2-1 | 30    | 02/28/24      | 03/01/24      |  |  |  |
| Decachlorobiphenyl (DCBP)            | 58.9%     |      | 43.3-1 | 30    | 02/28/24      | 03/01/24      |  |  |  |

Sample: TP-6

| Reporting                    |           |      |              |       |               |               |  |  |
|------------------------------|-----------|------|--------------|-------|---------------|---------------|--|--|
| Analyte                      | Result    | Qual | Limit        | Units | Date Prepared | Date Analyzed |  |  |
| Total Petroleum Hydrocarbons | ND        |      | 33           | mg/kg | 02/28/24      | 02/28/24      |  |  |
| Surrogate(s)                 | Recovery% |      | Limit        | :S    |               |               |  |  |
| Chlorooctadecane             | 96.4%     |      | <i>50-13</i> | 30    | 02/28/24      | 02/28/24      |  |  |

Sample: B-103 0-6'

| Reporting                    |           |      |       |       |               |               |  |  |  |
|------------------------------|-----------|------|-------|-------|---------------|---------------|--|--|--|
| Analyte                      | Result    | Qual | Limit | Units | Date Prepared | Date Analyzed |  |  |  |
| Total Petroleum Hydrocarbons | ND        |      | 30    | mg/kg | 02/28/24      | 02/28/24      |  |  |  |
| Surrogate(s)                 | Recovery% |      | Limit | :S    |               |               |  |  |  |
| Chlorooctadecane             | 107%      |      | 50-13 | 20    | 02/28/24      | 02/28/24      |  |  |  |

Sample: B-113 2-4'

|                              |           |      | Reporting |       |               |               |
|------------------------------|-----------|------|-----------|-------|---------------|---------------|
| Analyte                      | Result    | Qual | Limit     | Units | Date Prepared | Date Analyzed |
| Total Petroleum Hydrocarbons | ND        |      | 31        | mg/kg | 02/28/24      | 02/28/24      |
| Surrogate(s)                 | Recovery% |      | Limit     | :S    |               |               |
| Chlorooctadecane             | 81.0%     |      | 50-13     | 30    | 02/28/24      | 02/28/24      |

Sample: B-112 2-6'

|                              |           |      | Reporting |       |               |               |
|------------------------------|-----------|------|-----------|-------|---------------|---------------|
| Analyte                      | Result    | Qual | Limit     | Units | Date Prepared | Date Analyzed |
| Total Petroleum Hydrocarbons | ND        |      | 28        | mg/kg | 02/28/24      | 02/28/24      |
| Surrogate(s)                 | Recovery% |      | Limit     | :S    |               |               |
| Chlorooctadecane             | 84.7%     |      | 50-13     | 20    | 02/28/24      | 02/28/24      |

#### **Quality Control**

#### **General Chemistry**

| Analyte                      | Result      | Qual        | Reporting<br>Limit | Units     | Spike<br>Level | Source<br>Result | %REC    | %REC<br>Limits | RPD   | RPD<br>Limit |
|------------------------------|-------------|-------------|--------------------|-----------|----------------|------------------|---------|----------------|-------|--------------|
| Batch: B4B1194 - Flashpoint- | EPA 1010A-M | od          |                    |           |                |                  |         |                |       |              |
| LCS (B4B1194-BS1)            |             |             |                    |           | Prepared 8     | & Analyzed: 0    | 2/28/24 |                |       |              |
| Flashpoint                   | 80          |             | 70                 | degrees F | 80.0           |                  | 100     | 90-110         |       |              |
| Duplicate (B4B1194-DUP1)     | 9           | Source: 4B2 | 22012-01           |           | Prepared 8     | & Analyzed: 0    | 2/28/24 |                |       |              |
| Flashpoint                   | > 200       |             | 70                 | degrees F |                | ND               |         |                |       | 20           |
| Batch: B4B1197 - Conductivit | y           |             |                    |           |                |                  |         |                |       |              |
| Blank (B4B1197-BLK1)         |             |             |                    |           | Prepared 8     | & Analyzed: 0    | 2/28/24 |                |       |              |
| Specific Conductance         | ND          |             | 2.0                | uS/cm     |                |                  |         |                |       |              |
| Duplicate (B4B1197-DUP1)     | S           | ource: 4B2  | 23014-01           |           | Prepared 8     | & Analyzed: 0    |         |                |       |              |
| Specific Conductance         | 258         |             | 2.0                | uS/cm     | 258            |                  |         |                | 0.00  | 200          |
| Batch: B4B1200 - pH          |             |             |                    |           |                |                  |         |                |       |              |
| LCS (B4B1200-BS1)            |             |             |                    |           | Prepared 8     | & Analyzed: 0    | 2/28/24 |                |       |              |
| pH                           | 7.1         |             |                    | SU        | 7.00           |                  | 101     | 0-200          |       |              |
| LCS (B4B1200-BS2)            |             |             |                    |           | Prepared 8     | & Analyzed: 0    | 2/28/24 |                |       |              |
| pH                           | 7.1         |             |                    | SU        | 7.00           |                  | 101     | 0-200          |       |              |
| Duplicate (B4B1200-DUP1)     | 9           | Source: 4B2 | 23046-06           |           | Prepared 8     | & Analyzed: 0    | 2/28/24 |                |       |              |
| рН                           | 6.8         |             |                    | SU        |                | 6.8              |         |                | 0.587 | 200          |
| Batch: B4C0033 - Flashpoint- | EPA 1010A-M | od          |                    |           |                |                  |         |                |       |              |
| LCS (B4C0033-BS1)            |             |             |                    |           | Prepared 8     | & Analyzed: 0    | 3/01/24 |                |       |              |
| Flashpoint                   | 83          |             | 70                 | degrees F | 80.0           |                  | 104     | 90-110         |       |              |

| Town of Maynard<br>Green Meadow Element | ary Schoo | ol - Ear    |           | <b>∕c∕kaŋŧrol</b><br>tinued) | 06/12/<br>Addend |               |         |        |     |       |
|-----------------------------------------|-----------|-------------|-----------|------------------------------|------------------|---------------|---------|--------|-----|-------|
| General Chemistry (Continued)           |           |             |           |                              |                  |               |         |        |     |       |
|                                         |           |             | Reporting |                              | Spike            | Source        |         | %REC   |     | RPD   |
| Analyte                                 | Result    | Qual        | Limit     | Units                        | Level            | Result        | %REC    | Limits | RPD | Limit |
| Batch: B4C0033 - Flashpoint-EPA         | 1010A-M   | od (Cor     | ntinued)  |                              |                  |               |         |        |     |       |
| Duplicate (B4C0033-DUP1)                | 9         | Source: 4B2 | 26010-04  |                              | Prepared 8       | & Analyzed: 0 | 3/01/24 |        |     |       |
| Flashpoint                              | > 200     |             | 70        | degrees F                    |                  | > 200         |         |        |     | 20    |

| Town of Maynard<br>Green Meadow Element | Green Meadow Elementary School - Early <b>இஞ்ஈ்குகேற்கால்</b><br>( <b>continued</b> ) |             |                    |           |                |                  |         |                |     |              |
|-----------------------------------------|---------------------------------------------------------------------------------------|-------------|--------------------|-----------|----------------|------------------|---------|----------------|-----|--------------|
| Reactivity                              |                                                                                       |             |                    |           |                |                  |         |                |     |              |
| Analyte                                 | Result                                                                                | Qual        | Reporting<br>Limit | Units     | Spike<br>Level | Source<br>Result | %REC    | %REC<br>Limits | RPD | RPD<br>Limit |
| Batch: B4B1244 - Reactivity             |                                                                                       |             |                    |           |                |                  |         |                |     |              |
| Blank (B4B1244-BLK1)                    |                                                                                       |             |                    |           | Prepared 8     | & Analyzed: 0    | 2/29/24 |                |     |              |
| Sulfide                                 | ND                                                                                    |             | 0.1                | mg/kg     |                |                  |         |                |     |              |
| Blank (B4B1244-BLK2)                    |                                                                                       |             |                    |           | Prepared 8     | & Analyzed: 0    | 2/29/24 |                |     |              |
| Sulfide                                 | ND                                                                                    |             | 0.1                | mg/kg     |                |                  |         |                |     |              |
| LCS (B4B1244-BS1)                       |                                                                                       |             |                    |           | Prepared 8     | & Analyzed: 0    | 2/29/24 |                |     |              |
| Sulfide                                 | 3.6                                                                                   |             | 0.1                | mg/kg     | 4.00           | •                | 90.0    | 90-110         |     |              |
| LCS (B4B1244-BS2)                       |                                                                                       |             |                    |           | Prepared 8     | & Analyzed: 0    | 2/29/24 |                |     |              |
| Sulfide                                 | 3.7                                                                                   |             | 0.1                | mg/kg     | 4.00           |                  | 91.5    | 90-110         |     |              |
| Duplicate (B4B1244-DUP1)                | 9                                                                                     | Source: 4B2 | 23045-01           |           | Prepared 8     | & Analyzed: 0    | 2/29/24 |                |     |              |
| Sulfide                                 | ND                                                                                    |             | 0.1                | mg/kg dry |                | ND               |         |                |     | 20           |
| Matrix Spike (B4B1244-MS1)              | 9                                                                                     | Source: 4B2 | 23045-01           |           | Prepared 8     | & Analyzed: 0    | 2/29/24 |                |     |              |
| Sulfide                                 | 4.5                                                                                   |             | 0.1                | mg/kg dry | 4.59           | ND               | 98.5    | 80-120         |     |              |
| Batch: B4B1245 - Reactivity             |                                                                                       |             |                    |           |                |                  |         |                |     |              |
| Blank (B4B1245-BLK1)                    |                                                                                       |             |                    |           | Prepared 8     | & Analyzed: 0    | 2/29/24 |                |     |              |
| Cyanide                                 | ND                                                                                    |             | 0.2                | mg/kg     |                |                  |         |                |     |              |
| Blank (B4B1245-BLK2)                    |                                                                                       |             |                    |           | Prepared 8     | & Analyzed: 0    | 2/29/24 |                |     |              |
| Cyanide                                 | ND                                                                                    |             | 0.2                | mg/kg     |                |                  |         |                |     |              |
| Duplicate (B4B1245-DUP1)                | 9                                                                                     | Source: 4B2 | 23045-01           |           | Prepared 8     | & Analyzed: 0    | 2/29/24 |                |     |              |
| Cyanide                                 | ND                                                                                    |             | 0.2                | mg/kg dry |                | ND               |         |                |     | 20           |

| Town of Maynard Green Meadow Ele | nentary School - Early Stating (Continued) |      |                    |                |                |                  |              | 06/12/2024<br>Addendum 2 |     |              |  |
|----------------------------------|--------------------------------------------|------|--------------------|----------------|----------------|------------------|--------------|--------------------------|-----|--------------|--|
| Analyte                          | Result                                     | Qual | Reporting<br>Limit | Units          | Spike<br>Level | Source<br>Result | %REC         | %REC<br>Limits           | RPD | RPD<br>Limit |  |
| Batch: B4B1103 - Metals Dig      | gestion Soils                              |      |                    |                |                |                  |              |                          |     |              |  |
| Blank (B4B1103-BLK1)             |                                            |      |                    | Pr             | epared: 02/2   | 7/24 Analyze     | ed: 03/01/24 |                          |     |              |  |
| Antimony                         | ND                                         |      | 0.66               | mg/kg          |                |                  |              |                          |     |              |  |
| Beryllium                        | ND                                         |      | 0.33               | mg/kg          |                |                  |              |                          |     |              |  |
| Arsenic                          | ND                                         |      | 1.00               | mg/kg          |                |                  |              |                          |     |              |  |
| Cadmium                          | ND                                         |      | 0.50               | mg/kg          |                |                  |              |                          |     |              |  |
| Chromium                         | ND                                         |      | 0.50               | mg/kg          |                |                  |              |                          |     |              |  |
| Nickel                           | ND                                         |      | 0.50               | mg/kg          |                |                  |              |                          |     |              |  |
| Lead                             | ND                                         |      | 0.50               | mg/kg          |                |                  |              |                          |     |              |  |
| Silver                           | ND                                         |      | 1.00               | mg/kg          |                |                  |              |                          |     |              |  |
| Zinc                             | ND                                         |      | 2.0                | mg/kg          |                |                  |              |                          |     |              |  |
| Barium                           | ND                                         |      | 0.33               | mg/kg          |                |                  |              |                          |     |              |  |
| Vanadium                         | ND                                         |      | 0.33               | mg/kg          |                |                  |              |                          |     |              |  |
| Selenium                         | ND                                         |      | 1.00               | mg/kg          |                |                  |              |                          |     |              |  |
| Thallium                         | ND                                         |      | 0.33               | mg/kg          |                |                  |              |                          |     |              |  |
| Blank (B4B1103-BLK2)             |                                            |      |                    | Pr             | enared: 02/2   | 7/24 Analyze     | d· 03/04/24  |                          |     |              |  |
| Antimony                         | ND                                         |      | 0.66               | mg/kg          | cparca. 02/2   | 7,21 7 many 20   | 05/01/21     |                          |     |              |  |
| Beryllium                        | ND                                         |      | 0.33               | mg/kg          |                |                  |              |                          |     |              |  |
| Lead                             | ND                                         |      | 0.50               | mg/kg          |                |                  |              |                          |     |              |  |
| Silver                           | ND                                         |      | 1.00               | mg/kg          |                |                  |              |                          |     |              |  |
| Cadmium                          | ND                                         |      | 0.50               | mg/kg          |                |                  |              |                          |     |              |  |
| Nickel                           | ND                                         |      | 0.50               | mg/kg          |                |                  |              |                          |     |              |  |
| Zinc                             | ND                                         |      | 2.0                | mg/kg          |                |                  |              |                          |     |              |  |
| Chromium                         | ND                                         |      | 0.50               | mg/kg          |                |                  |              |                          |     |              |  |
| Arsenic                          | ND                                         |      | 1.00               | mg/kg          |                |                  |              |                          |     |              |  |
| Selenium                         | ND                                         |      | 1.00               | mg/kg          |                |                  |              |                          |     |              |  |
| Thallium                         | ND                                         |      | 0.33               | mg/kg          |                |                  |              |                          |     |              |  |
|                                  |                                            |      |                    |                | onarod: 02/2   | 7/24 Analyza     | d. 02/01/24  |                          |     |              |  |
| LCS (B4B1103-BS1) Beryllium      | 20.1                                       |      | 0.33               | mg/kg          | 20.0           | 7/24 Analyze     | 101          | 85-115                   |     |              |  |
| Zinc                             | 93.9                                       |      | 2.0                | mg/kg          | 100            |                  | 93.9         | 85-115                   |     |              |  |
| Cadmium                          | 93.4                                       |      | 0.50               | mg/kg          | 100            |                  | 93.9         | 85-115                   |     |              |  |
| Chromium                         | 94.5                                       |      | 0.50               | mg/kg          | 100            |                  | 93.4         | 85-115<br>85-115         |     |              |  |
| Nickel                           | 93.9                                       |      | 0.50               | mg/kg          | 100            |                  | 94.5<br>93.9 | 85-115<br>85-112         |     |              |  |
| Lead                             | 93.9<br>97.3                               |      | 0.50               | mg/kg          | 100            |                  | 93.9<br>97.3 | 85-112<br>85-115         |     |              |  |
|                                  | 91.8                                       |      | 0.66               | mg/kg          | 100            |                  | 97.3<br>91.8 | 85-115<br>85-115         |     |              |  |
| Antimony<br>Selenium             | 19.9                                       |      | 1.00               | mg/kg          | 20.0           |                  | 91.8         | 85-115<br>85-115         |     |              |  |
|                                  |                                            |      |                    | mg/kg          |                |                  |              |                          |     |              |  |
| Vanadium                         | 101                                        |      | 0.33               | mg/kg          | 100            |                  | 101          | 85-115                   |     |              |  |
| Barium                           | 94.2                                       |      | 0.33               |                | 100            |                  | 94.2         | 85-115                   |     |              |  |
| Arsenic                          | 21.1                                       |      | 1.00               | mg/kg          | 20.0           |                  | 105          | 85-115                   |     |              |  |
| Silver<br>Thallium               | 37.7<br>90.9                               |      | 1.00<br>0.33       | mg/kg<br>mg/kg | 40.0<br>100    |                  | 94.2<br>90.9 | 85-115<br>85-115         |     |              |  |

| Town of Maynard<br>Green Meadow Element | ary Schoo   | ol - Ear   | ly <b>Qiệc lit</b> a<br>(Con | ∕c <b>Çaŋtrol</b><br>tinued) |                |                  |              |                | 12/202<br>lendum |             |
|-----------------------------------------|-------------|------------|------------------------------|------------------------------|----------------|------------------|--------------|----------------|------------------|-------------|
| Total Metals (Continued)                |             |            |                              |                              |                |                  |              |                |                  |             |
| Analyte                                 | Result      | Qual       | Reporting<br>Limit           | Units                        | Spike<br>Level | Source<br>Result | %REC         | %REC<br>Limits | RPD              | RPE<br>Limi |
| ,                                       |             | <u>-</u>   |                              |                              |                |                  | 70.120       |                |                  |             |
| Batch: B4B1103 - Metals Digestic        | on Soils (C | ontinue    | ed)                          |                              |                |                  |              |                |                  |             |
| Matrix Spike (B4B1103-MS1)              | S           | ource: 4B2 | 26010-01                     | Pre                          | epared: 02/2   | 27/24 Analyze    | ed: 03/01/24 |                |                  |             |
| Beryllium                               | 30.1        |            | 0.50                         | mg/kg dry                    | 30.0           | ND               | 100          | 75-125         |                  |             |
| Arsenic                                 | 40.7        |            | 1.50                         | mg/kg dry                    | 30.0           | 10.5             | 100          | 75-125         |                  |             |
| Barium                                  | 159         |            | 0.50                         | mg/kg dry                    | 150            | 32.5             | 84.2         | 75-125         |                  |             |
| Cadmium                                 | 134         |            | 0.75                         | mg/kg dry                    | 150            | 3.42             | 86.8         | 75-125         |                  |             |
| Chromium                                | 146         |            | 0.75                         | mg/kg dry                    | 150            | 13.7             | 88.5         | 75-125         |                  |             |
| Nickel                                  | 142         |            | 0.75                         | mg/kg dry                    | 150            | 9.11             | 88.4         | 75-125         |                  |             |
| Silver                                  | 54.1        |            | 1.50                         | mg/kg dry                    | 60.0           | ND               | 90.2         | 75-125         |                  |             |
| Lead                                    | 169         |            | 0.75                         | mg/kg dry                    | 150            | 38.7             | 86.9         | 75-125         |                  |             |
| Selenium                                | 23.6        |            | 1.50                         | mg/kg dry                    | 30.0           | ND               | 78.7         | 75-125         |                  |             |
| Vanadium                                | 163         |            | 0.50                         | mg/kg dry                    | 150            | 21.4             | 94.3         | 75-125         |                  |             |
| Zinc                                    | 179         |            | 3.0                          | mg/kg dry                    | 150            | 48.6             | 86.7         | 75-125         |                  |             |
| Thallium                                | 123         |            | 0.50                         | mg/kg dry                    | 150            | ND               | 81.9         | 75-125         |                  |             |
| Matrix Spike Dup (B4B1103-MSD1)         | S           | ource: 4B2 | 26010-01                     | Pre                          | epared: 02/2   | 27/24 Analyze    | ed: 03/01/24 |                |                  |             |
| Arsenic                                 | 38.6        |            | 1.40                         | mg/kg dry                    | 28.0           | 10.5             | 100          | 75-125         | 0.0916           | 20          |
| Chromium                                | 139         |            | 0.70                         | mg/kg dry                    | 140            | 13.7             | 89.1         | 75-125         | 5.54             | 20          |
| Vanadium                                | 155         |            | 0.46                         | mg/kg dry                    | 140            | 21.4             | 95.6         | 75-125         | 4.76             | 20          |
| Silver                                  | 48.3        |            | 1.40                         | mg/kg dry                    | 56.0           | ND               | 86.3         | 75-125         | 4.41             | 20          |
| Lead                                    | 164         |            | 0.70                         | mg/kg dry                    | 140            | 38.7             | 89.3         | 75-125         | 3.24             | 20          |
| Barium                                  | 153         |            | 0.46                         | mg/kg dry                    | 140            | 32.5             | 85.9         | 75-125         | 3.91             | 20          |
| Nickel                                  | 133         |            | 0.70                         | mg/kg dry                    | 140            | 9.11             | 88.6         | 75-125         | 6.22             | 20          |
| Cadmium                                 | 126         |            | 0.70                         | mg/kg dry                    | 140            | 3.42             | 87.7         | 75-125         | 5.68             | 20          |
| Selenium                                | 21.2        |            | 1.40                         | mg/kg dry                    | 28.0           | ND               | 75.8         | 75-125         | 3.75             | 20          |
| Beryllium                               | 28.7        |            | 0.46                         | mg/kg dry                    | 28.0           | ND               | 102          | 75-125         | 4.82             | 20          |
| Zinc                                    | 171         |            | 2.8                          | mg/kg dry                    | 140            | 48.6             | 87.1         | 75-125         | 4.59             | 20          |

0.46

mg/kg dry

140

ND

83.3

75-125

5.15

20

117

Thallium

| Town of Maynard<br>Green Meadow Eleme | entary Schoo | ol - Ear    |           | c <b>€aŋŧrol</b><br>tinued) |            |               |         |        | <del>/12/202</del><br>endum |       |
|---------------------------------------|--------------|-------------|-----------|-----------------------------|------------|---------------|---------|--------|-----------------------------|-------|
| Total Metals (Continued)              |              |             |           |                             |            |               |         |        |                             |       |
|                                       |              |             | Reporting |                             | Spike      | Source        |         | %REC   |                             | RPD   |
| Analyte                               | Result       | Qual        | Limit     | Units                       | Level      | Result        | %REC    | Limits | RPD                         | Limit |
| Batch: B4B1185 - Metals Cold-         | Vapor Mercu  | iry         |           |                             |            |               |         |        |                             |       |
| Blank (B4B1185-BLK1)                  | -            | _           |           |                             | Prepared 8 | & Analyzed: 0 | 2/28/24 |        |                             |       |
| Mercury                               | ND           |             | 0.100     | mg/kg                       |            |               |         |        |                             |       |
| Blank (B4B1185-BLK2)                  |              |             |           |                             | Prepared 8 | & Analyzed: 0 | 2/28/24 |        |                             |       |
| Mercury                               | ND           |             | 0.100     | mg/kg                       |            |               |         |        |                             |       |
| LCS (B4B1185-BS1)                     |              |             |           |                             | Prepared 8 | & Analyzed: 0 | 2/28/24 |        |                             |       |
| Mercury                               | 0.504        |             | 0.100     | mg/kg                       | 0.500      |               | 101     | 93-114 |                             |       |
| LCS (B4B1185-BS2)                     |              |             |           |                             | Prepared 8 | & Analyzed: 0 | 2/28/24 |        |                             |       |
| Mercury                               | 0.504        |             | 0.100     | mg/kg                       | 0.500      |               | 101     | 93-114 |                             |       |
| LCS Dup (B4B1185-BSD1)                |              |             |           |                             | Prepared 8 | & Analyzed: 0 | 2/28/24 |        |                             |       |
| Mercury                               | 0.513        |             | 0.100     | mg/kg                       | 0.500      |               | 103     | 93-114 | 1.92                        | 200   |
| LCS Dup (B4B1185-BSD2)                |              |             |           |                             | Prepared 8 | & Analyzed: 0 | 2/28/24 |        |                             |       |
| Mercury                               | 0.513        |             | 0.100     | mg/kg                       | 0.500      |               | 103     | 93-114 | 1.92                        | 200   |
| Matrix Spike (B4B1185-MS1)            | 9            | Source: 4B2 | 26010-01  |                             | Prepared 8 | & Analyzed: 0 | 2/28/24 |        |                             |       |
| Mercury                               | 0.716        |             | 0.126     | mg/kg dry                   | 0.630      | 0.129         | 93.1    | 80-120 |                             |       |
| Matrix Spike (B4B1185-MS2)            | 9            | Source: 4B2 | 27039-02  |                             | Prepared 8 | & Analyzed: 0 | 2/28/24 |        |                             |       |
| Mercury                               | 0.564        |             | 0.094     | mg/kg dry                   | 0.469      | 0.135         | 91.3    | 80-120 |                             |       |
| Matrix Spike (B4B1185-MS3)            | 5            | Source: 4B2 | 27003-01  |                             | Prepared 8 | & Analyzed: 0 | 2/28/24 |        |                             |       |
| Mercury                               | 0.649        |             | 0.098     | mg/kg dry                   | 0.489      | 0.125         | 107     | 80-120 |                             |       |
| Matrix Spike Dup (B4B1185-MSD1)       | 5            | Source: 4B2 | 26010-01  |                             | Prepared 8 | & Analyzed: 0 | 2/28/24 |        |                             |       |
| Mercury                               | 0.688        |             | 0.115     | mg/kg dry                   | 0.577      | 0.129         | 96.8    | 80-120 | 4.01                        | 20    |

| Town of Maynard<br>Green Meadow Element | ary Schoo | ol - Ear    |           | <b>∕ckaŋŧrol</b><br>tinued) |          | 06/12/2<br>Addendu |         |        |      |       |
|-----------------------------------------|-----------|-------------|-----------|-----------------------------|----------|--------------------|---------|--------|------|-------|
| Total Metals (Continued)                |           |             |           |                             |          |                    |         |        |      |       |
|                                         |           |             | Reporting |                             | Spike    | Source             |         | %REC   |      | RPD   |
| Analyte                                 | Result    | Qual        | Limit     | Units                       | Level    | Result             | %REC    | Limits | RPD  | Limit |
| Batch: B4B1185 - Metals Cold-Va         | por Mercu | ry (Con     | tinued)   |                             |          |                    |         |        |      |       |
| Matrix Spike Dup (B4B1185-MSD2)         | 9         | Source: 4B2 | 27039-02  |                             | Prepared | & Analyzed: 0      | 2/28/24 |        |      |       |
| Mercury                                 | 0.576     |             | 0.093     | mg/kg dry                   | 0.465    | 0.135              | 94.7    | 80-120 | 2.10 | 20    |

### Volatile Organic Compounds 8260C (5035-LL)

| Analyte                            | Result       | Reporting<br>Qual Limit | Units          | Spike<br>Level | Source<br>Result | %REC    | %REC<br>Limits | RPD  | RPI<br>Lim |
|------------------------------------|--------------|-------------------------|----------------|----------------|------------------|---------|----------------|------|------------|
| Batch: B4C0126 - EPA 5035          |              |                         |                |                |                  |         |                |      |            |
| Blank (B4C0126-BLK1)               |              |                         |                | Prepared 8     | & Analyzed: 03   | 3/04/24 |                |      |            |
| Acetone                            | ND           | 5                       | ug/kg          |                | ,                |         |                |      |            |
| Benzene                            | ND           | 5                       | ug/kg          |                |                  |         |                |      |            |
| Bromobenzene                       | ND           | 5                       | ug/kg          |                |                  |         |                |      |            |
| Bromochloromethane                 | ND           | 5                       | ug/kg          |                |                  |         |                |      |            |
| Bromodichloromethane               | ND           | 5                       | ug/kg          |                |                  |         |                |      |            |
| Bromoform                          | ND           | 5                       | ug/kg          |                |                  |         |                |      |            |
| Bromomethane                       | ND           | 5                       | ug/kg          |                |                  |         |                |      |            |
| 2-Butanone                         | ND           | 5                       | ug/kg          |                |                  |         |                |      |            |
| tert-Butyl alcohol                 | ND           | 5                       | ug/kg          |                |                  |         |                |      |            |
| sec-Butylbenzene                   | ND           | 5                       | ug/kg          |                |                  |         |                |      |            |
| n-Butylbenzene                     | ND           | 5                       | ug/kg          |                |                  |         |                |      |            |
| tert-Butylbenzene                  | ND<br>ND     | 5                       | ug/kg          |                |                  |         |                |      |            |
| Methyl t-butyl ether (MTBE)        | ND<br>ND     | 5                       | ug/kg          |                |                  |         |                |      |            |
| Carbon Disulfide                   | ND<br>ND     | 5                       | ug/kg<br>ug/kg |                |                  |         |                |      |            |
| Carbon Tetrachloride               | ND<br>ND     | 5                       | ug/kg<br>ug/kg |                |                  |         |                |      |            |
| Chlorobenzene                      | ND<br>ND     | 5                       | ug/kg<br>ug/kg |                |                  |         |                |      |            |
| Chloroethane                       | ND<br>ND     | 5                       | ug/kg<br>ug/kg |                |                  |         |                |      |            |
|                                    |              |                         |                |                |                  |         |                |      |            |
| Chloromothano                      | ND<br>ND     | 5<br>5                  | ug/kg<br>ug/kg |                |                  |         |                |      |            |
| Chloroteluono                      | ND<br>ND     |                         | ug/kg<br>ug/kg |                |                  |         |                |      |            |
| 4-Chlorotoluene                    | ND<br>ND     | 5                       | ug/kg<br>ug/kg |                |                  |         |                |      |            |
| 2-Chlorotoluene                    | ND<br>ND     | 5                       | ug/kg<br>ug/kg |                |                  |         |                |      |            |
| 1,2-Dibromo-3-chloropropane (DBCP) | ND           | 5                       |                |                |                  |         |                |      |            |
| Dibromochloromethane               | ND           | 5                       | ug/kg          |                |                  |         |                |      |            |
| 1,2-Dibromoethane (EDB)            | ND           | 5                       | ug/kg          |                |                  |         |                |      |            |
| Dibromomethane                     | ND           | 5                       | ug/kg          |                |                  |         |                |      |            |
| 1,2-Dichlorobenzene                | ND           | 5                       | ug/kg          |                |                  |         |                |      |            |
| 1,3-Dichlorobenzene                | ND           | 5                       | ug/kg          |                |                  |         |                |      |            |
| 1,4-Dichlorobenzene                | ND           | 5                       | ug/kg          |                |                  |         |                |      |            |
| 1,1-Dichloroethane                 | ND           | 5                       | ug/kg          |                |                  |         |                |      |            |
| 1,2-Dichloroethane                 | ND           | 5                       | ug/kg          |                |                  |         |                |      |            |
| 1,2 Dichloroethene, Total          | ND           | 5                       | ug/kg          |                |                  |         |                |      |            |
| trans-1,2-Dichloroethene           | ND           | 5                       | ug/kg          |                |                  |         |                |      |            |
| cis-1,2-Dichloroethene             | ND           | 5                       | ug/kg          |                |                  |         |                |      |            |
| 1,1-Dichloroethene                 | ND           | 5                       | ug/kg          |                |                  |         |                |      |            |
| 1,2-Dichloropropane                | ND           | 5                       | ug/kg          |                |                  |         |                |      |            |
| 2,2-Dichloropropane                | ND           | 5                       | ug/kg          |                |                  |         |                |      |            |
| cis-1,3-Dichloropropene            | ND           | 5                       | ug/kg          |                |                  |         |                |      |            |
| trans-1,3-Dichloropropene          | ND           | 5                       | ug/kg          |                |                  |         |                |      |            |
| 1,1-Dichloropropene                | ND           | 5                       | ug/kg          |                |                  |         |                |      |            |
| 1,3-Dichloropropene (cis + trans)  | ND           | 5                       | ug/kg          |                |                  |         |                |      |            |
| Diethyl ether                      | ND           | 5                       | ug/kg          |                |                  |         |                |      |            |
| 1,4-Dioxane                        | ND           | 100                     | ug/kg          |                |                  |         |                |      |            |
| Ethylbenzene                       | ND           | 5                       | ug/kg          |                |                  |         |                |      |            |
| Hexachlorobutadiene                | ND           | 5                       | ug/kg          |                |                  |         |                |      |            |
| 2-Hexanone                         | ND           | 5                       | ug/kg          |                |                  |         |                |      |            |
| Isopropylbenzene                   | ND           | 5                       | ug/kg          |                |                  |         |                |      |            |
| p-Isopropyltoluene                 | ND           | 5                       | ug/kg          |                |                  |         |                |      |            |
| Methylene Chloride                 | ND           | 5                       | ug/kg          |                |                  |         |                |      |            |
| 4-Methyl-2-pentanone               | ND           | 5                       | ug/kg          |                |                  |         |                |      |            |
| Naphthalene                        | ND           | 5                       | ug/kg          |                |                  |         |                |      |            |
| n-Propylbenzene                    | ND           | 5                       | ug/kg          |                |                  |         |                |      |            |
| Styrene                            | ND           | 5                       | ug/kg          |                |                  |         |                |      |            |
| 1,1,1,2-Tetrachloroethane          | ND           | 5                       | ug/kg          |                |                  |         |                |      |            |
| Tetrachloroethene                  | ND           | 5                       | ug/kg          |                |                  |         |                |      |            |
| Tetrahydrofuran                    | ND           | 5                       | ug/kg          |                |                  |         |                |      |            |
| Toluene                            | ND           | 5                       | ug/kg          |                |                  |         |                |      |            |
| 1,2,4-Trichlorobenzene             | Soil Samplin | g Report Gree           | n Mesandov     | v Schoo        | I April 20       | 24      |                | Page |            |

### Volatile Organic Compounds 8260C (5035-LL) (Continued)

| Analyte                                             | Result Qual      | Reporting<br>Limit | Units          | Spike<br>Level | Source<br>Result  | %REC    | %REC<br>Limits | RPD  | RPD<br>Limit |
|-----------------------------------------------------|------------------|--------------------|----------------|----------------|-------------------|---------|----------------|------|--------------|
| Batch: B4C0126 - EPA 5035 (                         | (Continued)      |                    |                |                |                   |         |                |      |              |
| Blank (B4C0126-BLK1)                                | ,                |                    |                | Prepared 8     | & Analyzed: 03    | 3/04/24 |                |      |              |
| 1,2,3-Trichlorobenzene                              | ND               | 5                  | ug/kg          |                | x / 11.01/2001 01 | ,, , ,  |                |      |              |
| 1,1,2-Trichloroethane                               | ND               | 5                  | ug/kg          |                |                   |         |                |      |              |
| 1,1,1-Trichloroethane                               | ND               | 5                  | ug/kg          |                |                   |         |                |      |              |
| Trichloroethene                                     | ND               | 5                  | ug/kg          |                |                   |         |                |      |              |
| 1,2,3-Trichloropropane                              | ND               | 5                  | ug/kg          |                |                   |         |                |      |              |
| 1,3,5-Trimethylbenzene                              | ND               | 5                  | ug/kg          |                |                   |         |                |      |              |
| 1,2,4-Trimethylbenzene                              | ND               | 5                  | ug/kg          |                |                   |         |                |      |              |
| Vinyl Chloride                                      | ND               | 5                  | ug/kg          |                |                   |         |                |      |              |
| o-Xylene                                            | ND               | 5                  | ug/kg          |                |                   |         |                |      |              |
| m&p-Xylene                                          | ND               | 10                 | ug/kg          |                |                   |         |                |      |              |
| Total xylenes                                       | ND               | 5                  | ug/kg          |                |                   |         |                |      |              |
| ·                                                   | ND               | 5                  | ug/kg          |                |                   |         |                |      |              |
| 1,1,2,2-Tetrachloroethane<br>tert-Amyl methyl ether | ND<br>ND         | 5                  | ug/kg          |                |                   |         |                |      |              |
|                                                     | ND<br>ND         | 5                  | ug/kg          |                |                   |         |                |      |              |
| 1,3-Dichloropropane                                 | ND<br>ND         | 5                  | ug/kg          |                |                   |         |                |      |              |
| Ethyl tert-butyl ether                              |                  | 5<br>5             | ug/kg<br>ug/kg |                |                   |         |                |      |              |
| Diisopropyl ether Trichlorofluoromethane            | ND               |                    |                |                |                   |         |                |      |              |
|                                                     | ND               | 5                  | ug/kg          |                |                   |         |                |      |              |
| Dichlorodifluoromethane                             | ND               | 5                  | ug/kg          |                |                   |         |                |      |              |
| Surrogate: 4-Bromofluorobenzene                     |                  | 49.0               | ug/kg          | 50.0           |                   | 98.0    | 70-130         |      |              |
| Surrogate: 1,2-Dichloroethane-d4                    |                  | 49.8               | ug/kg          | 50.0           |                   | 99.6    | 70-130         |      |              |
| Surrogate: Toluene-d8                               |                  | 47.7               | ug/kg          | 50.0           |                   | 95.4    | 70-130         |      |              |
| LCS (B4C0126-BS1)                                   |                  |                    |                | Prepared 8     | & Analyzed: 03    | 3/04/24 |                |      |              |
| Acetone                                             | 42               | 5                  | ug/kg          | 50.0           | ,                 | 83.1    | 50-150         |      |              |
| Benzene                                             | 46               | 5                  | ug/kg          | 50.0           |                   | 91.8    | 70-130         |      |              |
| Bromobenzene                                        | 43               | 5                  | ug/kg          | 50.0           |                   | 86.4    | 70-130         |      |              |
| Bromochloromethane                                  | 45               | 5                  | ug/kg          | 50.0           |                   | 90.1    | 70-130         |      |              |
| Bromodichloromethane                                | 44               | 5                  | ug/kg          | 50.0           |                   | 87.4    | 70-130         |      |              |
| Bromoform                                           | 47               | 5                  | ug/kg          | 50.0           |                   | 93.3    | 70-130         |      |              |
| Bromomethane                                        | 48               | 5                  | ug/kg          | 50.0           |                   | 95.0    | 50-150         |      |              |
| 2-Butanone                                          | 43               | 5                  | ug/kg          | 50.0           |                   | 85.6    | 50-150         |      |              |
| tert-Butyl alcohol                                  | 41               | 5                  | ug/kg          | 50.0           |                   | 82.5    | 70-130         |      |              |
| sec-Butylbenzene                                    | 45               | 5                  | ug/kg          | 50.0           |                   | 89.8    | 70-130         |      |              |
| n-Butylbenzene                                      | 46               | 5                  | ug/kg          | 50.0           |                   | 92.4    | 70-130         |      |              |
| tert-Butylbenzene                                   | 45               | 5                  | ug/kg          | 50.0           |                   | 90.1    | 70-130         |      |              |
| Methyl t-butyl ether (MTBE)                         | 39               | 5                  | ug/kg          | 50.0           |                   | 77.2    | 70-130         |      |              |
| Carbon Disulfide                                    | 32               | 5                  | ug/kg          | 50.0           |                   | 64.0    | 50-150         |      |              |
| Carbon Distillide  Carbon Tetrachloride             | 46               | 5                  | ug/kg          | 50.0           |                   | 93.0    | 70-130         |      |              |
| Chlorobenzene                                       | 41               | 5                  | ug/kg          | 50.0           |                   | 82.2    | 70-130         |      |              |
| Chloroethane                                        | 37               | 5                  | ug/kg          | 50.0           |                   | 74.5    | 50-150         |      |              |
|                                                     | 43               | 5                  | ug/kg          | 50.0           |                   | 86.8    |                |      |              |
| Chloroform                                          |                  |                    |                |                |                   |         | 70-130         |      |              |
| Chloromethane                                       | 37               | 5                  | ug/kg          | 50.0           |                   | 74.1    | 50-150         |      |              |
| 4-Chlorotoluene                                     | 44               | 5                  | ug/kg          | 50.0           |                   | 87.4    | 70-130         |      |              |
| 2-Chlorotoluene                                     | 40               | 5                  | ug/kg          | 50.0           |                   | 80.6    | 70-130         |      |              |
| 1,2-Dibromo-3-chloropropane (DBCP)                  | 46               | 5                  | ug/kg          | 50.0           |                   | 92.5    | 70-130         |      |              |
| Dibromochloromethane                                | 45<br>45         | 5                  | ug/kg          | 50.0           |                   | 90.8    | 70-130         |      |              |
| 1,2-Dibromoethane (EDB)                             | 45               | 5                  | ug/kg          | 50.0           |                   | 90.1    | 70-130         |      |              |
| Dibromomethane                                      | 46               | 5                  | ug/kg          | 50.0           |                   | 92.1    | 60-140         |      |              |
| 1,2-Dichlorobenzene                                 | 43               | 5                  | ug/kg          | 50.0           |                   | 85.1    | 70-130         |      |              |
| 1,3-Dichlorobenzene                                 | 44               | 5                  | ug/kg          | 50.0           |                   | 87.2    | 70-130         |      |              |
| 1,4-Dichlorobenzene                                 | 43               | 5                  | ug/kg          | 50.0           |                   | 85.7    | 70-130         |      |              |
| 1,1-Dichloroethane                                  | 43               | 5                  | ug/kg          | 50.0           |                   | 86.1    | 70-130         |      |              |
| 1,2-Dichloroethane                                  | 46               | 5                  | ug/kg          | 50.0           |                   | 92.3    | 70-130         |      |              |
| trans-1,2-Dichloroethene                            | 44               | 5                  | ug/kg          | 50.0           |                   | 87.4    | 70-130         |      |              |
| cis-1,2-Dichloroethene                              | 44               | 5                  | ug/kg          | 50.0           |                   | 87.7    | 70-130         |      |              |
| 1,1-Dichloroethene                                  | 33               | 5                  | ug/kg          | 50.0           |                   | 65.7    | 70-130         |      |              |
| 1,2-Dichloropropane                                 | Soil Sambling Re | anort Graan        | MARABION       | N S50HOO       | L April 20        | 24 86.5 | 70-130         | Page |              |

31 09 16.1 - 89

#### Volatile Organic Compounds 8260C (5035-LL) (Continued)

|                                  |            |      | porting |       | Spike      | Source         |         | %REC   |     | RPD   |
|----------------------------------|------------|------|---------|-------|------------|----------------|---------|--------|-----|-------|
| Analyte                          | Result     | Qual | Limit   | Units | Level      | Result         | %REC    | Limits | RPD | Limit |
| Batch: B4C0126 - EPA 5035 (      | Continued) |      |         |       |            |                |         |        |     |       |
| LCS (B4C0126-BS1)                |            |      |         |       | Prepared 8 | & Analyzed: 03 | 3/04/24 |        |     |       |
| 2,2-Dichloropropane              | 48         |      | 5       | ug/kg | 50.0       |                | 95.1    | 70-130 |     |       |
| cis-1,3-Dichloropropene          | 44         |      | 5       | ug/kg | 50.0       |                | 87.5    | 70-130 |     |       |
| trans-1,3-Dichloropropene        | 48         |      | 5       | ug/kg | 50.0       |                | 95.2    | 70-130 |     |       |
| 1,1-Dichloropropene              | 45         |      | 5       | ug/kg | 50.0       |                | 89.5    | 70-130 |     |       |
| Diethyl ether                    | 35         |      | 5       | ug/kg | 50.0       |                | 70.4    | 60-140 |     |       |
| 1,4-Dioxane                      | 222        |      | 100     | ug/kg | 250        |                | 88.7    | 0-200  |     |       |
| Ethylbenzene                     | 45         |      | 5       | ug/kg | 50.0       |                | 90.0    | 70-130 |     |       |
| Hexachlorobutadiene              | 52         |      | 5       | ug/kg | 50.0       |                | 103     | 70-130 |     |       |
| 2-Hexanone                       | 42         |      | 5       | ug/kg | 50.0       |                | 83.3    | 50-150 |     |       |
| Isopropylbenzene                 | 45         |      | 5       | ug/kg | 50.0       |                | 89.0    | 70-130 |     |       |
| p-Isopropyltoluene               | 45         |      | 5       | ug/kg | 50.0       |                | 90.6    | 70-130 |     |       |
| Methylene Chloride               | 42         |      | 5       | ug/kg | 50.0       |                | 84.8    | 60-140 |     |       |
| 4-Methyl-2-pentanone             | 45         |      | 5       | ug/kg | 50.0       |                | 89.5    | 50-150 |     |       |
| Naphthalene                      | 50         |      | 5       | ug/kg | 50.0       |                | 100     | 70-130 |     |       |
| n-Propylbenzene                  | 45         |      | 5       | ug/kg | 50.0       |                | 90.5    | 70-130 |     |       |
| Styrene                          | 43         |      | 5       | ug/kg | 50.0       |                | 86.1    | 70-130 |     |       |
| 1,1,1,2-Tetrachloroethane        | 44         |      | 5       | ug/kg | 50.0       |                | 87.5    | 70-130 |     |       |
| Tetrachloroethene                | 47         |      | 5       | ug/kg | 50.0       |                | 93.1    | 70-130 |     |       |
| Tetrahydrofuran                  | 47         |      | 5       | ug/kg | 50.0       |                | 93.2    | 50-150 |     |       |
| Toluene                          | 49         |      | 5       | ug/kg | 50.0       |                | 98.4    | 70-130 |     |       |
| 1,2,4-Trichlorobenzene           | 49         |      | 5       | ug/kg | 50.0       |                | 97.0    | 70-130 |     |       |
| 1,2,3-Trichlorobenzene           | 50         |      | 5       | ug/kg | 50.0       |                | 99.1    | 70-130 |     |       |
| 1,1,2-Trichloroethane            | 42         |      | 5       | ug/kg | 50.0       |                | 84.8    | 70-130 |     |       |
| 1,1,1-Trichloroethane            | 44         |      | 5       | ug/kg | 50.0       |                | 88.8    | 70-130 |     |       |
| Trichloroethene                  | 44         |      | 5       | ug/kg | 50.0       |                | 88.6    | 70-130 |     |       |
| 1,2,3-Trichloropropane           | 42         |      | 5       | ug/kg | 50.0       |                | 83.6    | 70-130 |     |       |
| 1,3,5-Trimethylbenzene           | 45         |      | 5       | ug/kg | 50.0       |                | 90.3    | 70-130 |     |       |
| 1,2,4-Trimethylbenzene           | 48         |      | 5       | ug/kg | 50.0       |                | 96.8    | 70-130 |     |       |
| Vinyl Chloride                   | 39         |      | 5       | ug/kg | 50.0       |                | 78.7    | 50-150 |     |       |
| o-Xylene                         | 46         |      | 5       | ug/kg | 50.0       |                | 91.5    | 70-130 |     |       |
| m&p-Xylene                       | 90         |      | 10      | ug/kg | 100        |                | 89.8    | 70-130 |     |       |
| 1,1,2,2-Tetrachloroethane        | 42         |      | 5       | ug/kg | 50.0       |                | 84.7    | 70-130 |     |       |
| tert-Amyl methyl ether           | 41         |      | 5       | ug/kg | 50.0       |                | 83.0    | 70-130 |     |       |
| 1,3-Dichloropropane              | 45         |      | 5       | ug/kg | 50.0       |                | 89.2    | 70-130 |     |       |
| Ethyl tert-butyl ether           | 41         |      | 5       | ug/kg | 50.0       |                | 81.5    | 70-130 |     |       |
| Trichlorofluoromethane           | 43         |      | 5       | ug/kg | 50.0       |                | 86.8    | 50-150 |     |       |
| Dichlorodifluoromethane          | 50         |      | 5       | ug/kg | 50.0       |                | 100     | 50-150 |     |       |
| Surrogate: 4-Bromofluorobenzene  |            |      | 51.6    | ug/kg | 50.0       |                | 103     | 70-130 |     |       |
| Surrogate: 1,2-Dichloroethane-d4 |            |      | 54.6    | ug/kg | 50.0       |                | 109     | 70-130 |     |       |
| Surrogate: Toluene-d8            |            |      | 53.5    | ug/kg | 50.0       |                | 107     | 70-130 |     |       |

| Analyte                                             | Result Qua      | Reporting<br>I Limit | Units          | Spike<br>Level | Source<br>Result     | %REC    | %REC<br>Limits | RPD  | RPD<br>Limit |
|-----------------------------------------------------|-----------------|----------------------|----------------|----------------|----------------------|---------|----------------|------|--------------|
| ·                                                   |                 |                      | Onics          | Level          | Result               | 70REC   | Limits         | N D  |              |
| Catch: B4C0126 - EPA 5035<br>LCS Dup (B4C0126-BSD1) | (Continued)     |                      |                | Prepared 8     | & Analyzed: 03       | 3/04/24 |                |      |              |
| Acetone                                             | 29              | 5                    | ug/kg          | 50.0           | x / 11/10/ / 2001 03 | 58.9    | 50-150         | 34.2 | 30           |
| Benzene                                             | 53              | 5                    | ug/kg          | 50.0           |                      | 106     | 70-130         | 14.4 | 20           |
| Bromobenzene                                        | 49              | 5                    | ug/kg          | 50.0           |                      | 98.4    | 70-130         | 13.0 | 20           |
| Bromochloromethane                                  | 52              | 5                    | ug/kg          | 50.0           |                      |         |                |      |              |
|                                                     |                 |                      |                |                |                      | 104     | 70-130         | 14.3 | 20           |
| Bromodichloromethane                                | 51              | 5                    | ug/kg          | 50.0           |                      | 102     | 70-130         | 15.0 | 20           |
| Bromoform                                           | 53              | 5                    | ug/kg          | 50.0           |                      | 107     | 70-130         | 13.3 | 20           |
| Bromomethane                                        | 60              | 5                    | ug/kg          | 50.0           |                      | 120     | 50-150         | 23.0 | 30           |
| 2-Butanone                                          | 35              | 5                    | ug/kg          | 50.0           |                      | 70.0    | 50-150         | 19.9 | 30           |
| tert-Butyl alcohol                                  | 39              | 5                    | ug/kg          | 50.0           |                      | 78.2    | 70-130         | 5.35 | 20           |
| sec-Butylbenzene                                    | 51              | 5                    | ug/kg          | 50.0           |                      | 101     | 70-130         | 12.2 | 20           |
| n-Butylbenzene                                      | 53              | 5                    | ug/kg          | 50.0           |                      | 106     | 70-130         | 14.0 | 20           |
| tert-Butylbenzene                                   | 52              | 5                    | ug/kg          | 50.0           |                      | 104     | 70-130         | 14.1 | 20           |
| Methyl t-butyl ether (MTBE)                         | 43              | 5                    | ug/kg          | 50.0           |                      | 86.0    | 70-130         | 10.7 | 20           |
| Carbon Disulfide                                    | 37              | 5                    | ug/kg          | 50.0           |                      | 73.9    | 50-150         | 14.3 | 40           |
| Carbon Tetrachloride                                | 54              | 5                    | ug/kg          | 50.0           |                      | 108     | 70-130         | 14.6 | 20           |
| Chlorobenzene                                       | 48              | 5                    | ug/kg          | 50.0           |                      | 95.5    | 70-130         | 15.0 | 20           |
| Chloroethane                                        | 43              | 5                    | ug/kg          | 50.0           |                      | 86.9    | 50-150         | 15.3 | 30           |
| Chloroform                                          |                 | 5                    | ug/kg<br>ug/kg | 50.0           |                      | 100     | 70-130         |      |              |
|                                                     | 50              |                      | ug/kg<br>ug/kg |                |                      |         |                | 14.3 | 20           |
| Chlorestaliana                                      | 44              | 5                    |                | 50.0           |                      | 87.1    | 50-150         | 16.2 | 30           |
| 4-Chlorotoluene                                     | 44              | 5                    | ug/kg          | 50.0           |                      | 88.5    | 70-130         | 1.25 | 20           |
| 2-Chlorotoluene                                     | 46              | 5                    | ug/kg          | 50.0           |                      | 91.3    | 70-130         | 12.5 | 20           |
| 1,2-Dibromo-3-chloropropane (DBCP)                  | 52              | 5                    | ug/kg          | 50.0           |                      | 104     | 70-130         | 12.2 | 20           |
| Dibromochloromethane                                | 52              | 5                    | ug/kg          | 50.0           |                      | 104     | 70-130         | 13.4 | 20           |
| 1,2-Dibromoethane (EDB)                             | 51              | 5                    | ug/kg          | 50.0           |                      | 101     | 70-130         | 11.7 | 20           |
| Dibromomethane                                      | 51              | 5                    | ug/kg          | 50.0           |                      | 102     | 60-140         | 10.3 | 30           |
| 1,2-Dichlorobenzene                                 | 49              | 5                    | ug/kg          | 50.0           |                      | 98.7    | 70-130         | 14.8 | 20           |
| 1,3-Dichlorobenzene                                 | 49              | 5                    | ug/kg          | 50.0           |                      | 98.2    | 70-130         | 11.9 | 20           |
| 1,4-Dichlorobenzene                                 | 49              | 5                    | ug/kg          | 50.0           |                      | 99.0    | 70-130         | 14.3 | 20           |
| 1,1-Dichloroethane                                  | 50              | 5                    | ug/kg          | 50.0           |                      | 100     | 70-130         | 14.9 | 20           |
| 1,2-Dichloroethane                                  | 52              | 5                    | ug/kg          | 50.0           |                      | 105     | 70-130         | 12.8 | 20           |
| trans-1,2-Dichloroethene                            | 50              | 5                    | ug/kg          | 50.0           |                      | 101     | 70-130         | 14.2 | 20           |
| cis-1,2-Dichloroethene                              | 49              | 5                    | ug/kg          | 50.0           |                      | 97.9    | 70-130         | 11.0 | 20           |
| •                                                   |                 |                      | ug/kg          |                |                      |         |                |      |              |
| 1,1-Dichloroethene                                  | 38              | 5                    |                | 50.0           |                      | 76.2    | 70-130         | 14.8 | 20           |
| 1,2-Dichloropropane                                 | 49              | 5                    | ug/kg          | 50.0           |                      | 98.8    | 70-130         | 13.3 | 20           |
| 2,2-Dichloropropane                                 | 54              | 5                    | ug/kg          | 50.0           |                      | 109     | 70-130         | 13.2 | 20           |
| cis-1,3-Dichloropropene                             | 51              | 5                    | ug/kg          | 50.0           |                      | 102     | 70-130         | 15.0 | 20           |
| trans-1,3-Dichloropropene                           | 54              | 5                    | ug/kg          | 50.0           |                      | 108     | 70-130         | 13.0 | 20           |
| 1,1-Dichloropropene                                 | 52              | 5                    | ug/kg          | 50.0           |                      | 104     | 70-130         | 15.1 | 20           |
| Diethyl ether                                       | 39              | 5                    | ug/kg          | 50.0           |                      | 77.5    | 60-140         | 9.68 | 30           |
| 1,4-Dioxane                                         | 240             | 100                  | ug/kg          | 250            |                      | 95.8    | 0-200          | 7.69 | 50           |
| Ethylbenzene                                        | 53              | 5                    | ug/kg          | 50.0           |                      | 105     | 70-130         | 15.8 | 20           |
| Hexachlorobutadiene                                 | 59              | 5                    | ug/kg          | 50.0           |                      | 117     | 70-130         | 12.8 | 20           |
| 2-Hexanone                                          | 36              | 5                    | ug/kg          | 50.0           |                      | 71.0    | 50-150         | 15.9 | 20           |
| Isopropylbenzene                                    | 51              | 5                    | ug/kg          | 50.0           |                      | 101     | 70-130         | 13.0 | 20           |
| p-Isopropyltoluene                                  | 52              | 5                    | ug/kg          | 50.0           |                      | 103     | 70-130         | 13.2 | 20           |
| Methylene Chloride                                  | 48              | 5                    | ug/kg          | 50.0           |                      | 96.6    | 60-140         | 13.1 | 30           |
| 4-Methyl-2-pentanone                                | 47              | 5                    | ug/kg          | 50.0           |                      | 93.0    | 50-150         | 3.83 | 20           |
| , ·                                                 |                 |                      |                |                |                      |         |                |      |              |
| Naphthalene                                         | 57              | 5                    | ug/kg          | 50.0           |                      | 115     | 70-130         | 13.2 | 20           |
| n-Propylbenzene                                     | 51              | 5                    | ug/kg          | 50.0           |                      | 102     | 70-130         | 12.2 | 20           |
| Styrene                                             | 50              | 5                    | ug/kg          | 50.0           |                      | 99.4    | 70-130         | 14.4 | 20           |
| 1,1,1,2-Tetrachloroethane                           | 51              | 5                    | ug/kg          | 50.0           |                      | 102     | 70-130         | 15.1 | 20           |
| Tetrachloroethene                                   | 53              | 5                    | ug/kg          | 50.0           |                      | 106     | 70-130         | 12.7 | 20           |
| Tetrahydrofuran                                     | 50              | 5                    | ug/kg          | 50.0           |                      | 100     | 50-150         | 7.34 | 40           |
| Toluene                                             | 56              | 5                    | ug/kg          | 50.0           |                      | 111     | 70-130         | 12.1 | 20           |
| 1,2,4-Trichlorobenzene                              | 56              | 5                    | ug/kg          | 50.0           |                      | 112     | 70-130         | 14.3 | 20           |
| 1,2,3-Trichlorobenzene                              | 57              | 5                    | ug/kg          | 50.0           |                      | 114     | 70-130         | 14.1 | 20           |
|                                                     | Soil Sampling F | _                    |                |                |                      |         |                |      |              |

| Analyte                          | Result     | Qual | Reporting<br>Limit | Units | Spike<br>Level | Source<br>Result | %REC    | %REC<br>Limits | RPD  | RPD<br>Limit |
|----------------------------------|------------|------|--------------------|-------|----------------|------------------|---------|----------------|------|--------------|
| Batch: B4C0126 - EPA 5035 (C     | Continued) |      |                    |       |                |                  |         |                |      |              |
| LCS Dup (B4C0126-BSD1)           | -          |      |                    |       | Prepared !     | & Analyzed: 03   | 3/04/24 |                |      |              |
| 1,1,1-Trichloroethane            | 51         |      | 5                  | ug/kg | 50.0           |                  | 101     | 70-130         | 13.0 | 20           |
| Trichloroethene                  | 49         |      | 5                  | ug/kg | 50.0           |                  | 98.7    | 70-130         | 10.7 | 20           |
| 1,2,3-Trichloropropane           | 46         |      | 5                  | ug/kg | 50.0           |                  | 92.0    | 70-130         | 9.54 | 20           |
| 1,3,5-Trimethylbenzene           | 51         |      | 5                  | ug/kg | 50.0           |                  | 102     | 70-130         | 12.2 | 20           |
| 1,2,4-Trimethylbenzene           | 55         |      | 5                  | ug/kg | 50.0           |                  | 110     | 70-130         | 12.5 | 20           |
| Vinyl Chloride                   | 46         |      | 5                  | ug/kg | 50.0           |                  | 92.3    | 50-150         | 16.0 | 30           |
| o-Xylene                         | 53         |      | 5                  | ug/kg | 50.0           |                  | 106     | 70-130         | 14.7 | 20           |
| m&p-Xylene                       | 103        |      | 10                 | ug/kg | 100            |                  | 103     | 70-130         | 14.2 | 20           |
| 1,1,2,2-Tetrachloroethane        | 48         |      | 5                  | ug/kg | 50.0           |                  | 95.2    | 70-130         | 11.6 | 20           |
| tert-Amyl methyl ether           | 47         |      | 5                  | ug/kg | 50.0           |                  | 93.6    | 70-130         | 12.1 | 20           |
| 1,3-Dichloropropane              | 51         |      | 5                  | ug/kg | 50.0           |                  | 102     | 70-130         | 13.4 | 20           |
| Ethyl tert-butyl ether           | 46         |      | 5                  | ug/kg | 50.0           |                  | 92.8    | 70-130         | 13.0 | 20           |
| Trichlorofluoromethane           | 50         |      | 5                  | ug/kg | 50.0           |                  | 100     | 50-150         | 14.3 | 20           |
| Dichlorodifluoromethane          | 59         |      | 5                  | ug/kg | 50.0           |                  | 118     | 50-150         | 16.3 | 30           |
| Surrogate: 4-Bromofluorobenzene  |            |      | 51.2               | ug/kg | 50.0           |                  | 102     | 70-130         |      |              |
| Surrogate: 1,2-Dichloroethane-d4 |            |      | 52.5               | ug/kg | 50.0           |                  | 105     | 70-130         |      |              |
| Surrogate: Toluene-d8            |            |      | 53.0               | ug/kg | 50.0           |                  | 106     | 70-130         |      |              |

5

ug/kg

#### Batch: B4C0189 - EPA 5035

Benzene

| Blank (B4C0189-BLK1) |    |   |       | Prepared & Analyzed: 03/05/24 |
|----------------------|----|---|-------|-------------------------------|
| Acetone              | ND | 5 | ug/kg |                               |

ND

| Delizerie                          | ND               | 3                      | agritg             |
|------------------------------------|------------------|------------------------|--------------------|
| Bromobenzene                       | ND               | 5                      | ug/kg              |
| Bromochloromethane                 | ND               | 5                      | ug/kg              |
| Bromodichloromethane               | ND               | 5                      | ug/kg              |
| Bromoform                          | ND               | 5                      | ug/kg              |
| Bromomethane                       | ND               | 5                      | ug/kg              |
| 2-Butanone                         | ND               | 5                      | ug/kg              |
| tert-Butyl alcohol                 | ND               | 5                      | ug/kg              |
| sec-Butylbenzene                   | ND               | 5                      | ug/kg              |
| n-Butylbenzene                     | ND               | 5                      | ug/kg              |
| tert-Butylbenzene                  | ND               | 5                      | ug/kg              |
| Methyl t-butyl ether (MTBE)        | ND               | 5                      | ug/kg              |
| Carbon Disulfide                   | ND               | 5                      | ug/kg              |
| Carbon Tetrachloride               | ND               | 5                      | ug/kg              |
| Chlorobenzene                      | ND               | 5                      | ug/kg              |
| Chloroethane                       | ND               | 5                      | ug/kg              |
| Chloroform                         | ND               | 5                      | ug/kg              |
| Chloromethane                      | ND               | 5                      | ug/kg              |
| 4-Chlorotoluene                    | ND               | 5                      | ug/kg              |
| 2-Chlorotoluene                    | ND               | 5                      | ug/kg              |
| 1,2-Dibromo-3-chloropropane (DBCP) | ND               | 5                      | ug/kg              |
| Dibromochloromethane               | ND               | 5                      | ug/kg              |
| 1,2-Dibromoethane (EDB)            | ND               | 5                      | ug/kg              |
| Dibromomethane                     | ND               | 5                      | ug/kg              |
| 1,2-Dichlorobenzene                | ND               | 5                      | ug/kg              |
| 1,3-Dichlorobenzene                | ND               | 5                      | ug/kg              |
| 1,4-Dichlorobenzene                | ND               | 5                      | ug/kg              |
| 1,1-Dichloroethane                 | ND               | 5                      | ug/kg              |
| 1,2-Dichloroethane                 | ND               | 5                      | ug/kg              |
| 1,2 Dichloroethene, Total          | ND               | 5                      | ug/kg              |
| trans-1,2-Dichloroethene           | ND               | 5                      | ug/kg              |
| cis-1,2-Dichloroethene             | ND               | 5                      | ug/kg              |
| 1,1-Dichloroethene                 | ND               | 5                      | ug/kg              |
| 1,2-Dichloropropane                | ND               | 5                      | ug/kg              |
| 2,2-Dichloropropane                | ND               | 5                      | ug/kg              |
| cis-1,3-Dichloropropene            | Soil Sampling Re |                        |                    |
|                                    |                  | <del>- 31 09 1</del> 1 | <del>21 - 92</del> |

w School April 2024

<del>31 09 16.1 - 92</del>

|                                   |            | 01   | Reporting |       | Spike      | Source        | 0/556   | %REC   | 222 | RPD  |
|-----------------------------------|------------|------|-----------|-------|------------|---------------|---------|--------|-----|------|
| Analyte                           | Result     | Qual | Limit     | Units | Level      | Result        | %REC    | Limits | RPD | Limi |
| Batch: B4C0189 - EPA 5035 (6      | Continued) |      |           |       |            |               |         |        |     |      |
| Blank (B4C0189-BLK1)              |            |      |           |       | Prepared 8 | & Analyzed: 0 | 3/05/24 |        |     |      |
| trans-1,3-Dichloropropene         | ND         |      | 5         | ug/kg |            |               |         |        |     |      |
| 1,1-Dichloropropene               | ND         |      | 5         | ug/kg |            |               |         |        |     |      |
| 1,3-Dichloropropene (cis + trans) | ND         |      | 5         | ug/kg |            |               |         |        |     |      |
| Diethyl ether                     | ND         |      | 5         | ug/kg |            |               |         |        |     |      |
| 1,4-Dioxane                       | ND         |      | 100       | ug/kg |            |               |         |        |     |      |
| Ethylbenzene                      | ND         |      | 5         | ug/kg |            |               |         |        |     |      |
| Hexachlorobutadiene               | ND         |      | 5         | ug/kg |            |               |         |        |     |      |
| 2-Hexanone                        | ND         |      | 5         | ug/kg |            |               |         |        |     |      |
| Isopropylbenzene                  | ND         |      | 5         | ug/kg |            |               |         |        |     |      |
| p-Isopropyltoluene                | ND         |      | 5         | ug/kg |            |               |         |        |     |      |
| Methylene Chloride                | ND         |      | 5         | ug/kg |            |               |         |        |     |      |
| 4-Methyl-2-pentanone              | ND         |      | 5         | ug/kg |            |               |         |        |     |      |
| Naphthalene                       | ND         |      | 5         | ug/kg |            |               |         |        |     |      |
| n-Propylbenzene                   | ND         |      | 5         | ug/kg |            |               |         |        |     |      |
| Styrene                           | ND         |      | 5         | ug/kg |            |               |         |        |     |      |
| 1,1,1,2-Tetrachloroethane         | ND         |      | 5         | ug/kg |            |               |         |        |     |      |
| Tetrachloroethene                 | ND         |      | 5         | ug/kg |            |               |         |        |     |      |
| Tetrahydrofuran                   | ND         |      | 5         | ug/kg |            |               |         |        |     |      |
| Toluene                           | ND         |      | 5         | ug/kg |            |               |         |        |     |      |
| 1,2,4-Trichlorobenzene            | ND         |      | 5         | ug/kg |            |               |         |        |     |      |
| 1,2,3-Trichlorobenzene            | ND         |      | 5         | ug/kg |            |               |         |        |     |      |
| 1,1,2-Trichloroethane             | ND         |      | 5         | ug/kg |            |               |         |        |     |      |
| 1,1,1-Trichloroethane             | ND         |      | 5         | ug/kg |            |               |         |        |     |      |
| Trichloroethene                   | ND         |      | 5         | ug/kg |            |               |         |        |     |      |
| 1,2,3-Trichloropropane            | ND         |      | 5         | ug/kg |            |               |         |        |     |      |
| 1,3,5-Trimethylbenzene            | ND         |      | 5         | ug/kg |            |               |         |        |     |      |
| 1,2,4-Trimethylbenzene            | ND         |      | 5         | ug/kg |            |               |         |        |     |      |
| Vinyl Chloride                    | ND         |      | 5         | ug/kg |            |               |         |        |     |      |
| o-Xylene                          | ND         |      | 5         | ug/kg |            |               |         |        |     |      |
| m&p-Xylene                        | ND         |      | 10        | ug/kg |            |               |         |        |     |      |
| Total xylenes                     | ND         |      | 5         | ug/kg |            |               |         |        |     |      |
| 1,1,2,2-Tetrachloroethane         | ND         |      | 5         | ug/kg |            |               |         |        |     |      |
| tert-Amyl methyl ether            | ND         |      | 5         | ug/kg |            |               |         |        |     |      |
| 1,3-Dichloropropane               | ND         |      | 5         | ug/kg |            |               |         |        |     |      |
| Ethyl tert-butyl ether            | ND         |      | 5         | ug/kg |            |               |         |        |     |      |
| Diisopropyl ether                 | ND         |      | 5         | ug/kg |            |               |         |        |     |      |
| Trichlorofluoromethane            | ND         |      | 5         | ug/kg |            |               |         |        |     |      |
| Dichlorodifluoromethane           | ND         |      | 5         | ug/kg |            |               |         |        |     |      |
| Surrogate: 4-Bromofluorobenzene   |            |      | 50.8      | ug/kg | 50.0       |               | 102     | 70-130 |     |      |
| Surrogate: 1,2-Dichloroethane-d4  |            |      | 49.9      | ug/kg | 50.0       |               | 99.8    | 70-130 |     |      |
| Surrogate: Toluene-d8             |            |      | 48.4      | ug/kg | 50.0       |               | 96.8    | 70-130 |     |      |

| Analyte                            | Result Qua  | Reporting<br>I Limit | Units          | Spike<br>Level | Source<br>Result | %REC        | %REC<br>Limits   | RPD | RPI<br>Lim |
|------------------------------------|-------------|----------------------|----------------|----------------|------------------|-------------|------------------|-----|------------|
| atch: B4C0189 - EPA 5035 (         | (Continued) |                      |                |                |                  |             |                  |     |            |
| CS (B4C0189-BS1)                   |             |                      | _              | •              | & Analyzed: 03/  | •           |                  |     |            |
| Acetone                            | 49          | 5                    | ug/kg          | 50.0           |                  | 97.2        | 50-150           |     |            |
| Benzene                            | 52          | 5                    | ug/kg          | 50.0           |                  | 104         | 70-130           |     |            |
| Bromobenzene                       | 54          | 5                    | ug/kg          | 50.0           |                  | 108         | 70-130           |     |            |
| Bromochloromethane                 | 51          | 5                    | ug/kg          | 50.0           |                  | 103         | 70-130           |     |            |
| Bromodichloromethane               | 54          | 5                    | ug/kg          | 50.0           |                  | 107         | 70-130           |     |            |
| Bromoform                          | 49          | 5                    | ug/kg          | 50.0           |                  | 98.7        | 70-130           |     |            |
| Bromomethane                       | 26          | 5                    | ug/kg          | 50.0           |                  | 52.4        | 50-150           |     |            |
| 2-Butanone                         | 47          | 5                    | ug/kg          | 50.0           |                  | 93.0        | 50-150           |     |            |
| ert-Butyl alcohol                  | 53          | 5                    | ug/kg          | 50.0           |                  | 105         | 70-130           |     |            |
| sec-Butylbenzene                   | 56          | 5                    | ug/kg          | 50.0           |                  | 112         | 70-130           |     |            |
| n-Butylbenzene                     | 60          | 5                    | ug/kg          | 50.0           |                  | 119         | 70-130           |     |            |
| ert-Butylbenzene                   | 56          | 5                    | ug/kg          | 50.0           |                  | 113         | 70-130           |     |            |
| Methyl t-butyl ether (MTBE)        | 49          | 5                    | ug/kg          | 50.0           |                  | 97.2        | 70-130           |     |            |
| Carbon Disulfide                   | 46          | 5                    | ug/kg          | 50.0           |                  | 92.8        | 50-150           |     |            |
| Carbon Tetrachloride               | 54          | 5                    | ug/kg          | 50.0           |                  | 108         | 70-130           |     |            |
| Chlorobenzene                      | 53          | 5                    | ug/kg          | 50.0           |                  | 105         | 70-130           |     |            |
| Chloroethane                       | 38          | 5                    | ug/kg          | 50.0           |                  | 76.5        | 50-150           |     |            |
| Chloroform                         | 51          | 5                    | ug/kg          | 50.0           |                  | 102         | 70-130           |     |            |
| Chloromethane                      | 42          | 5                    | ug/kg          | 50.0           |                  | 84.9        | 50-150           |     |            |
| 1-Chlorotoluene                    | 54          | 5                    | ug/kg          | 50.0           |                  | 108         | 70-130           |     |            |
| 2-Chlorotoluene                    | 50          | 5                    | ug/kg          | 50.0           |                  | 101         | 70-130           |     |            |
| 1,2-Dibromo-3-chloropropane (DBCP) | 47          | 5                    | ug/kg          | 50.0           |                  | 93.9        | 70-130           |     |            |
| Dibromochloromethane               | 49          | 5                    | ug/kg          | 50.0           |                  | 97.3        | 70-130           |     |            |
| 1,2-Dibromoethane (EDB)            | 47          | 5                    | ug/kg          | 50.0           |                  | 93.8        | 70-130           |     |            |
| Dibromomethane                     | 51          | 5                    | ug/kg          | 50.0           |                  | 103         | 60-140           |     |            |
| 1,2-Dichlorobenzene                | 51          | 5                    | ug/kg          | 50.0           |                  | 102         | 70-130           |     |            |
| L,3-Dichlorobenzene                | 55          | 5                    | ug/kg          | 50.0           |                  | 109         | 70-130           |     |            |
| I,4-Dichlorobenzene                | 50          | 5                    | ug/kg          | 50.0           |                  | 99.1        | 70-130           |     |            |
| I,1-Dichloroethane                 | 50          | 5                    | ug/kg          | 50.0           |                  | 99.0        | 70-130           |     |            |
| 1,2-Dichloroethane                 | 55          | 5                    | ug/kg          | 50.0           |                  | 109         | 70-130           |     |            |
| rans-1,2-Dichloroethene            | 50          | 5                    | ug/kg          | 50.0           |                  | 99.8        | 70-130           |     |            |
| cis-1,2-Dichloroethene             | 52          | 5                    | ug/kg          | 50.0           |                  | 104         | 70-130           |     |            |
| I,1-Dichloroethene                 | 46          | 5                    | ug/kg          | 50.0           |                  | 92.6        | 70-130           |     |            |
| 1,2-Dichloropropane                | 55          | 5                    | ug/kg          | 50.0           |                  | 109         | 70-130           |     |            |
| 2,2-Dichloropropane                | 55          | 5                    | ug/kg          | 50.0           |                  | 109         | 70-130           |     |            |
| cis-1,3-Dichloropropene            | 51          | 5                    | ug/kg          | 50.0           |                  | 103         | 70-130           |     |            |
| rans-1,3-Dichloropropene           | 50          | 5                    | ug/kg          | 50.0           |                  | 99.1        | 70-130           |     |            |
| I,1-Dichloropropene                | 47          | 5                    | ug/kg          | 50.0           |                  | 93.7        | 70-130           |     |            |
| Diethyl ether                      | 46          | 5                    | ug/kg          | 50.0           |                  | 92.2        | 60-140           |     |            |
| 1,4-Dioxane                        | 238         | 100                  | ug/kg          | 250            |                  | 95.3        | 0-200            |     |            |
| Ethylbenzene                       | 57          | 5                    | ug/kg          | 50.0           |                  | 113         | 70-130           |     |            |
| •                                  |             | 5                    | ug/kg<br>ug/kg |                |                  |             |                  |     |            |
| Hexachlorobutadiene<br>2-Hexanone  | 59<br>44    | 5<br>5               | ug/kg<br>ug/kg | 50.0<br>50.0   |                  | 118<br>87.9 | 70-130<br>50-150 |     |            |
| z-nexariorie<br>Isopropylbenzene   | 55          | 5<br>5               | ug/kg<br>ug/kg | 50.0           |                  |             | 70-130           |     |            |
|                                    | 55<br>58    | 5<br>5               | ug/kg<br>ug/kg | 50.0           |                  | 110         | 70-130<br>70-130 |     |            |
| o-Isopropyltoluene                 | 58<br>56    | 5<br>5               | ug/kg<br>ug/kg | 50.0           |                  | 115         | 70-130<br>60-140 |     |            |
| Methylene Chloride                 | 45          | 5                    | ug/kg<br>ug/kg | 50.0           |                  | 111<br>90.3 |                  |     |            |
| I-Methyl-2-pentanone               |             | 5<br>5               |                |                |                  |             | 50-150<br>70-130 |     |            |
| Naphthalene                        | 42          |                      | ug/kg          | 50.0           |                  | 83.1        | 70-130           |     |            |
| n-Propylbenzene                    | 57          | 5                    | ug/kg          | 50.0           |                  | 115         | 70-130           |     |            |
| Styrene                            | 56          | 5                    | ug/kg          | 50.0           |                  | 112         | 70-130           |     |            |
| 1,1,1,2-Tetrachloroethane          | 56          | 5                    | ug/kg          | 50.0           |                  | 113         | 70-130           |     |            |
| Tetrachloroethene                  | 52          | 5                    | ug/kg          | 50.0           |                  | 104         | 70-130           |     |            |
| Tetrahydrofuran<br>                | 46          | 5                    | ug/kg          | 50.0           |                  | 91.9        | 50-150           |     |            |
| Toluene                            | 51          | 5                    | ug/kg          | 50.0           |                  | 102         | 70-130           |     |            |
| 1,2,4-Trichlorobenzene             | 47          | 5                    | ug/kg          | 50.0           |                  | 94.4        | 70-130           |     |            |
| 1,2,3-Trichlorobenzene             | 41          | 5                    | ug/kg          | 50.0           |                  | 81.4        | 70-130           |     |            |

| Analyte                             | Result Qual     | Reporting<br>Limit | Units          | Spike<br>Level | Source<br>Result  | %REC | %REC<br>Limits | RPD    | RPC<br>Limi |
|-------------------------------------|-----------------|--------------------|----------------|----------------|-------------------|------|----------------|--------|-------------|
| Batch: B4C0189 - EPA 5035 (C        | Continued)      |                    |                |                |                   |      |                |        |             |
| LCS (B4C0189-BS1)                   |                 |                    |                | Prepared 8     | & Analyzed: 03/05 | 5/24 |                |        |             |
| 1,1,1-Trichloroethane               | 52              | 5                  | ug/kg          | 50.0           |                   | 104  | 70-130         |        |             |
| Trichloroethene                     | 51              | 5                  | ug/kg          | 50.0           |                   | 102  | 70-130         |        |             |
| 1,2,3-Trichloropropane              | 51              | 5                  | ug/kg          | 50.0           |                   | 102  | 70-130         |        |             |
| 1,3,5-Trimethylbenzene              | 56              | 5                  | ug/kg          | 50.0           |                   | 113  | 70-130         |        |             |
| 1,2,4-Trimethylbenzene              | 60              | 5                  | ug/kg          | 50.0           |                   | 120  | 70-130         |        |             |
| Vinyl Chloride                      | 38              | 5                  | ug/kg          | 50.0           |                   | 76.1 | 50-150         |        |             |
| o-Xylene                            | 58              | 5                  | ug/kg          | 50.0           |                   | 116  | 70-130         |        |             |
| m&p-Xylene                          | 113             | 10                 | ug/kg          | 100            |                   | 113  | 70-130         |        |             |
| 1,1,2,2-Tetrachloroethane           | 51              | 5                  | ug/kg          | 50.0           |                   | 102  | 70-130         |        |             |
| tert-Amyl methyl ether              | 48              | 5                  | ug/kg          | 50.0           |                   | 95.3 | 70-130         |        |             |
| 1,3-Dichloropropane                 | 51              | 5                  | ug/kg          | 50.0           |                   | 103  | 70-130         |        |             |
| Ethyl tert-butyl ether              | 47              | 5                  | ug/kg          | 50.0           |                   | 94.2 | 70-130         |        |             |
| Trichlorofluoromethane              | 45              | 5                  | ug/kg          | 50.0           |                   | 90.0 | 50-150         |        |             |
| Dichlorodifluoromethane             | 49              | 5                  | ug/kg          | 50.0           |                   | 97.2 | 50-150         |        |             |
| Commenter A Branch and branch and a |                 |                    | ua/ka          | 50.0           |                   | 100  | 70 120         |        |             |
| Surrogate: 4-Bromofluorobenzene     |                 | 53.9               | ug/kg          | 50.0           |                   | 108  | 70-130         |        |             |
| Surrogate: 1,2-Dichloroethane-d4    |                 | 50.6               | ug/kg          | 50.0           |                   | 101  | 70-130         |        |             |
| Surrogate: Toluene-d8               |                 | 49.7               | ug/kg          | 50.0           |                   | 99.4 | 70-130         |        |             |
| CS Dup (B4C0189-BSD1)               |                 |                    |                | Prepared 8     | & Analyzed: 03/05 | 5/24 |                |        |             |
| Acetone                             | 48              | 5                  | ug/kg          | 50.0           |                   | 95.8 | 50-150         | 1.41   | 30          |
| Benzene                             | 52              | 5                  | ug/kg          | 50.0           |                   | 105  | 70-130         | 1.15   | 20          |
| Bromobenzene                        | 55              | 5                  | ug/kg          | 50.0           |                   | 109  | 70-130         | 0.810  | 20          |
| Bromochloromethane                  | 52              | 5                  | ug/kg          | 50.0           |                   | 104  | 70-130         | 1.29   | 20          |
| Bromodichloromethane                | 55              | 5                  | ug/kg          | 50.0           |                   | 109  | 70-130         | 1.87   | 20          |
| Bromoform                           | 50              | 5                  | ug/kg          | 50.0           |                   | 100  | 70-130         | 1.61   | 20          |
| Bromomethane                        | 34              | 5                  | ug/kg          | 50.0           |                   | 68.9 | 50-150         | 27.2   | 30          |
| 2-Butanone                          | 46              | 5                  | ug/kg          | 50.0           |                   | 91.5 | 50-150         | 1.63   | 30          |
| tert-Butyl alcohol                  | 48              | 5                  | ug/kg          | 50.0           |                   | 95.7 | 70-130         | 9.44   | 20          |
| sec-Butylbenzene                    | 56              | 5                  | ug/kg          | 50.0           |                   | 112  | 70-130         | 0.571  | 20          |
| n-Butylbenzene                      | 60              | 5                  | ug/kg          | 50.0           |                   | 119  | 70-130         | 0.218  | 20          |
| tert-Butylbenzene                   | 57              | 5                  | ug/kg          | 50.0           |                   | 113  | 70-130         | 0.530  | 20          |
| Methyl t-butyl ether (MTBE)         | 50              | 5                  | ug/kg          | 50.0           |                   | 99.6 | 70-130         | 2.50   | 20          |
| Carbon Disulfide                    | 46              | 5                  | ug/kg          | 50.0           |                   | 92.4 | 50-150         | 0.389  | 40          |
| Carbon Tetrachloride                | 56              | 5                  | ug/kg          | 50.0           |                   | 111  | 70-130         | 2.84   | 20          |
| Chlorobenzene                       | 53              | 5                  | ug/kg          | 50.0           |                   | 107  | 70-130         | 1.46   | 20          |
| Chloroethane                        | 40              | 5                  | ug/kg          | 50.0           |                   | 79.3 | 50-150         | 3.52   | 30          |
| Chloroform                          | 52              | 5                  | ug/kg          | 50.0           |                   | 105  | 70-130         | 3.08   | 20          |
| Chloromethane                       | 43              | 5                  | ug/kg          | 50.0           |                   | 85.6 | 50-150         | 0.845  | 30          |
|                                     |                 | 5<br>5             | ug/kg<br>ug/kg |                |                   |      |                |        |             |
| 4-Chlorotoluene                     | 54              |                    |                | 50.0           |                   | 108  | 70-130         | 0.185  | 20          |
| 2-Chlorotoluene                     | 50              | 5                  | ug/kg          | 50.0           |                   | 101  | 70-130         | 0.00   | 20          |
| 1,2-Dibromo-3-chloropropane (DBCP)  | 50              | 5                  | ug/kg          | 50.0           |                   | 99.6 | 70-130         | 5.81   | 20          |
| Dibromochloromethane                | 50              | 5                  | ug/kg          | 50.0           |                   | 99.9 | 70-130         | 2.62   | 20          |
| 1,2-Dibromoethane (EDB)             | 48              | 5                  | ug/kg          | 50.0           |                   | 95.8 | 70-130         | 2.17   | 20          |
| Dibromomethane                      | 51              | 5                  | ug/kg          | 50.0           |                   | 103  | 60-140         | 0.0585 | 30          |
| 1,2-Dichlorobenzene                 | 53              | 5                  | ug/kg          | 50.0           |                   | 105  | 70-130         | 2.74   | 20          |
| 1,3-Dichlorobenzene                 | 55              | 5                  | ug/kg          | 50.0           |                   | 110  | 70-130         | 0.639  | 20          |
| 1,4-Dichlorobenzene                 | 51              | 5                  | ug/kg          | 50.0           |                   | 102  | 70-130         | 3.37   | 20          |
| 1,1-Dichloroethane                  | 51              | 5                  | ug/kg          | 50.0           |                   | 102  | 70-130         | 2.61   | 20          |
| 1,2-Dichloroethane                  | 55              | 5                  | ug/kg          | 50.0           |                   | 110  | 70-130         | 0.384  | 20          |
| rans-1,2-Dichloroethene             | 50              | 5                  | ug/kg          | 50.0           |                   | 99.8 | 70-130         | 0.0601 | 2           |
| cis-1,2-Dichloroethene              | 52              | 5                  | ug/kg          | 50.0           |                   | 105  | 70-130         | 1.07   | 2           |
| 1,1-Dichloroethene                  | 47              | 5                  | ug/kg          | 50.0           |                   | 94.5 | 70-130         | 2.05   | 20          |
| 1,2-Dichloropropane                 | 55              | 5                  | ug/kg          | 50.0           |                   | 110  | 70-130         | 1.13   | 20          |
| 2,2-Dichloropropane                 | 55              | 5                  | ug/kg          | 50.0           |                   | 110  | 70-130         | 1.02   | 20          |
| cis-1,3-Dichloropropene             | 52              | 5                  | ug/kg          | 50.0           |                   | 105  | 70-130         | 1.99   | 20          |
| trans-1,3-Dichloropropene           | 50              | 5                  | ug/kg          | 50.0           |                   | 101  | 70-130         | 1.84   | 20          |
| 1,1-Dichloropropene                 | Soil Sampling R |                    |                |                |                   |      | 70-130         | 3.79   | 20          |

31 09 16.1 - 95

Page 57 of 68

|                                  |            |      | Reporting |       | Spike      | Source        |         | %REC   |        | RPD   |
|----------------------------------|------------|------|-----------|-------|------------|---------------|---------|--------|--------|-------|
| Analyte                          | Result     | Qual | Limit     | Units | Level      | Result        | %REC    | Limits | RPD    | Limit |
| Batch: B4C0189 - EPA 5035 (      | Continued) |      |           |       |            |               |         |        |        |       |
| LCS Dup (B4C0189-BSD1)           |            |      |           |       | Prepared 8 | & Analyzed: 0 | 3/05/24 |        |        |       |
| Diethyl ether                    | 46         |      | 5         | ug/kg | 50.0       |               | 92.9    | 60-140 | 0.735  | 30    |
| 1,4-Dioxane                      | 246        |      | 100       | ug/kg | 250        |               | 98.6    | 0-200  | 3.43   | 50    |
| Ethylbenzene                     | 57         |      | 5         | ug/kg | 50.0       |               | 114     | 70-130 | 0.475  | 20    |
| Hexachlorobutadiene              | 60         |      | 5         | ug/kg | 50.0       |               | 120     | 70-130 | 1.84   | 20    |
| 2-Hexanone                       | 43         |      | 5         | ug/kg | 50.0       |               | 86.6    | 50-150 | 1.51   | 20    |
| Isopropylbenzene                 | 55         |      | 5         | ug/kg | 50.0       |               | 110     | 70-130 | 0.00   | 20    |
| p-Isopropyltoluene               | 58         |      | 5         | ug/kg | 50.0       |               | 117     | 70-130 | 1.29   | 20    |
| Methylene Chloride               | 56         |      | 5         | ug/kg | 50.0       |               | 112     | 60-140 | 0.682  | 30    |
| 4-Methyl-2-pentanone             | 46         |      | 5         | ug/kg | 50.0       |               | 91.6    | 50-150 | 1.41   | 20    |
| Naphthalene                      | 45         |      | 5         | ug/kg | 50.0       |               | 91.0    | 70-130 | 9.03   | 20    |
| n-Propylbenzene                  | 57         |      | 5         | ug/kg | 50.0       |               | 114     | 70-130 | 0.0699 | 20    |
| Styrene                          | 55         |      | 5         | ug/kg | 50.0       |               | 111     | 70-130 | 0.503  | 20    |
| 1,1,1,2-Tetrachloroethane        | 57         |      | 5         | ug/kg | 50.0       |               | 114     | 70-130 | 1.48   | 20    |
| Tetrachloroethene                | 54         |      | 5         | ug/kg | 50.0       |               | 107     | 70-130 | 3.30   | 20    |
| Tetrahydrofuran                  | 49         |      | 5         | ug/kg | 50.0       |               | 98.7    | 50-150 | 7.13   | 40    |
| Toluene                          | 51         |      | 5         | ug/kg | 50.0       |               | 103     | 70-130 | 0.800  | 20    |
| 1,2,4-Trichlorobenzene           | 53         |      | 5         | ug/kg | 50.0       |               | 106     | 70-130 | 11.8   | 20    |
| 1,2,3-Trichlorobenzene           | 52         |      | 5         | ug/kg | 50.0       |               | 105     | 70-130 | 24.9   | 20    |
| 1,1,2-Trichloroethane            | 45         |      | 5         | ug/kg | 50.0       |               | 90.4    | 70-130 | 9.93   | 20    |
| 1,1,1-Trichloroethane            | 53         |      | 5         | ug/kg | 50.0       |               | 106     | 70-130 | 2.00   | 20    |
| Trichloroethene                  | 53         |      | 5         | ug/kg | 50.0       |               | 107     | 70-130 | 4.50   | 20    |
| 1,2,3-Trichloropropane           | 52         |      | 5         | ug/kg | 50.0       |               | 104     | 70-130 | 1.48   | 20    |
| 1,3,5-Trimethylbenzene           | 57         |      | 5         | ug/kg | 50.0       |               | 113     | 70-130 | 0.655  | 20    |
| 1,2,4-Trimethylbenzene           | 60         |      | 5         | ug/kg | 50.0       |               | 120     | 70-130 | 0.0501 | 20    |
| Vinyl Chloride                   | 40         |      | 5         | ug/kg | 50.0       |               | 79.2    | 50-150 | 4.07   | 30    |
| o-Xylene                         | 58         |      | 5         | ug/kg | 50.0       |               | 115     | 70-130 | 0.467  | 20    |
| m&p-Xylene                       | 113        |      | 10        | ug/kg | 100        |               | 113     | 70-130 | 0.0265 | 20    |
| 1,1,2,2-Tetrachloroethane        | 50         |      | 5         | ug/kg | 50.0       |               | 100     | 70-130 | 2.29   | 20    |
| tert-Amyl methyl ether           | 48         |      | 5         | ug/kg | 50.0       |               | 96.3    | 70-130 | 1.00   | 20    |
| 1,3-Dichloropropane              | 52         |      | 5         | ug/kg | 50.0       |               | 104     | 70-130 | 1.14   | 20    |
| Ethyl tert-butyl ether           | 49         |      | 5         | ug/kg | 50.0       |               | 98.2    | 70-130 | 4.16   | 20    |
| Trichlorofluoromethane           | 45         |      | 5         | ug/kg | 50.0       |               | 90.8    | 50-150 | 0.863  | 20    |
| Dichlorodifluoromethane          | 50         |      | 5         | ug/kg | 50.0       |               | 99.1    | 50-150 | 2.00   | 30    |
| Surrogate: 4-Bromofluorobenzene  |            |      | 52.3      | ug/kg | 50.0       |               | 105     | 70-130 |        |       |
| Surrogate: 1,2-Dichloroethane-d4 |            |      | 49.9      | ug/kg | 50.0       |               | 99.8    | 70-130 |        |       |
| Surrogate: Toluene-d8            |            |      | 49.7      | ug/kg | 50.0       |               | 99.4    | 70-130 |        |       |

## Semivolatile organic compounds

| Analyte                     | Result              | Qual   | Reporting<br>Limit | Units | Spike<br>Level | Source<br>Result | %REC       | %REC<br>Limits | RPD  | RP<br>Lim |
|-----------------------------|---------------------|--------|--------------------|-------|----------------|------------------|------------|----------------|------|-----------|
| Batch: B4B1213 - 1_Semi     | volatiles Extractio | ns     |                    |       |                |                  |            |                |      |           |
| Blank (B4B1213-BLK1)        |                     |        |                    |       | epared: 02/2   | 28/24 Analyzed   | : 02/29/24 |                |      |           |
| 1,2,4-Trichlorobenzene      | ND                  |        | 129                | ug/kg |                |                  |            |                |      |           |
| 1,2-Dichlorobenzene         | ND                  |        | 129                | ug/kg |                |                  |            |                |      |           |
| 1,3-Dichlorobenzene         | ND                  |        | 129                | ug/kg |                |                  |            |                |      |           |
| 1,4-Dichlorobenzene         | ND                  |        | 129                | ug/kg |                |                  |            |                |      |           |
| Phenol                      | ND                  |        | 129                | ug/kg |                |                  |            |                |      |           |
| 2,4,5-Trichlorophenol       | ND                  |        | 129                | ug/kg |                |                  |            |                |      |           |
| 2,4,6-Trichlorophenol       | ND                  |        | 129                | ug/kg |                |                  |            |                |      |           |
| 2,4-Dichlorophenol          | ND                  |        | 129                | ug/kg |                |                  |            |                |      |           |
| 2,4-Dimethylphenol          | ND                  |        | 328                | ug/kg |                |                  |            |                |      |           |
| 2,4-Dinitrophenol           | ND                  |        | 328                | ug/kg |                |                  |            |                |      |           |
| 2,4-Dinitrotoluene          | ND                  |        | 129                | ug/kg |                |                  |            |                |      |           |
| 2,6-Dinitrotoluene          | ND                  |        | 129                | ug/kg |                |                  |            |                |      |           |
| 2-Chloronaphthalene         | ND                  |        | 129                | ug/kg |                |                  |            |                |      |           |
| 2-Chlorophenol              | ND                  |        | 129                | ug/kg |                |                  |            |                |      |           |
| 2-Methylnaphthalene         | ND                  |        | 129                | ug/kg |                |                  |            |                |      |           |
| Nitrobenzene                | ND                  |        | 129                | ug/kg |                |                  |            |                |      |           |
| 2-Methylphenol              | ND                  |        | 129                | ug/kg |                |                  |            |                |      |           |
| 2-Nitroaniline              | ND                  |        | 129                | ug/kg |                |                  |            |                |      |           |
| 2-Nitrophenol               | ND                  |        | 328                | ug/kg |                |                  |            |                |      |           |
| 3,3'-Dichlorobenzidine      | ND                  |        | 328                | ug/kg |                |                  |            |                |      |           |
| 3-Nitroaniline              | ND                  |        | 129                | ug/kg |                |                  |            |                |      |           |
| 4,6-Dinitro-2-methylphenol  | ND                  |        | 328                | ug/kg |                |                  |            |                |      |           |
| 4-Bromophenyl phenyl ether  | ND                  |        | 129                | ug/kg |                |                  |            |                |      |           |
| 4-Chloro-3-methylphenol     | ND                  |        | 129                | ug/kg |                |                  |            |                |      |           |
| 4-Chloroaniline             | ND                  |        | 129                | ug/kg |                |                  |            |                |      |           |
| 4-Chlorophenyl phenyl ether | ND                  |        | 129                | ug/kg |                |                  |            |                |      |           |
| 4-Nitroaniline              | ND                  |        | 129                | ug/kg |                |                  |            |                |      |           |
| 4-Nitrophenol               | ND                  |        | 328                | ug/kg |                |                  |            |                |      |           |
| Acenaphthene                | ND                  |        | 129                | ug/kg |                |                  |            |                |      |           |
| Acenaphthylene              | ND                  |        | 129                | ug/kg |                |                  |            |                |      |           |
| Aniline                     | ND                  |        | 129                | ug/kg |                |                  |            |                |      |           |
| Anthracene                  | ND                  |        | 129                | ug/kg |                |                  |            |                |      |           |
| Benzo(a)anthracene          | ND                  |        | 129                | ug/kg |                |                  |            |                |      |           |
| Benzo(a)pyrene              | ND                  |        | 129                | ug/kg |                |                  |            |                |      |           |
| Benzo(b)fluoranthene        | ND                  |        | 129                | ug/kg |                |                  |            |                |      |           |
| Benzo(g,h,i)perylene        | ND                  |        | 129                | ug/kg |                |                  |            |                |      |           |
| Benzo(k)fluoranthene        | ND                  |        | 129                | ug/kg |                |                  |            |                |      |           |
| Benzoic acid                | ND                  |        | 993                | ug/kg |                |                  |            |                |      |           |
| Biphenyl                    | ND                  |        | 20                 | ug/kg |                |                  |            |                |      |           |
| Bis(2-chloroethoxy)methane  | ND                  |        | 129                | ug/kg |                |                  |            |                |      |           |
| Bis(2-chloroethyl)ether     | ND                  |        | 129                | ug/kg |                |                  |            |                |      |           |
| Bis(2-chloroisopropyl)ether | ND                  |        | 129                | ug/kg |                |                  |            |                |      |           |
| Bis(2-ethylhexyl)phthalate  | ND                  |        | 397                | ug/kg |                |                  |            |                |      |           |
| Butyl benzyl phthalate      | ND                  |        | 129                | ug/kg |                |                  |            |                |      |           |
| Chrysene                    | ND                  |        | 129                | ug/kg |                |                  |            |                |      |           |
| Di-n-octyl phthalate        | ND                  |        | 199                | ug/kg |                |                  |            |                |      |           |
| Dibenz(a,h)anthracene       | ND                  |        | 129                | ug/kg |                |                  |            |                |      |           |
| Dibenzofuran                | ND                  |        | 129                | ug/kg |                |                  |            |                |      |           |
| Diethyl phthalate           | ND                  |        | 129                | ug/kg |                |                  |            |                |      |           |
| Dimethyl phthalate          | ND                  |        | 328                | ug/kg |                |                  |            |                |      |           |
| Di-n-butyl phthalate        | ND                  |        | 199                | ug/kg |                |                  |            |                |      |           |
| Fluoranthene                | ND                  |        | 129                | ug/kg |                |                  |            |                |      |           |
| Fluorene                    | ND                  |        | 129                | ug/kg |                |                  |            |                |      |           |
| Hexachlorobenzene           | ND                  |        | 129                | ug/kg |                |                  |            |                |      |           |
| Hexachlorobutadiene         | ND                  |        | 129                | ug/kg |                |                  |            |                |      |           |
| Hexachlorocyclopentadiene   | ND                  |        | 328                | ug/kg |                |                  |            |                |      |           |
| Hexachloroethane            | Soil Sampli         | na Rer |                    |       | v Schoo        | l April 202      | 4          |                | Page |           |

| Blank (B481213 - 1_Semivolatiles Extractions (Continued)   Blank (B481213 - BLK1)   Californic   NO   129   ug/ng   Californic   NO   Ug   | Analyte                     | Result Q           | Reporting<br>ual Limit | Units | Spike<br>Level | Source<br>Result | %REC        | %REC<br>Limits | RPD | RPI<br>Lim |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|--------------------|------------------------|-------|----------------|------------------|-------------|----------------|-----|------------|
| Page      | Batch: B4B1213 - 1_Semivola | ntiles Extractions | (Continued)            |       |                |                  |             |                |     |            |
| Indemoting                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                             |                    | •                      | Pr    | epared: 02/2   | 28/24 Analyze    | d: 02/29/24 |                |     |            |
| Nephrobleme                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | •                           | ND                 | 129                    | ug/kg |                |                  |             |                |     |            |
| Name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Isophorone                  | ND                 | 129                    | ug/kg |                |                  |             |                |     |            |
| NATIONAL PROMIPMENTE NATIONAL  | Naphthalene                 | ND                 | 129                    | ug/kg |                |                  |             |                |     |            |
| Netrosopherylamine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | N-Nitrosodimethylamine      | ND                 | 129                    | ug/kg |                |                  |             |                |     |            |
| Pensanthrene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | N-Nitrosodi-n-propylamine   | ND                 | 129                    | ug/kg |                |                  |             |                |     |            |
| Penanthrase   ND   129                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | N-Nitrosodiphenylamine      | ND                 | 129                    | ug/kg |                |                  |             |                |     |            |
| Pyrande   ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Pentachlorophenol           | ND                 | 328                    | ug/kg |                |                  |             |                |     |            |
| Montporceal   No   258                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Phenanthrene                | ND                 | 129                    | ug/kg |                |                  |             |                |     |            |
| Pyridine   ND   129   Ug/Ng   ND   ND   ND   ND   ND   ND   ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Pyrene                      | ND                 | 129                    | ug/kg |                |                  |             |                |     |            |
| Application                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | m&p-Cresol                  | ND                 | 258                    | ug/kg |                |                  |             |                |     |            |
| No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Pyridine                    | ND                 | 129                    | ug/kg |                |                  |             |                |     |            |
| Surrogate: Mirobenzene-dS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Azobenzene                  | ND                 | 129                    | ug/kg |                |                  |             |                |     |            |
| Surrogate: p-Tenphenyl-d14   Surrogate: 2-Phienotolphenyl      | Total Dichlorobenzene       | ND                 | 129                    | ug/kg |                |                  |             |                |     |            |
| Surrogate: p-Tenphenyl-d14   Surrogate: 2-Phienotolphenyl      |                             |                    | 2040                   |       |                |                  | 50.0        | 20.426         |     |            |
| Surrogate: 2-Puoroliphenyl         3470         ug/kg         6620         51.5         34-30           Surrogate: 2-Puorolemonel         3220         ug/kg         6620         62.2         30-130           Surrogate: 2-Puorophenol         3220         ug/kg         6620         48.8         30-130           EXECTION DEL PUOR DEL                                                                                                                                                                                                                                               |                             |                    |                        |       |                |                  |             |                |     |            |
| Surrogate: Phenol-da                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                             |                    |                        |       |                |                  |             |                |     |            |
| Surrogate: 2.4.6-Tribromophenol   320                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | • •                         |                    |                        |       |                |                  |             |                |     |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |                    |                        |       |                |                  |             |                |     |            |
| Prepared: 10/2/88/24   Analyzed: 02/29/24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | •                           |                    |                        |       |                |                  |             |                |     |            |
| 1,2,4-Frichlorobenzene   2280   129   Ug/kg   3310   94.0   40-130   1.2-Dichlorobenzene   3110   129   Ug/kg   3310   94.0   40-130   1.2-Dichlorobenzene   2690   129   Ug/kg   3310   97.0   40-130   1.2-Dichlorobenzene   2650   129   Ug/kg   3310   79.9   40-130   1.2-Dichlorobenzene   2650   129   Ug/kg   3310   79.9   40-130   1.2-Dichlorobenzene   2660   129   Ug/kg   3310   74.5   40-130   1.2-Dichlorobenzene   2660   129   Ug/kg   3310   80.3   40-130   1.2-Dichlorobenzene   2660   129   Ug/kg   3310   80.7   40-130   1.2-Dichlorophenol   2660   129   Ug/kg   3310   80.7   40-130   1.2-Dichlorophenol   2660   129   Ug/kg   3310   80.7   40-130   1.2-Dichlorophenol   2640   328   Ug/kg   3310   66.3   15-140   2.2-Dichlorophenol   2190   328   Ug/kg   3310   66.3   15-140   2.2-Dichlorophenol   2580   129   Ug/kg   3310   78.0   40-130   2.2-Dichlorophenol   2580   129   Ug/kg   3310   78.0   40-130   2.2-Dichlorophenol   2580   129   Ug/kg   3310   78.0   40-130   2.2-Dichlorophenol   3130   129   Ug/kg   3310   79.7   40-130   2.2-Dichlorophenol   3130   129   Ug/kg   3310   79.7   40-130   2.2-Dichlorophenol   3130   129   Ug/kg   3310   79.7   40-130   2.2-Dichlorophenol   2500   129   Ug/kg   3310   85.7   40-130   2.2-Dichlorophenol   2500   129   Ug/kg   3310   85.7   40-130   2.2-Dichlorophenol   2500   129   Ug/kg   3310   85.7   40-130   2.2-Dichlorophenol   2500   129   Ug/kg   3310   87.7   40-130   40-130   40-130   40-130   40-130   40-130   40-130   40-130   40-130   40-130   40-130   40-130   40-130   40-130   40-130   40-130   40-130   40-130   40-130   40-130   40-130   40-130   40-130   40-130   40-130   | Surrogate: 2-Fluorophenol   |                    | 3980                   | ug/kg | 6620           |                  | 60.1        | 30-130         |     |            |
| 1,2-Dichlorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | LCS (B4B1213-BS1)           |                    |                        | Pr    | epared: 02/2   | 28/24 Analyze    | d: 02/29/24 |                |     |            |
| 1,3-Dichlorobenzene         2990         129         Ug/kg         3310         90.2         40-130           1,4-Dichlorobenzene         2650         129         Ug/kg         3310         191         40-130           Phenol         3550         129         Ug/kg         3310         17.5         40-130           2,4,5-Trichlorophenol         2660         129         Ug/kg         3310         80.3         40-130           2,4-Dichlorophenol         2670         129         Ug/kg         3310         80.3         40-130           2,4-Dimictrylphenol         2640         328         Ug/kg         3310         80.3         40-130           2,4-Dinitrobluene         2580         129         Ug/kg         3310         80.3         40-130           2,4-Dinitrobluene         2680         129         Ug/kg         3310         80.9         40-130           2,4-Dinitrobluene         2680         129         Ug/kg         3310         80.9         40-130           2,5-Dinitrobluene         2680         129         Ug/kg         3310         9.5         40-130           2,5-Dinitrobluene         2580         129         Ug/kg         3310         9.7         4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1,2,4-Trichlorobenzene      | 2280               | 129                    | ug/kg | 3310           |                  | 68.7        | 40-130         |     |            |
| 1,4-Dichlorobenzene         2650         129         ug/kg         3310         79.9         40-130           Phenol         3350         129         ug/kg         3310         101         40-130           2,4-5-Trichlorophenol         2660         129         ug/kg         3310         80.3         40-130           2,4-Dichlorophenol         2670         129         ug/kg         3310         80.3         40-130           2,4-Dinitrophenol         2640         328         ug/kg         3310         66.3         15-140           2,4-Dinitrophenol         2190         328         ug/kg         3310         66.3         15-140           2,4-Dinitrophenol         2580         129         ug/kg         3310         78.0         40-130           2,4-Dinitrotoluene         2680         129         ug/kg         3310         78.0         40-130           2,4-Dinitrophenol         3130         129         ug/kg         3310         94.5         40-130           2,4-Dinitrophenol         2560         129         ug/kg         3310         95.6         40-130           2,4-Dinitrophenol         2310         129         ug/kg         3310         97.8         40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1,2-Dichlorobenzene         | 3110               | 129                    | ug/kg | 3310           |                  | 94.0        | 40-130         |     |            |
| Phenol         3350         129         ug/kg         3310         101         40-130           24,45-Trichlorophenol         2470         129         ug/kg         3310         74.5         40-130           2,4-G-Trichlorophenol         2660         129         ug/kg         3310         80.3         40-130           2,4-Dichlorophenol         2670         129         ug/kg         3310         80.7         40-130           2,4-Dinitroblenol         2640         328         ug/kg         3310         66.3         15-140           2,4-Dinitrobluene         2580         129         ug/kg         3310         66.3         15-140           2,4-Dinitrobluene         2580         129         ug/kg         3310         78.0         40-130           2,6-Dinitrobluene         2680         129         ug/kg         3310         79.7         40-130           2,6-Dinitrobluene         2640         129         ug/kg         3310         79.7         40-130           2,4-Chlorophenol         3130         129         ug/kg         3310         89.4         40-130           2,4-Wethylinaphthalene         2310         129         ug/kg         3310         87.2         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1,3-Dichlorobenzene         | 2990               | 129                    | ug/kg | 3310           |                  | 90.2        | 40-130         |     |            |
| 2,4,5-Trichlorophenol       2470       129       ug/kg       3310       74.5       40-130         2,4,6-Trichlorophenol       2660       129       ug/kg       3310       80.3       40-130         2,4-Dinterthylphenol       2670       129       ug/kg       3310       79.8       40-130         2,4-Dinitrophenol       2190       328       ug/kg       3310       66.3       15-140         2,4-Dinitrotoluene       2580       129       ug/kg       3310       80.9       40-130         2,6-Dinitrotoluene       2680       129       ug/kg       3310       94.5       40-130         2-Chlorophenol       3130       129       ug/kg       3310       94.5       40-130         2-Chlorophenol       2310       129       ug/kg       3310       77.2       40-130         2-Methylaphthalene       2310       129       ug/kg       <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1,4-Dichlorobenzene         | 2650               | 129                    | ug/kg | 3310           |                  | 79.9        | 40-130         |     |            |
| 2,4,6-Trichlorophenol       2660       129       ug/kg       3310       80.3       40-130         2,4-Dichlorophenol       2670       129       ug/kg       3310       80.7       40-130         2,4-Dinktrylphenol       2640       328       ug/kg       3310       79.8       40-130         2,4-Dinktrylphenol       2190       328       ug/kg       3310       66.3       15-140         2,4-Dinktrylphenol       2580       129       ug/kg       3310       80.9       40-130         2,4-Dinktrylphenol       2680       129       ug/kg       3310       80.9       40-130         2,6-Dinktrobluene       2640       129       ug/kg       3310       80.9       40-130         2-Chlorophenol       3130       129       ug/kg       3310       94.5       40-130         2-Methylphenol       2310       129       ug/kg       3310       85.7       40-130         2-Mitropaline       2560       129       ug/kg       3310       77.2       40-130         2-Nitropaline       2570       129       ug/kg       3310       67.3       40-130         2-Nitropaline       2530       129       ug/kg       3310       <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Phenol                      | 3350               | 129                    | ug/kg | 3310           |                  | 101         | 40-130         |     |            |
| 2,4-Dichlorophenol         2670         129                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2,4,5-Trichlorophenol       | 2470               | 129                    | ug/kg | 3310           |                  | 74.5        | 40-130         |     |            |
| 2,4-Dimethylphenol         2640         328         ug/kg         3310         79.8         40-130           2,4-Dimitrophenol         2190         328         ug/kg         3310         66.3         15-140           2,4-Dinitrotoluene         2580         129         ug/kg         3310         78.0         40-130           2,6-Dinitrotoluene         2680         129         ug/kg         3310         80.9         40-130           2-Chlorophenol         3130         129         ug/kg         3310         79.7         40-130           2-Chlorophenol         3130         129         ug/kg         3310         69.6         40-130           2-Methylnaphthalene         2310         129         ug/kg         3310         69.6         40-130           Nitrobenzene         2840         129         ug/kg         3310         77.2         40-130           2-Methylphenol         2570         129         ug/kg         3310         77.2         40-130           3-Nitroaniline         2570         129         ug/kg         3310         67.7         40-130           4-Bromophenyl phenyl ether         250         129         ug/kg         3310         67.7         30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2,4,6-Trichlorophenol       | 2660               | 129                    | ug/kg | 3310           |                  | 80.3        | 40-130         |     |            |
| 2,4-Dinitrophenol       2190       328       ug/kg       3310       66.3       15-140         2,4-Dinitrobluene       2580       129       ug/kg       3310       78.0       40-130         2,6-Dinitrobluene       2680       129       ug/kg       3310       80.9       40-130         2-Chlorophenol       2640       129       ug/kg       3310       94.5       40-130         2-Methylnaphthalene       2310       129       ug/kg       3310       69.6       40-130         Nitrobenzene       2840       129       ug/kg       3310       69.6       40-130         2-Methylphenol       2560       129       ug/kg       3310       77.2       40-130         2-Mitropaliline       2570       129       ug/kg       3310       78.3       40-130         2-Nitropaliline       2530       129       ug/kg       3310       78.3       40-130         3-Nitropaline       2530       129       ug/kg       3310       67.3       40-130         4-Bromophenyl phenyl ether       2250       129       ug/kg       3310       67.1       40-130         4-Chloro-3-methylphenol       2280       129       ug/kg       3310                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2,4-Dichlorophenol          | 2670               | 129                    | ug/kg | 3310           |                  | 80.7        | 40-130         |     |            |
| 2, 4-Dinitrotoluene         2580         129         ug/kg         3310         78.0         40-130           2,6-Dinitrotoluene         2680         129         ug/kg         3310         80.9         40-130           2-Chloronaphthalene         2640         129         ug/kg         3310         79.7         40-130           2-Chlorophenol         3130         129         ug/kg         3310         69.6         40-130           2-Methylnaphthalene         2310         129         ug/kg         3310         69.6         40-130           Nitrobenzene         2840         129         ug/kg         3310         85.7         40-130           2-Methylphenol         2560         129         ug/kg         3310         77.2         40-130           2-Nitrophenol         2570         129         ug/kg         3310         77.2         40-130           2-Nitrophenol         2700         328         ug/kg         3310         66.7         30-130           4-G-Dinitro-2-methylphenol         2240         328         ug/kg         3310         67.7         30-130           4-Bromophenyl phenyl ether         2050         129         ug/kg         3310         67.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2,4-Dimethylphenol          | 2640               | 328                    | ug/kg | 3310           |                  | 79.8        | 40-130         |     |            |
| 2,6-Dinitrotoluene         2680         129         ug/kg         3310         80.9         40-130           2-Chloroaphthalene         2640         129         ug/kg         3310         77.7         40-130           2-Chlorophenol         3130         129         ug/kg         3310         94.5         40-130           Nitrobenzene         2840         129         ug/kg         3310         85.7         40-130           2-Methylphenol         2560         129         ug/kg         3310         77.2         40-130           2-Nitroanline         2570         129         ug/kg         3310         77.2         40-130           2-Nitrophenol         2700         328         ug/kg         3310         77.8         40-130           3-Nitroanline         2530         129         ug/kg         3310         67.3         40-130           4-Chioramethylphenol         2240         328         ug/kg         3310         67.7         30-130           4-Chioramethylphenol         2280         129         ug/kg         3310         67.1         40-130           4-Chioramethylphenol         2280         129         ug/kg         3310         67.1         40-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2,4-Dinitrophenol           | 2190               | 328                    | ug/kg | 3310           |                  | 66.3        | 15-140         |     |            |
| 2-Chloronaphthalene 2640 129 ug/kg 3310 79.7 40-130 2-Chlorophenol 3130 129 ug/kg 3310 94.5 40-130 2-Methylpnaphthalene 2310 129 ug/kg 3310 69.6 40-130 Nitrobenzene 2840 129 ug/kg 3310 85.7 40-130 2-Methylphenol 2560 129 ug/kg 3310 77.2 40-130 2-Nitrophenol 2570 129 ug/kg 3310 77.8 40-130 3-Nitrophinol 2570 129 ug/kg 3310 77.3 40-130 4-Chloritro-2-methylphenol 2570 129 ug/kg 3310 77.3 40-130 4-Chloro-3-methylphenol 2580 129 ug/kg 3310 77.3 40-130 4-Chloro-3-methylphenol 2580 129 ug/kg 3310 77.3 40-130 4-Nitrophenol 2660 129 ug/kg 3310 77.4 40-130 4-Nitrophenol 2660 129 ug/kg 3310 77.4 40-130 4-Nitrophenol 2660 129 ug/kg 3310 77.4 40-130 4-Nitrophenol 270 129 ug/kg 3310 77.4 40-130 4-Nitrophenol 270 129 ug/kg 3310 77.4 40-130 4-Cenaphthylene 2610 129 ug/kg 3310 77.4 40-130 4-Cenaphthylene 270 129 ug/kg 3310 77.4  | 2,4-Dinitrotoluene          | 2580               | 129                    | ug/kg | 3310           |                  | 78.0        | 40-130         |     |            |
| 2-Chlorophenol 3130 129 ug/kg 3310 94.5 40-130 2-Methylnaphthalene 2310 129 ug/kg 3310 69.6 40-130 Nitrobenzene 2840 129 ug/kg 3310 85.7 40-130 2-Methylphenol 2560 129 ug/kg 3310 77.2 40-130 2-Methylphenol 2570 129 ug/kg 3310 77.2 40-130 2-Nitroanliline 2770 129 ug/kg 3310 77.8 40-130 2-Nitroanliline 2530 129 ug/kg 3310 77.8 40-130 3-Nitroanliline 2530 129 ug/kg 3310 76.3 40-130 3-Nitroanliline 2500 129 ug/kg 3310 76.1 40-130 3-Nitroanliline 2680 129 ug/kg 3310 76.3 40-130 3-Nitroanliline 36.6 40-130 3-Nitroanliline 37.0 40-130 3-Nitroanliline 37.0 40-130 3-Nitroanliline 37.0 40-130 3-Nitroanliline 38.0 40-130 3-Nitroanliline 39.0 | 2,6-Dinitrotoluene          | 2680               | 129                    | ug/kg | 3310           |                  | 80.9        | 40-130         |     |            |
| 2-Methylnaphthalene       2310       129       ug/kg       3310       69.6       40-130         Nitrobenzene       2840       129       ug/kg       3310       85.7       40-130         2-Methylphenol       2560       129       ug/kg       3310       77.2       40-130         2-Nitroaniline       2570       129       ug/kg       3310       81.4       40-130         3-Nitroaniline       2530       129       ug/kg       3310       76.3       40-130         4-G-Dinitro-2-methylphenol       2240       328       ug/kg       3310       67.7       30-130         4-Bromophenyl phenyl ether       2050       129       ug/kg       3310       67.1       40-130         4-Chloro-3-methylphenol       2280       129       ug/kg       3310       67.1       40-130         4-Chlorophenyl phenyl ether       2220       129       ug/kg       3310       67.1       40-130         4-Nitrophenol       2360       129       ug/kg       3310       67.1       40-130         4-Nitrophenol       2360       129       ug/kg       3310       67.1       40-130         4-Nitrophenol       2360       129       ug/kg <t< td=""><td>2-Chloronaphthalene</td><td>2640</td><td>129</td><td>ug/kg</td><td>3310</td><td></td><td>79.7</td><td>40-130</td><td></td><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2-Chloronaphthalene         | 2640               | 129                    | ug/kg | 3310           |                  | 79.7        | 40-130         |     |            |
| Nitrobenzene 2840 129 ug/kg 3310 85.7 40.130 2-Methylphenol 2560 129 ug/kg 3310 77.2 40.130 2-Nitrophiline 2570 129 ug/kg 3310 77.8 40.130 2-Nitrophenol 2700 328 ug/kg 3310 77.8 40.130 3-Nitroaniline 2530 129 ug/kg 3310 81.4 40.130 3-Nitroaniline 2530 129 ug/kg 3310 66.7 30.130 4-G-Dinitro-2-methylphenol 2240 328 ug/kg 3310 67.7 30.130 4-Bromophenyl phenyl ether 2050 129 ug/kg 3310 67.7 30.130 4-Chloro-3-methylphenol 2280 129 ug/kg 3310 61.9 40.130 4-Chlorophenyl phenyl ether 2220 129 ug/kg 3310 67.1 40.130 4-Nitroaniline 2680 129 ug/kg 3310 67.1 40.130 4-Nitrophenol 2680 129 ug/kg 3310 67.1 40.130 4-Nitrophenol 2680 129 ug/kg 3310 60.4 40.130 4-Caeaphthylene 2610 129 ug/kg 3310 60.6 40.130 4-Caeaphthylene 2610 129 ug/kg 3310 60.6 40.130 4-Caeaphthylene 2610 129 ug/kg 3310 60.6 40.130 4-Caeaphthylene 260 129 ug/kg 3310 60.6 40.130 4-Caeaphthylene 260 129 ug/kg 3310 60.6 40.130 4-Caeaphthylene 260 129 ug/kg 3310 78.8 40.130 4-Caeaphthylene 260 129 ug/kg 3310 78.4 40.130                                                                                                                                                                           | 2-Chlorophenol              | 3130               | 129                    | ug/kg | 3310           |                  | 94.5        | 40-130         |     |            |
| 2-Methylphenol       2560       129       ug/kg       3310       77.2       40-130         2-Nitroaniline       2570       129       ug/kg       3310       77.8       40-130         2-Nitrophenol       2700       328       ug/kg       3310       61.4       40-130         3-Nitroaniline       2530       129       ug/kg       3310       67.7       30-130         4-Bromophenyl phenyl ether       2200       129       ug/kg       3310       61.9       40-130         4-Chloro-3-methylphenol       2280       129       ug/kg       3310       61.9       40-130         4-Chloro-3-methylphenyl ether       2220       129       ug/kg       3310       67.1       40-130         4-Chloro-3-methylphenyl ether       2220       129       ug/kg       3310       67.1       40-130         4-Chloro-3-methylphenyl ether       2220       129       ug/kg       3310       67.1       40-130         4-Nitrophenyl phenyl ether       2220       129       ug/kg       3310       66.6       40-130         4-Nitrophenol       2360       129       ug/kg       3310       66.6       40-130         Acenaphthylene       2610       129                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2-Methylnaphthalene         | 2310               | 129                    | ug/kg | 3310           |                  | 69.6        | 40-130         |     |            |
| 2-Nitroaniline 2570 129 ug/kg 3310 77.8 40-130 2-Nitrophenol 2700 328 ug/kg 3310 81.4 40-130 3-Nitroaniline 2530 129 ug/kg 3310 76.3 40-130 4-G-Dinitro-2-methylphenol 2240 328 ug/kg 3310 67.7 30-130 4-Bromophenyl phenyl ether 2050 129 ug/kg 3310 61.9 40-130 4-Chloro-3-methylphenol 2280 129 ug/kg 3310 68.8 40-130 4-Chlorophenyl phenyl ether 2220 129 ug/kg 3310 67.1 40-130 4-Nitroaniline 2660 129 ug/kg 3310 67.1 40-130 4-Nitrophenol 2260 129 ug/kg 3310 67.1 40-130 4-Nitrophenol 2360 328 ug/kg 3310 67.1 40-130 4-Nitrophenol 2360 328 ug/kg 3310 66.6 40-130 4-Nitrophenol 2360 328 ug/kg 3310 66.6 40-130 4-Chaphthene 210 129 ug/kg 3310 66.6 40-130 4-Chaphthylphenol 2210 129 ug/kg 3310 66.6 40-130 4-Chaphthylphenol 2210 129 ug/kg 3310 88.8 40-130 4-Renaphthylene 2650 129 ug/kg 3310 88.8 40-130 4-Renaphthylene 2770 129 ug/kg 3310 88.8 40-130 4-Renapolanthracene 2950 129 ug/kg 3310 89.0 40-130 4-Renapolanthracene 3000 129 ug/kg 3310 89.0 40-130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Nitrobenzene                | 2840               | 129                    | ug/kg | 3310           |                  | 85.7        | 40-130         |     |            |
| 2-Nitroaniline 2570 129 ug/kg 3310 77.8 40-130 2-Nitrophenol 2700 328 ug/kg 3310 81.4 40-130 3-Nitroaniline 2530 129 ug/kg 3310 76.3 40-130 4-G-Dinitro-2-methylphenol 2240 328 ug/kg 3310 67.7 30-130 4-Bromophenyl phenyl ether 2050 129 ug/kg 3310 61.9 40-130 4-Chloro-3-methylphenol 2280 129 ug/kg 3310 68.8 40-130 4-Chlorophenyl phenyl ether 2220 129 ug/kg 3310 67.1 40-130 4-Nitroaniline 2660 129 ug/kg 3310 67.1 40-130 4-Nitrophenol 2260 129 ug/kg 3310 67.1 40-130 4-Nitrophenol 2360 328 ug/kg 3310 67.1 40-130 4-Nitrophenol 2360 328 ug/kg 3310 66.6 40-130 4-Cenaphthene 2210 129 ug/kg 3310 66.6 40-130 Acenaphthylene 210 129 ug/kg 3310 66.6 40-130 Acenaphthylene 2610 129 ug/kg 3310 78.8 40-130 Anthracene 2940 129 ug/kg 3310 78.8 40-130 Benzo(a)pyrene 2770 129 ug/kg 3310 78.9 40-130 Benzo(a)pyrene 2770 129 ug/kg 3310 75.4 40-130 Benzo(b)fluoranthene 2950 129 ug/kg 3310 75.4 40-130 Benzo(g)h,i)perylene 2500 129 ug/kg 3310 75.4 40-130 Benzo(g)h,i)perylene 3090 129 ug/kg 3310 75.4 40-130 Benzo(k)fluoranthene 3090 129 ug/kg 3310 75.4 40-130 Benzo(k)fluoranthene 3090 129 ug/kg 3310 75.4 40-130 Benzo(k)fluoranthene 3090 129 ug/kg 3310 75.4 40-130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2-Methylphenol              |                    |                        | ug/kg | 3310           |                  | 77.2        | 40-130         |     |            |
| 2-Nitrophenol       2700       328       ug/kg       3310       81.4       40-130         3-Nitroaniline       2530       129       ug/kg       3310       76.3       40-130         4,6-Dinitro-2-methylphenol       2240       328       ug/kg       3310       67.7       30-130         4-Bromophenyl phenyl ether       2050       129       ug/kg       3310       68.8       40-130         4-Chloro-3-methylphenol       2280       129       ug/kg       3310       68.8       40-130         4-Chlorophenyl phenyl ether       2220       129       ug/kg       3310       67.1       40-130         4-Nitroaniline       2680       129       ug/kg       3310       80.9       40-130         4-Nitrophenol       2360       328       ug/kg       3310       71.4       40-130         4-Chaphthylene       2210       129       ug/kg       3310       76.6       40-130         Acenaphthylene       2610       129       ug/kg       3310       78.8       40-130         Anthracene       2940       129       ug/kg       3310       79.9       40-130         Benzo(a)pyrene       2770       129       ug/kg       3310                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                             |                    |                        |       |                |                  |             |                |     |            |
| 3-Nitroaniline       2530       129       ug/kg       3310       76.3       40-130         4,6-Dinitro-2-methylphenol       2240       328       ug/kg       3310       67.7       30-130         4-Bromophenyl phenyl ether       2050       129       ug/kg       3310       61.9       40-130         4-Chloro-3-methylphenol       2280       129       ug/kg       3310       68.8       40-130         4-Chlorophenyl phenyl ether       2220       129       ug/kg       3310       67.1       40-130         4-Nitroaniline       2680       129       ug/kg       3310       80.9       40-130         4-Nitrophenol       2360       328       ug/kg       3310       71.4       40-130         4-Necenaphthene       2210       129       ug/kg       3310       78.8       40-130         Acenaphthylene       2610       129       ug/kg       3310       78.8       40-130         Anthracene       2940       129       ug/kg       3310       78.8       40-130         Benzo(a)anthracene       250       129       ug/kg       3310       83.5       40-130         Benzo(b)fluoranthene       2950       129       ug/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                             |                    |                        |       |                |                  |             |                |     |            |
| 4,6-Dinitro-2-methylphenol       2240       328       ug/kg       3310       67.7       30-130         4-Bromophenyl phenyl ether       2050       129       ug/kg       3310       61.9       40-130         4-Chloro-3-methylphenol       2280       129       ug/kg       3310       68.8       40-130         4-Chlorophenyl phenyl ether       2220       129       ug/kg       3310       67.1       40-130         4-Nitroaniline       2680       129       ug/kg       3310       80.9       40-130         4-Nitrophenol       2360       328       ug/kg       3310       66.6       40-130         4-Nitrophenol       2360       328       ug/kg       3310       66.6       40-130         4-Romaphthylene       2210       129       ug/kg       3310       66.6       40-130         Acenaphthylene       2610       129       ug/kg       3310       78.8       40-130         Anthracene       2940       129       ug/kg       3310       79.9       40-130         Benzo(a)anthracene       2650       129       ug/kg       3310       83.5       40-130         Benzo(b)fluoranthene       2950       129       ug/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                             |                    |                        |       |                |                  |             |                |     |            |
| 4-Bromophenyl phenyl ether 2050 129 ug/kg 3310 61.9 40-130 4-Chloro-3-methylphenol 2280 129 ug/kg 3310 67.1 40-130 4-Chlorophenyl phenyl ether 2220 129 ug/kg 3310 67.1 40-130 4-Nitroaniline 2680 129 ug/kg 3310 80.9 40-130 4-Nitrophenol 2360 328 ug/kg 3310 71.4 40-130 4-Nitrophenol Acenaphthene 2210 129 ug/kg 3310 71.4 40-130 Acenaphthene 2210 129 ug/kg 3310 66.6 40-130 Acenaphthylene 2610 129 ug/kg 3310 78.8 40-130 Anthracene 2940 129 ug/kg 3310 78.8 40-130 Anthracene 2940 129 ug/kg 3310 79.9 40-130 Benzo(a)anthracene 2650 129 ug/kg 3310 79.9 40-130 Benzo(a)pyrene 2770 129 ug/kg 3310 83.5 40-130 Benzo(b)fluoranthene 2950 129 ug/kg 3310 89.0 40-130 Benzo(g,h,i)perylene 2500 129 ug/kg 3310 75.4 40-130 Benzo(k)fluoranthene 3090 129 ug/kg 3310 93.2 40-130 Benzo(k)fluoranthene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                             |                    |                        |       |                |                  |             |                |     |            |
| 4-Chloro-3-methylphenol       2280       129       ug/kg       3310       68.8       40-130         4-Chlorophenyl phenyl ether       2220       129       ug/kg       3310       67.1       40-130         4-Nitrophenol       2680       129       ug/kg       3310       80.9       40-130         4-Nitrophenol       2360       328       ug/kg       3310       66.6       40-130         Acenaphthene       2210       129       ug/kg       3310       66.6       40-130         Acenaphthylene       2610       129       ug/kg       3310       88.8       40-130         Anthracene       2940       129       ug/kg       3310       88.8       40-130         Benzo(a)anthracene       2650       129       ug/kg       3310       79.9       40-130         Benzo(a)pyrene       2770       129       ug/kg       3310       83.5       40-130         Benzo(b)fluoranthene       2950       129       ug/kg       3310       89.0       40-130         Benzo(k)fluoranthene       3090       129       ug/kg       3310       93.2       40-130         Benzo(k)fluoranthene       3090       129       ug/kg       3310 <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                             |                    |                        |       |                |                  |             |                |     |            |
| 4-Chlorophenyl phenyl ether 2220 129 ug/kg 3310 67.1 40-130 4-Nitroaniline 2680 129 ug/kg 3310 80.9 40-130 4-Nitrophenol 2360 328 ug/kg 3310 71.4 40-130 Acenaphthene 2210 129 ug/kg 3310 66.6 40-130 Acenaphthylene 2610 129 ug/kg 3310 78.8 40-130 Anthracene 2940 129 ug/kg 3310 88.8 40-130 Benzo(a)anthracene 2650 129 ug/kg 3310 79.9 40-130 Benzo(a)pyrene 2770 129 ug/kg 3310 79.9 40-130 Benzo(b)fluoranthene 2950 129 ug/kg 3310 89.0 40-130 Benzo(b,hi)perylene 2500 129 ug/kg 3310 89.0 40-130 Benzo(b,hi)perylene 3090 129 ug/kg 3310 75.4 40-130 Benzo(k)fluoranthene 3090 129 ug/kg 3310 93.2 40-130 Benzo(k)fluoranthene 3090 129 ug/kg 3310 93.2 40-130 Benzo(k)fluoranthene 3090 129 ug/kg 3310 93.2 40-130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | , , , ,                     |                    |                        |       |                |                  |             |                |     |            |
| 4-Nitroaniline       2680       129       ug/kg       3310       80.9       40-130         4-Nitrophenol       2360       328       ug/kg       3310       71.4       40-130         Acenaphthene       2210       129       ug/kg       3310       66.6       40-130         Acenaphthylene       2610       129       ug/kg       3310       78.8       40-130         Anthracene       2940       129       ug/kg       3310       88.8       40-130         Benzo(a)anthracene       2650       129       ug/kg       3310       79.9       40-130         Benzo(a)pyrene       2770       129       ug/kg       3310       89.0       40-130         Benzo(b)fluoranthene       2950       129       ug/kg       3310       89.0       40-130         Benzo(k)fluoranthene       2500       129       ug/kg       3310       75.4       40-130         Benzo(k)fluoranthene       3090       129       ug/kg       3310       93.2       40-130         Benzo(k)fluoranthene       3090       129       ug/kg       3310       93.2       40-130         Benzo(k)fluoranthene       20       ug/kg       3310       93.2 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                             |                    |                        |       |                |                  |             |                |     |            |
| 4-Nitrophenol       2360       328       ug/kg       3310       71.4       40-130         Acenaphthene       2210       129       ug/kg       3310       66.6       40-130         Acenaphthylene       2610       129       ug/kg       3310       78.8       40-130         Anthracene       2940       129       ug/kg       3310       88.8       40-130         Benzo(a)anthracene       2650       129       ug/kg       3310       79.9       40-130         Benzo(a)pyrene       2770       129       ug/kg       3310       83.5       40-130         Benzo(b)fluoranthene       2950       129       ug/kg       3310       89.0       40-130         Benzo(g,h,i)perylene       2500       129       ug/kg       3310       75.4       40-130         Benzo(k)fluoranthene       3090       129       ug/kg       3310       93.2       40-130         Benzo(k)fluoranthene       20       ug/kg       3310       75.7       40-130         Benzo(k)fluoranthene       20       ug/kg       828       75.7       40-130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                             |                    |                        |       |                |                  |             |                |     |            |
| Acenaphthene       2210       129       ug/kg       3310       66.6       40-130         Acenaphthylene       2610       129       ug/kg       3310       78.8       40-130         Anthracene       2940       129       ug/kg       3310       88.8       40-130         Benzo(a)anthracene       2650       129       ug/kg       3310       79.9       40-130         Benzo(a)pyrene       2770       129       ug/kg       3310       83.5       40-130         Benzo(b)fluoranthene       2950       129       ug/kg       3310       89.0       40-130         Benzo(g,h,i)perylene       2500       129       ug/kg       3310       75.4       40-130         Benzo(k)fluoranthene       3090       129       ug/kg       3310       93.2       40-130         Biphenyl       626       20       ug/kg       828       75.7       40-130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                             |                    |                        |       |                |                  |             |                |     |            |
| Acenaphthylene       2610       129       ug/kg       3310       78.8       40-130         Anthracene       2940       129       ug/kg       3310       88.8       40-130         Benzo(a)anthracene       2650       129       ug/kg       3310       79.9       40-130         Benzo(a)pyrene       2770       129       ug/kg       3310       83.5       40-130         Benzo(b)fluoranthene       2950       129       ug/kg       3310       89.0       40-130         Benzo(g,h,i)perylene       2500       129       ug/kg       3310       75.4       40-130         Benzo(k)fluoranthene       3090       129       ug/kg       3310       93.2       40-130         Biphenyl       626       20       ug/kg       828       75.7       40-130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                             |                    |                        |       |                |                  |             |                |     |            |
| Anthracene       2940       129       ug/kg       3310       88.8       40-130         Benzo(a)anthracene       2650       129       ug/kg       3310       79.9       40-130         Benzo(a)pyrene       2770       129       ug/kg       3310       83.5       40-130         Benzo(b)fluoranthene       2950       129       ug/kg       3310       89.0       40-130         Benzo(g,h,i)perylene       2500       129       ug/kg       3310       75.4       40-130         Benzo(k)fluoranthene       3090       129       ug/kg       3310       93.2       40-130         Biphenyl       626       20       ug/kg       828       75.7       40-130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ·                           |                    |                        |       |                |                  |             |                |     |            |
| Benzo(a)anthracene     2650     129     ug/kg     3310     79.9     40-130       Benzo(a)pyrene     2770     129     ug/kg     3310     83.5     40-130       Benzo(b)fluoranthene     2950     129     ug/kg     3310     89.0     40-130       Benzo(g,h,i)perylene     2500     129     ug/kg     3310     75.4     40-130       Benzo(k)fluoranthene     3090     129     ug/kg     3310     93.2     40-130       Biphenyl     626     20     ug/kg     828     75.7     40-130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                             |                    |                        |       |                |                  |             |                |     |            |
| Benzo(a)pyrene     2770     129     ug/kg     3310     83.5     40-130       Benzo(b)fluoranthene     2950     129     ug/kg     3310     89.0     40-130       Benzo(g,h,i)perylene     2500     129     ug/kg     3310     75.4     40-130       Benzo(k)fluoranthene     3090     129     ug/kg     3310     93.2     40-130       Biphenyl     626     20     ug/kg     828     75.7     40-130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                             |                    |                        |       |                |                  |             |                |     |            |
| Benzo(b)fluoranthene     2950     129     ug/kg     3310     89.0     40-130       Benzo(g,h,i)perylene     2500     129     ug/kg     3310     75.4     40-130       Benzo(k)fluoranthene     3090     129     ug/kg     3310     93.2     40-130       Biphenyl     626     20     ug/kg     828     75.7     40-130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                             |                    |                        |       |                |                  |             |                |     |            |
| Benzo(g,h,i)perylene     2500     129     ug/kg     3310     75.4     40-130       Benzo(k)fluoranthene     3090     129     ug/kg     3310     93.2     40-130       Biphenyl     626     20     ug/kg     828     75.7     40-130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                             |                    |                        |       |                |                  |             |                |     |            |
| Benzo(k)fluoranthene         3090         129         ug/kg         3310         93.2         40-130           Biphenyl         626         20         ug/kg         828         75.7         40-130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                             |                    |                        |       |                |                  |             |                |     |            |
| Biphenyl 626 20 ug/kg 828 75.7 40-130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                             |                    |                        |       |                |                  |             |                |     |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |                    |                        |       |                |                  |             |                |     |            |
| Bis(2-chloroethoxy)methane Soil Sampling Report Green Meadow School April 2024 86.8 40-130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                             |                    |                        |       |                |                  |             |                |     |            |

|                                 |                 |         | Reporting |       | Spike        | Source       |              | %REC   |     | RPD  |
|---------------------------------|-----------------|---------|-----------|-------|--------------|--------------|--------------|--------|-----|------|
| Analyte                         | Result          | Qual    | Limit     | Units | Level        | Result       | %REC         | Limits | RPD | Limi |
| Batch: B4B1213 - 1_Semivola     | tiles Extractio | ns (Col | ntinued)  |       |              |              |              |        |     |      |
| LCS (B4B1213-BS1)               |                 | •       | _         | Pr    | epared: 02/2 | 8/24 Analyze | ed: 02/29/24 |        |     |      |
| Bis(2-chloroethyl)ether         | 3100            |         | 129       | ug/kg | 3310         |              | 93.5         | 40-130 |     |      |
| Bis(2-chloroisopropyl)ether     | 3600            |         | 129       | ug/kg | 3310         |              | 109          | 40-130 |     |      |
| Bis(2-ethylhexyl)phthalate      | 2960            |         | 397       | ug/kg | 3310         |              | 89.3         | 40-130 |     |      |
| Butyl benzyl phthalate          | 2870            |         | 129       | ug/kg | 3310         |              | 86.8         | 40-130 |     |      |
| Chrysene                        | 2860            |         | 129       | ug/kg | 3310         |              | 86.3         | 40-130 |     |      |
| Di-n-octyl phthalate            | 2150            |         | 199       | ug/kg | 3310         |              | 64.9         | 40-130 |     |      |
| Dibenz(a,h)anthracene           | 2490            |         | 129       | ug/kg | 3310         |              | 75.3         | 40-130 |     |      |
| Dibenzofuran                    | 2570            |         | 129       | ug/kg | 3310         |              | 77.6         | 40-130 |     |      |
| Diethyl phthalate               | 2730            |         | 129       | ug/kg | 3310         |              | 82.5         | 40-130 |     |      |
| Dimethyl phthalate              | 2500            |         | 328       | ug/kg | 3310         |              | 75.5         | 40-130 |     |      |
| Di-n-butyl phthalate            | 3200            |         | 199       | ug/kg | 3310         |              | 96.6         | 40-130 |     |      |
| Fluoranthene                    | 2990            |         | 129       | ug/kg | 3310         |              | 90.3         | 40-130 |     |      |
| Fluorene                        | 2510            |         | 129       | ug/kg | 3310         |              | 75.7         | 40-130 |     |      |
| Hexachlorobenzene               | 2570            |         | 129       | ug/kg | 3310         |              | 77.7         | 40-130 |     |      |
| Hexachlorobutadiene             | 2580            |         | 129       | ug/kg | 3310         |              | 78.0         | 40-130 |     |      |
| Hexachlorocyclopentadiene       | 2530            |         | 328       | ug/kg | 3310         |              | 76.3         | 40-130 |     |      |
| Hexachloroethane                | 2970            |         | 129       | ug/kg | 3310         |              | 89.7         | 40-130 |     |      |
| Indeno(1,2,3-cd)pyrene          | 2600            |         | 129       | ug/kg | 3310         |              | 78.5         | 40-130 |     |      |
| Isophorone                      | 3010            |         | 129       | ug/kg | 3310         |              | 90.8         | 40-130 |     |      |
| Naphthalene                     | 2360            |         | 129       | ug/kg | 3310         |              | 71.2         | 40-130 |     |      |
| N-Nitrosodimethylamine          | 2890            |         | 129       | ug/kg | 3310         |              | 87.4         | 40-130 |     |      |
| N-Nitrosodi-n-propylamine       | 2830            |         | 129       | ug/kg | 3310         |              | 85.5         | 40-130 |     |      |
| N-Nitrosodiphenylamine          | 2750            |         | 129       | ug/kg | 3310         |              | 82.9         | 40-130 |     |      |
| Pentachlorophenol               | 2410            |         | 328       | ug/kg | 3310         |              | 72.8         | 15-140 |     |      |
| Phenanthrene                    | 3070            |         | 129       | ug/kg | 3310         |              | 92.6         | 40-130 |     |      |
| Pyrene                          | 3010            |         | 129       | ug/kg | 3310         |              | 91.0         | 40-130 |     |      |
| m&p-Cresol                      | 2500            |         | 258       | ug/kg | 3310         |              | 75.5         | 40-130 |     |      |
| Surrogate: Nitrobenzene-d5      |                 |         | 4160      | ug/kg | 6620         |              | 62.8         | 30-126 |     |      |
| Surrogate: p-Terphenyl-d14      |                 |         | 5200      | ug/kg | 6620         |              | 78.6         | 47-130 |     |      |
| Surrogate: 2-Fluorobiphenyl     |                 |         | 3730      | ug/kg | 6620         |              | 56.3         | 34-130 |     |      |
| Surrogate: Phenol-d6            |                 |         | 4630      | ug/kg | 6620         |              | 70.0         | 30-130 |     |      |
| Surrogate: 2,4,6-Tribromophenol |                 |         | 3910      | ug/kg | 6620         |              | 59.0         | 30-130 |     |      |
| Surrogate: 2-Fluorophenol       |                 |         | 5100      | ug/kg | 6620         |              | 77.0         | 30-130 |     |      |

| Analyte                     | Result              | Reporting<br>Qual Limit | Units          | Spike<br>Level | Source<br>Result | %REC        | %REC<br>Limits | RPD    | RPI<br>Lim |
|-----------------------------|---------------------|-------------------------|----------------|----------------|------------------|-------------|----------------|--------|------------|
| atch: B4B1213 - 1_Semi      | olatiles Extraction | s (Continued)           |                |                |                  |             |                |        |            |
| -CS Dup (B4B1213-BSD1)      |                     |                         | Р              | repared: 02/2  | 28/24 Analyze    | d: 03/01/24 |                |        |            |
| 1,2,4-Trichlorobenzene      | 2270                | 129                     | ug/kg          | 3310           | •                | 68.7        | 40-130         | 0.0874 | 30         |
| 1,2-Dichlorobenzene         | 2550                | 129                     | ug/kg          | 3310           |                  | 77.0        | 40-130         | 19.9   | 30         |
| 1,3-Dichlorobenzene         | 2480                | 129                     | ug/kg          | 3310           |                  | 75.0        | 40-130         | 18.4   | 30         |
| 1,4-Dichlorobenzene         | 2260                | 129                     | ug/kg          | 3310           |                  | 68.4        | 40-130         | 15.5   | 30         |
| Phenol                      | 2680                | 129                     | ug/kg          | 3310           |                  | 81.0        | 40-130         | 22.3   | 30         |
| 2,4,5-Trichlorophenol       | 2640                | 129                     | ug/kg          | 3310           |                  | 79.6        | 40-130         | 6.67   | 30         |
| 2,4,6-Trichlorophenol       | 2540                | 129                     | ug/kg          | 3310           |                  | 76.6        | 40-130         | 4.71   | 30         |
| 2,4-Dichlorophenol          | 2640                | 129                     | ug/kg          | 3310           |                  | 79.8        | 40-130         | 1.07   | 30         |
| 2,4-Dimethylphenol          | 2420                | 328                     | ug/kg          | 3310           |                  | 73.1        | 40-130         | 8.87   | 30         |
| 2,4-Dinitrophenol           | 2130                | 328                     | ug/kg          | 3310           |                  | 64.2        | 15-140         | 3.13   | 30         |
| 2,4-Dinitrotoluene          | 2740                | 129                     | ug/kg          | 3310           |                  | 82.7        | 40-130         | 5.87   | 30         |
| 2,6-Dinitrotoluene          | 2730                | 129                     | ug/kg          | 3310           |                  | 82.3        | 40-130         | 1.76   | 30         |
| 2-Chloronaphthalene         | 2740                | 129                     | ug/kg          | 3310           |                  | 82.8        | 40-130         | 3.82   | 30         |
| 2-Chlorophenol              | 2630                | 129                     | ug/kg          | 3310           |                  | 79.3        | 40-130         | 17.4   | 30         |
| 2-Methylnaphthalene         | 2250                | 129                     | ug/kg          | 3310           |                  | 67.9        | 40-130         | 2.50   | 30         |
| Nitrobenzene                | 2800                | 129                     | ug/kg          | 3310           |                  | 84.5        | 40-130         | 1.41   | 30         |
| 2-Methylphenol              | 2170                | 129                     | ug/kg          | 3310           |                  | 65.6        | 40-130         | 16.3   | 30         |
| 2-Nitroaniline              | 2600                | 129                     | ug/kg          | 3310           |                  | 78.5        | 40-130         | 0.973  | 30         |
| 2-Nitrophenol               | 2540                | 328                     | ug/kg          | 3310           |                  | 76.8        | 40-130         | 5.89   | 30         |
| 3-Nitroaniline              | 2660                | 129                     | ug/kg          | 3310           |                  | 80.5        | 40-130         | 5.31   | 3(         |
| 4,6-Dinitro-2-methylphenol  | 2700                | 328                     | ug/kg          | 3310           |                  | 81.5        | 30-130         | 18.5   | 3(         |
| 4-Bromophenyl phenyl ether  | 2240                | 129                     | ug/kg          | 3310           |                  | 67.6        | 40-130         | 8.81   | 30         |
| 4-Chloro-3-methylphenol     | 2240                | 129                     | ug/kg<br>ug/kg | 3310           |                  | 66.9        | 40-130         | 2.80   | 3(         |
| · ·                         |                     |                         | ug/kg<br>ug/kg |                |                  |             |                |        |            |
| 4-Chlorophenyl phenyl ether | 2260                | 129<br>129              | ug/kg<br>ug/kg | 3310           |                  | 68.4        | 40-130         | 1.92   | 30         |
| 4-Nitroaniline              | 1970                |                         |                | 3310           |                  | 59.5        | 40-130         | 30.5   | 30         |
| 4-Nitrophenol               | 2680                | 328                     | ug/kg          | 3310           |                  | 80.9        | 40-130         | 12.4   | 30         |
| Acenaphthene                | 2220                | 129                     | ug/kg          | 3310           |                  | 67.1        | 40-130         | 0.688  | 30         |
| Acenaphthylene              | 2690                | 129                     | ug/kg          | 3310           |                  | 81.3        | 40-130         | 3.10   | 30         |
| Anthracene                  | 3050                | 129                     | ug/kg          | 3310           |                  | 92.1        | 40-130         | 3.58   | 30         |
| Benzo(a)anthracene          | 2670                | 129                     | ug/kg          | 3310           |                  | 80.5        | 40-130         | 0.773  | 30         |
| Benzo(a)pyrene              | 2920                | 129                     | ug/kg          | 3310           |                  | 88.2        | 40-130         | 5.43   | 30         |
| Benzo(b)fluoranthene        | 3050                | 129                     | ug/kg          | 3310           |                  | 92.0        | 40-130         | 3.27   | 30         |
| Benzo(g,h,i)perylene        | 2800                | 129                     | ug/kg          | 3310           |                  | 84.5        | 40-130         | 11.4   | 30         |
| Benzo(k)fluoranthene        | 3270                | 129                     | ug/kg          | 3310           |                  | 98.8        | 40-130         | 5.83   | 30         |
| Biphenyl                    | 663                 | 20                      | ug/kg          | 828            |                  | 80.1        | 40-130         | 5.65   | 30         |
| Bis(2-chloroethoxy)methane  | 2890                | 129                     | ug/kg          | 3310           |                  | 87.3        | 40-130         | 0.643  | 30         |
| Bis(2-chloroethyl)ether     | 2740                | 129                     | ug/kg          | 3310           |                  | 82.8        | 40-130         | 12.1   | 30         |
| Bis(2-chloroisopropyl)ether | 3070                | 129                     | ug/kg          | 3310           |                  | 92.8        | 40-130         | 15.9   | 30         |
| Bis(2-ethylhexyl)phthalate  | 3030                | 397                     | ug/kg          | 3310           |                  | 91.4        | 40-130         | 2.30   | 30         |
| Butyl benzyl phthalate      | 2900                | 129                     | ug/kg          | 3310           |                  | 87.5        | 40-130         | 0.895  | 30         |
| Chrysene                    | 2930                | 129                     | ug/kg          | 3310           |                  | 88.6        | 40-130         | 2.63   | 30         |
| Di-n-octyl phthalate        | 3290                | 199                     | ug/kg          | 3310           |                  | 99.4        | 40-130         | 42.1   | 30         |
| Dibenz(a,h)anthracene       | 2610                | 129                     | ug/kg          | 3310           |                  | 78.8        | 40-130         | 4.46   | 30         |
| Dibenzofuran                | 2720                | 129                     | ug/kg          | 3310           |                  | 82.1        | 40-130         | 5.66   | 30         |
| Diethyl phthalate           | 2830                | 129                     | ug/kg          | 3310           |                  | 85.6        | 40-130         | 3.64   | 30         |
| Dimethyl phthalate          | 2580                | 328                     | ug/kg          | 3310           |                  | 78.0        | 40-130         | 3.23   | 30         |
| Di-n-butyl phthalate        | 3310                | 199                     | ug/kg          | 3310           |                  | 99.9        | 40-130         | 3.38   | 30         |
| Fluoranthene                | 3080                | 129                     | ug/kg          | 3310           |                  | 93.0        | 40-130         | 2.92   | 30         |
| Fluorene                    | 2640                | 129                     | ug/kg          | 3310           |                  | 79.8        | 40-130         | 5.28   | 30         |
| Hexachlorobenzene           | 2790                | 129                     | ug/kg          | 3310           |                  | 84.1        | 40-130         | 8.01   | 30         |
| Hexachlorobutadiene         | 2510                | 129                     | ug/kg          | 3310           |                  | 75.8        | 40-130         | 2.76   | 30         |
| Hexachlorocyclopentadiene   | 2640                | 328                     | ug/kg          | 3310           |                  | 79.8        | 40-130         | 4.46   | 30         |
| Hexachloroethane            | 2460                | 129                     | ug/kg          | 3310           |                  | 74.3        | 40-130         | 18.8   | 3(         |
| Indeno(1,2,3-cd)pyrene      | 2730                | 129                     | ug/kg          | 3310           |                  | 82.3        | 40-130         | 4.68   | 30         |
| Isophorone                  | 2960                | 129                     | ug/kg          | 3310           |                  | 89.3        | 40-130         | 1.75   | 30         |
| Naphthalene                 | 2400                | 129                     | ug/kg<br>ug/kg | 3310           |                  | 72.5        | 40-130         | 1.75   | 30         |
| марнинание                  | Soil Samplin        |                         |                |                |                  |             | 40-130         | 1.04   | 3(         |

| Town of Maynard                                        |
|--------------------------------------------------------|
| Green Meadow Elementary School - Early Steates Cantrol |
| (Continued)                                            |

06/12/2024 Addendum 2

|                                 |                  |          | Reporting   |       | Spike        | Source       |             | %REC   |      | RPD   |
|---------------------------------|------------------|----------|-------------|-------|--------------|--------------|-------------|--------|------|-------|
| Analyte                         | Result           | Qual     | Limit       | Units | Level        | Result       | %REC        | Limits | RPD  | Limit |
| Batch: B4B1213 - 1_Semivola     | atiles Extractio | ons (Col | ntinued)    |       |              |              |             |        |      |       |
| LCS Dup (B4B1213-BSD1)          |                  |          |             | Pr    | epared: 02/2 | 8/24 Analyze | d: 03/01/24 |        |      |       |
| N-Nitrosodi-n-propylamine       | 2530             |          | 129         | ug/kg | 3310         |              | 76.3        | 40-130 | 11.4 | 30    |
| N-Nitrosodiphenylamine          | 2890             |          | 129         | ug/kg | 3310         |              | 87.4        | 40-130 | 5.24 | 30    |
| Pentachlorophenol               | 2620             |          | 328         | ug/kg | 3310         |              | 79.3        | 15-140 | 8.44 | 30    |
| Phenanthrene                    | 3230             |          | 129         | ug/kg | 3310         |              | 97.5        | 40-130 | 5.11 | 30    |
| Pyrene                          | 3050             |          | 129         | ug/kg | 3310         |              | 92.1        | 40-130 | 1.20 | 30    |
| m&p-Cresol                      | 2270             |          | 258         | ug/kg | 3310         |              | 68.5        | 40-130 | 9.73 | 30    |
| Surrogate: Nitrobenzene-d5      |                  |          | 4090        | ug/kg | 6620         |              | 61.8        | 30-126 |      |       |
| Surrogate: p-Terphenyl-d14      |                  |          | 5160        | ug/kg | 6620         |              | 77.9        | 47-130 |      |       |
| Surrogate: 2-Fluorobiphenyl     |                  |          | <i>3750</i> | ug/kg | 6620         |              | 56.7        | 34-130 |      |       |
| Surrogate: Phenol-d6            |                  |          | 3870        | ug/kg | 6620         |              | 58.5        | 30-130 |      |       |
| Surrogate: 2,4,6-Tribromophenol |                  |          | 4140        | ug/kg | 6620         |              | 62.6        | 30-130 |      |       |
| Surrogate: 2-Fluorophenol       |                  |          | 4220        | ug/kg | 6620         |              | 63.8        | 30-130 |      |       |

| Town of Maynard                        |             |
|----------------------------------------|-------------|
| Green Meadow Elementary School - Early | (Continued) |

06/12/2024 Addendum 2

| <b>Polychlorinated</b> | <b>Biphenyls</b> | (PCBs) |
|------------------------|------------------|--------|
|------------------------|------------------|--------|

|                                                   |              |      | Reporting |       | Spike        | Source       |             | %REC     |      | RPD   |
|---------------------------------------------------|--------------|------|-----------|-------|--------------|--------------|-------------|----------|------|-------|
| Analyte                                           | Result       | Qual | Limit     | Units | Level        | Result       | %REC        | Limits   | RPD  | Limit |
| Batch: B4B1201 - 1_Semivolatil                    | es Extractio | ons  |           |       |              |              |             |          |      |       |
| Blank (B4B1201-BLK1)                              |              |      |           | Pr    | epared: 02/2 | 8/24 Analyze | d: 03/01/24 |          |      |       |
| Aroclor-1016                                      | ND           |      | 66        | ug/kg |              |              |             |          |      |       |
| Aroclor-1221                                      | ND           |      | 66        | ug/kg |              |              |             |          |      |       |
| Aroclor-1232                                      | ND           |      | 66        | ug/kg |              |              |             |          |      |       |
| Aroclor-1242                                      | ND           |      | 66        | ug/kg |              |              |             |          |      |       |
| Aroclor-1248                                      | ND           |      | 66        | ug/kg |              |              |             |          |      |       |
| Aroclor-1254                                      | ND           |      | 66        | ug/kg |              |              |             |          |      |       |
| Aroclor-1260                                      | ND           |      | 66        | ug/kg |              |              |             |          |      |       |
| Aroclor-1262                                      | ND           |      | 66        | ug/kg |              |              |             |          |      |       |
| Aroclor-1268                                      | ND           |      | 66        | ug/kg |              |              |             |          |      |       |
| PCBs (Total)                                      | ND           |      | 66        | ug/kg |              |              |             |          |      |       |
| Surrogate: 2,4,5,6-Tetrachloro-m-xylene (TCMX)    |              |      | 8.58      | ug/kg | 13.3         |              | 64.4        | 36.2-130 |      |       |
| Surrogate: Decachlorobiphenyl (DCBP)              |              |      | 7.12      | ug/kg | 13.3         |              | 53.4        | 43.3-130 |      |       |
| LCS (B4B1201-BS1)                                 |              |      |           | Pr    | epared: 02/2 | 8/24 Analyze | d: 03/01/24 |          |      |       |
| Aroclor-1016                                      | 156          |      | 66        | ug/kg | 167          |              | 93.8        | 58.2-125 |      |       |
| Aroclor-1260                                      | 170          |      | 66        | ug/kg | 167          |              | 102         | 65.5-130 |      |       |
| Surrogate: 2,4,5,6-Tetrachloro-m-xylene<br>(TCMX) |              |      | 9.00      | ug/kg | 13.3         |              | 67.5        | 36.2-130 |      |       |
| Surrogate: Decachlorobiphenyl (DCBP)              |              |      | 6.98      | ug/kg | 13.3         |              | 52.4        | 43.3-130 |      |       |
| LCS Dup (B4B1201-BSD1)                            |              |      |           | Pr    | epared: 02/2 | 8/24 Analyze | d: 03/01/24 |          |      |       |
| Aroclor-1016                                      | 170          |      | 66        | ug/kg | 167          |              | 102         | 58.2-125 | 8.40 | 20    |
| Aroclor-1260                                      | 193          |      | 66        | ug/kg | 167          |              | 116         | 65.5-130 | 12.9 | 20    |
| Surrogate: 2,4,5,6-Tetrachloro-m-xylene<br>(TCMX) |              |      | 9.58      | ug/kg | 13.3         |              | 71.9        | 36.2-130 |      |       |
| Surrogate: Decachlorobiphenyl (DCBP)              |              |      | 7.76      | ug/kg | 13.3         |              | 58.2        | 43.3-130 |      |       |

| Town of Maynard Green Meadow Elem Total Petroleum Hydrocarbons | ·                | ol - Ear |                    | Kentrol |                |                  |         |                | <del>/12/202</del><br>endum |              |
|----------------------------------------------------------------|------------------|----------|--------------------|---------|----------------|------------------|---------|----------------|-----------------------------|--------------|
| Analyte                                                        | Result           | Qual     | Reporting<br>Limit | Units   | Spike<br>Level | Source<br>Result | %REC    | %REC<br>Limits | RPD                         | RPD<br>Limit |
| Batch: B4B1186 - 1_Semivola                                    | atiles Extractio | ons      |                    |         |                |                  |         |                |                             |              |
| Blank (B4B1186-BLK1)                                           |                  |          |                    |         | Prepared 8     | & Analyzed: 0    | 2/28/24 |                |                             |              |
| Total Petroleum Hydrocarbons                                   | ND               |          | 27                 | mg/kg   |                |                  |         |                |                             |              |
| Surrogate: Chlorooctadecane                                    |                  |          | 9.08               | mg/kg   | 8.33           |                  | 109     | 50-130         |                             |              |
| LCS (B4B1186-BS1)                                              |                  |          |                    |         | Prepared 8     | & Analyzed: 0    | 2/28/24 |                |                             |              |
| Total Petroleum Hydrocarbons                                   | 583              |          | 27                 | mg/kg   | 667            |                  | 87.5    | 44.7-125       |                             |              |
| Surrogate: Chlorooctadecane                                    |                  |          | 9.39               | mg/kg   | 8.33           |                  | 113     | 50-130         |                             |              |
| LCS Dup (B4B1186-BSD1)                                         |                  |          |                    |         | Prepared 8     | & Analyzed: 0    | 2/28/24 |                |                             |              |
| Total Petroleum Hydrocarbons                                   | 551              |          | 27                 | mg/kg   | 667            |                  | 82.6    | 44.7-125       | 5.71                        | 30           |
| Surrogate: Chlorooctadecane                                    |                  |          | 9.05               | mg/kg   | 8.33           |                  | 109     | 50-130         |                             |              |

06/12/2024 Addendum 2

### Item Definition

Wet Sample results reported on a wet weight basis.

ND Analyte NOT DETECTED at or above the reporting limit.

Town of Maynard

NEW Green Meadow Elementary School Early Site Package

59 Greenhill Street West Warwick, RI 02893 1-888-863-8522



1/5 IN FREE 76/12/2024 Addendum 2

| 1 000 0    |             |        |                  |                                                                                   |         |      |       |            |            |                    | ν,                                                                |
|------------|-------------|--------|------------------|-----------------------------------------------------------------------------------|---------|------|-------|------------|------------|--------------------|-------------------------------------------------------------------|
| 309        |             |        |                  | AME/LOCATION<br>YNARD                                                             |         |      |       |            | P          |                    |                                                                   |
| REPORT T   | O:          | 10/    | 20               | ENV. INC<br>a C LORNEW.com                                                        | AQUMODO | SOLL | OTHER | NO.<br>OF  | PRESERVATI | 4                  | REMARKS                                                           |
| DATE       | TIME        | COMP   | G<br>R<br>A<br>B | SAMPLE I.D.                                                                       | US      |      | R     | CONTAINERS | E          | /c                 | O N N N N N N N N N N N N N N N N N N N                           |
| 2239       |             |        | X                | TP-6                                                                              | •       | X    |       | 3          | Asma       | X                  | X PID 20.1 ppm Y                                                  |
| 2-23-24    |             |        |                  | B-103; 0-6'                                                                       | 0       | 1    |       | 3          | con"       |                    |                                                                   |
| 293/2      | 119:00      |        |                  | B-112; 2-61                                                                       |         | 1    |       | 3          |            | 1                  |                                                                   |
| ' ८        | 11:00       |        |                  |                                                                                   |         |      |       |            |            |                    |                                                                   |
|            |             |        |                  |                                                                                   |         |      |       |            |            |                    |                                                                   |
|            |             |        |                  |                                                                                   |         |      |       |            |            |                    |                                                                   |
|            |             |        |                  |                                                                                   |         |      |       |            |            |                    |                                                                   |
|            |             |        |                  |                                                                                   |         |      |       |            |            |                    |                                                                   |
|            |             |        |                  |                                                                                   |         |      |       |            |            |                    |                                                                   |
| Sampled b  | ed by: (Sig | nature | 1                | Date/Time Received by: (Signature)  23/24 2/M  Date/Time Received by: (Signature) |         |      | 7     | Date/Time  | Tem        | oratory<br>p. rece | Special Instructions: List Specific Detection Limit Requirements: |
| Relinquish | ed by: (Wig | nature |                  | Date/Time Received for Decoratory by: (Signat                                     | 2       |      | 7     | Date/Time  | 15         |                    | Turnaround (Business Days)                                        |

Town of Maynard Green Meadow Elementary School - Early Site Package 06/12/2024 Addendum 2 **MassDEP Analytical Protocol Certification Form** 

| Labo        | ratory Na                           | me: New England                           | d Testing Laboratory                                  | , Inc.                     | Project #: 3096                                   |                                  |
|-------------|-------------------------------------|-------------------------------------------|-------------------------------------------------------|----------------------------|---------------------------------------------------|----------------------------------|
| Proje       | ect Location                        | on: Maynard                               |                                                       |                            | RTN:                                              |                                  |
|             | Form pro<br>B26010                  | vides certification                       | ons for the followin                                  | g data set: list Lab       | oratory Sample ID N                               | lumber(s):                       |
| Matrio      | ces: 🗆 Gi                           | oundwater/Surfac                          | ce Water ⊠ Soil/Se                                    | diment   Drinking          | Water ☐ Air ☐ Oth                                 | er:                              |
| CAM         | Protoco                             | (check all that a                         | apply below):                                         |                            |                                                   |                                  |
| 8260<br>CAM | VOC<br>II A ⊠                       | 7470/7471 Hg<br>CAM III B ⊠               | MassDEP VPH<br>(GC/PID/FID)<br>CAM IV A □             | 8082 PCB<br>CAM V A 🗵      | 9014 Total<br>Cyanide/PAC<br>CAM VI A □           | 6860 Perchlorate<br>CAM VIII B □ |
|             | SVOC<br>II B ⊠                      | 7010 Metals<br>CAM III C □                | MassDEP VPH<br>(GC/MS)<br>CAM IV C □                  | 8081 Pesticides<br>CAM V B | 7196 Hex Cr<br>CAM VI B                           | MassDEP APH<br>CAM IX A □        |
|             | Metals<br>III A ⊠                   | 6020 Metals<br>CAM III D                  | MassDEP EPH<br>CAM IV B □                             | 8151 Herbicides<br>CAM V C | 8330 Explosives<br>CAM VIII A                     | TO-15 VOC<br>CAM IX B □          |
| A           | Affirmativ                          | e Responses to                            | Questions A throug                                    | gh F are required f        | or "Presumptive Ce                                | rtainty" status                  |
| Α           | Custody,                            | properly preserv                          |                                                       |                            | cribed on the Chain-of<br>ld or laboratory, and   |                                  |
| В           |                                     | e analytical method<br>tocol(s) followed? | d(s) and all associated                               | d QC requirements s        | pecified in the selected                          | d ⊠ Yes □ No                     |
| С           |                                     |                                           | e actions and analytica<br>ed for all identified perf |                            | specified in the selected n-conformances?         | d ⊠ Yes □ No                     |
| D           |                                     | Assurance and C                           |                                                       |                            | specified in CAM VII A ition and Reporting o      |                                  |
| E           | <ul><li>a. VPH, modificat</li></ul> | ion(s)? (Refer to the                     | •                                                     | for a list of significant  |                                                   | t Yes No                         |
| F           |                                     |                                           |                                                       |                            | conformances identified Questions A through E)?   |                                  |
| Res         | ponses                              | to Questions G,                           | H and I below are re                                  | equired for "Presu         | mptive Certainty" st                              | atus                             |
| G           | Were the protocol(                  |                                           | or below all CAM repor                                | ting limits specified in   | the selected CAM                                  | ⊠ Yes □ No¹                      |
|             |                                     |                                           | ve "Presumptive Certains<br>described in 310 CMR      |                            | cessarily meet the data ι<br>SC-07-350.           | usability and                    |
| Н           | Were all                            | QC performance st                         | andards specified in th                               | ne CAM protocol(s) ac      | hieved?                                           |                                  |
| I           | Were res                            | ults reported for the                     | e complete analyte list                               | specified in the select    | ed CAM protocol(s)?                               | ✓ Yes □ No¹                      |
| ¹All r      | negative re                         | esponses must be                          | addressed in an attac                                 | ched laboratory narra      | ative.                                            |                                  |
| respoi      | nsible for d                        |                                           | nation, the material con                              |                            | sed upon my personal<br>al report is, to the best |                                  |
|             | ature: 💯                            | Dishard Warila                            |                                                       | Positio                    | n: <u>Laboratory Director</u>                     |                                  |

Printed Name: Richard Warila
Soil Sampling Report Green Meadow School April 2024
31 09 16.1 - 106



### REPORT OF ANALYTICAL RESULTS

NETLAB Work Order Number: 4B27035 Client Project: 3096 - Maynard

Report Date: 05-March-2024

Prepared for:

Ralph Tella Lord Environmental, Inc. 1506 Providence Highway, Suite 30 Norwood, MA 02062

> Richard Warila, Laboratory Director New England Testing Laboratory, Inc. 59 Greenhill Street West Warwick, RI 02893 rich.warila@newenglandtesting.com

# Samples Submitted:

The samples listed below were submitted to New England Testing Laboratory on 02/27/24. The group of samples appearing in this report was assigned an internal identification number (case number) for laboratory information management purposes. The client's designations for the individual samples, along with our case numbers, are used to identify the samples in this report. This report of analytical results pertains only to the sample(s) provided to us by the client which are indicated on the custody record. The case number for this sample submission is 4B27035. Custody records are included in this report.

| Lab ID     | Sample     | Matrix | Date Sampled | Date Received |
|------------|------------|--------|--------------|---------------|
| 4B27035-01 | B-108 2-4' | Soil   | 02/27/2024   | 02/27/2024    |
| 4B27035-02 | B-118 2-4' | Soil   | 02/27/2024   | 02/27/2024    |

# **Request for Analysis**

At the client's request, the analyses presented in the following table were performed on the samples submitted.

### B-108 2-4' (Lab Number: 4B27035-01)

|                                | <u>Method</u>     |
|--------------------------------|-------------------|
| Antimony                       | EPA 6010C         |
| Arsenic                        | EPA 6010C         |
| Barium                         | EPA 6010C         |
| Beryllium                      | EPA 6010C         |
| Cadmium                        | EPA 6010C         |
| Chromium                       | EPA 6010C         |
| Flashpoint                     | EPA 1010A-Mod     |
| Lead                           | EPA 6010C         |
| Mercury                        | EPA 7471B         |
| Nickel                         | EPA 6010C         |
| PCBs                           | EPA 8082A         |
| рН                             | SM4500-H-B (11)   |
| Reactive Cyanide               | NETL Internal     |
| Reactive Sulfide               | NETL Internal     |
| Selenium                       | EPA 6010C         |
| Semivolatile Organic Compounds | EPA 8270D         |
| Silver                         | EPA 6010C         |
| Specific Conductance           | SM2510 - Modified |
| Thallium                       | EPA 6010C         |
| Total Petroleum Hydrocarbons   | EPA-8100-mod      |
| Vanadium                       | EPA 6010C         |
| Volatile Organic Compounds     | EPA 8260C         |
| Zinc                           | EPA 6010C         |

#### B-118 2-4' (Lab Number: 4B27035-02)

|                                |                                   | <u>Method</u>     |
|--------------------------------|-----------------------------------|-------------------|
| Antimony                       |                                   | EPA 6010C         |
| Arsenic                        |                                   | EPA 6010C         |
| Barium                         |                                   | EPA 6010C         |
| Beryllium                      |                                   | EPA 6010C         |
| Cadmium                        |                                   | EPA 6010C         |
| Chromium                       |                                   | EPA 6010C         |
| Flashpoint                     |                                   | EPA 1010A-Mod     |
| Lead                           |                                   | EPA 6010C         |
| Mercury                        |                                   | EPA 7471B         |
| Nickel                         |                                   | EPA 6010C         |
| PCBs                           |                                   | EPA 8082A         |
| рН                             |                                   | SM4500-H-B (11)   |
| Reactive Cyanide               |                                   | NETL Internal     |
| Reactive Sulfide               |                                   | NETL Internal     |
| Selenium                       |                                   | EPA 6010C         |
| Semivolatile Organic Compounds | 5                                 | EPA 8270D         |
| Silver                         |                                   | EPA 6010C         |
| Specific Conductance           |                                   | SM2510 - Modified |
| Thallium                       |                                   | EPA 6010C         |
| Total Petroleum Hydrocarbons   |                                   | EPA-8100-mod      |
| Vanadium                       |                                   | EPA 6010C         |
| Volatile Organic Compounds     |                                   | EPA 8260C         |
| Zinc                           | Soil Sampling Report Green Meadow | Scholi April 20   |

#### Method References

Reactive Cyanide, Standard Operating Procedure 407, New England Testing Laboratory Inc.

Reactive Sulfide, Standard Operating Procedure 426, New England Testing Laboratory Inc.

Standard Methods for the Examination of Water and Wastewater, 20th Edition, APHA/ AWWA-WPCF, 1998

Test Methods for Evaluating Solid Waste, Physical/Chemical Methods, SW846, USEPA

#### **Case Narrative**

### Sample Receipt:

The samples associated with this work order were received in appropriately cooled and preserved containers. The chain of custody was adequately completed and corresponded to the samples submitted.

Exceptions: None

### **Analysis:**

All samples were prepared and analyzed within method specified holding times and according to NETLAB's documented standard operating procedures. The results for the associated calibration, method blank and laboratory control sample (LCS) were within method specified quality control requirements and allowances. Results for all soil samples, unless otherwise indicated, are reported on a dry weight basis.

Exceptions: None

# **Results: General Chemistry**

Sample: B-108 2-4'

| Reporting            |        |      |       |           |               |               |  |  |
|----------------------|--------|------|-------|-----------|---------------|---------------|--|--|
| Analyte              | Result | Qual | Limit | Units     | Date Prepared | Date Analyzed |  |  |
| Flashpoint           | > 200  |      | 70    | degrees F | 03/01/24      | 03/01/24      |  |  |
| pH                   | 8.1    |      |       | SU        | 02/28/24      | 02/28/24      |  |  |
| Specific Conductance | 13.7   |      | 2.0   | uS/cm     | 02/28/24      | 02/28/24      |  |  |

# **Results: General Chemistry**

Sample: B-118 2-4' Lab Number: 4B27035-02 (Soil)

|                      | Reporting |      |       |           |               |               |
|----------------------|-----------|------|-------|-----------|---------------|---------------|
| Analyte              | Result    | Qual | Limit | Units     | Date Prepared | Date Analyzed |
| Flashpoint           | > 200     |      | 70    | degrees F | 03/01/24      | 03/01/24      |
| рН                   | 7.1       |      |       | SU        | 02/28/24      | 02/28/24      |
| Specific Conductance | 296       |      | 2.0   | uS/cm     | 02/28/24      | 02/28/24      |

**Results: Reactivity** 

Sample: B-108 2-4'

|                  |        |      | Reporting |       |               |               |
|------------------|--------|------|-----------|-------|---------------|---------------|
| Analyte          | Result | Qual | Limit     | Units | Date Prepared | Date Analyzed |
| Reactive Cyanide | ND     |      | 0.2       | mg/kg | 02/29/24      | 02/29/24      |
| Reactive Sulfide | ND     |      | 0.1       | mg/kg | 02/29/24      | 02/29/24      |

**Results: Reactivity** 

Sample: B-118 2-4'

|                  |        |      | Reporting |       |               |               |
|------------------|--------|------|-----------|-------|---------------|---------------|
| Analyte          | Result | Qual | Limit     | Units | Date Prepared | Date Analyzed |
| Reactive Cyanide | ND     |      | 0.2       | mg/kg | 02/29/24      | 02/29/24      |
| Reactive Sulfide | ND     |      | 0.1       | mg/kg | 02/29/24      | 02/29/24      |

### **Results: Total Metals**

Sample: B-108 2-4'

|           |        |      | Reporting |       |               |               |
|-----------|--------|------|-----------|-------|---------------|---------------|
| Analyte   | Result | Qual | Limit     | Units | Date Prepared | Date Analyzed |
| Antimony  | ND     |      | 0.81      | mg/kg | 02/28/24      | 03/04/24      |
| Arsenic   | 8.77   |      | 1.22      | mg/kg | 02/28/24      | 03/04/24      |
| Barium    | 29.1   |      | 0.40      | mg/kg | 02/28/24      | 03/04/24      |
| Beryllium | ND     |      | 0.40      | mg/kg | 02/28/24      | 03/04/24      |
| Cadmium   | 2.43   |      | 0.61      | mg/kg | 02/28/24      | 03/04/24      |
| Chromium  | 10.6   |      | 0.61      | mg/kg | 02/28/24      | 03/04/24      |
| Lead      | 3.35   |      | 0.61      | mg/kg | 02/28/24      | 03/04/24      |
| Mercury   | ND     |      | 0.104     | mg/kg | 02/28/24      | 02/28/24      |
| Nickel    | 6.35   |      | 0.61      | mg/kg | 02/28/24      | 03/04/24      |
| Selenium  | ND     |      | 1.22      | mg/kg | 02/28/24      | 03/04/24      |
| Silver    | ND     |      | 1.22      | mg/kg | 02/28/24      | 03/04/24      |
| Vanadium  | 12.4   |      | 0.40      | mg/kg | 02/28/24      | 03/04/24      |
| Zinc      | 16.7   |      | 2.4       | mg/kg | 02/28/24      | 03/04/24      |
| Thallium  | ND     |      | 0.40      | mg/kg | 02/28/24      | 03/04/24      |

### **Results: Total Metals**

Sample: B-118 2-4' Lab Number: 4B27035-02 (Soil)

|           |        |      | Reporting |       |               |               |
|-----------|--------|------|-----------|-------|---------------|---------------|
| Analyte   | Result | Qual | Limit     | Units | Date Prepared | Date Analyzed |
| Antimony  | ND     |      | 0.77      | mg/kg | 02/28/24      | 03/04/24      |
| Arsenic   | 6.64   |      | 1.17      | mg/kg | 02/28/24      | 03/04/24      |
| Barium    | 55.4   |      | 0.39      | mg/kg | 02/28/24      | 03/04/24      |
| Beryllium | ND     |      | 0.39      | mg/kg | 02/28/24      | 03/04/24      |
| Cadmium   | 4.49   |      | 0.58      | mg/kg | 02/28/24      | 03/04/24      |
| Chromium  | 22.8   |      | 0.58      | mg/kg | 02/28/24      | 03/04/24      |
| Lead      | 5.70   |      | 0.58      | mg/kg | 02/28/24      | 03/04/24      |
| Mercury   | ND     |      | 0.090     | mg/kg | 02/28/24      | 02/28/24      |
| Nickel    | 13.7   |      | 0.58      | mg/kg | 02/28/24      | 03/04/24      |
| Selenium  | ND     |      | 1.17      | mg/kg | 02/28/24      | 03/04/24      |
| Silver    | ND     |      | 1.17      | mg/kg | 02/28/24      | 03/04/24      |
| Vanadium  | 26.1   |      | 0.39      | mg/kg | 02/28/24      | 03/04/24      |
| Zinc      | 24.6   |      | 2.3       | mg/kg | 02/28/24      | 03/04/24      |
| Thallium  | ND     |      | 0.39      | mg/kg | 02/28/24      | 03/04/24      |

# **Results: Volatile Organic Compounds 8260C (5035-LL)**

Sample: B-108 2-4'

| Analyte                            | Result        | Reporting<br>Qual Limit       | Units      | Date Prepared               | Date Analyzed           |
|------------------------------------|---------------|-------------------------------|------------|-----------------------------|-------------------------|
| Acetone                            | ND            | 93                            | ug/kg      | 02/29/24                    | 02/29/24                |
| Benzene                            | ND            | 5                             | ug/kg      | 02/29/24                    | 02/29/24                |
| Bromobenzene                       | ND            | 5                             | ug/kg      | 02/29/24                    | 02/29/24                |
| Bromochloromethane                 | ND            | 5                             | ug/kg      | 02/29/24                    | 02/29/24                |
| Bromodichloromethane               | ND            | 5                             | ug/kg      | 02/29/24                    | 02/29/24                |
| Bromoform                          | ND            | 5                             | ug/kg      | 02/29/24                    | 02/29/24                |
| Bromomethane                       | ND            | 5                             | ug/kg      | 02/29/24                    | 02/29/24                |
| 2-Butanone                         | ND            | 93                            | ug/kg      | 02/29/24                    | 02/29/24                |
| tert-Butyl alcohol                 | ND            | 5                             | ug/kg      | 02/29/24                    | 02/29/24                |
| sec-Butylbenzene                   | ND            | 5                             | ug/kg      | 02/29/24                    | 02/29/24                |
| n-Butylbenzene                     | ND            | 5                             | ug/kg      | 02/29/24                    | 02/29/24                |
| tert-Butylbenzene                  | ND            | 5                             | ug/kg      | 02/29/24                    | 02/29/24                |
| Methyl t-butyl ether (MTBE)        | ND            | 5                             | ug/kg      | 02/29/24                    | 02/29/24                |
| Carbon Disulfide                   | ND            | 5                             | ug/kg      | 02/29/24                    | 02/29/24                |
| Carbon Tetrachloride               | ND            | 5                             | ug/kg      | 02/29/24                    | 02/29/24                |
| Chlorobenzene                      | ND            | 5                             | ug/kg      | 02/29/24                    | 02/29/24                |
| Chloroethane                       | ND            | 5                             | ug/kg      | 02/29/24                    | 02/29/24                |
| Chloroform                         | ND            | 5                             | ug/kg      | 02/29/24                    | 02/29/24                |
| Chloromethane                      | ND            | 5                             | ug/kg      | 02/29/24                    | 02/29/24                |
| 4-Chlorotoluene                    | ND            | 5                             | ug/kg      | 02/29/24                    | 02/29/24                |
| 2-Chlorotoluene                    | ND            | 5                             | ug/kg      | 02/29/24                    | 02/29/24                |
| 1,2-Dibromo-3-chloropropane (DBCP) | ND            | 5                             | ug/kg      | 02/29/24                    | 02/29/24                |
| Dibromochloromethane               | ND            | 5                             | ug/kg      | 02/29/24                    | 02/29/24                |
| 1,2-Dibromoethane (EDB)            | ND            | 5                             | ug/kg      | 02/29/24                    | 02/29/24                |
| Dibromomethane                     | ND            | 5                             | ug/kg      | 02/29/24                    | 02/29/24                |
| 1,2-Dichlorobenzene                | ND            | 5                             | ug/kg      | 02/29/24                    | 02/29/24                |
| 1,3-Dichlorobenzene                | ND            | 5                             | ug/kg      | 02/29/24                    | 02/29/24                |
| 1,4-Dichlorobenzene                | ND            | 5                             | ug/kg      | 02/29/24                    | 02/29/24                |
| 1,1-Dichloroethane                 | ND            | 5                             | ug/kg      | 02/29/24                    | 02/29/24                |
| 1,2-Dichloroethane                 | ND            | 5                             | ug/kg      | 02/29/24                    | 02/29/24                |
| 1,2 Dichloroethene, Total          | ND            | 5                             | ug/kg      | 02/29/24                    | 02/29/24                |
| trans-1,2-Dichloroethene           | ND            | 5                             | ug/kg      | 02/29/24                    | 02/29/24                |
| cis-1,2-Dichloroethene             | ND            | 5                             | ug/kg      | 02/29/24                    | 02/29/24                |
| 1,1-Dichloroethene                 | ND            | 5                             | ug/kg      | 02/29/24                    | 02/29/24                |
| 1,2-Dichloropropane                | ND            | 5                             | ug/kg      | 02/29/24                    | 02/29/24                |
| 2,2-Dichloropropane                | ND            | 5                             | ug/kg      | 02/29/24                    | 02/29/24                |
| cis-1,3-Dichloropropene            | ND            | 5                             | ug/kg      | 02/29/24                    | 02/29/24                |
| trans-1,3-Dichloropropene          | ND            | 5                             | ug/kg      | 02/29/24                    | 02/29/24                |
| 1,1-Dichloropropene                | ND            | 5                             | ug/kg      | 02/29/24                    | 02/29/24                |
| 1,3-Dichloropropene (cis + trans)  | ND            | 5                             | ug/kg      | 02/29/24                    | 02/29/24                |
| Diethyl ether                      | ND            | 5                             | ug/kg      | 02/29/24                    | 02/29/24                |
| 1,4-Dioxane                        | ND            | 93                            | ug/kg      | 02/29/24                    | 02/29/24                |
| Ethylbenzene                       | ND            | 5                             | ug/kg      | 02/29/24                    | 02/29/24                |
| Hexachlorobutadiene                | ND            | 5                             | ug/kg      | 02/29/24                    | 02/29/24                |
| 2-Hexanone                         | ND            | 93                            | ug/kg      | 02/29/24                    | 02/29/24                |
| Isopropylbenzene                   |               | Report Green Mo<br>31 09 16.1 |            |                             | 02/29/24                |
| p-Isopropyltoluene                 | Soil Sampling | Report Green Mo               | eadow Scho | ool April <sub>2</sub> 2024 | <sup>02/29</sup> Page 1 |

Sample: B-108 2-4' (Continued)

| Analyte                   | Result    | Reporting<br>Qual Limit | Units | Date Prepared | Date Analyzed |
|---------------------------|-----------|-------------------------|-------|---------------|---------------|
| Methylene Chloride        | ND        | 5                       | ug/kg | 02/29/24      | 02/29/24      |
| 4-Methyl-2-pentanone      | ND        | 93                      | ug/kg | 02/29/24      | 02/29/24      |
| Naphthalene               | ND        | 5                       | ug/kg | 02/29/24      | 02/29/24      |
| n-Propylbenzene           | ND        | 5                       | ug/kg | 02/29/24      | 02/29/24      |
| Styrene                   | ND        | 5                       | ug/kg | 02/29/24      | 02/29/24      |
| 1,1,1,2-Tetrachloroethane | ND        | 5                       | ug/kg | 02/29/24      | 02/29/24      |
| Tetrachloroethene         | ND        | 5                       | ug/kg | 02/29/24      | 02/29/24      |
| Tetrahydrofuran           | ND        | 5                       | ug/kg | 02/29/24      | 02/29/24      |
| Toluene                   | ND        | 5                       | ug/kg | 02/29/24      | 02/29/24      |
| 1,2,4-Trichlorobenzene    | ND        | 5                       | ug/kg | 02/29/24      | 02/29/24      |
| 1,2,3-Trichlorobenzene    | ND        | 5                       | ug/kg | 02/29/24      | 02/29/24      |
| 1,1,2-Trichloroethane     | ND        | 5                       | ug/kg | 02/29/24      | 02/29/24      |
| 1,1,1-Trichloroethane     | ND        | 5                       | ug/kg | 02/29/24      | 02/29/24      |
| Trichloroethene           | ND        | 5                       | ug/kg | 02/29/24      | 02/29/24      |
| 1,2,3-Trichloropropane    | ND        | 5                       | ug/kg | 02/29/24      | 02/29/24      |
| 1,3,5-Trimethylbenzene    | ND        | 5                       | ug/kg | 02/29/24      | 02/29/24      |
| 1,2,4-Trimethylbenzene    | ND        | 5                       | ug/kg | 02/29/24      | 02/29/24      |
| Vinyl Chloride            | ND        | 5                       | ug/kg | 02/29/24      | 02/29/24      |
| o-Xylene                  | ND        | 5                       | ug/kg | 02/29/24      | 02/29/24      |
| m&p-Xylene                | ND        | 9                       | ug/kg | 02/29/24      | 02/29/24      |
| Total xylenes             | ND        | 5                       | ug/kg | 02/29/24      | 02/29/24      |
| 1,1,2,2-Tetrachloroethane | ND        | 5                       | ug/kg | 02/29/24      | 02/29/24      |
| tert-Amyl methyl ether    | ND        | 5                       | ug/kg | 02/29/24      | 02/29/24      |
| 1,3-Dichloropropane       | ND        | 5                       | ug/kg | 02/29/24      | 02/29/24      |
| Ethyl tert-butyl ether    | ND        | 5                       | ug/kg | 02/29/24      | 02/29/24      |
| Diisopropyl ether         | ND        | 5                       | ug/kg | 02/29/24      | 02/29/24      |
| Trichlorofluoromethane    | ND        | 5                       | ug/kg | 02/29/24      | 02/29/24      |
| Dichlorodifluoromethane   | ND        | 5                       | ug/kg | 02/29/24      | 02/29/24      |
| Surrogate(s)              | Recovery% | Limit                   | s     |               |               |
| 4-Bromofluorobenzene      | 96.3%     | 70-13                   | 0     | 02/29/24      | 02/29/24      |
| 1,2-Dichloroethane-d4     | 104%      | <i>70-13</i>            | 0     | 02/29/24      | 02/29/24      |
| Toluene-d8                | 103%      | <i>70-13</i>            | 0     | 02/29/24      | 02/29/24      |

# **Results: Volatile Organic Compounds 8260C (5035-LL)**

Sample: B-118 2-4'

| Analyte                            | Result         | Reporting<br>Qual Limit        | Units          | Date Prepared  | Date Analyzed            |
|------------------------------------|----------------|--------------------------------|----------------|----------------|--------------------------|
| Acetone                            | ND             | 92                             | ug/kg          | 02/29/24       | 02/29/24                 |
| Benzene                            | ND             | 5                              | ug/kg          | 02/29/24       | 02/29/24                 |
| Bromobenzene                       | ND             | 5                              | ug/kg          | 02/29/24       | 02/29/24                 |
| Bromochloromethane                 | ND             | 5                              | ug/kg          | 02/29/24       | 02/29/24                 |
| Bromodichloromethane               | ND             | 5                              | ug/kg          | 02/29/24       | 02/29/24                 |
| Bromoform                          | ND             | 5                              | ug/kg          | 02/29/24       | 02/29/24                 |
| Bromomethane                       | ND             | 5                              | ug/kg          | 02/29/24       | 02/29/24                 |
| 2-Butanone                         | ND             | 92                             | ug/kg          | 02/29/24       | 02/29/24                 |
| tert-Butyl alcohol                 | ND             | 5                              | ug/kg          | 02/29/24       | 02/29/24                 |
| sec-Butylbenzene                   | ND             | 5                              | ug/kg          | 02/29/24       | 02/29/24                 |
| n-Butylbenzene                     | ND             | 5                              | ug/kg          | 02/29/24       | 02/29/24                 |
| tert-Butylbenzene                  | ND             | 5                              | ug/kg          | 02/29/24       | 02/29/24                 |
| Methyl t-butyl ether (MTBE)        | ND             | 5                              | ug/kg          | 02/29/24       | 02/29/24                 |
| Carbon Disulfide                   | ND             | 5                              | ug/kg          | 02/29/24       | 02/29/24                 |
| Carbon Tetrachloride               | ND             | 5                              | ug/kg          | 02/29/24       | 02/29/24                 |
| Chlorobenzene                      | ND             | 5                              | ug/kg          | 02/29/24       | 02/29/24                 |
| Chloroethane                       | ND             | 5                              | ug/kg          | 02/29/24       | 02/29/24                 |
| Chloroform                         | ND             | 5                              | ug/kg          | 02/29/24       | 02/29/24                 |
| Chloromethane                      | ND             | 5                              | ug/kg          | 02/29/24       | 02/29/24                 |
| 4-Chlorotoluene                    | ND             | 5                              | ug/kg          | 02/29/24       | 02/29/24                 |
| 2-Chlorotoluene                    | ND             | 5                              | ug/kg          | 02/29/24       | 02/29/24                 |
| 1,2-Dibromo-3-chloropropane (DBCP) | ND             | 5                              | ug/kg          | 02/29/24       | 02/29/24                 |
| Dibromochloromethane               | ND             | 5                              | ug/kg          | 02/29/24       | 02/29/24                 |
| 1,2-Dibromoethane (EDB)            | ND             | 5                              | ug/kg          | 02/29/24       | 02/29/24                 |
| Dibromomethane                     | ND             | 5                              | ug/kg          | 02/29/24       | 02/29/24                 |
| 1,2-Dichlorobenzene                | ND             | 5                              | ug/kg          | 02/29/24       | 02/29/24                 |
| 1,3-Dichlorobenzene                | ND             | 5                              | ug/kg          | 02/29/24       | 02/29/24                 |
| 1,4-Dichlorobenzene                | ND             | 5                              | ug/kg          | 02/29/24       | 02/29/24                 |
| 1,1-Dichloroethane                 | ND             | 5                              | ug/kg          | 02/29/24       | 02/29/24                 |
| 1,2-Dichloroethane                 | ND             | 5                              | ug/kg          | 02/29/24       | 02/29/24                 |
| 1,2 Dichloroethene, Total          | ND             | 5                              | ug/kg          | 02/29/24       | 02/29/24                 |
| trans-1,2-Dichloroethene           | ND             | 5                              | ug/kg          | 02/29/24       | 02/29/24                 |
| cis-1,2-Dichloroethene             | ND             | 5                              | ug/kg          | 02/29/24       | 02/29/24                 |
| 1,1-Dichloroethene                 | ND             | 5                              | ug/kg          | 02/29/24       | 02/29/24                 |
| 1,2-Dichloropropane                | ND             | 5                              | ug/kg          | 02/29/24       | 02/29/24                 |
| 2,2-Dichloropropane                | ND             | 5                              | ug/kg          | 02/29/24       | 02/29/24                 |
| cis-1,3-Dichloropropene            | ND<br>ND       | 5                              | ug/kg<br>ug/kg | 02/29/24       | 02/29/24                 |
| trans-1,3-Dichloropropene          | ND<br>ND       | 5                              | ug/kg<br>ug/kg | 02/29/24       | 02/29/24                 |
| 1,1-Dichloropropene                | ND<br>ND       | 5                              | ug/kg<br>ug/kg | 02/29/24       | 02/29/24                 |
| 1,3-Dichloropropene (cis + trans)  | ND<br>ND       | 5                              | ug/kg<br>ug/kg | 02/29/24       | 02/29/24                 |
| Diethyl ether                      | ND<br>ND       | 5                              | ug/kg<br>ug/kg | 02/29/24       | 02/29/24                 |
| 1,4-Dioxane                        | ND<br>ND       | 92                             |                | 02/29/24       | 02/29/24                 |
| Ethylbenzene                       | ND<br>ND       | 5                              | ug/kg<br>ug/kg | 02/29/24       | 02/29/24                 |
| Hexachlorobutadiene                | ND<br>ND       | 5                              |                | 02/29/24       | 02/29/24                 |
| 2-Hexanone                         | ND<br>ND       | 92                             | ug/kg<br>ug/kg | 02/29/24       | 02/29/24                 |
| Isopropylbenzene                   |                |                                |                |                | 02/29/24                 |
|                                    | Soil Sampling  | g Report Green M               | eadow.Scho     | ool April 2024 |                          |
| p-Isopropyltoluene                 | 3 - NOI- 11.13 | g Report Green M<br>31 09 16.1 | 1 - 120        | 1 UZ/Z97Z4F    | <sup>02/29</sup> Page 14 |

Sample: B-118 2-4' (Continued)

| Analyte                   | Result    | Reporting<br>Qual Limit | Units | Date Prepared | Date Analyzed |
|---------------------------|-----------|-------------------------|-------|---------------|---------------|
| Methylene Chloride        | ND        | 5                       | ug/kg | 02/29/24      | 02/29/24      |
| 4-Methyl-2-pentanone      | ND        | 92                      | ug/kg | 02/29/24      | 02/29/24      |
| Naphthalene               | ND        | 5                       | ug/kg | 02/29/24      | 02/29/24      |
| n-Propylbenzene           | ND        | 5                       | ug/kg | 02/29/24      | 02/29/24      |
| Styrene                   | ND        | 5                       | ug/kg | 02/29/24      | 02/29/24      |
| 1,1,1,2-Tetrachloroethane | ND        | 5                       | ug/kg | 02/29/24      | 02/29/24      |
| Tetrachloroethene         | ND        | 5                       | ug/kg | 02/29/24      | 02/29/24      |
| Tetrahydrofuran           | ND        | 5                       | ug/kg | 02/29/24      | 02/29/24      |
| Toluene                   | ND        | 5                       | ug/kg | 02/29/24      | 02/29/24      |
| 1,2,4-Trichlorobenzene    | ND        | 5                       | ug/kg | 02/29/24      | 02/29/24      |
| 1,2,3-Trichlorobenzene    | ND        | 5                       | ug/kg | 02/29/24      | 02/29/24      |
| 1,1,2-Trichloroethane     | ND        | 5                       | ug/kg | 02/29/24      | 02/29/24      |
| 1,1,1-Trichloroethane     | ND        | 5                       | ug/kg | 02/29/24      | 02/29/24      |
| Trichloroethene           | ND        | 5                       | ug/kg | 02/29/24      | 02/29/24      |
| 1,2,3-Trichloropropane    | ND        | 5                       | ug/kg | 02/29/24      | 02/29/24      |
| 1,3,5-Trimethylbenzene    | ND        | 5                       | ug/kg | 02/29/24      | 02/29/24      |
| 1,2,4-Trimethylbenzene    | ND        | 5                       | ug/kg | 02/29/24      | 02/29/24      |
| Vinyl Chloride            | ND        | 5                       | ug/kg | 02/29/24      | 02/29/24      |
| o-Xylene                  | ND        | 5                       | ug/kg | 02/29/24      | 02/29/24      |
| m&p-Xylene                | ND        | 9                       | ug/kg | 02/29/24      | 02/29/24      |
| Total xylenes             | ND        | 5                       | ug/kg | 02/29/24      | 02/29/24      |
| 1,1,2,2-Tetrachloroethane | ND        | 5                       | ug/kg | 02/29/24      | 02/29/24      |
| tert-Amyl methyl ether    | ND        | 5                       | ug/kg | 02/29/24      | 02/29/24      |
| 1,3-Dichloropropane       | ND        | 5                       | ug/kg | 02/29/24      | 02/29/24      |
| Ethyl tert-butyl ether    | ND        | 5                       | ug/kg | 02/29/24      | 02/29/24      |
| Diisopropyl ether         | ND        | 5                       | ug/kg | 02/29/24      | 02/29/24      |
| Trichlorofluoromethane    | ND        | 5                       | ug/kg | 02/29/24      | 02/29/24      |
| Dichlorodifluoromethane   | ND        | 5                       | ug/kg | 02/29/24      | 02/29/24      |
| Surrogate(s)              | Recovery% | Lim                     | its   |               |               |
| 4-Bromofluorobenzene      | 96.5%     | <i>70-1</i>             | 30    | 02/29/24      | 02/29/24      |
| 1,2-Dichloroethane-d4     | 104%      | <i>70-1</i>             | 30    | 02/29/24      | 02/29/24      |
| Toluene-d8                | 102%      | <i>70-1</i>             | 30    | 02/29/24      | 02/29/24      |

# **Results: Semivolatile organic compounds**

Sample: B-108 2-4'

| Analyte                     | Result        | Reporting<br>Qual Limit       | Units      | Date Prepared  | Date Analyzed |
|-----------------------------|---------------|-------------------------------|------------|----------------|---------------|
| 1,2,4-Trichlorobenzene      | ND            | 141                           | ug/kg      | 02/28/24       | 03/01/24      |
| 1,2-Dichlorobenzene         | ND            | 141                           | ug/kg      | 02/28/24       | 03/01/24      |
| .,3-Dichlorobenzene         | ND            | 141                           | ug/kg      | 02/28/24       | 03/01/24      |
| 1,4-Dichlorobenzene         | ND            | 141                           | ug/kg      | 02/28/24       | 03/01/24      |
| Phenol                      | ND            | 141                           | ug/kg      | 02/28/24       | 03/01/24      |
| 2,4,5-Trichlorophenol       | ND            | 141                           | ug/kg      | 02/28/24       | 03/01/24      |
| 2,4,6-Trichlorophenol       | ND            | 141                           | ug/kg      | 02/28/24       | 03/01/24      |
| 2,4-Dichlorophenol          | ND            | 141                           | ug/kg      | 02/28/24       | 03/01/24      |
| 2,4-Dimethylphenol          | ND            | 357                           | ug/kg      | 02/28/24       | 03/01/24      |
| 2,4-Dinitrophenol           | ND            | 357                           | ug/kg      | 02/28/24       | 03/01/24      |
| 2,4-Dinitrotoluene          | ND            | 141                           | ug/kg      | 02/28/24       | 03/01/24      |
| 2,6-Dinitrotoluene          | ND            | 141                           | ug/kg      | 02/28/24       | 03/01/24      |
| 2-Chloronaphthalene         | ND            | 141                           | ug/kg      | 02/28/24       | 03/01/24      |
| 2-Chlorophenol              | ND            | 141                           | ug/kg      | 02/28/24       | 03/01/24      |
| 2-Methylnaphthalene         | ND            | 141                           | ug/kg      | 02/28/24       | 03/01/24      |
| Nitrobenzene                | ND            | 141                           | ug/kg      | 02/28/24       | 03/01/24      |
| 2-Methylphenol              | ND            | 141                           | ug/kg      | 02/28/24       | 03/01/24      |
| 2-Nitroaniline              | ND            | 141                           | ug/kg      | 02/28/24       | 03/01/24      |
| 2-Nitrophenol               | ND            | 357                           | ug/kg      | 02/28/24       | 03/01/24      |
| 3,3'-Dichlorobenzidine      | ND            | 357                           | ug/kg      | 02/28/24       | 03/01/24      |
| 3-Nitroaniline              | ND            | 141                           | ug/kg      | 02/28/24       | 03/01/24      |
| 1,6-Dinitro-2-methylphenol  | ND            | 357                           | ug/kg      | 02/28/24       | 03/01/24      |
| 1-Bromophenyl phenyl ether  | ND            | 141                           | ug/kg      | 02/28/24       | 03/01/24      |
| 1-Chloro-3-methylphenol     | ND            | 141                           | ug/kg      | 02/28/24       | 03/01/24      |
| 1-Chloroaniline             | ND            | 141                           | ug/kg      | 02/28/24       | 03/01/24      |
| 1-Chlorophenyl phenyl ether | ND            | 141                           | ug/kg      | 02/28/24       | 03/01/24      |
| 4-Nitroaniline              | ND            | 141                           | ug/kg      | 02/28/24       | 03/01/24      |
| 4-Nitrophenol               | ND            | 357                           | ug/kg      | 02/28/24       | 03/01/24      |
| Acenaphthene                | ND            | 141                           | ug/kg      | 02/28/24       | 03/01/24      |
| Acenaphthylene              | ND            | 141                           | ug/kg      | 02/28/24       | 03/01/24      |
| Aniline                     | ND            | 141                           | ug/kg      | 02/28/24       | 03/01/24      |
| Anthracene                  | ND            | 141                           | ug/kg      | 02/28/24       | 03/01/24      |
| Benzo(a)anthracene          | ND            | 141                           | ug/kg      | 02/28/24       | 03/01/24      |
| Benzo(a)pyrene              | ND            | 141                           | ug/kg      | 02/28/24       | 03/01/24      |
| Benzo(b)fluoranthene        | ND            | 141                           | ug/kg      | 02/28/24       | 03/01/24      |
| Benzo(g,h,i)perylene        | ND            | 141                           | ug/kg      | 02/28/24       | 03/01/24      |
| Benzo(k)fluoranthene        | ND            | 141                           | ug/kg      | 02/28/24       | 03/01/24      |
| Benzoic acid                | ND            | 1080                          | ug/kg      | 02/28/24       | 03/01/24      |
| Biphenyl                    | ND            | 22                            | ug/kg      | 02/28/24       | 03/01/24      |
| Bis(2-chloroethoxy)methane  | ND            | 141                           | ug/kg      | 02/28/24       | 03/01/24      |
| Bis(2-chloroethyl)ether     | ND            | 141                           | ug/kg      | 02/28/24       | 03/01/24      |
| Bis(2-chloroisopropyl)ether | ND            | 141                           | ug/kg      | 02/28/24       | 03/01/24      |
| Bis(2-ethylhexyl)phthalate  | ND            | 433                           | ug/kg      | 02/28/24       | 03/01/24      |
| Butyl benzyl phthalate      | ND            | 141                           | ug/kg      | 02/28/24       | 03/01/24      |
| Chrysene                    | ND            | 141                           | ug/kg      | 02/28/24       | 03/01/24      |
| Di-n-octyl phthalate        |               |                               |            |                | 03/01/24      |
| Dibenz(a,h)anthracene       | Soil Sampling | Report Green Me<br>31 09 16.1 | eadow Scho | ool April 2024 | 03/01 Page 16 |

Sample: B-108 2-4' (Continued)

| Analyte                   | Result    | Qual | Reporting<br>Limit | Units | Date Prepared | Date Analyzed |
|---------------------------|-----------|------|--------------------|-------|---------------|---------------|
| Dibenzofuran              | ND        |      | 141                | ug/kg | 02/28/24      | 03/01/24      |
| Diethyl phthalate         | ND        |      | 141                | ug/kg | 02/28/24      | 03/01/24      |
| Dimethyl phthalate        | ND        |      | 357                | ug/kg | 02/28/24      | 03/01/24      |
| Di-n-butyl phthalate      | ND        |      | 217                | ug/kg | 02/28/24      | 03/01/24      |
| Fluoranthene              | ND        |      | 141                | ug/kg | 02/28/24      | 03/01/24      |
| Fluorene                  | ND        |      | 141                | ug/kg | 02/28/24      | 03/01/24      |
| Hexachlorobenzene         | ND        |      | 141                | ug/kg | 02/28/24      | 03/01/24      |
| Hexachlorobutadiene       | ND        |      | 141                | ug/kg | 02/28/24      | 03/01/24      |
| Hexachlorocyclopentadiene | ND        |      | 357                | ug/kg | 02/28/24      | 03/01/24      |
| Hexachloroethane          | ND        |      | 141                | ug/kg | 02/28/24      | 03/01/24      |
| Indeno(1,2,3-cd)pyrene    | ND        |      | 141                | ug/kg | 02/28/24      | 03/01/24      |
| Isophorone                | ND        |      | 141                | ug/kg | 02/28/24      | 03/01/24      |
| Naphthalene               | ND        |      | 141                | ug/kg | 02/28/24      | 03/01/24      |
| N-Nitrosodimethylamine    | ND        |      | 141                | ug/kg | 02/28/24      | 03/01/24      |
| N-Nitrosodi-n-propylamine | ND        |      | 141                | ug/kg | 02/28/24      | 03/01/24      |
| N-Nitrosodiphenylamine    | ND        |      | 141                | ug/kg | 02/28/24      | 03/01/24      |
| Pentachlorophenol         | ND        |      | 357                | ug/kg | 02/28/24      | 03/01/24      |
| Phenanthrene              | ND        |      | 141                | ug/kg | 02/28/24      | 03/01/24      |
| Pyrene                    | ND        |      | 141                | ug/kg | 02/28/24      | 03/01/24      |
| m&p-Cresol                | ND        |      | 282                | ug/kg | 02/28/24      | 03/01/24      |
| Pyridine                  | ND        |      | 141                | ug/kg | 02/28/24      | 03/01/24      |
| Azobenzene                | ND        |      | 141                | ug/kg | 02/28/24      | 03/01/24      |
| Total Dichlorobenzene     | ND        |      | 141                | ug/kg | 02/28/24      | 03/01/24      |
| Surrogate(s)              | Recovery% |      | Limits             |       |               |               |
| Nitrobenzene-d5           | 65.2%     |      | 30-126             | ;     | 02/28/24      | 03/01/24      |
| p-Terphenyl-d14           | 93.4%     |      | 47-130             | )     | 02/28/24      | 03/01/24      |
| 2-Fluorobiphenyl          | 58.2%     |      | 34-130             | )     | 02/28/24      | 03/01/24      |
| Phenol-d6                 | 59.7%     |      | 30-130             | )     | 02/28/24      | 03/01/24      |
| 2,4,6-Tribromophenol      | 55.4%     |      | 30-130             | )     | 02/28/24      | 03/01/24      |
| 2-Fluorophenol            | 68.8%     |      | 30-130             | )     | 02/28/24      | 03/01/24      |

# **Results: Semivolatile organic compounds**

Sample: B-118 2-4'

| Analyte                     | Result          | Reporting<br>Qual Limit       | Units               | Date Prepared  | Date Analyzed        |
|-----------------------------|-----------------|-------------------------------|---------------------|----------------|----------------------|
| 1,2,4-Trichlorobenzene      | ND              | 137                           | ug/kg               | 02/28/24       | 03/01/24             |
| 1,2-Dichlorobenzene         | ND              | 137                           | ug/kg               | 02/28/24       | 03/01/24             |
| 1,3-Dichlorobenzene         | ND              | 137                           | ug/kg               | 02/28/24       | 03/01/24             |
| 1,4-Dichlorobenzene         | ND              | 137                           | ug/kg               | 02/28/24       | 03/01/24             |
| Phenol                      | ND              | 137                           | ug/kg               | 02/28/24       | 03/01/24             |
| 2,4,5-Trichlorophenol       | ND              | 137                           | ug/kg               | 02/28/24       | 03/01/24             |
| 2,4,6-Trichlorophenol       | ND              | 137                           | ug/kg               | 02/28/24       | 03/01/24             |
| 2,4-Dichlorophenol          | ND              | 137                           | ug/kg               | 02/28/24       | 03/01/24             |
| 2,4-Dimethylphenol          | ND              | 348                           | ug/kg               | 02/28/24       | 03/01/24             |
| 2,4-Dinitrophenol           | ND              | 348                           | ug/kg               | 02/28/24       | 03/01/24             |
| 2,4-Dinitrotoluene          | ND              | 137                           | ug/kg               | 02/28/24       | 03/01/24             |
| 2,6-Dinitrotoluene          | ND              | 137                           | ug/kg               | 02/28/24       | 03/01/24             |
| 2-Chloronaphthalene         | ND              | 137                           | ug/kg               | 02/28/24       | 03/01/24             |
| 2-Chlorophenol              | ND              | 137                           | ug/kg               | 02/28/24       | 03/01/24             |
| 2-Methylnaphthalene         | ND              | 137                           | ug/kg               | 02/28/24       | 03/01/24             |
| Nitrobenzene                | ND              | 137                           | ug/kg               | 02/28/24       | 03/01/24             |
| 2-Methylphenol              | ND              | 137                           | ug/kg               | 02/28/24       | 03/01/24             |
| 2-Nitroaniline              | ND              | 137                           | ug/kg               | 02/28/24       | 03/01/24             |
| 2-Nitrophenol               | ND              | 348                           | ug/kg               | 02/28/24       | 03/01/24             |
| 3,3'-Dichlorobenzidine      | ND              | 348                           | ug/kg               | 02/28/24       | 03/01/24             |
| 3-Nitroaniline              | ND              | 137                           | ug/kg               | 02/28/24       | 03/01/24             |
| ,6-Dinitro-2-methylphenol   | ND              | 348                           | ug/kg               | 02/28/24       | 03/01/24             |
| I-Bromophenyl phenyl ether  | ND              | 137                           | ug/kg               | 02/28/24       | 03/01/24             |
| I-Chloro-3-methylphenol     | ND              | 137                           | ug/kg               | 02/28/24       | 03/01/24             |
| I-Chloroaniline             | ND              | 137                           | ug/kg               | 02/28/24       | 03/01/24             |
| -Chlorophenyl phenyl ether  | ND              | 137                           | ug/kg               | 02/28/24       | 03/01/24             |
| 4-Nitroaniline              | ND              | 137                           | ug/kg               | 02/28/24       | 03/01/24             |
| 4-Nitrophenol               | ND              | 348                           | ug/kg               | 02/28/24       | 03/01/24             |
| Acenaphthene                | ND              | 137                           | ug/kg               | 02/28/24       | 03/01/24             |
| Acenaphthylene              | ND              | 137                           | ug/kg               | 02/28/24       | 03/01/24             |
| Aniline                     | ND              | 137                           | ug/kg               | 02/28/24       | 03/01/24             |
| Anthracene                  | ND              | 137                           | ug/kg<br>ug/kg      | 02/28/24       | 03/01/24             |
| Benzo(a)anthracene          | ND              | 137                           | ug/kg<br>ug/kg      | 02/28/24       | 03/01/24             |
| Benzo(a)pyrene              | ND              | 137                           | ug/kg<br>ug/kg      | 02/28/24       | 03/01/24             |
| Benzo(b)fluoranthene        | ND<br>ND        | 137                           | ug/kg               | 02/28/24       | 03/01/24             |
| Benzo(g,h,i)perylene        | ND<br>ND        | 137                           | ug/kg<br>ug/kg      | 02/28/24       | 03/01/24             |
| Benzo(k)fluoranthene        | ND<br>ND        | 137                           | ug/kg<br>ug/kg      | 02/28/24       | 03/01/24             |
| Benzoic acid                | ND<br>ND        | 1050                          | ug/kg<br>ug/kg      | 02/28/24       | 03/01/24             |
| Biphenyl                    | ND<br>ND        | 21                            | ug/kg<br>ug/kg      | 02/28/24       | 03/01/24             |
| Bis(2-chloroethoxy)methane  | ND<br>ND        | 137                           | ug/kg<br>ug/kg      | 02/28/24       | 03/01/24             |
| Bis(2-chloroethyl)ether     | ND<br>ND        | 137                           | ug/kg<br>ug/kg      | 02/28/24       | 03/01/24             |
| Bis(2-chloroisopropyl)ether | ND<br>ND        | 137                           | ug/kg<br>ug/kg      | 02/28/24       | 03/01/24             |
| Bis(2-ethylhexyl)phthalate  | ND<br>ND        | 422                           | ug/kg<br>ug/kg      | 02/28/24       | 03/01/24             |
| Butyl benzyl phthalate      | ND<br>ND        | 137                           | ug/kg<br>ug/kg      | 02/28/24       | 03/01/24             |
| Chrysene                    | ND<br>ND        | 137                           | ug/kg<br>ug/kg      | 02/28/24       | 03/01/24             |
| Di-n-octyl phthalate        |                 |                               |                     |                | 03/01/24             |
| Dibenz(a,h)anthracene       | Soil Sampling F | Report Green Me<br>31 09 16.1 | eadow Scho          | ool April 2024 | 00.40                |
| benz(a,n)anunacene          | ניטאן           | 31 09 16.1                    | - 124 <sup>kg</sup> | • 02/20/24     | <sup>03/01</sup> Pag |

Sample: B-118 2-4' (Continued)

| Analyte                   | Result    | Qual | Reporting<br>Limit | Units | Date Prepared | Date Analyzed |
|---------------------------|-----------|------|--------------------|-------|---------------|---------------|
| Dibenzofuran              | ND        |      | 137                | ug/kg | 02/28/24      | 03/01/24      |
| Diethyl phthalate         | ND        |      | 137                | ug/kg | 02/28/24      | 03/01/24      |
| Dimethyl phthalate        | ND        |      | 348                | ug/kg | 02/28/24      | 03/01/24      |
| Di-n-butyl phthalate      | ND        |      | 211                | ug/kg | 02/28/24      | 03/01/24      |
| Fluoranthene              | ND        |      | 137                | ug/kg | 02/28/24      | 03/01/24      |
| Fluorene                  | ND        |      | 137                | ug/kg | 02/28/24      | 03/01/24      |
| Hexachlorobenzene         | ND        |      | 137                | ug/kg | 02/28/24      | 03/01/24      |
| Hexachlorobutadiene       | ND        |      | 137                | ug/kg | 02/28/24      | 03/01/24      |
| Hexachlorocyclopentadiene | ND        |      | 348                | ug/kg | 02/28/24      | 03/01/24      |
| Hexachloroethane          | ND        |      | 137                | ug/kg | 02/28/24      | 03/01/24      |
| Indeno(1,2,3-cd)pyrene    | ND        |      | 137                | ug/kg | 02/28/24      | 03/01/24      |
| Isophorone                | ND        |      | 137                | ug/kg | 02/28/24      | 03/01/24      |
| Naphthalene               | ND        |      | 137                | ug/kg | 02/28/24      | 03/01/24      |
| N-Nitrosodimethylamine    | ND        |      | 137                | ug/kg | 02/28/24      | 03/01/24      |
| N-Nitrosodi-n-propylamine | ND        |      | 137                | ug/kg | 02/28/24      | 03/01/24      |
| N-Nitrosodiphenylamine    | ND        |      | 137                | ug/kg | 02/28/24      | 03/01/24      |
| Pentachlorophenol         | ND        |      | 348                | ug/kg | 02/28/24      | 03/01/24      |
| Phenanthrene              | ND        |      | 137                | ug/kg | 02/28/24      | 03/01/24      |
| Pyrene                    | ND        |      | 137                | ug/kg | 02/28/24      | 03/01/24      |
| m&p-Cresol                | ND        |      | 274                | ug/kg | 02/28/24      | 03/01/24      |
| Pyridine                  | ND        |      | 137                | ug/kg | 02/28/24      | 03/01/24      |
| Azobenzene                | ND        |      | 137                | ug/kg | 02/28/24      | 03/01/24      |
| Total Dichlorobenzene     | ND        |      | 137                | ug/kg | 02/28/24      | 03/01/24      |
| Surrogate(s)              | Recovery% |      | Limits             |       |               |               |
| Nitrobenzene-d5           | 65.2%     |      | 30-12              | 26    | 02/28/24      | 03/01/24      |
| p-Terphenyl-d14           | 101%      |      | <i>47-13</i>       | 80    | 02/28/24      | 03/01/24      |
| 2-Fluorobiphenyl          | 61.6%     |      | 34-13              | 80    | 02/28/24      | 03/01/24      |
| Phenol-d6                 | 68.4%     |      | 30-13              | 80    | 02/28/24      | 03/01/24      |
| 2,4,6-Tribromophenol      | 62.5%     |      | 30-13              | 80    | 02/28/24      | 03/01/24      |
| 2-Fluorophenol            | 75.7%     |      | 30-13              | 80    | 02/28/24      | 03/01/24      |

# **Results: Polychlorinated Biphenyls (PCBs)**

Sample: B-108 2-4'

| Reporting                            |           |      |          |       |               |               |  |  |  |
|--------------------------------------|-----------|------|----------|-------|---------------|---------------|--|--|--|
| Analyte                              | Result    | Qual | Limit    | Units | Date Prepared | Date Analyzed |  |  |  |
| Aroclor-1016                         | ND        |      | 71       | ug/kg | 02/29/24      | 03/05/24      |  |  |  |
| Aroclor-1221                         | ND        |      | 71       | ug/kg | 02/29/24      | 03/05/24      |  |  |  |
| Aroclor-1232                         | ND        |      | 71       | ug/kg | 02/29/24      | 03/05/24      |  |  |  |
| Aroclor-1242                         | ND        |      | 71       | ug/kg | 02/29/24      | 03/05/24      |  |  |  |
| Aroclor-1248                         | ND        |      | 71       | ug/kg | 02/29/24      | 03/05/24      |  |  |  |
| Aroclor-1254                         | ND        |      | 71       | ug/kg | 02/29/24      | 03/05/24      |  |  |  |
| Aroclor-1260                         | ND        |      | 71       | ug/kg | 02/29/24      | 03/05/24      |  |  |  |
| Aroclor-1262                         | ND        |      | 71       | ug/kg | 02/29/24      | 03/05/24      |  |  |  |
| Aroclor-1268                         | ND        |      | 71       | ug/kg | 02/29/24      | 03/05/24      |  |  |  |
| PCBs (Total)                         | ND        |      | 71       | ug/kg | 02/29/24      | 03/05/24      |  |  |  |
| Surrogate(s)                         | Recovery% |      | Limits   |       |               |               |  |  |  |
| 2,4,5,6-Tetrachloro-m-xylene (TCMX ) | 39.5%     |      | 36.2-130 |       | 02/29/24      | 03/05/24      |  |  |  |
| Decachlorobiphenyl (DCBP)            | 45.1%     |      | 43.3-130 |       | 02/29/24      | 03/05/24      |  |  |  |

# **Results: Polychlorinated Biphenyls (PCBs)**

Sample: B-118 2-4'

Lab Number: 4B27035-02 (Soil)

|                                      |           |      | Reporting |       |               |               |
|--------------------------------------|-----------|------|-----------|-------|---------------|---------------|
| Analyte                              | Result    | Qual | Limit     | Units | Date Prepared | Date Analyzed |
| Aroclor-1016                         | ND        |      | 69        | ug/kg | 02/29/24      | 03/05/24      |
| Aroclor-1221                         | ND        |      | 69        | ug/kg | 02/29/24      | 03/05/24      |
| Aroclor-1232                         | ND        |      | 69        | ug/kg | 02/29/24      | 03/05/24      |
| Aroclor-1242                         | ND        |      | 69        | ug/kg | 02/29/24      | 03/05/24      |
| Aroclor-1248                         | ND        |      | 69        | ug/kg | 02/29/24      | 03/05/24      |
| Aroclor-1254                         | ND        |      | 69        | ug/kg | 02/29/24      | 03/05/24      |
| Aroclor-1260                         | ND        |      | 69        | ug/kg | 02/29/24      | 03/05/24      |
| Aroclor-1262                         | ND        |      | 69        | ug/kg | 02/29/24      | 03/05/24      |
| Aroclor-1268                         | ND        |      | 69        | ug/kg | 02/29/24      | 03/05/24      |
| PCBs (Total)                         | ND        |      | 69        | ug/kg | 02/29/24      | 03/05/24      |
| Surrogate(s)                         | Recovery% |      | Limit     | s     |               |               |
| 2,4,5,6-Tetrachloro-m-xylene (TCMX ) | 69.6%     |      | 36.2-1.   | 30    | 02/29/24      | 03/05/24      |
| Decachlorobiphenyl (DCBP)            | 49.0%     |      | 43.3-1.   | 30    | 02/29/24      | 03/05/24      |

# **Results: Total Petroleum Hydrocarbons**

Sample: B-108 2-4'

Lab Number: 4B27035-01 (Soil)

|                              |           |      | Reporting |       |               |               |
|------------------------------|-----------|------|-----------|-------|---------------|---------------|
| Analyte                      | Result    | Qual | Limit     | Units | Date Prepared | Date Analyzed |
| Total Petroleum Hydrocarbons | ND        |      | 29        | mg/kg | 02/28/24      | 02/28/24      |
| Surrogate(s)                 | Recovery% |      | Limit     | :S    |               |               |
| Chlorooctadecane             | 95.2%     |      | 50-13     | 20    | 02/28/24      | 02/28/24      |

## **Results: Total Petroleum Hydrocarbons**

Sample: B-118 2-4'

Lab Number: 4B27035-02 (Soil)

|                              |           |      | Reporting |       |               |               |
|------------------------------|-----------|------|-----------|-------|---------------|---------------|
| Analyte                      | Result    | Qual | Limit     | Units | Date Prepared | Date Analyzed |
| Total Petroleum Hydrocarbons | ND        |      | 28        | mg/kg | 02/28/24      | 02/28/24      |
| Surrogate(s)                 | Recovery% |      | Limit     | :S    |               |               |
| Chlorooctadecane             | 57.1%     |      | 50-13     | 30    | 02/28/24      | 02/28/24      |

SU

SU

SU

Prepared & Analyzed: 02/28/24

Prepared & Analyzed: 02/28/24

6.8

7.00

0-200

0-200

0.587

200

LCS (B4B1200-BS2)

Duplicate (B4B1200-DUP1)

| LCS (B4C0033-BS1)        |            |           |           | Prepared & An | nalyzed: 03/01/24 |        |
|--------------------------|------------|-----------|-----------|---------------|-------------------|--------|
| Flashpoint               | 83         | 70        | degrees F | 80.0          | 104               | 90-110 |
| Duplicate (B4C0033-DUP1) | Source: 4l | B26010-04 |           | Prepared & An | nalyzed: 03/01/24 |        |

Source: 4B23046-06

7.1

7.1

6.8

| Town of Maynard<br>Green Meadow Element | ary Schoo | ol - Ear    |                    | /c <b>€@ŋ&amp;rol</b><br>tinued) |                |                  |         | 06/12/2024<br>Addendum 2 |     |              |  |
|-----------------------------------------|-----------|-------------|--------------------|----------------------------------|----------------|------------------|---------|--------------------------|-----|--------------|--|
| Reactivity                              |           |             |                    |                                  |                |                  |         |                          |     |              |  |
| Analyte                                 | Result    | Qual        | Reporting<br>Limit | Units                            | Spike<br>Level | Source<br>Result | %REC    | %REC<br>Limits           | RPD | RPD<br>Limit |  |
| Batch: B4B1244 - Reactivity             |           |             |                    |                                  |                |                  |         |                          |     |              |  |
| Blank (B4B1244-BLK1)                    |           |             |                    |                                  | Prepared 8     | & Analyzed: 0    | 2/29/24 |                          |     |              |  |
| Sulfide                                 | ND        |             | 0.1                | mg/kg                            |                |                  |         |                          |     |              |  |
| Blank (B4B1244-BLK2)                    |           |             |                    |                                  | Prepared 8     | & Analyzed: 0    | 2/29/24 |                          |     |              |  |
| Sulfide                                 | ND        |             | 0.1                | mg/kg                            |                |                  |         |                          |     |              |  |
| LCS (B4B1244-BS1)                       |           |             |                    |                                  | Prepared 8     | & Analyzed: 0    | 2/29/24 |                          |     |              |  |
| Sulfide                                 | 3.6       |             | 0.1                | mg/kg                            | 4.00           | •                | 90.0    | 90-110                   |     |              |  |
| LCS (B4B1244-BS2)                       |           |             |                    |                                  | Prepared 8     | & Analyzed: 0    | 2/29/24 |                          |     |              |  |
| Sulfide                                 | 3.7       |             | 0.1                | mg/kg                            | 4.00           |                  | 91.5    | 90-110                   |     |              |  |
| Duplicate (B4B1244-DUP1)                | 9         | Source: 4B2 | 23045-01           |                                  | Prepared 8     | & Analyzed: 0    | 2/29/24 |                          |     |              |  |
| Sulfide                                 | ND        |             | 0.1                | mg/kg dry                        |                | ND               |         |                          |     | 20           |  |
| Matrix Spike (B4B1244-MS1)              | 9         | Source: 4B2 | 23045-01           |                                  | Prepared 8     | & Analyzed: 0    | 2/29/24 |                          |     |              |  |
| Sulfide                                 | 4.5       |             | 0.1                | mg/kg dry                        | 4.59           | ND               | 98.5    | 80-120                   |     |              |  |
| Batch: B4B1245 - Reactivity             |           |             |                    |                                  |                |                  |         |                          |     |              |  |
| Blank (B4B1245-BLK1)                    |           |             |                    |                                  | Prepared 8     | & Analyzed: 0    | 2/29/24 |                          |     |              |  |
| Cyanide                                 | ND        |             | 0.2                | mg/kg                            |                |                  |         |                          |     |              |  |
| Blank (B4B1245-BLK2)                    |           |             |                    |                                  | Prepared 8     | & Analyzed: 0    | 2/29/24 |                          |     |              |  |
| Cyanide                                 | ND        |             | 0.2                | mg/kg                            |                |                  |         |                          |     |              |  |
| Duplicate (B4B1245-DUP1)                | 9         | Source: 4B2 | 23045-01           |                                  | Prepared 8     | & Analyzed: 0    | 2/29/24 |                          |     |              |  |
| Cyanide                                 | ND        |             | 0.2                | mg/kg dry                        |                | ND               |         |                          |     | 20           |  |

| Town of Maynard<br>Green Meadow Ele | mentary Schoo | l - Ear | ly <b>Ster Pty</b> (<br>(Conti | <b>Control</b> |                |                  |              |                | /12/202<br>endum |              |
|-------------------------------------|---------------|---------|--------------------------------|----------------|----------------|------------------|--------------|----------------|------------------|--------------|
| Total Metals                        |               |         |                                |                |                |                  |              |                |                  |              |
| Analyte                             | Result        | Qual    | Reporting<br>Limit             | Units          | Spike<br>Level | Source<br>Result | %REC         | %REC<br>Limits | RPD              | RPD<br>Limit |
| Batch: B4B1180 - Metals Di          | aestion Soils |         |                                |                |                |                  |              |                |                  |              |
| Blank (B4B1180-BLK1)                |               |         |                                | Pr             | epared: 02/2   | 8/24 Analyze     | ed: 03/01/24 |                |                  |              |
| Beryllium                           | ND            |         | 0.33                           | mg/kg          |                |                  |              |                |                  |              |
| Chromium                            | ND            |         | 0.50                           | mg/kg          |                |                  |              |                |                  |              |
| Antimony                            | ND            |         | 0.66                           | mg/kg          |                |                  |              |                |                  |              |
| Cadmium                             | ND            |         | 0.50                           | mg/kg          |                |                  |              |                |                  |              |
| Selenium                            | ND            |         | 1.00                           | mg/kg          |                |                  |              |                |                  |              |
| Nickel                              | ND            |         | 0.50                           | mg/kg          |                |                  |              |                |                  |              |
| Lead                                | ND            |         | 0.50                           | mg/kg          |                |                  |              |                |                  |              |
| Vanadium                            | ND            |         | 0.33                           | mg/kg          |                |                  |              |                |                  |              |
| Silver                              | ND            |         | 1.00                           | mg/kg          |                |                  |              |                |                  |              |
| Barium                              | ND            |         | 0.33                           | mg/kg          |                |                  |              |                |                  |              |
| Zinc                                | ND            |         | 2.0                            | mg/kg          |                |                  |              |                |                  |              |
| Arsenic                             | ND            |         | 1.00                           | mg/kg          |                |                  |              |                |                  |              |
| Thallium                            | ND            |         | 0.33                           | mg/kg          |                |                  |              |                |                  |              |
| LCS (B4B1180-BS1)                   |               |         |                                | Pr             | epared: 02/2   | 8/24 Analyze     | ed: 03/01/24 |                |                  |              |
| Barium                              | 86.2          |         | 0.33                           | mg/kg          | 100            |                  | 86.2         | 85-115         |                  |              |
| Arsenic                             | 18.7          |         | 1.00                           | mg/kg          | 20.0           |                  | 93.5         | 85-115         |                  |              |
| Cadmium                             | 85.7          |         | 0.50                           | mg/kg          | 100            |                  | 85.7         | 85-115         |                  |              |
| Chromium                            | 86.8          |         | 0.50                           | mg/kg          | 100            |                  | 86.8         | 85-115         |                  |              |
| Beryllium                           | 18.1          |         | 0.33                           | mg/kg          | 20.0           |                  | 90.7         | 85-115         |                  |              |
| Lead                                | 93.7          |         | 0.50                           | mg/kg          | 100            |                  | 93.7         | 85-115         |                  |              |
| Antimony                            | 97.4          |         | 0.66                           | mg/kg          | 100            |                  | 97.4         | 85-115         |                  |              |
| Selenium                            | 18.4          |         | 1.00                           | mg/kg          | 20.0           |                  | 92.2         | 85-115         |                  |              |
| Silver                              | 43.3          |         | 1.00                           | mg/kg          | 40.0           |                  | 108          | 85-115         |                  |              |
| Vanadium                            | 95.1          |         | 0.33                           | mg/kg          | 100            |                  | 95.1         | 85-115         |                  |              |
| Zinc                                | 85.3          |         | 2.0                            | mg/kg          | 100            |                  | 85.3         | 85-115         |                  |              |
| Nickel                              | 86.3          |         | 0.50                           | mg/kg          | 100            |                  | 86.3         | 85-112         |                  |              |
| Thallium                            | 90.9          |         | 0.33                           | mg/kg          | 100            |                  | 90.9         | 85-115         |                  |              |

| Town of Maynard<br>Green Meadow Element | tary Schoo | ol - Ear    |                    | <b>∕c€eŋŧrol</b><br>tinued) |                |                  |         |                | <del>/12/202</del><br>endum |              |
|-----------------------------------------|------------|-------------|--------------------|-----------------------------|----------------|------------------|---------|----------------|-----------------------------|--------------|
| Total Metals (Continued)                |            |             |                    |                             |                |                  |         |                |                             |              |
| Analyte                                 | Result     | Qual        | Reporting<br>Limit | Units                       | Spike<br>Level | Source<br>Result | %REC    | %REC<br>Limits | RPD                         | RPD<br>Limit |
| Batch: B4B1185 - Metals Cold-Va         | apor Mercu | ry          |                    |                             |                |                  |         |                |                             |              |
| Blank (B4B1185-BLK1)                    |            |             |                    |                             | Prepared 8     | & Analyzed: 0    | 2/28/24 |                |                             |              |
| Mercury                                 | ND         |             | 0.100              | mg/kg                       |                |                  |         |                |                             |              |
| Blank (B4B1185-BLK2)                    |            |             |                    |                             | Prepared 8     | & Analyzed: 0    | 2/28/24 |                |                             |              |
| Mercury                                 | ND         |             | 0.100              | mg/kg                       |                |                  |         |                |                             |              |
| LCS (B4B1185-BS1)                       |            |             |                    |                             | Prepared 8     | & Analyzed: 0    | 2/28/24 |                |                             |              |
| Mercury                                 | 0.504      |             | 0.100              | mg/kg                       | 0.500          |                  | 101     | 93-114         |                             |              |
| LCS (B4B1185-BS2)                       |            |             |                    |                             | Prepared 8     | & Analyzed: 0    | 2/28/24 |                |                             |              |
| Mercury                                 | 0.504      |             | 0.100              | mg/kg                       | 0.500          |                  | 101     | 93-114         |                             |              |
| LCS Dup (B4B1185-BSD1)                  |            |             |                    |                             | Prepared 8     | & Analyzed: 0    | 2/28/24 |                |                             |              |
| Mercury                                 | 0.513      |             | 0.100              | mg/kg                       | 0.500          |                  | 103     | 93-114         | 1.92                        | 200          |
| LCS Dup (B4B1185-BSD2)                  |            |             |                    |                             | Prepared 8     | & Analyzed: 0    | 2/28/24 |                |                             |              |
| Mercury                                 | 0.513      |             | 0.100              | mg/kg                       | 0.500          |                  | 103     | 93-114         | 1.92                        | 200          |
| Matrix Spike (B4B1185-MS1)              | 9          | Source: 4B2 | 26010-01           |                             | Prepared 8     | & Analyzed: 0    | 2/28/24 |                |                             |              |
| Mercury                                 | 0.716      |             | 0.126              | mg/kg dry                   | 0.630          | 0.129            | 93.1    | 80-120         |                             |              |
| Matrix Spike (B4B1185-MS2)              | 9          | Source: 4B2 | 27039-02           |                             | Prepared 8     | & Analyzed: 0    | 2/28/24 |                |                             |              |
| Mercury                                 | 0.564      |             | 0.094              | mg/kg dry                   | 0.469          | 0.135            | 91.3    | 80-120         |                             |              |
| Matrix Spike (B4B1185-MS3)              | 9          | Source: 4B2 | 27003-01           |                             | Prepared 8     | & Analyzed: 0    | 2/28/24 |                |                             |              |
| Mercury                                 | 0.649      |             | 0.098              | mg/kg dry                   | 0.489          | 0.125            | 107     | 80-120         |                             |              |
| Matrix Spike Dup (B4B1185-MSD1)         | 9          | Source: 4B2 | 26010-01           |                             | Prepared 8     | & Analyzed: 0    | 2/28/24 |                |                             |              |
| Mercury                                 | 0.688      |             | 0.115              | mg/kg dry                   | 0.577          | 0.129            | 96.8    | 80-120         | 4.01                        | 20           |

| Town of Maynard<br>Green Meadow Element | ary Schoo | ol - Earl   |           | <b>⊘Kentrol</b> |          |               |         |        | <del>/12/202</del><br>endum |       |
|-----------------------------------------|-----------|-------------|-----------|-----------------|----------|---------------|---------|--------|-----------------------------|-------|
| Total Metals (Continued)                |           |             |           |                 |          |               |         |        |                             |       |
|                                         |           |             | Reporting |                 | Spike    | Source        |         | %REC   |                             | RPD   |
| Analyte                                 | Result    | Qual        | Limit     | Units           | Level    | Result        | %REC    | Limits | RPD                         | Limit |
| Batch: B4B1185 - Metals Cold-Va         | por Mercu | ry (Con     | tinued)   |                 |          |               |         |        |                             |       |
| Matrix Spike Dup (B4B1185-MSD2)         | 9         | Source: 4B2 | 7039-02   |                 | Prepared | & Analyzed: 0 | 2/28/24 |        |                             |       |
| Mercury                                 | 0.576     |             | 0.093     | mg/kg dry       | 0.465    | 0.135         | 94.7    | 80-120 | 2.10                        | 20    |

# Volatile Organic Compounds 8260C (5035-LL)

| Blank (B4C0015-BLK1)  Acetone ND Benzene ND Bromobenzene ND Bromochloromethane ND Bromochloromethane ND Bromodichloromethane ND Bromomethane ND Carbon Disulfide ND Carbon Disulfide ND Carbon Disulfide ND Carbon Tetrachloride ND Chlorobenzene ND Chlorotohane ND Chloroform ND Chloromethane ND Chlorototluene ND 1,2-Dibromo-3-chloropropane (DBCP) ND Dibromomethane ND 1,2-Dibromoethane ND 1,2-Dichloromethane ND 1,2-Dichlorobenzene ND 1,3-Dichlorobenzene ND 1,4-Dichlorobenzene ND 1,4-Dichlorobenzene ND 1,2-Dichloroethane ND 1,2-Dichloroethane ND 1,2-Dichloroethane ND 1,2-Dichloroethane ND 1,2-Dichloroethene ND 1,2-Dichloroethene ND 1,2-Dichloropropane ND 1,3-Dichloropropane ND 1,3-Dichloropropane ND 1,3-Dichloropropane ND 1,3-Dichloropropene  |                |                |            |                |         |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|----------------|------------|----------------|---------|--|--|
| Acetone         ND           Benzene         ND           Bromobenzene         ND           Bromochloromethane         ND           Bromochloromethane         ND           Bromoform         ND           Bromoform         ND           Bromomethane         ND           2-Butanone         ND           tert-Butyl alcohol         ND           sec-Butylbenzene         ND           n-Butylbenzene         ND           dethyl t-butyl ether (MTBE)         ND           Carbon Disulfide         ND           Carbon Disulfide         ND           Carbon Tetrachloride         ND           Chlorotenzene         ND           Chloroethane         ND           Chloroform         ND           Chloroethane         ND           Chlorotoluene         ND           1,2-Dibromo-3-chloropropane (DBCP)         ND           Dibromochloromethane         ND           1,2-Dibromoethane (EDB)         ND           1,2-Dichlorobenzene         ND           1,3-Dichlorobenzene         ND           1,4-Dichlorobenzene         ND           1,2-Dichloroethene         ND <tr< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></tr<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                |                |            |                |         |  |  |
| Acetone         ND           Benzene         ND           Bromobenzene         ND           Bromochloromethane         ND           Bromodichloromethane         ND           Bromoform         ND           Bromoform         ND           Bromomethane         ND           2-Butanone         ND           tert-Butyl alcohol         ND           sec-Butylbenzene         ND           n-Butylbenzene         ND           n-Butylbenzene         ND           Methyl t-butyl ether (MTBE)         ND           Carbon Disulfide         ND           Carbon Disulfide         ND           Chlorobenzene         ND           Chlorobenzene         ND           Chlorobenzene         ND           Chlorobethane         ND           Chlorotothane         ND           Chlorototluene         ND           1,2-Dibromochloromethane         ND           1,2-Dibromochlane (EDB)         ND           Dibromochloromethane         ND           1,2-Dichlorobenzene         ND           1,4-Dichlorobenzene         ND           1,2-Dichlorobethane         ND <td< td=""><td></td><td></td><td>Prepared 8</td><td>&amp; Analyzed: 02</td><td>2/29/24</td><td></td><td></td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                |                | Prepared 8 | & Analyzed: 02 | 2/29/24 |  |  |
| Bromobenzene         ND           Bromochloromethane         ND           Bromodichloromethane         ND           Bromoform         ND           Bromoform         ND           Bromomethane         ND           2-Butanone         ND           tert-Butyl alcohol         ND           sec-Butylbenzene         ND           n-Butylbenzene         ND           tert-Butylbenzene         ND           Methyl t-butyl ether (MTBE)         ND           Carbon Disulfide         ND           Carbon Disulfide         ND           Carbon Disulfide         ND           Chlorobenzene         ND           Chlorobenzene         ND           Chloroethane         ND           Chloroethane         ND           Chlorotoluene         ND           1,2-Dibromo-3-chloropropane (DBCP)         ND           Dibromochloromethane         ND           1,2-Dibromo-dethane (EDB)         ND           1,2-Dibriomoethane (EDB)         ND           1,2-Dichlorobenzene         ND           1,3-Dichloroethane         ND           1,2-Dichloroethane         ND           1,2-Dichloroethene         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5              | ug/kg          | •          | ,              |         |  |  |
| Bromochloromethane ND Bromodichloromethane ND Bromoform ND Bromomethane ND Bromomethane ND 2-Butanone ND tert-Butyl alcohol ND sec-Butylbenzene ND n-Butylbenzene ND n-Butylbenzene ND tert-Butylbenzene ND Methyl t-butyl ether (MTBE) ND Carbon Disulfide ND Carbon Disulfide ND Carbon Tetrachloride ND Chlorotenzene ND Chloroform ND Chloromethane ND Chlorotoluene ND 1,2-Dibromo-3-chloropropane (DBCP) ND Dibromomethane ND 1,2-Dichlorobenzene ND 1,3-Dichlorobenzene ND 1,1-Dichlorotenzene ND 1,2-Dichlorotenzene ND 1,1-Dichlorotenzene ND 1,2-Dichlorotenzene ND 1,1-Dichlorotenzene ND 1,2-Dichlorotenzene ND 1,1-Dichlorotenzene ND 1,1-Dichlorotenzene ND 1,1-Dichlorotenzene ND 1,1-Dichlorotenzene ND 1,1-Dichlorotenzene ND 1,1-Dichlorotenzene ND 1,2-Dichlorotenzene ND 1,2-Dichlorotenzene ND 1,3-Dichloropropene ND 1,1-Dichlorotenzene ND 1,1-Dichloropropene ND                                                                | 5              | ug/kg          |            |                |         |  |  |
| Bromodichloromethane Bromoform ND Bromomethane ND 2-Butanone ND tert-Butyl alcohol sec-Butylbenzene ND n-Butylbenzene ND methylbenzene ND Methyl t-butyl ether (MTBE) ND Carbon Disulfide ND Carbon Disulfide ND Chlorobenzene ND Chloroethane ND Chloroform ND Chloroform ND Chlorotoluene ND 1,2-Dibromo-3-chloropropane (DBCP) ND Dibromomethane ND 1,2-Dibromoethane ND 1,2-Dichlorobenzene ND 1,3-Dichlorobenzene ND 1,4-Dichlorobenzene ND 1,1-Dichloroethane ND 1,1-Dichloroethane ND 1,2-Dichloroethane ND 1,1-Dichloroethane ND 1,1-Dichloroethane ND 1,1-Dichloroethane ND 1,1-Dichloroethane ND 1,1-Dichloroethane ND 1,1-Dichloroethane ND 1,1-Dichloroethene ND 1,2-Dichloropropane ND 1,1-Dichloroethene ND 1,1-Dichloroethene ND 1,1-Dichloropropane ND 1,1-Dichloropro | 5              | ug/kg          |            |                |         |  |  |
| Bromodichloromethane         ND           Bromoform         ND           Bromomethane         ND           2-Butanone         ND           tert-Butyl alcohol         ND           sec-Butylbenzene         ND           n-Butylbenzene         ND           tert-Butylbenzene         ND           Methyl t-butyl ether (MTBE)         ND           Carbon Disulfide         ND           Carbon Tetrachloride         ND           Chlorobenzene         ND           Chlorobenzene         ND           Chloroform         ND           Chloroform         ND           Chlorotoluene         ND           4-Chlorotoluene         ND           4-Chlorotoluene         ND           1,2-Dibromo-3-chloropropane (DBCP)         ND           Dibromochloromethane         ND           1,2-Dibromoethane (EDB)         ND           Dibromomethane         ND           1,2-Dichlorobenzene         ND           1,3-Dichlorobenzene         ND           1,4-Dichlorobenzene         ND           1,1-Dichloroethene         ND           1,2-Dichloroethene, Total         ND           cis-1,2-Dichloropropane </td <td>5</td> <td>ug/kg</td> <td></td> <td></td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5              | ug/kg          |            |                |         |  |  |
| Bromoform         ND           Bromomethane         ND           2-Butanone         ND           tert-Butyl alcohol         ND           sec-Butylbenzene         ND           n-Butylbenzene         ND           Methyl t-butyl ether (MTBE)         ND           Carbon Disulfide         ND           Carbon Tetrachloride         ND           Chlorobenzene         ND           Chloroethane         ND           Chloroethane         ND           Chloroethane         ND           Chlorotoluene         ND           4-Chlorotoluene         ND           2-Chlorotoluene         ND           1,2-Dibromo-3-chloropropane (DBCP)         ND           Dibromochloromethane         ND           1,2-Dibromoethane (EDB)         ND           Dibromomethane         ND           1,2-Dichlorobenzene         ND           1,3-Dichlorobenzene         ND           1,4-Dichlorobenzene         ND           1,1-Dichloroethene         ND           1,2-Dichloroethene         ND           1,2-Dichloroethene, Total         ND           cis-1,2-Dichloropropane         ND           2,2-Dichloropropen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5              | ug/kg          |            |                |         |  |  |
| Bromomethane ND 2-Butanone ND tert-Butyl alcohol ND sec-Butylbenzene ND n-Butylbenzene ND tert-Butylbenzene ND Methyl t-butyl ether (MTBE) ND Carbon Disulfide ND Carbon Disulfide ND Carbon Tetrachloride ND Chlorobenzene ND Chlorobenzene ND Chloroform ND Chloroform ND Chloroform ND Chlorotoluene ND 2-Chlorotoluene ND 1,2-Dibromo-3-chloropropane (DBCP) ND Dibromomethane ND 1,2-Dibromoethane (EDB) ND Dibromomethane ND 1,2-Dichlorobenzene ND 1,3-Dichlorobenzene ND 1,4-Dichlorobenzene ND 1,1-Dichlorobenzene ND 1,1-Dichlorobenzene ND 1,1-Dichlorobenzene ND 1,1-Dichloroethane ND 1,2-Dichlorobenzene ND 1,1-Dichloroethane ND 1,2-Dichloroethane ND 1,1-Dichloroethene ND 1,1-Dichloroethene ND 1,1-Dichloroethene ND 1,1-Dichloropopane ND 1,1-Dichloropo | 5              | ug/kg          |            |                |         |  |  |
| 2-Butanone tert-Butyl alcohol sec-Butylbenzene ND n-Butylbenzene ND tert-Butylbenzene ND Methyl t-butyl ether (MTBE) Carbon Disulfide ND Carbon Disulfide ND Carbon Tetrachloride ND Chlorobenzene ND Chloroethane ND Chloroform ND Chloroform ND Chlorotoluene ND C-Chlorotoluene ND 1,2-Dibromo-3-chloropropane (DBCP) ND Dibromoethane ND 1,2-Dichlorobenzene ND 1,1-Dichlorobenzene ND 1,1-Dichloroethane ND 1,2-Dichloroethane ND 1,2-Dichloroethene ND 1,2-Dichloroethene ND 1,3-Dichloropenpene ND 1,1-Dichloropenpene ND 1,1-Dichloropenpene ND 1,1-Dichloropenpene ND 1,1-Dichloropenpene ND 1,1-Dichloropenpene ND 1,1-Dichloropenpene ND 1,1-Dichloropropene ND 1,1-Dichloropro | 5              | ug/kg          |            |                |         |  |  |
| tert-Butyl alcohol sec-Butylbenzene ND n-Butylbenzene ND tert-Butylbenzene ND Methyl t-butyl ether (MTBE) ND Carbon Disulfide ND Carbon Tetrachloride ND Chlorobenzene ND Chloroethane ND Chloroform ND Chlorotoluene ND 2-Chlorotoluene ND 1,2-Dibromoethane (EDB) ND Dibromoethane ND 1,2-Dichlorobenzene ND 1,3-Dichlorobenzene ND 1,1-Dichloroethane ND 1,2-Dichlorobenzene ND 1,1-Dichlorobenzene ND 1,1-Dichloroethane ND 1,2-Dichlorobenzene ND 1,1-Dichlorobenzene ND 1,1-Dichlorobenzene ND 1,1-Dichloroethane ND 1,2-Dichlorobenzene ND 1,1-Dichloroethane ND 1,2-Dichloroethane ND 1,1-Dichloroethane ND 1,1-Dichloroethane ND 1,1-Dichloroethane ND 1,1-Dichloroethene ND 1,1-Dichloroethene ND 1,1-Dichloropropane ND 1,1-Dichloropropane ND 1,1-Dichloropropane ND 1,1-Dichloropropane ND 1,1-Dichloropropane ND 1,1-Dichloropropane ND 1,1-Dichloropropene ND 1,1-D | 5              | ug/kg          |            |                |         |  |  |
| sec-Butylbenzene ND n-Butylbenzene ND tert-Butylbenzene ND Methyl t-butyl ether (MTBE) ND Carbon Disulfide ND Carbon Tetrachloride ND Chlorobenzene ND Chloroethane ND Chloroform ND Chlorotoluene ND 2-Chlorotoluene ND 1,2-Dibromo-3-chloropropane (DBCP) ND Dibromomethane ND 1,2-Dichlorobenzene ND 1,1-Dichlorobenzene ND 1,1-Dichlorobenzene ND 1,1-Dichloroethane ND 1,2-Dichloroethane ND 1,2-Dichloroethane ND 1,2-Dichloroethene ND 1,2-Dichloroethene ND 1,3-Dichloropenpene ND 1,1-Dichloroethene ND 1,1-Dichloropropane ND 1,1-Dichloropropane ND 1,1-Dichloropropane ND 1,1-Dichloropropene ND 1,1-Dichloropropene ND 1,1-Dichloropropene ND 1,3-Dichloropropene ND 1,3-Dich | 5              | ug/kg          |            |                |         |  |  |
| n-Butylbenzene ND tert-Butylbenzene ND Methyl t-butyl ether (MTBE) ND Carbon Disulfide ND Carbon Tetrachloride ND Chlorobenzene ND Chloroethane ND Chloroform ND Chlorotoluene ND C-Chlorotoluene ND 1,2-Dibromo-3-chloropropane (DBCP) ND Dibromomethane ND 1,2-Dibromoethane ND 1,2-Dichlorobenzene ND 1,2-Dichlorobenzene ND 1,2-Dichlorobenzene ND 1,2-Dichlorobenzene ND 1,2-Dichlorobenzene ND 1,2-Dichlorobenzene ND 1,1-Dichloroethane ND 1,1-Dichloroethane ND 1,2-Dichloroethane ND 1,1-Dichloroethane ND 1,2-Dichloroethane ND 1,2-Dichloroethane ND 1,2-Dichloroethane ND 1,2-Dichloroethane ND 1,2-Dichloroethene ND 1,2-Dichloroethene ND 1,1-Dichloroethene ND 1,1-Dichloropopane ND 1,1-Di | 5              | ug/kg          |            |                |         |  |  |
| tert-Butylbenzene ND Methyl t-butyl ether (MTBE) ND Carbon Disulfide ND Carbon Tetrachloride ND Chlorobenzene ND Chloroform ND Chloroform ND Chloromethane ND Chlorotoluene ND 2-Chlorotoluene ND 1,2-Dibromo-3-chloropropane (DBCP) ND Dibromochloromethane ND 1,2-Dibromoethane ND 1,2-Dichlorobenzene ND 1,3-Dichlorobenzene ND 1,4-Dichlorobenzene ND 1,4-Dichlorobenzene ND 1,1-Dichlorobenzene ND 1,2-Dichlorobenzene ND 1,1-Dichloroethane ND 1,2-Dichlorobenzene ND 1,1-Dichloroethane ND 1,2-Dichlorobenzene ND 1,1-Dichloroethane ND 1,2-Dichloroethene ND 1,2-Dichloroethene ND 1,2-Dichloroethene ND 1,1-Dichloroethene ND 1,1-Dichloroethene ND 1,1-Dichloropropane ND 1,1-Dichloropropane ND 1,1-Dichloropropane ND 1,1-Dichloropropene ND 1,3-Dichloropropene ND 1,4-Dioxane ND 1,4-D | 5              | ug/kg          |            |                |         |  |  |
| Methyl t-butyl ether (MTBE) Carbon Disulfide ND Carbon Tetrachloride ND Chlorobenzene ND Chlorothane ND Chloroform ND Chlorotoluene ND 4-Chlorotoluene ND 1,2-Dibromo-3-chloropropane (DBCP) Dibromochloromethane ND 1,2-Dibromoethane ND 1,2-Dichlorobenzene ND 1,3-Dichlorobenzene ND 1,4-Dichlorotenee ND 1,1-Dichlorotethane ND 1,2-Dichlorotethane ND 1,1-Dichlorotethane ND 1,2-Dichlorotethane ND 1,1-Dichlorotethane ND 1,2-Dichlorotethane ND 1,2-Dichlorotethane ND 1,1-Dichlorotethane ND 1,1-Dichloropropane ND 1,1-Dichloropropane ND 1,1-Dichloropropane ND 1,1-Dichloropropene  | 5              | ug/kg          |            |                |         |  |  |
| Carbon Disulfide ND Carbon Tetrachloride ND Chlorobenzene ND Chloroethane ND Chloroform ND Chloroform ND Chlorotoluene ND 2-Chlorotoluene ND 1,2-Dibromo-3-chloropropane (DBCP) ND Dibromochloromethane ND 1,2-Dibromoethane (EDB) ND Dibromomethane ND 1,2-Dichlorobenzene ND 1,3-Dichlorobenzene ND 1,4-Dichlorobenzene ND 1,1-Dichloroethane ND 1,2-Dichloroethane ND 1,2-Dichloroethane ND 1,1-Dichloroethane ND 1,2-Dichloroethane ND 1,2-Dichloroethane ND 1,3-Dichloroethene ND 1,1-Dichloroethene ND 1,1-Dichloroethene ND 1,1-Dichloroethene ND 1,1-Dichloropropane ND 1,1-Dichloropropane ND 1,1-Dichloropropane ND 1,1-Dichloropropene ND 1,1-Dichloropr | 5              | ug/kg          |            |                |         |  |  |
| Carbon Tetrachloride Chlorobenzene Chloroethane Chloroform Chloromethane ND Chloromethane ND Chloromethane ND Chlorotoluene ND 2-Chlorotoluene ND 1,2-Dibromo-3-chloropropane (DBCP) ND Dibromochloromethane ND 1,2-Dibromoethane (EDB) ND Dibromomethane ND 1,2-Dichlorobenzene ND 1,3-Dichlorobenzene ND 1,4-Dichlorobenzene ND 1,1-Dichloroethane ND 1,2-Dichloroethane ND 1,2-Dichloroethane ND 1,2-Dichloroethene ND 1,2-Dichloroethene ND 1,2-Dichloroethene ND 1,2-Dichloroethene ND 1,1-Dichloroethene ND 1,1-Dichloroethene ND 1,1-Dichloropropane ND 1,3-Dichloropropane ND 1,3-Dichloropropene ND 1,3-Dichloropropene ND 1,3-Dichloropropene ND 1,3-Dichloropropene ND 1,4-Dioxane Ethylbenzene ND Hexachlorobutadiene ND 1sopropylbenzene ND ND Methyl-e-pentanone ND Methyl-e-pentanone ND Methyl-p-epentanone ND Maphthalene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5              | ug/kg          |            |                |         |  |  |
| Chlorobenzene Chloroform Chloroform Chloromethane ND Chloroform ND 4-Chlorotoluene ND 2-Chlorotoluene ND 1,2-Dibromo-3-chloropropane (DBCP) ND Dibromochloromethane ND 1,2-Dibromoethane (EDB) ND Dibromomethane ND 1,2-Dichlorobenzene ND 1,3-Dichlorobenzene ND 1,4-Dichlorobenzene ND 1,1-Dichloroethane ND 1,2-Dichloroethane ND 1,2-Dichloroethane ND 1,2-Dichloroethane ND 1,2-Dichloroethane ND 1,2-Dichloroethene ND 1,2-Dichloroethene ND 1,2-Dichloroethene ND 1,1-Dichloroethene ND 1,1-Dichloroethene ND 1,1-Dichloropropane ND 1,1-Dichloropropane ND 1,3-Dichloropropene ND 1,3-Dichloropropene ND 1,3-Dichloropropene ND 1,4-Dioxane Ethylbenzene ND Hexachlorobutadiene ND 1sopropylbenzene ND ND Methylene Chloride ND Methylene Chloride ND ND Naphthalene ND ND Naphthalene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5              | ug/kg<br>ug/kg |            |                |         |  |  |
| Chloroform Chloroform Chloromethane ND Chloromethane ND 4-Chlorotoluene ND 2-Chlorotoluene ND 1,2-Dibromo-3-chloropropane (DBCP) ND Dibromochloromethane ND 1,2-Dibromoethane (EDB) ND Dibromomethane ND 1,2-Dichlorobenzene ND 1,3-Dichlorobenzene ND 1,4-Dichlorobenzene ND 1,1-Dichloroethane ND 1,2-Dichloroethane ND 1,2-Dichloroethane ND 1,2-Dichloroethene ND 1,2-Dichloroethene ND 1,2-Dichloroethene ND 1,2-Dichloroethene ND 1,1-Dichloroethene ND 1,1-Dichloropropane ND 1,1-Dichloropropane ND 1,2-Dichloropropene ND 1,1-Dichloropropene ND 1,1-Dichloropropene ND 1,1-Dichloropropene ND 1,1-Dichloropropene ND 1,1-Dichloropropene ND 1,1-Dichloropropene ND 1,3-Dichloropropene ND 1,4-Dioxane ND 1,4-Diox |                |                |            |                |         |  |  |
| Chloroform Chloromethane 4-Chlorotoluene 3-Chlorotoluene 1,2-Dibromo-3-chloropropane (DBCP) ND Dibromochloromethane 1,2-Dibromoethane (EDB) ND Dibromomethane (EDB) ND Dibromomethane 1,2-Dichlorobenzene ND 1,3-Dichlorobenzene ND 1,4-Dichlorobenzene ND 1,1-Dichloroethane ND 1,2-Dichloroethane ND 1,2-Dichloroethane ND 1,2-Dichloroethane ND 1,2-Dichloroethene ND 1,2-Dichloroethene ND 1,2-Dichloroethene ND 1,1-Dichloroethene ND 1,1-Dichloroethene ND 1,1-Dichloropropane ND 1,2-Dichloropropane ND 1,3-Dichloropropene ND 1,1-Dichloropropene ND 1,1-Dichloropropene ND 1,1-Dichloropropene ND 1,1-Dichloropropene ND 1,3-Dichloropropene ND 1,3-Dichloropropene ND 1,3-Dichloropropene ND 1,3-Dichloropropene ND 1,4-Dioxane Ethylbenzene ND Hexachlorobutadiene ND Sopropylbenzene ND Methyl-2-pentanone ND Methyl-2-pentanone ND ND Naphthalene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5              | ug/kg          |            |                |         |  |  |
| Chloromethane 4-Chlorotoluene 2-Chlorotoluene ND 1,2-Dibromo-3-chloropropane (DBCP) ND Dibromochloromethane ND 1,2-Dibromoethane (EDB) ND Dibromomethane ND 1,2-Dichlorobenzene ND 1,3-Dichlorobenzene ND 1,4-Dichlorobenzene ND 1,1-Dichloroethane ND 1,2-Dichloroethane ND 1,2-Dichloroethane ND 1,2-Dichloroethane ND 1,2-Dichloroethene ND 1,2-Dichloroethene ND 1,2-Dichloroethene ND 1,2-Dichloroethene ND 1,1-Dichloroethene ND 1,1-Dichloropropane ND 1,2-Dichloropropane ND 1,1-Dichloropropene ND 1,3-Dichloropropene ND 1,3-Dichloropropene ND 1,3-Dichloropropene ND 1,3-Dichloropropene ND 1,3-Dichloropropene ND 1,3-Dichloropropene ND 1,4-Dioxane Ethylbenzene ND Hexachlorobutadiene ND Sopropylbenzene ND Methylene Chloride ND Methyl-2-pentanone ND Naphthalene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5              | ug/kg          |            |                |         |  |  |
| 4-Chlorotoluene 2-Chlorotoluene 1,2-Dibromo-3-chloropropane (DBCP) ND Dibromochloromethane 1,2-Dibromoethane (EDB) ND Dibromomethane 1,2-Dichlorobenzene ND 1,3-Dichlorobenzene ND 1,4-Dichlorobenzene ND 1,1-Dichloroethane ND 1,2-Dichloroethane ND 1,2-Dichloroethane ND 1,2-Dichloroethane ND 1,2-Dichloroethane ND 1,2-Dichloroethene ND 1,2-Dichloroethene ND 1,2-Dichloroethene ND 1,1-Dichloroethene ND 1,1-Dichloroethene ND 1,1-Dichloropropane ND 1,2-Dichloropropane ND 1,1-Dichloropropene ND 1,1-Dichloropropene ND 1,1-Dichloropropene ND 1,1-Dichloropropene ND 1,1-Dichloropropene ND 1,3-Dichloropropene ND 1,4-Dioxane | 5              | ug/kg          |            |                |         |  |  |
| 2-Chlorotoluene ND 1,2-Dibromo-3-chloropropane (DBCP) ND Dibromochloromethane ND 1,2-Dibromochloromethane ND 1,2-Dibromoethane (EDB) ND Dibromomethane ND 1,2-Dichlorobenzene ND 1,3-Dichlorobenzene ND 1,4-Dichlorobenzene ND 1,1-Dichloroethane ND 1,2-Dichloroethane ND 1,2-Dichloroethane ND 1,2-Dichloroethene ND 1,2-Dichloroethene ND 1,2-Dichloroethene ND 1,1-Dichloroethene ND 1,1-Dichloroethene ND 1,1-Dichloropropane ND 1,2-Dichloropropane ND 1,1-Dichloropropene ND 1,1-Dichloropropene ND 1,1-Dichloropropene ND 1,1-Dichloropropene ND 1,1-Dichloropropene ND 1,3-Dichloropropene ND 1,4-Dioxane ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5              | ug/kg          |            |                |         |  |  |
| 1,2-Dibromo-3-chloropropane (DBCP)  Dibromochloromethane 1,2-Dibromoethane (EDB)  ND  Dibromomethane 1,2-Dichlorobenzene ND 1,3-Dichlorobenzene ND 1,4-Dichlorobenzene ND 1,1-Dichloroethane ND 1,2-Dichloroethane ND 1,2-Dichloroethane ND 1,2-Dichloroethene ND 1,2-Dichloroethene ND 1,2-Dichloroethene ND 1,2-Dichloroethene ND 1,1-Dichloroethene ND 1,2-Dichloropropane ND 1,2-Dichloropropane ND 1,2-Dichloropropane ND 1,3-Dichloropropene ND 1,1-Dichloropropene ND 1,1-Dichloropropene ND 1,1-Dichloropropene ND 1,1-Dichloropropene ND 1,3-Dichloropropene ND 1,4-Dioxane ND Ethylbenzene ND Hexachlorobutadiene ND Isopropylbenzene ND Methylene Chloride ND Methylene Chloride ND Naphthalene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5              | ug/kg          |            |                |         |  |  |
| Dibromochloromethane ND 1,2-Dibromoethane (EDB) ND Dibromomethane (EDB) ND 1,2-Dichlorobenzene ND 1,3-Dichlorobenzene ND 1,4-Dichlorobenzene ND 1,1-Dichloroethane ND 1,2-Dichloroethane ND 1,2-Dichloroethane ND 1,2-Dichloroethene ND 1,2-Dichloroethene ND 1,2-Dichloroethene ND 1,2-Dichloroethene ND 1,2-Dichloroethene ND 1,1-Dichloroethene ND 1,1-Dichloropropane ND 2,2-Dichloropropane ND 1,1-Dichloropropene ND 1,1-Dichloropropene ND 1,1-Dichloropropene ND 1,1-Dichloropropene ND 1,1-Dichloropropene ND 1,1-Dichloropropene ND 1,3-Dichloropropene ND 1,4-Dioxane ND 1,4-Dio | 5              | ug/kg          |            |                |         |  |  |
| 1,2-Dibromoethane (EDB) Dibromomethane ND 1,2-Dichlorobenzene ND 1,3-Dichlorobenzene ND 1,4-Dichlorobenzene ND 1,1-Dichloroethane ND 1,2-Dichloroethane ND 1,2-Dichloroethane ND 1,2-Dichloroethene ND 1,2 Dichloroethene ND 1,2-Dichloroethene ND 1,2-Dichloroethene ND 1,1-Dichloroethene ND 1,2-Dichloropropane ND 1,2-Dichloropropane ND 1,2-Dichloropropane ND 1,1-Dichloropropene ND 1,3-Dichloropropene ND 1,4-Dioxane ND Ethylbenzene ND Hexachlorobutadiene ND Isopropylbenzene ND Methylene Chloride ND Naphthalene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5              | ug/kg          |            |                |         |  |  |
| Dibromomethane ND  1,2-Dichlorobenzene ND  1,3-Dichlorobenzene ND  1,4-Dichlorobenzene ND  1,1-Dichloroethane ND  1,2-Dichloroethane ND  1,2-Dichloroethane ND  1,2-Dichloroethene ND  1,2 Dichloroethene, Total ND  1,2-Dichloroethene ND  1,1-Dichloroethene ND  1,2-Dichloroethene ND  1,2-Dichloroethene ND  1,2-Dichloropropane ND  1,2-Dichloropropane ND  1,2-Dichloropropane ND  1,3-Dichloropropene ND  1,1-Dichloropropene ND  1,1-Dichloropropene ND  1,1-Dichloropropene ND  1,3-Dichloropropene ND  1,4-Dioxane ND  Ethylbenzene ND  Hexachlorobutadiene ND  Isopropylbenzene ND  Isopropyltoluene ND  Methylene Chloride ND  Naphthalene ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5              | ug/kg          |            |                |         |  |  |
| 1,2-Dichlorobenzene ND 1,3-Dichlorobenzene ND 1,4-Dichlorobenzene ND 1,1-Dichloroethane ND 1,2-Dichloroethane ND 1,2-Dichloroethane ND 1,2-Dichloroethene ND 1,2 Dichloroethene ND 1,2 Dichloroethene ND 1,1-Dichloroethene ND 1,1-Dichloroethene ND 1,2-Dichloroethene ND 1,2-Dichloropropane ND 1,2-Dichloropropane ND 1,2-Dichloropropane ND 1,3-Dichloropropene ND 1,1-Dichloropropene ND 1,1-Dichloropropene ND 1,1-Dichloropropene ND 1,3-Dichloropropene ND 1,3-Dichloropropene ND 1,4-Dioxane ND Ethylbenzene ND Ethylbenzene ND Hexachlorobutadiene ND Isopropylbenzene ND Isopropyltoluene ND Methylene Chloride ND Naphthalene ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5              | ug/kg          |            |                |         |  |  |
| 1,3-Dichlorobenzene ND 1,4-Dichlorobenzene ND 1,1-Dichloroethane ND 1,2-Dichloroethane ND 1,2-Dichloroethane ND 1,2-Dichloroethene ND 1,2 Dichloroethene, Total ND cis-1,2-Dichloroethene ND 1,1-Dichloroethene ND 1,1-Dichloroethene ND 1,2-Dichloropropane ND 1,2-Dichloropropane ND 1,2-Dichloropropane ND 1,3-Dichloropropene ND 1,1-Dichloropropene ND 1,1-Dichloropropene ND 1,1-Dichloropropene ND 1,3-Dichloropropene ND 1,4-Dioxane ND Ethylbenzene ND Hexachlorobutadiene ND 2-Hexanone ND Isopropylbenzene ND Methylene Chloride ND Methyl-2-pentanone ND Naphthalene ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5              | ug/kg          |            |                |         |  |  |
| 1,4-Dichlorobenzene ND 1,1-Dichloroethane ND 1,2-Dichloroethane ND 1,2-Dichloroethane ND 1,2 Dichloroethene ND 1,2 Dichloroethene, Total ND cis-1,2-Dichloroethene ND 1,1-Dichloroethene ND 1,1-Dichloroethene ND 1,2-Dichloropropane ND 2,2-Dichloropropane ND cis-1,3-Dichloropropene ND trans-1,3-Dichloropropene ND 1,1-Dichloropropene ND 1,1-Dichloropropene ND 1,3-Dichloropropene ND 1,3-Dichloropropene ND 1,3-Dichloropropene ND 1,4-Dioxane ND Ethyl ether ND 1,4-Poioxane ND Ethylbenzene ND Hexachlorobutadiene ND Isopropylbenzene ND Isopropyltoluene ND Methylene Chloride ND Naphthalene ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5              | ug/kg          |            |                |         |  |  |
| 1,1-Dichloroethane ND 1,2-Dichloroethane ND 1,2-Dichloroethane ND 1,2 Dichloroethene ND 1,2 Dichloroethene, Total ND cis-1,2-Dichloroethene ND 1,1-Dichloroethene ND 1,1-Dichloroethene ND 1,2-Dichloropropane ND 2,2-Dichloropropane ND cis-1,3-Dichloropropene ND trans-1,3-Dichloropropene ND 1,1-Dichloropropene ND 1,1-Dichloropropene ND 1,3-Dichloropropene ND 1,3-Dichloropropene ND 1,4-Dioxane ND Ethyl ether ND 1,4-Dioxane ND Ethylbenzene ND Hexachlorobutadiene ND Isopropylbenzene ND Isopropylboluene ND Methylene Chloride ND Methyl-2-pentanone ND Naphthalene ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5              | ug/kg          |            |                |         |  |  |
| 1,2-Dichloroethane ND trans-1,2-Dichloroethene ND 1,2 Dichloroethene, Total ND cis-1,2-Dichloroethene ND 1,1-Dichloroethene ND 1,1-Dichloroethene ND 2,2-Dichloropropane ND cis-1,3-Dichloropropene ND trans-1,3-Dichloropropene ND 1,1-Dichloropropene ND 1,1-Dichloropropene ND 1,3-Dichloropropene ND 1,3-Dichloropropene ND 1,4-Dioxane ND Ethyl ether ND 1,4-Dioxane ND Ethylbenzene ND Hexachlorobutadiene ND Isopropylbenzene ND Fisopropyltoluene ND Methyl-2-pentanone ND ND Naphthalene ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5              | ug/kg          |            |                |         |  |  |
| trans-1,2-Dichloroethene ND 1,2 Dichloroethene, Total ND cis-1,2-Dichloroethene ND 1,1-Dichloroethene ND 1,2-Dichloropthene ND 2,2-Dichloropropane ND cis-1,3-Dichloropropene ND trans-1,3-Dichloropropene ND 1,1-Dichloropropene ND 1,1-Dichloropropene ND 1,3-Dichloropropene ND 1,3-Dichloropropene ND 1,4-Dichloropropene ND 1,4-Dioxane ND Ethyl ether ND 1,4-Dioxane ND Ethylbenzene ND Hexachlorobutadiene ND Isopropylbenzene ND Isopropylbenzene ND Methyl-2-pentanone ND Methyl-2-pentanone ND Naphthalene ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5              | ug/kg          |            |                |         |  |  |
| 1,2 Dichloroethene, Total cis-1,2-Dichloroethene 1,1-Dichloroethene ND 1,1-Dichloroethene ND 1,2-Dichloropropane ND 2,2-Dichloropropane ND cis-1,3-Dichloropropene ND trans-1,3-Dichloropropene ND 1,1-Dichloropropene ND 1,3-Dichloropropene ND 1,3-Dichloropropene ND 1,3-Dichloropropene ND Diethyl ether ND 1,4-Dioxane ND Ethylbenzene ND Hexachlorobutadiene ND 2-Hexanone Sopropylbenzene ND Mo Methylene Chloride ND ND Naphthalene ND ND NAD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5              | ug/kg          |            |                |         |  |  |
| cis-1,2-Dichloroethene ND 1,1-Dichloroethene ND 1,2-Dichloropropane ND 2,2-Dichloropropane ND cis-1,3-Dichloropropene ND trans-1,3-Dichloropropene ND 1,1-Dichloropropene ND 1,1-Dichloropropene ND 1,3-Dichloropropene ND 1,3-Dichloropropene (cis + trans) ND Diethyl ether ND 1,4-Dioxane ND Ethylbenzene ND Hexachlorobutadiene ND 2-Hexanone ND Isopropylbenzene ND Modellische ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5              | ug/kg          |            |                |         |  |  |
| 1,1-Dichloroethene       ND         1,2-Dichloropropane       ND         2,2-Dichloropropane       ND         cis-1,3-Dichloropropene       ND         trans-1,3-Dichloropropene       ND         1,1-Dichloropropene       ND         1,3-Dichloropropene (cis + trans)       ND         Diethyl ether       ND         1,4-Dioxane       ND         Ethylbenzene       ND         Hexachlorobutadiene       ND         2-Hexanone       ND         Isopropylbenzene       ND         p-Isopropyltoluene       ND         Methylene Chloride       ND         4-Methyl-2-pentanone       ND         Naphthalene       ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5              | ug/kg          |            |                |         |  |  |
| 1,2-Dichloropropane       ND         2,2-Dichloropropane       ND         cis-1,3-Dichloropropene       ND         trans-1,3-Dichloropropene       ND         1,1-Dichloropropene       ND         1,3-Dichloropropene (cis + trans)       ND         Diethyl ether       ND         1,4-Dioxane       ND         Ethylbenzene       ND         Hexachlorobutadiene       ND         2-Hexanone       ND         Isopropylbenzene       ND         p-Isopropyltoluene       ND         Methylene Chloride       ND         4-Methyl-2-pentanone       ND         Naphthalene       ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5              | ug/kg          |            |                |         |  |  |
| 1,2-Dichloropropane       ND         2,2-Dichloropropane       ND         cis-1,3-Dichloropropene       ND         trans-1,3-Dichloropropene       ND         1,1-Dichloropropene       ND         1,3-Dichloropropene (cis + trans)       ND         Diethyl ether       ND         1,4-Dioxane       ND         Ethylbenzene       ND         Hexachlorobutadiene       ND         2-Hexanone       ND         Isopropylbenzene       ND         p-Isopropyltoluene       ND         Methylene Chloride       ND         4-Methyl-2-pentanone       ND         Naphthalene       ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5              | ug/kg          |            |                |         |  |  |
| 2,2-DichloropropaneNDcis-1,3-DichloropropeneNDtrans-1,3-DichloropropeneND1,1-DichloropropeneND1,3-Dichloropropene (cis + trans)NDDiethyl etherND1,4-DioxaneNDEthylbenzeneNDHexachlorobutadieneND2-HexanoneNDIsopropylbenzeneNDp-IsopropyltolueneNDMethylene ChlorideND4-Methyl-2-pentanoneNDNaphthaleneND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5              | ug/kg          |            |                |         |  |  |
| cis-1,3-Dichloropropene ND trans-1,3-Dichloropropene ND 1,1-Dichloropropene ND 1,3-Dichloropropene ND Diethyl ether ND 1,4-Dioxane ND Ethylbenzene ND Hexachlorobutadiene ND Isopropylbenzene ND Isopropylbenzene ND Methylene Chloride ND ND Naphthalene ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5              | ug/kg          |            |                |         |  |  |
| trans-1,3-Dichloropropene ND 1,1-Dichloropropene ND 1,3-Dichloropropene (cis + trans) ND Diethyl ether ND 1,4-Dioxane ND Ethylbenzene ND Hexachlorobutadiene ND 2-Hexanone ND Isopropylbenzene ND p-Isopropyltoluene ND Methylene Chloride ND ND Naphthalene ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5              | ug/kg          |            |                |         |  |  |
| 1,1-Dichloropropene       ND         1,3-Dichloropropene (cis + trans)       ND         Diethyl ether       ND         1,4-Dioxane       ND         Ethylbenzene       ND         Hexachlorobutadiene       ND         2-Hexanone       ND         Isopropylbenzene       ND         p-Isopropyltoluene       ND         Methylene Chloride       ND         4-Methyl-2-pentanone       ND         Naphthalene       ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5              | ug/kg          |            |                |         |  |  |
| 1,3-Dichloropropene (cis + trans) ND Diethyl ether ND 1,4-Dioxane ND Ethylbenzene ND Hexachlorobutadiene ND 2-Hexanone ND Isopropylbenzene ND p-Isopropyltoluene ND Methylene Chloride ND ND Naphthalene ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5              | ug/kg          |            |                |         |  |  |
| Diethyl ether         ND           1,4-Dioxane         ND           Ethylbenzene         ND           Hexachlorobutadiene         ND           2-Hexanone         ND           Isopropylbenzene         ND           p-Isopropyltoluene         ND           Methylene Chloride         ND           4-Methyl-2-pentanone         ND           Naphthalene         ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5              | ug/kg          |            |                |         |  |  |
| 1,4-DioxaneNDEthylbenzeneNDHexachlorobutadieneND2-HexanoneNDIsopropylbenzeneNDp-IsopropyltolueneNDMethylene ChlorideND4-Methyl-2-pentanoneNDNaphthaleneND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5              | ug/kg          |            |                |         |  |  |
| Ethylbenzene ND Hexachlorobutadiene ND 2-Hexanone ND Isopropylbenzene ND p-Isopropyltoluene ND Methylene Chloride ND 4-Methyl-2-pentanone ND Naphthalene ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 100            | ug/kg<br>ug/kg |            |                |         |  |  |
| Hexachlorobutadiene ND 2-Hexanone ND Isopropylbenzene ND p-Isopropyltoluene ND Methylene Chloride ND 4-Methyl-2-pentanone ND Naphthalene ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5              | ug/kg          |            |                |         |  |  |
| 2-Hexanone ND Isopropylbenzene ND p-Isopropyltoluene ND Methylene Chloride ND 4-Methyl-2-pentanone ND Naphthalene ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5              | ug/kg<br>ug/kg |            |                |         |  |  |
| IsopropylbenzeneNDp-IsopropyltolueneNDMethylene ChlorideND4-Methyl-2-pentanoneNDNaphthaleneND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5              | ug/kg<br>ug/kg |            |                |         |  |  |
| p-Isopropyltoluene         ND           Methylene Chloride         ND           4-Methyl-2-pentanone         ND           Naphthalene         ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5              | ug/kg<br>ug/kg |            |                |         |  |  |
| Methylene ChlorideND4-Methyl-2-pentanoneNDNaphthaleneND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5              |                |            |                |         |  |  |
| 4-Methyl-2-pentanone ND Naphthalene ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                | ug/kg          |            |                |         |  |  |
| Naphthalene ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5              | ug/kg<br>ug/kg |            |                |         |  |  |
| ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5              | ug/kg          |            |                |         |  |  |
| n-rropyibenzene ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5              | ug/kg          |            |                |         |  |  |
| • •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5              | ug/kg          |            |                |         |  |  |
| Styrene ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5              | ug/kg          |            |                |         |  |  |
| 1,1,1,2-Tetrachloroethane ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5              | ug/kg          |            |                |         |  |  |
| Tetrachloroethene ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5              | ug/kg          |            |                |         |  |  |
| Tetrahydrofuran ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5              | ug/kg          |            |                |         |  |  |
| Toluene ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ng Report Gree | ug/kg          |            |                |         |  |  |

| Analyte                                  | Result Qual      | Reporting<br>Limit | Units          | Spike<br>Level | Source<br>Result   | %REC    | %REC<br>Limits   | RPD | RPD<br>Limit |
|------------------------------------------|------------------|--------------------|----------------|----------------|--------------------|---------|------------------|-----|--------------|
| Batch: B4C0015 - EPA 5035 (              | (Continued)      |                    |                |                |                    |         |                  |     |              |
| Blank (B4C0015-BLK1)                     |                  |                    |                | Prepared 8     | & Analyzed: 02     | 2/29/24 |                  |     |              |
| 1,2,3-Trichlorobenzene                   | ND               | 5                  | ug/kg          |                | oc / 11101/2001 01 | -,,     |                  |     |              |
| 1,1,2-Trichloroethane                    | ND               | 5                  | ug/kg          |                |                    |         |                  |     |              |
| 1,1,1-Trichloroethane                    | ND               | 5                  | ug/kg          |                |                    |         |                  |     |              |
| Trichloroethene                          | ND               | 5                  | ug/kg          |                |                    |         |                  |     |              |
| 1,2,3-Trichloropropane                   | ND               | 5                  | ug/kg          |                |                    |         |                  |     |              |
| 1,3,5-Trimethylbenzene                   | ND               | 5                  | ug/kg          |                |                    |         |                  |     |              |
| 1,2,4-Trimethylbenzene                   | ND               | 5                  | ug/kg          |                |                    |         |                  |     |              |
| Vinyl Chloride                           | ND               | 5                  | ug/kg          |                |                    |         |                  |     |              |
| o-Xylene                                 | ND               | 5                  | ug/kg          |                |                    |         |                  |     |              |
| m&p-Xylene                               | ND               | 10                 | ug/kg          |                |                    |         |                  |     |              |
| Total xylenes                            | ND               | 5                  | ug/kg          |                |                    |         |                  |     |              |
|                                          | ND               | 5                  | ug/kg          |                |                    |         |                  |     |              |
| 1,1,2,2-Tetrachloroethane                | ND<br>ND         | 5                  | ug/kg          |                |                    |         |                  |     |              |
| tert-Amyl methyl ether                   | ND<br>ND         | 5                  | ug/kg          |                |                    |         |                  |     |              |
| 1,3-Dichloropropane                      | ND<br>ND         | 5                  | ug/kg          |                |                    |         |                  |     |              |
| Ethyl tert-butyl ether Diisopropyl ether |                  | 5                  | ug/kg          |                |                    |         |                  |     |              |
| Trichlorofluoromethane                   | ND               |                    |                |                |                    |         |                  |     |              |
|                                          | ND               | 5                  | ug/kg          |                |                    |         |                  |     |              |
| Dichlorodifluoromethane                  | ND               | 5                  | ug/kg          |                |                    |         |                  |     |              |
| Surrogate: 4-Bromofluorobenzene          |                  | 48.9               | ug/kg          | 50.0           |                    | 97.8    | 70-130           |     |              |
| Surrogate: 1,2-Dichloroethane-d4         |                  | 49.9               | ug/kg          | 50.0           |                    | 99.7    | 70-130           |     |              |
| Surrogate: Toluene-d8                    |                  | 60.6               | ug/kg          | 50.0           |                    | 121     | 70-130           |     |              |
| LCS (B4C0015-BS1)                        |                  |                    |                | Prepared 8     | & Analyzed: 02     | 2/29/24 |                  |     |              |
| Acetone                                  | 38               | 5                  | ug/kg          | 50.0           | ,                  | 76.4    | 50-150           |     |              |
| Benzene                                  | 50               | 5                  | ug/kg          | 50.0           |                    | 100     | 70-130           |     |              |
| Bromobenzene                             | 48               | 5                  | ug/kg          | 50.0           |                    | 95.7    | 70-130           |     |              |
| Bromochloromethane                       | 53               | 5                  | ug/kg          | 50.0           |                    | 105     | 70-130           |     |              |
| Bromodichloromethane                     | 52               | 5                  | ug/kg          | 50.0           |                    | 105     | 70-130           |     |              |
| Bromoform                                | 49               | 5                  | ug/kg          | 50.0           |                    | 98.9    | 70-130           |     |              |
| Bromomethane                             | 51               | 5                  | ug/kg          | 50.0           |                    | 102     | 50-150           |     |              |
| 2-Butanone                               | 41               | 5                  | ug/kg          | 50.0           |                    | 82.3    | 50-150           |     |              |
| tert-Butyl alcohol                       | 42               | 5                  | ug/kg          | 50.0           |                    | 84.0    | 70-130           |     |              |
| sec-Butylbenzene                         | 51               | 5                  | ug/kg          | 50.0           |                    | 102     | 70-130           |     |              |
| n-Butylbenzene                           | 49               | 5                  | ug/kg          | 50.0           |                    | 98.5    | 70-130           |     |              |
| tert-Butylbenzene                        | 51               | 5                  | ug/kg          | 50.0           |                    | 102     | 70-130           |     |              |
| Methyl t-butyl ether (MTBE)              | 41               | 5                  | ug/kg          | 50.0           |                    | 81.6    | 70-130           |     |              |
| Carbon Disulfide                         | 40               | 5                  | ug/kg          | 50.0           |                    | 79.5    | 50-150           |     |              |
| Carbon Tetrachloride                     | 53               | 5                  | ug/kg          | 50.0           |                    | 105     | 70-130           |     |              |
| Chlorobenzene                            | 46               | 5                  | ug/kg          | 50.0           |                    | 93.0    | 70-130           |     |              |
| Chloroethane                             | 38               | 5                  | ug/kg          | 50.0           |                    | 77.0    | 50-150           |     |              |
|                                          | 52               | 5                  | ug/kg<br>ug/kg | 50.0           |                    |         |                  |     |              |
| Chloroform                               |                  |                    | ug/kg<br>ug/kg |                |                    | 103     | 70-130           |     |              |
| Chlorateleane                            | 53               | 5                  |                | 50.0           |                    | 106     | 50-150           |     |              |
| 4-Chlorotoluene                          | 49               | 5                  | ug/kg<br>ug/kg | 50.0           |                    | 97.1    | 70-130           |     |              |
| 2-Chlorotoluene                          | 47<br>46         | 5                  |                | 50.0           |                    | 93.0    | 70-130<br>70-130 |     |              |
| 1,2-Dibromo-3-chloropropane (DBCP)       | 46               | 5                  | ug/kg          | 50.0           |                    | 92.9    | 70-130           |     |              |
| Dibromochloromethane                     | 53               | 5                  | ug/kg          | 50.0           |                    | 106     | 70-130           |     |              |
| 1,2-Dibromoethane (EDB)                  | 53               | 5                  | ug/kg          | 50.0           |                    | 107     | 70-130           |     |              |
| Dibromomethane                           | 54               | 5                  | ug/kg          | 50.0           |                    | 107     | 60-140           |     |              |
| 1,2-Dichlorobenzene                      | 47               | 5                  | ug/kg          | 50.0           |                    | 93.8    | 70-130           |     |              |
| 1,3-Dichlorobenzene                      | 50               | 5                  | ug/kg          | 50.0           |                    | 99.2    | 70-130           |     |              |
| 1,4-Dichlorobenzene                      | 47               | 5                  | ug/kg          | 50.0           |                    | 94.0    | 70-130           |     |              |
| 1,1-Dichloroethane                       | 51               | 5                  | ug/kg          | 50.0           |                    | 101     | 70-130           |     |              |
| 1,2-Dichloroethane                       | 54               | 5                  | ug/kg          | 50.0           |                    | 107     | 70-130           |     |              |
| trans-1,2-Dichloroethene                 | 52               | 5                  | ug/kg          | 50.0           |                    | 103     | 70-130           |     |              |
| cis-1,2-Dichloroethene                   | 51               | 5                  | ug/kg          | 50.0           |                    | 103     | 70-130           |     |              |
| 1,1-Dichloroethene                       | 40               | 5                  | ug/kg          | 50.0           |                    | 80.5    | 70-130           |     |              |
| 1,2-Dichloropropane                      | Soil Sambling Ro |                    | . ⊾ua/ka       | 05040          | April 201          | O 4 101 | 70-130           |     |              |

31 09 16.1 - 136

|                                  | _           |      | eporting |       | Spike      | Source         |         | %REC   |     | RPD   |
|----------------------------------|-------------|------|----------|-------|------------|----------------|---------|--------|-----|-------|
| Analyte                          | Result      | Qual | Limit    | Units | Level      | Result         | %REC    | Limits | RPD | Limit |
| Batch: B4C0015 - EPA 5035 (      | (Continued) |      |          |       |            |                |         |        |     |       |
| LCS (B4C0015-BS1)                |             |      |          |       | Prepared 8 | & Analyzed: 02 | 2/29/24 |        |     |       |
| 2,2-Dichloropropane              | 53          |      | 5        | ug/kg | 50.0       |                | 106     | 70-130 |     |       |
| cis-1,3-Dichloropropene          | 51          |      | 5        | ug/kg | 50.0       |                | 102     | 70-130 |     |       |
| trans-1,3-Dichloropropene        | 53          |      | 5        | ug/kg | 50.0       |                | 106     | 70-130 |     |       |
| 1,1-Dichloropropene              | 53          |      | 5        | ug/kg | 50.0       |                | 106     | 70-130 |     |       |
| Diethyl ether                    | 38          |      | 5        | ug/kg | 50.0       |                | 75.9    | 60-140 |     |       |
| 1,4-Dioxane                      | 265         |      | 100      | ug/kg | 250        |                | 106     | 0-200  |     |       |
| Ethylbenzene                     | 48          |      | 5        | ug/kg | 50.0       |                | 95.9    | 70-130 |     |       |
| Hexachlorobutadiene              | 49          |      | 5        | ug/kg | 50.0       |                | 98.8    | 70-130 |     |       |
| 2-Hexanone                       | 42          |      | 5        | ug/kg | 50.0       |                | 84.1    | 50-150 |     |       |
| Isopropylbenzene                 | 50          |      | 5        | ug/kg | 50.0       |                | 100     | 70-130 |     |       |
| p-Isopropyltoluene               | 51          |      | 5        | ug/kg | 50.0       |                | 102     | 70-130 |     |       |
| Methylene Chloride               | 50          |      | 5        | ug/kg | 50.0       |                | 101     | 60-140 |     |       |
| 4-Methyl-2-pentanone             | 47          |      | 5        | ug/kg | 50.0       |                | 93.7    | 50-150 |     |       |
| Naphthalene                      | 50          |      | 5        | ug/kg | 50.0       |                | 100     | 70-130 |     |       |
| n-Propylbenzene                  | 51          |      | 5        | ug/kg | 50.0       |                | 102     | 70-130 |     |       |
| Styrene                          | 50          |      | 5        | ug/kg | 50.0       |                | 99.9    | 70-130 |     |       |
| 1,1,1,2-Tetrachloroethane        | 49          |      | 5        | ug/kg | 50.0       |                | 97.9    | 70-130 |     |       |
| Tetrachloroethene                | 52          |      | 5        | ug/kg | 50.0       |                | 103     | 70-130 |     |       |
| Tetrahydrofuran                  | 51          |      | 5        | ug/kg | 50.0       |                | 101     | 50-150 |     |       |
| Toluene                          | 54          |      | 5        | ug/kg | 50.0       |                | 108     | 70-130 |     |       |
| 1,2,4-Trichlorobenzene           | 48          |      | 5        | ug/kg | 50.0       |                | 96.7    | 70-130 |     |       |
| 1,2,3-Trichlorobenzene           | 49          |      | 5        | ug/kg | 50.0       |                | 98.4    | 70-130 |     |       |
| 1,1,2-Trichloroethane            | 53          |      | 5        | ug/kg | 50.0       |                | 107     | 70-130 |     |       |
| 1,1,1-Trichloroethane            | 52          |      | 5        | ug/kg | 50.0       |                | 104     | 70-130 |     |       |
| Trichloroethene                  | 51          |      | 5        | ug/kg | 50.0       |                | 101     | 70-130 |     |       |
| 1,2,3-Trichloropropane           | 43          |      | 5        | ug/kg | 50.0       |                | 86.9    | 70-130 |     |       |
| 1,3,5-Trimethylbenzene           | 51          |      | 5        | ug/kg | 50.0       |                | 102     | 70-130 |     |       |
| 1,2,4-Trimethylbenzene           | 51          |      | 5        | ug/kg | 50.0       |                | 102     | 70-130 |     |       |
| Vinyl Chloride                   | 56          |      | 5        | ug/kg | 50.0       |                | 112     | 50-150 |     |       |
| o-Xylene                         | 49          |      | 5        | ug/kg | 50.0       |                | 97.9    | 70-130 |     |       |
| m&p-Xylene                       | 96          |      | 10       | ug/kg | 100        |                | 96.2    | 70-130 |     |       |
| 1,1,2,2-Tetrachloroethane        | 48          |      | 5        | ug/kg | 50.0       |                | 95.1    | 70-130 |     |       |
| tert-Amyl methyl ether           | 47          |      | 5        | ug/kg | 50.0       |                | 94.2    | 70-130 |     |       |
| 1,3-Dichloropropane              | 51          |      | 5        | ug/kg | 50.0       |                | 102     | 70-130 |     |       |
| Ethyl tert-butyl ether           | 48          |      | 5        | ug/kg | 50.0       |                | 95.3    | 70-130 |     |       |
| Trichlorofluoromethane           | 41          |      | 5        | ug/kg | 50.0       |                | 82.1    | 50-150 |     |       |
| Dichlorodifluoromethane          | 59          |      | 5        | ug/kg | 50.0       |                | 118     | 50-150 |     |       |
| Surrogate: 4-Bromofluorobenzene  |             |      | 51.0     | ug/kg | 50.0       |                | 102     | 70-130 |     |       |
| Surrogate: 1,2-Dichloroethane-d4 |             |      | 51.0     | ug/kg | 50.0       |                | 102     | 70-130 |     |       |
| Surrogate: Toluene-d8            |             |      | 51.9     | ug/kg | 50.0       |                | 104     | 70-130 |     |       |

| Analyte                                         | Result Qu     | Reporting<br>ual Limit | Units          | Spike<br>Level | Source<br>Result | %REC         | %REC<br>Limits   | RPD   | RPD<br>Limit |
|-------------------------------------------------|---------------|------------------------|----------------|----------------|------------------|--------------|------------------|-------|--------------|
| Batch: B4C0015 - EPA 5035                       | (Continued)   |                        |                |                |                  |              |                  |       |              |
| LCS Dup (B4C0015-BSD1)                          |               |                        |                | Prepared       | & Analyzed: 02   | 2/29/24      |                  |       |              |
| Acetone                                         | 41            | 5                      | ug/kg          | 50.0           |                  | 81.1         | 50-150           | 5.94  | 30           |
| Benzene                                         | 51            | 5                      | ug/kg          | 50.0           |                  | 102          | 70-130           | 1.98  | 20           |
| Bromobenzene                                    | 47            | 5                      | ug/kg          | 50.0           |                  | 94.2         | 70-130           | 1.64  | 20           |
| Bromochloromethane                              | 54            | 5                      | ug/kg          | 50.0           |                  | 109          | 70-130           | 3.07  | 20           |
| Bromodichloromethane                            | 54            | 5                      | ug/kg          | 50.0           |                  | 109          | 70-130           | 3.71  | 20           |
| Bromoform                                       | 49            | 5                      | ug/kg          | 50.0           |                  | 97.2         | 70-130           | 1.65  | 20           |
| Bromomethane                                    | 59            | 5                      | ug/kg          | 50.0           |                  | 117          | 50-150           | 14.5  | 30           |
| 2-Butanone                                      | 42            | 5                      | ug/kg          | 50.0           |                  | 84.3         | 50-150           | 2.40  | 30           |
| tert-Butyl alcohol                              | 47            | 5                      | ug/kg          | 50.0           |                  | 94.7         | 70-130           | 12.0  | 20           |
| sec-Butylbenzene                                | 48            | 5                      | ug/kg          | 50.0           |                  | 95.7         | 70-130           | 5.96  | 20           |
| n-Butylbenzene                                  | 47            | 5                      | ug/kg          | 50.0           |                  | 94.5         | 70-130           | 4.06  | 20           |
| tert-Butylbenzene                               | 48            | 5                      | ug/kg          | 50.0           |                  | 95.6         | 70-130           | 6.22  | 20           |
| Methyl t-butyl ether (MTBE)                     | 33            | 5                      | ug/kg          | 50.0           |                  | 65.7         | 70-130           | 21.6  | 20           |
| Carbon Disulfide                                | 30            | 5                      | ug/kg          | 50.0           |                  | 60.6         | 50-150           | 26.9  | 40           |
| Carbon Tetrachloride                            | 53            | 5                      | ug/kg          | 50.0           |                  | 106          | 70-130           | 0.341 | 20           |
| Chlorobenzene                                   | 46            | 5                      | ug/kg          | 50.0           |                  | 91.3         | 70-130           | 1.82  | 20           |
| Chloroethane                                    | 51            | 5                      | ug/kg          | 50.0           |                  | 102          | 50-150           | 28.0  | 30           |
| Chloroform                                      | 53            | 5                      | ug/kg          | 50.0           |                  | 106          | 70-130           | 2.43  | 20           |
| Chloromethane                                   | 53            | 5                      | ug/kg          | 50.0           |                  | 105          | 50-150           | 0.946 | 30           |
| 4-Chlorotoluene                                 | 46            | 5                      | ug/kg          | 50.0           |                  | 92.8         | 70-130           | 4.57  | 20           |
| 2-Chlorotoluene                                 | 45            | 5                      | ug/kg          | 50.0           |                  | 89.2         | 70-130           | 4.17  | 20           |
| 1,2-Dibromo-3-chloropropane (DBCP)              | 46            | 5                      | ug/kg          | 50.0           |                  | 91.7         | 70-130           | 1.28  | 20           |
| Dibromochloromethane                            | 55            | 5                      | ug/kg          | 50.0           |                  | 110          | 70-130           | 3.87  | 20           |
| 1,2-Dibromoethane (EDB)                         | 55            | 5                      | ug/kg          | 50.0           |                  | 110          | 70-130           | 3.29  | 20           |
| Dibromomethane                                  | 56            | 5                      | ug/kg          | 50.0           |                  | 111          | 60-140           | 3.70  | 30           |
| 1,2-Dichlorobenzene                             | 46            | 5                      | ug/kg          | 50.0           |                  | 92.0         | 70-130           | 1.87  | 20           |
| 1,3-Dichlorobenzene                             | 48            | 5                      | ug/kg          | 50.0           |                  | 95.1         | 70-130           | 4.20  | 20           |
| 1,4-Dichlorobenzene                             | 46            | 5                      | ug/kg          | 50.0           |                  | 91.4         | 70-130           | 2.80  | 20           |
| 1,1-Dichloroethane                              | 42            | 5                      | ug/kg          | 50.0           |                  | 83.6         | 70-130           | 19.1  | 20           |
| 1,2-Dichloroethane                              | 53            | 5                      | ug/kg          | 50.0           |                  | 107          | 70-130           | 0.411 | 20           |
| trans-1,2-Dichloroethene                        | 41            | 5                      | ug/kg          | 50.0           |                  | 82.3         | 70-130           | 22.5  | 20           |
| cis-1,2-Dichloroethene                          | 54            | 5                      | ug/kg          | 50.0           |                  | 107          | 70-130           | 4.59  | 20           |
| 1,1-Dichloroethene                              | 44            | 5                      | ug/kg          | 50.0           |                  | 87.3         | 70-130           | 8.08  | 20           |
| 1,2-Dichloropropane                             | 52            | 5                      | ug/kg          | 50.0           |                  | 104          | 70-130           | 3.29  | 20           |
| 2,2-Dichloropropane                             | 52            | 5                      | ug/kg          | 50.0           |                  | 104          | 70-130           | 1.85  | 20           |
| cis-1,3-Dichloropropene                         | 53            | 5                      | ug/kg          | 50.0           |                  | 106          | 70-130           | 3.79  | 20           |
| trans-1,3-Dichloropropene                       | 55            | 5                      | ug/kg          | 50.0           |                  | 111          | 70-130           | 4.42  | 20           |
| 1,1-Dichloropropene                             | 53            | 5                      | ug/kg          | 50.0           |                  | 105          | 70-130           | 0.454 | 20           |
| Diethyl ether                                   | 41            | 5                      | ug/kg          | 50.0           |                  | 81.4         | 60-140           | 6.97  | 30           |
| 1,4-Dioxane                                     | 268           | 100                    | ug/kg          | 250            |                  | 107          | 0-200            | 1.21  | 50           |
| Ethylbenzene                                    | 46            | 5                      | ug/kg          | 50.0           |                  | 91.5         | 70-130           | 4.78  | 20           |
| Hexachlorobutadiene                             | 48            | 5                      | ug/kg          | 50.0           |                  | 96.5         | 70-130           | 2.38  | 20           |
| 2-Hexanone                                      | 43            | 5                      | ug/kg          | 50.0           |                  | 86.6         | 50-150           | 2.93  | 20           |
| Isopropylbenzene                                | 47            | 5                      | ug/kg          | 50.0           |                  | 93.9         | 70-130           | 6.39  | 20           |
| p-Isopropyltoluene                              | 48            | 5                      | ug/kg          | 50.0           |                  | 96.3         | 70-130           | 5.73  | 20           |
| Methylene Chloride                              | 38            | 5                      | ug/kg          | 50.0           |                  | 75.7         | 60-140           | 28.4  | 30           |
| 4-Methyl-2-pentanone                            | 47            | 5                      | ug/kg          | 50.0           |                  | 93.6         | 50-150           | 0.128 | 20           |
| Naphthalene                                     | 49            | 5                      | ug/kg          | 50.0           |                  | 97.3         | 70-130           | 3.24  | 20           |
| n-Propylbenzene                                 | 48            | 5                      | ug/kg<br>ug/kg | 50.0           |                  | 97.3<br>96.7 | 70-130           | 5.32  | 20           |
| Styrene                                         | 48            | 5                      | ug/kg          | 50.0           |                  | 96.7         | 70-130           | 3.94  | 20           |
| 1,1,1,2-Tetrachloroethane                       | 48            | 5                      | ug/kg          | 50.0           |                  | 95.4         | 70-130           | 2.57  | 20           |
|                                                 |               | 5                      | ug/kg<br>ug/kg |                |                  |              |                  |       |              |
| Tetrachloroethene Tetrabydrafuran               | 52            |                        |                | 50.0           |                  | 104          | 70-130           | 1.02  | 20           |
| Tetrahydrofuran                                 | 53            | 5                      | ug/kg          | 50.0           |                  | 105          | 50-150<br>70-130 | 3.85  | 40           |
| Toluene                                         | 55            | 5                      | ug/kg          | 50.0           |                  | 110          | 70-130           | 1.98  | 20           |
| 1,2,4-Trichlorobenzene                          | 47            | 5                      | ug/kg          | 50.0           |                  | 94.3         | 70-130           | 2.45  | 20           |
| 1,2,3-Trichlorobenzene<br>1,1,2-Trichloroethane | Soil Sampling | Danast Organ           | ug/kg          | 50.0           | I A m #!! 000    | 98.1         | 70-130<br>70-130 | 0.285 | 20           |

31 09 16.1 - 138

Page 32 of 43

|                                  |            |      | Reporting |       | Spike      | Source        |         | %REC   |       | RPD   |
|----------------------------------|------------|------|-----------|-------|------------|---------------|---------|--------|-------|-------|
| Analyte                          | Result     | Qual | Limit     | Units | Level      | Result        | %REC    | Limits | RPD   | Limit |
| Batch: B4C0015 - EPA 5035 (C     | Continued) |      |           |       |            |               |         |        |       |       |
| LCS Dup (B4C0015-BSD1)           |            |      |           |       | Prepared 8 | & Analyzed: 0 | 2/29/24 |        |       |       |
| 1,1,1-Trichloroethane            | 52         |      | 5         | ug/kg | 50.0       |               | 104     | 70-130 | 0.269 | 20    |
| Trichloroethene                  | 51         |      | 5         | ug/kg | 50.0       |               | 103     | 70-130 | 1.47  | 20    |
| 1,2,3-Trichloropropane           | 42         |      | 5         | ug/kg | 50.0       |               | 84.1    | 70-130 | 3.27  | 20    |
| 1,3,5-Trimethylbenzene           | 49         |      | 5         | ug/kg | 50.0       |               | 97.7    | 70-130 | 4.70  | 20    |
| 1,2,4-Trimethylbenzene           | 48         |      | 5         | ug/kg | 50.0       |               | 95.8    | 70-130 | 5.88  | 20    |
| Vinyl Chloride                   | 53         |      | 5         | ug/kg | 50.0       |               | 106     | 50-150 | 4.88  | 30    |
| o-Xylene                         | 47         |      | 5         | ug/kg | 50.0       |               | 93.5    | 70-130 | 4.58  | 20    |
| m&p-Xylene                       | 92         |      | 10        | ug/kg | 100        |               | 92.1    | 70-130 | 4.36  | 20    |
| 1,1,2,2-Tetrachloroethane        | 46         |      | 5         | ug/kg | 50.0       |               | 92.4    | 70-130 | 2.88  | 20    |
| tert-Amyl methyl ether           | 49         |      | 5         | ug/kg | 50.0       |               | 97.0    | 70-130 | 2.93  | 20    |
| 1,3-Dichloropropane              | 54         |      | 5         | ug/kg | 50.0       |               | 108     | 70-130 | 5.15  | 20    |
| Ethyl tert-butyl ether           | 45         |      | 5         | ug/kg | 50.0       |               | 89.5    | 70-130 | 6.34  | 20    |
| Trichlorofluoromethane           | 47         |      | 5         | ug/kg | 50.0       |               | 94.4    | 50-150 | 13.9  | 20    |
| Dichlorodifluoromethane          | 60         |      | 5         | ug/kg | 50.0       |               | 119     | 50-150 | 1.40  | 30    |
| Surrogate: 4-Bromofluorobenzene  |            |      | 49.9      | ug/kg | 50.0       |               | 99.7    | 70-130 |       |       |
| Surrogate: 1,2-Dichloroethane-d4 |            |      | 53.1      | ug/kg | 50.0       |               | 106     | 70-130 |       |       |
| Surrogate: Toluene-d8            |            |      | 54.1      | ug/kg | 50.0       |               | 108     | 70-130 |       |       |

# Semivolatile organic compounds

| Analyte                     | Result (               | Reporting<br>Qual Limit | Units          | Spike<br>Level | Source<br>Result | %REC        | %REC<br>Limits | RPD  | RPE<br>Limi |
|-----------------------------|------------------------|-------------------------|----------------|----------------|------------------|-------------|----------------|------|-------------|
| Batch: B4B1213 - 1_Semi     | ivolatiles Extractions | ;                       |                |                |                  |             |                |      |             |
| Blank (B4B1213-BLK1)        |                        |                         | Pr             | epared: 02/2   | 28/24 Analyze    | d: 02/29/24 |                |      |             |
| 1,2,4-Trichlorobenzene      | ND                     | 129                     | ug/kg          |                | •                |             |                |      |             |
| 1,2-Dichlorobenzene         | ND                     | 129                     | ug/kg          |                |                  |             |                |      |             |
| 1,3-Dichlorobenzene         | ND                     | 129                     | ug/kg          |                |                  |             |                |      |             |
| 1,4-Dichlorobenzene         | ND                     | 129                     | ug/kg          |                |                  |             |                |      |             |
| Phenol                      | ND                     | 129                     | ug/kg          |                |                  |             |                |      |             |
| 2,4,5-Trichlorophenol       | ND                     | 129                     | ug/kg          |                |                  |             |                |      |             |
| 2,4,6-Trichlorophenol       | ND                     | 129                     | ug/kg          |                |                  |             |                |      |             |
| 2,4-Dichlorophenol          | ND                     | 129                     | ug/kg          |                |                  |             |                |      |             |
| 2,4-Dimethylphenol          | ND                     | 328                     | ug/kg          |                |                  |             |                |      |             |
| 2,4-Dinitrophenol           | ND                     | 328                     | ug/kg          |                |                  |             |                |      |             |
| 2,4-Dinitrotoluene          | ND                     | 129                     | ug/kg          |                |                  |             |                |      |             |
| 2,6-Dinitrotoluene          | ND                     | 129                     | ug/kg          |                |                  |             |                |      |             |
| 2-Chloronaphthalene         | ND                     | 129                     | ug/kg          |                |                  |             |                |      |             |
| 2-Chlorophenol              | ND                     | 129                     | ug/kg          |                |                  |             |                |      |             |
| 2-Methylnaphthalene         | ND                     | 129                     | ug/kg          |                |                  |             |                |      |             |
| Nitrobenzene                | ND                     | 129                     | ug/kg          |                |                  |             |                |      |             |
| 2-Methylphenol              | ND                     | 129                     | ug/kg          |                |                  |             |                |      |             |
| 2-Nitroaniline              | ND                     | 129                     | ug/kg          |                |                  |             |                |      |             |
| 2-Nitrophenol               | ND                     | 328                     | ug/kg          |                |                  |             |                |      |             |
| 3,3'-Dichlorobenzidine      | ND                     | 328                     | ug/kg          |                |                  |             |                |      |             |
| 3-Nitroaniline              | ND                     | 129                     | ug/kg          |                |                  |             |                |      |             |
| 4,6-Dinitro-2-methylphenol  | ND                     | 328                     | ug/kg          |                |                  |             |                |      |             |
| 4-Bromophenyl phenyl ether  | ND                     | 129                     | ug/kg          |                |                  |             |                |      |             |
| 4-Chloro-3-methylphenol     | ND                     | 129                     | ug/kg          |                |                  |             |                |      |             |
| 4-Chloroaniline             | ND                     | 129                     | ug/kg          |                |                  |             |                |      |             |
| 4-Chlorophenyl phenyl ether | ND                     | 129                     | ug/kg          |                |                  |             |                |      |             |
| 4-Nitroaniline              | ND                     | 129                     | ug/kg          |                |                  |             |                |      |             |
| 4-Nitrophenol               | ND                     | 328                     | ug/kg          |                |                  |             |                |      |             |
| Acenaphthene                | ND                     | 129                     | ug/kg          |                |                  |             |                |      |             |
| Acenaphthylene              | ND<br>ND               | 129                     | ug/kg<br>ug/kg |                |                  |             |                |      |             |
| Aniline                     | ND<br>ND               | 129                     | ug/kg          |                |                  |             |                |      |             |
| Anthracene                  | ND<br>ND               | 129                     | ug/kg<br>ug/kg |                |                  |             |                |      |             |
|                             | ND<br>ND               | 129                     | ug/kg<br>ug/kg |                |                  |             |                |      |             |
| Benzo(a)anthracene          | ND<br>ND               |                         | ug/kg<br>ug/kg |                |                  |             |                |      |             |
| Benzo(a)pyrene              | ND<br>ND               | 129<br>129              | ug/kg          |                |                  |             |                |      |             |
| Benzo(b)fluoranthene        |                        |                         | ug/kg<br>ug/kg |                |                  |             |                |      |             |
| Benzo(g,h,i)perylene        | ND                     | 129                     |                |                |                  |             |                |      |             |
| Benzo(k)fluoranthene        | ND                     | 129                     | ug/kg          |                |                  |             |                |      |             |
| Benzoic acid                | ND                     | 993                     | ug/kg          |                |                  |             |                |      |             |
| Biphenyl                    | ND                     | 20                      | ug/kg          |                |                  |             |                |      |             |
| Bis(2-chloroethoxy)methane  | ND                     | 129                     | ug/kg          |                |                  |             |                |      |             |
| Bis(2-chloroethyl)ether     | ND                     | 129                     | ug/kg          |                |                  |             |                |      |             |
| Bis(2-chloroisopropyl)ether | ND                     | 129                     | ug/kg          |                |                  |             |                |      |             |
| Bis(2-ethylhexyl)phthalate  | ND                     | 397                     | ug/kg          |                |                  |             |                |      |             |
| Butyl benzyl phthalate      | ND                     | 129                     | ug/kg          |                |                  |             |                |      |             |
| Chrysene                    | ND                     | 129                     | ug/kg          |                |                  |             |                |      |             |
| Di-n-octyl phthalate        | ND                     | 199                     | ug/kg          |                |                  |             |                |      |             |
| Dibenz(a,h)anthracene       | ND                     | 129                     | ug/kg          |                |                  |             |                |      |             |
| Dibenzofuran                | ND                     | 129                     | ug/kg          |                |                  |             |                |      |             |
| Diethyl phthalate           | ND                     | 129                     | ug/kg          |                |                  |             |                |      |             |
| Dimethyl phthalate          | ND                     | 328                     | ug/kg          |                |                  |             |                |      |             |
| Di-n-butyl phthalate        | ND                     | 199                     | ug/kg          |                |                  |             |                |      |             |
| Fluoranthene                | ND                     | 129                     | ug/kg          |                |                  |             |                |      |             |
| Fluorene                    | ND                     | 129                     | ug/kg          |                |                  |             |                |      |             |
| Hexachlorobenzene           | ND                     | 129                     | ug/kg          |                |                  |             |                |      |             |
| Hexachlorobutadiene         | ND                     | 129                     | ug/kg          |                |                  |             |                |      |             |
| Hexachlorocyclopentadiene   | ND                     | 328                     | ug/kg          |                |                  |             |                |      |             |
| Hexachloroethane            | Soil Sampling          | Report Green            | Meandov        | v Schoo        | I April 20:      | 24          |                | Page |             |

## Semivolatile organic compounds (Continued)

| Analyte                          | Result Qu           | Reporting<br>al Limit | Units          | Spike<br>Level | Source<br>Result | %REC                     | %REC<br>Limits   | RPD | RPD<br>Limit |
|----------------------------------|---------------------|-----------------------|----------------|----------------|------------------|--------------------------|------------------|-----|--------------|
| Batch: B4B1213 - 1_Semivo        | latiles Extractions | (Continued)           | _              | _              |                  |                          |                  |     |              |
| Blank (B4B1213-BLK1)             |                     |                       | Pr             | epared: 02/2   | 28/24 Analyze    | d: 02/29/24              |                  |     |              |
| Indeno(1,2,3-cd)pyrene           | ND                  | 129                   | ug/kg          |                |                  |                          |                  |     |              |
| Isophorone                       | ND                  | 129                   | ug/kg          |                |                  |                          |                  |     |              |
| Naphthalene                      | ND                  | 129                   | ug/kg          |                |                  |                          |                  |     |              |
| N-Nitrosodimethylamine           | ND                  | 129                   | ug/kg          |                |                  |                          |                  |     |              |
| N-Nitrosodi-n-propylamine        | ND                  | 129                   | ug/kg          |                |                  |                          |                  |     |              |
| N-Nitrosodiphenylamine           | ND                  | 129                   | ug/kg          |                |                  |                          |                  |     |              |
| Pentachlorophenol                | ND                  | 328                   | ug/kg          |                |                  |                          |                  |     |              |
| Phenanthrene                     | ND                  | 129                   | ug/kg          |                |                  |                          |                  |     |              |
| Pyrene                           | ND                  | 129                   | ug/kg          |                |                  |                          |                  |     |              |
| m&p-Cresol                       | ND                  | 258                   | ug/kg          |                |                  |                          |                  |     |              |
| Pyridine                         | ND                  | 129                   | ug/kg          |                |                  |                          |                  |     |              |
| Azobenzene                       | ND                  | 129                   | ug/kg          |                |                  |                          |                  |     |              |
| Total Dichlorobenzene            | ND                  | 129                   | ug/kg          |                |                  |                          |                  |     |              |
|                                  |                     |                       |                |                |                  |                          |                  |     |              |
| Surrogate: Nitrobenzene-d5       |                     | 3910                  | ug/kg          | 6620           |                  | <i>59.0</i>              | 30-126           |     |              |
| Surrogate: p-Terphenyl-d14       |                     | 5220                  | ug/kg          | 6620           |                  | 78.8                     | 47-130           |     |              |
| Surrogate: 2-Fluorobiphenyl      |                     | 3410                  | ug/kg          | 6620           |                  | <i>51.5</i>              | 34-130           |     |              |
| Surrogate: Phenol-d6             |                     | 3720                  | ug/kg          | 6620           |                  | 56.2                     | 30-130           |     |              |
| Surrogate: 2,4,6-Tribromophenol  |                     | 3230                  | ug/kg          | 6620           |                  | 48.8                     | 30-130           |     |              |
| Surrogate: 2-Fluorophenol        |                     | 3980                  | ug/kg          | 6620           |                  | 60.1                     | 30-130           |     |              |
| LCS (B4B1213-BS1)                |                     |                       |                |                | 28/24 Analyze    |                          |                  |     |              |
| 1,2,4-Trichlorobenzene           | 2280                | 129                   | ug/kg          | 3310           |                  | 68.7                     | 40-130           |     |              |
| 1,2-Dichlorobenzene              | 3110                | 129                   | ug/kg          | 3310           |                  | 94.0                     | 40-130           |     |              |
| 1,3-Dichlorobenzene              | 2990                | 129                   | ug/kg          | 3310           |                  | 90.2                     | 40-130           |     |              |
| 1,4-Dichlorobenzene              | 2650                | 129                   | ug/kg          | 3310           |                  | 79.9                     | 40-130           |     |              |
| Phenol                           | 3350                | 129                   | ug/kg          | 3310           |                  | 101                      | 40-130           |     |              |
| 2,4,5-Trichlorophenol            | 2470                | 129                   | ug/kg          | 3310           |                  | 74.5                     | 40-130           |     |              |
| 2,4,6-Trichlorophenol            | 2660                | 129                   | ug/kg          | 3310           |                  | 80.3                     | 40-130           |     |              |
| 2,4-Dichlorophenol               | 2670                | 129                   | ug/kg          | 3310           |                  | 80.7                     | 40-130           |     |              |
| 2,4-Dimethylphenol               | 2640                | 328                   | ug/kg          | 3310           |                  | 79.8                     | 40-130           |     |              |
| 2,4-Dinitrophenol                | 2190                | 328                   | ug/kg          | 3310           |                  | 66.3                     | 15-140           |     |              |
| 2,4-Dinitrotoluene               | 2580                | 129                   | ug/kg          | 3310           |                  | 78.0                     | 40-130           |     |              |
| 2,6-Dinitrotoluene               | 2680                | 129                   | ug/kg          | 3310           |                  | 80.9                     | 40-130           |     |              |
| 2-Chloronaphthalene              | 2640                | 129                   | ug/kg          | 3310           |                  | 79.7                     | 40-130           |     |              |
| 2-Chlorophenol                   | 3130                | 129                   | ug/kg          | 3310           |                  | 94.5                     | 40-130           |     |              |
| 2-Methylnaphthalene              | 2310                | 129                   | ug/kg          | 3310           |                  | 69.6                     | 40-130           |     |              |
| Nitrobenzene                     | 2840                | 129                   | ug/kg          | 3310           |                  | 85.7                     | 40-130           |     |              |
| 2-Methylphenol                   | 2560                | 129                   | ug/kg          | 3310           |                  | 77.2                     | 40-130           |     |              |
| 2-Nitroaniline                   | 2570                | 129                   | ug/kg          | 3310           |                  | 77.8                     | 40-130           |     |              |
| 2-Nitrophenol                    | 2700                | 328                   | ug/kg          | 3310           |                  | 81.4                     | 40-130           |     |              |
| 3-Nitroaniline                   | 2530                | 129                   | ug/kg          | 3310           |                  | 76.3                     | 40-130           |     |              |
| 4,6-Dinitro-2-methylphenol       | 2240                | 328                   | ug/kg          | 3310           |                  | 67.7                     | 30-130           |     |              |
| 4-Bromophenyl phenyl ether       | 2050                | 129                   | ug/kg          | 3310           |                  | 61.9                     | 40-130           |     |              |
| 4-Chloro-3-methylphenol          | 2280                | 129                   | ug/kg          | 3310           |                  | 68.8                     | 40-130           |     |              |
| 4-Chlorophenyl phenyl ether      | 2220                | 129                   | ug/kg          | 3310           |                  | 67.1                     | 40-130           |     |              |
| 4-Nitroaniline                   | 2680                | 129                   | ug/kg          | 3310           |                  | 80.9                     | 40-130           |     |              |
| 4-Nitrophenol                    | 2360                | 328                   | ug/kg          | 3310           |                  | 71.4                     | 40-130           |     |              |
| Acenaphthene                     | 2210                | 129                   | ug/kg          | 3310           |                  | 66.6                     | 40-130           |     |              |
| Acenaphthylene                   | 2610                | 129                   | ug/kg          | 3310           |                  | 78.8                     | 40-130           |     |              |
| Anthracene                       | 2940                | 129                   | ug/kg          | 3310           |                  | 88.8                     | 40-130           |     |              |
| Benzo(a)anthracene               | 2650                | 129                   | ug/kg          | 3310           |                  | 79.9                     | 40-130           |     |              |
| Benzo(a)pyrene                   | 2770                | 129                   | ug/kg          | 3310           |                  | 83.5                     | 40-130           |     |              |
| Benzo(b)fluoranthene             | 2950                | 129                   | ug/kg<br>ug/kg | 3310           |                  | 89.0                     | 40-130           |     |              |
| Benzo(g,h,i)perylene             | 2500                | 129                   | ug/kg<br>ug/kg | 3310           |                  | 75.4                     | 40-130           |     |              |
|                                  | 3090                | 129                   | ug/kg<br>ug/kg | 3310           |                  | 75. <del>4</del><br>93.2 |                  |     |              |
| Benzo(k)fluoranthene<br>Biphenyl | 626                 | 20                    | ug/kg<br>ug/kg | 828            |                  | 93.2<br>75.7             | 40-130<br>40-130 |     |              |
|                                  |                     |                       |                | 0/8            |                  |                          |                  |     |              |

31 09 16.1 - 141

## Semivolatile organic compounds (Continued)

|                                 |                 |         | Reporting |       | Spike        | Source       |              | %REC   |     | RPD  |
|---------------------------------|-----------------|---------|-----------|-------|--------------|--------------|--------------|--------|-----|------|
| Analyte                         | Result          | Qual    | Limit     | Units | Level        | Result       | %REC         | Limits | RPD | Limi |
| Batch: B4B1213 - 1_Semivola     | tiles Extractio | ns (Col | ntinued)  |       |              |              |              |        |     |      |
| LCS (B4B1213-BS1)               |                 | •       | _         | Pr    | epared: 02/2 | 8/24 Analyze | ed: 02/29/24 |        |     |      |
| Bis(2-chloroethyl)ether         | 3100            |         | 129       | ug/kg | 3310         |              | 93.5         | 40-130 |     |      |
| Bis(2-chloroisopropyl)ether     | 3600            |         | 129       | ug/kg | 3310         |              | 109          | 40-130 |     |      |
| Bis(2-ethylhexyl)phthalate      | 2960            |         | 397       | ug/kg | 3310         |              | 89.3         | 40-130 |     |      |
| Butyl benzyl phthalate          | 2870            |         | 129       | ug/kg | 3310         |              | 86.8         | 40-130 |     |      |
| Chrysene                        | 2860            |         | 129       | ug/kg | 3310         |              | 86.3         | 40-130 |     |      |
| Di-n-octyl phthalate            | 2150            |         | 199       | ug/kg | 3310         |              | 64.9         | 40-130 |     |      |
| Dibenz(a,h)anthracene           | 2490            |         | 129       | ug/kg | 3310         |              | 75.3         | 40-130 |     |      |
| Dibenzofuran                    | 2570            |         | 129       | ug/kg | 3310         |              | 77.6         | 40-130 |     |      |
| Diethyl phthalate               | 2730            |         | 129       | ug/kg | 3310         |              | 82.5         | 40-130 |     |      |
| Dimethyl phthalate              | 2500            |         | 328       | ug/kg | 3310         |              | 75.5         | 40-130 |     |      |
| Di-n-butyl phthalate            | 3200            |         | 199       | ug/kg | 3310         |              | 96.6         | 40-130 |     |      |
| Fluoranthene                    | 2990            |         | 129       | ug/kg | 3310         |              | 90.3         | 40-130 |     |      |
| Fluorene                        | 2510            |         | 129       | ug/kg | 3310         |              | 75.7         | 40-130 |     |      |
| Hexachlorobenzene               | 2570            |         | 129       | ug/kg | 3310         |              | 77.7         | 40-130 |     |      |
| Hexachlorobutadiene             | 2580            |         | 129       | ug/kg | 3310         |              | 78.0         | 40-130 |     |      |
| Hexachlorocyclopentadiene       | 2530            |         | 328       | ug/kg | 3310         |              | 76.3         | 40-130 |     |      |
| Hexachloroethane                | 2970            |         | 129       | ug/kg | 3310         |              | 89.7         | 40-130 |     |      |
| Indeno(1,2,3-cd)pyrene          | 2600            |         | 129       | ug/kg | 3310         |              | 78.5         | 40-130 |     |      |
| Isophorone                      | 3010            |         | 129       | ug/kg | 3310         |              | 90.8         | 40-130 |     |      |
| Naphthalene                     | 2360            |         | 129       | ug/kg | 3310         |              | 71.2         | 40-130 |     |      |
| N-Nitrosodimethylamine          | 2890            |         | 129       | ug/kg | 3310         |              | 87.4         | 40-130 |     |      |
| N-Nitrosodi-n-propylamine       | 2830            |         | 129       | ug/kg | 3310         |              | 85.5         | 40-130 |     |      |
| N-Nitrosodiphenylamine          | 2750            |         | 129       | ug/kg | 3310         |              | 82.9         | 40-130 |     |      |
| Pentachlorophenol               | 2410            |         | 328       | ug/kg | 3310         |              | 72.8         | 15-140 |     |      |
| Phenanthrene                    | 3070            |         | 129       | ug/kg | 3310         |              | 92.6         | 40-130 |     |      |
| Pyrene                          | 3010            |         | 129       | ug/kg | 3310         |              | 91.0         | 40-130 |     |      |
| m&p-Cresol                      | 2500            |         | 258       | ug/kg | 3310         |              | 75.5         | 40-130 |     |      |
| Surrogate: Nitrobenzene-d5      |                 |         | 4160      | ug/kg | 6620         |              | 62.8         | 30-126 |     |      |
| Surrogate: p-Terphenyl-d14      |                 |         | 5200      | ug/kg | 6620         |              | 78.6         | 47-130 |     |      |
| Surrogate: 2-Fluorobiphenyl     |                 |         | 3730      | ug/kg | 6620         |              | 56.3         | 34-130 |     |      |
| Surrogate: Phenol-d6            |                 |         | 4630      | ug/kg | 6620         |              | 70.0         | 30-130 |     |      |
| Surrogate: 2,4,6-Tribromophenol |                 |         | 3910      | ug/kg | 6620         |              | 59.0         | 30-130 |     |      |
| Surrogate: 2-Fluorophenol       |                 |         | 5100      | ug/kg | 6620         |              | 77.0         | 30-130 |     |      |

# Semivolatile organic compounds (Continued)

| Analyte                                                          | Result                | Reporting<br>Qual Limit | Units          | Spike<br>Level | Source<br>Result | %REC         | %REC<br>Limits   | RPD          | RPI<br>Lim |
|------------------------------------------------------------------|-----------------------|-------------------------|----------------|----------------|------------------|--------------|------------------|--------------|------------|
| Batch: B4B1213 - 1_Semi                                          |                       |                         | 22             |                |                  |              |                  |              |            |
| <i>Satcn:                                     </i>               | voialiies extraction. | s (Conunuea)            | Pr             | repared: 02/2  | 28/24 Analyze    | d: 03/01/24  |                  |              |            |
| 1,2,4-Trichlorobenzene                                           | 2270                  | 129                     | ug/kg          | 3310           | ., =             | 68.7         | 40-130           | 0.0874       | 30         |
| 1,2-Dichlorobenzene                                              | 2550                  | 129                     | ug/kg          | 3310           |                  | 77.0         | 40-130           | 19.9         | 30         |
| 1,3-Dichlorobenzene                                              | 2480                  | 129                     | ug/kg          | 3310           |                  | 75.0         | 40-130           | 18.4         | 30         |
| 1,4-Dichlorobenzene                                              | 2260                  | 129                     | ug/kg          | 3310           |                  | 68.4         | 40-130           | 15.5         | 30         |
| Phenol                                                           | 2680                  | 129                     | ug/kg          | 3310           |                  | 81.0         | 40-130           | 22.3         | 30         |
| 2,4,5-Trichlorophenol                                            | 2640                  | 129                     | ug/kg          | 3310           |                  | 79.6         | 40-130           | 6.67         | 30         |
| 2,4,6-Trichlorophenol                                            | 2540                  | 129                     | ug/kg          | 3310           |                  | 76.6         | 40-130           | 4.71         | 30         |
| 2,4-Dichlorophenol                                               | 2640                  | 129                     | ug/kg          | 3310           |                  | 79.8         | 40-130           | 1.07         | 30         |
| 2,4-Dimethylphenol                                               | 2420                  | 328                     | ug/kg          | 3310           |                  | 73.1         | 40-130           | 8.87         | 30         |
| 2,4-Dinitrophenol                                                | 2130                  | 328                     | ug/kg          | 3310           |                  | 64.2         | 15-140           | 3.13         | 3(         |
| 2,4-Dinitrotoluene                                               | 2740                  | 129                     | ug/kg          | 3310           |                  | 82.7         | 40-130           | 5.87         | 3(         |
| ·                                                                | 2740                  |                         | ug/kg<br>ug/kg |                |                  |              |                  |              |            |
| <ul><li>2,6-Dinitrotoluene</li><li>2-Chloronaphthalene</li></ul> | 2730<br>2740          | 129<br>129              | ug/kg<br>ug/kg | 3310<br>3310   |                  | 82.3<br>82.8 | 40-130<br>40-130 | 1.76<br>3.82 | 30<br>30   |
| ·                                                                |                       |                         | ug/kg<br>ug/kg |                |                  |              |                  |              |            |
| 2-Chlorophenol                                                   | 2630<br>2250          | 129<br>129              | ug/kg<br>ug/kg | 3310           |                  | 79.3<br>67.9 | 40-130<br>40-130 | 17.4         | 30<br>30   |
| 2-Methylnaphthalene                                              | 2250                  | 129<br>129              | ug/kg<br>ug/kg | 3310<br>3310   |                  | 67.9<br>84.5 | 40-130<br>40-130 | 2.50<br>1.41 | 30         |
| Nitrobenzene                                                     |                       |                         |                |                |                  |              | 40-130           |              |            |
| 2-Methylphenol                                                   | 2170                  | 129                     | ug/kg          | 3310           |                  | 65.6         | 40-130           | 16.3         | 30         |
| 2-Nitroaniline                                                   | 2600                  | 129                     | ug/kg          | 3310           |                  | 78.5         | 40-130           | 0.973        | 30         |
| 2-Nitrophenol                                                    | 2540                  | 328                     | ug/kg          | 3310           |                  | 76.8         | 40-130           | 5.89         | 3          |
| 3-Nitroaniline                                                   | 2660                  | 129                     | ug/kg          | 3310           |                  | 80.5         | 40-130           | 5.31         | 3          |
| 4,6-Dinitro-2-methylphenol                                       | 2700                  | 328                     | ug/kg          | 3310           |                  | 81.5         | 30-130           | 18.5         | 3          |
| 4-Bromophenyl phenyl ether                                       | 2240                  | 129                     | ug/kg          | 3310           |                  | 67.6         | 40-130           | 8.81         | 3          |
| 4-Chloro-3-methylphenol                                          | 2220                  | 129                     | ug/kg          | 3310           |                  | 66.9         | 40-130           | 2.80         | 3          |
| 4-Chlorophenyl phenyl ether                                      | 2260                  | 129                     | ug/kg          | 3310           |                  | 68.4         | 40-130           | 1.92         | 3          |
| 4-Nitroaniline                                                   | 1970                  | 129                     | ug/kg          | 3310           |                  | 59.5         | 40-130           | 30.5         | 3          |
| 4-Nitrophenol                                                    | 2680                  | 328                     | ug/kg          | 3310           |                  | 80.9         | 40-130           | 12.4         | 3          |
| Acenaphthene                                                     | 2220                  | 129                     | ug/kg          | 3310           |                  | 67.1         | 40-130           | 0.688        | 3          |
| Acenaphthylene                                                   | 2690                  | 129                     | ug/kg          | 3310           |                  | 81.3         | 40-130           | 3.10         | 3          |
| Anthracene                                                       | 3050                  | 129                     | ug/kg          | 3310           |                  | 92.1         | 40-130           | 3.58         | 3          |
| Benzo(a)anthracene                                               | 2670                  | 129                     | ug/kg          | 3310           |                  | 80.5         | 40-130           | 0.773        | 3          |
| Benzo(a)pyrene                                                   | 2920                  | 129                     | ug/kg          | 3310           |                  | 88.2         | 40-130           | 5.43         | 3          |
| Benzo(b)fluoranthene                                             | 3050                  | 129                     | ug/kg          | 3310           |                  | 92.0         | 40-130           | 3.27         | 3          |
| Benzo(g,h,i)perylene                                             | 2800                  | 129                     | ug/kg          | 3310           |                  | 84.5         | 40-130           | 11.4         | 3          |
| Benzo(k)fluoranthene                                             | 3270                  | 129                     | ug/kg          | 3310           |                  | 98.8         | 40-130           | 5.83         | 30         |
| Biphenyl                                                         | 663                   | 20                      | ug/kg          | 828            |                  | 80.1         | 40-130           | 5.65         | 30         |
| Bis(2-chloroethoxy)methane                                       | 2890                  | 129                     | ug/kg          | 3310           |                  | 87.3         | 40-130           | 0.643        | 30         |
| Bis(2-chloroethyl)ether                                          | 2740                  | 129                     | ug/kg          | 3310           |                  | 82.8         | 40-130           | 12.1         | 3          |
| Bis(2-chloroisopropyl)ether                                      | 3070                  | 129                     | ug/kg          | 3310           |                  | 92.8         | 40-130           | 15.9         | 3          |
| Bis(2-ethylhexyl)phthalate                                       | 3030                  | 397                     | ug/kg          | 3310           |                  | 91.4         | 40-130           | 2.30         | 3          |
| Butyl benzyl phthalate                                           | 2900                  | 129                     | ug/kg          | 3310           |                  | 87.5         | 40-130           | 0.895        | 3          |
| Chrysene                                                         | 2930                  | 129                     | ug/kg          | 3310           |                  | 88.6         | 40-130           | 2.63         | 30         |
| Di-n-octyl phthalate                                             | 3290                  | 199                     | ug/kg          | 3310           |                  | 99.4         | 40-130           | 42.1         | 3          |
| Dibenz(a,h)anthracene                                            | 2610                  | 129                     | ug/kg          | 3310           |                  | 78.8         | 40-130           | 4.46         | 3          |
| Dibenzofuran                                                     | 2720                  | 129                     | ug/kg          | 3310           |                  | 82.1         | 40-130           | 5.66         | 3          |
| Diethyl phthalate                                                | 2830                  | 129                     | ug/kg          | 3310           |                  | 85.6         | 40-130           | 3.64         | 3          |
| Dimethyl phthalate                                               | 2580                  | 328                     | ug/kg          | 3310           |                  | 78.0         | 40-130           | 3.23         | 3          |
| Di-n-butyl phthalate                                             | 3310                  | 199                     | ug/kg          | 3310           |                  | 99.9         | 40-130           | 3.38         | 3          |
| Fluoranthene                                                     | 3080                  | 129                     | ug/kg          | 3310           |                  | 93.0         | 40-130           | 2.92         | 3          |
| Fluorene                                                         | 2640                  | 129                     | ug/kg          | 3310           |                  | 79.8         | 40-130           | 5.28         | 3          |
| Hexachlorobenzene                                                | 2790                  | 129                     | ug/kg          | 3310           |                  | 84.1         | 40-130           | 8.01         | 3          |
| Hexachlorobutadiene                                              | 2510                  | 129                     | ug/kg          | 3310           |                  | 75.8         | 40-130           | 2.76         | 3          |
| Hexachlorocyclopentadiene                                        | 2640                  | 328                     | ug/kg          | 3310           |                  | 79.8         | 40-130           | 4.46         | 3          |
| Hexachloroethane                                                 | 2460                  | 129                     | ug/kg          | 3310           |                  | 74.3         | 40-130           | 18.8         | 3          |
| Indeno(1,2,3-cd)pyrene                                           | 2730                  | 129                     | ug/kg          | 3310           |                  | 82.3         | 40-130           | 4.68         | 3          |
| Isophorone                                                       | 2960                  | 129                     | ug/kg          | 3310           |                  | 89.3         | 40-130           | 1.75         | 3          |
| Naphthalene                                                      | 2400                  | 129                     | ug/kg          | 3310           |                  | 72.5         | 40-130           | 1.84         | 3          |
| N-Nitrosodimethylamine                                           | Soil Sampling         |                         |                |                | I Δnril 201      |              | 40-130           | 22.5         |            |

31 09 16.1 - 143

| <del></del>             |                                |
|-------------------------|--------------------------------|
| Town of Maynard         |                                |
| Green Meadow Elementary | School - Early Stalityckentrol |
| •                       | (Continued)                    |

06/12/2024 Addendum 2

# Semivolatile organic compounds (Continued)

|                                 |                  |          | Reporting   |       | Spike        | Source       |             | %REC   |      | RPD   |
|---------------------------------|------------------|----------|-------------|-------|--------------|--------------|-------------|--------|------|-------|
| Analyte                         | Result           | Qual     | Limit       | Units | Level        | Result       | %REC        | Limits | RPD  | Limit |
| Batch: B4B1213 - 1_Semivola     | atiles Extractio | ons (Col | ntinued)    |       |              |              |             |        |      |       |
| LCS Dup (B4B1213-BSD1)          |                  |          |             | Pr    | epared: 02/2 | 8/24 Analyze | d: 03/01/24 |        |      |       |
| N-Nitrosodi-n-propylamine       | 2530             |          | 129         | ug/kg | 3310         |              | 76.3        | 40-130 | 11.4 | 30    |
| N-Nitrosodiphenylamine          | 2890             |          | 129         | ug/kg | 3310         |              | 87.4        | 40-130 | 5.24 | 30    |
| Pentachlorophenol               | 2620             |          | 328         | ug/kg | 3310         |              | 79.3        | 15-140 | 8.44 | 30    |
| Phenanthrene                    | 3230             |          | 129         | ug/kg | 3310         |              | 97.5        | 40-130 | 5.11 | 30    |
| Pyrene                          | 3050             |          | 129         | ug/kg | 3310         |              | 92.1        | 40-130 | 1.20 | 30    |
| m&p-Cresol                      | 2270             |          | 258         | ug/kg | 3310         |              | 68.5        | 40-130 | 9.73 | 30    |
| Surrogate: Nitrobenzene-d5      |                  |          | 4090        | ug/kg | 6620         |              | 61.8        | 30-126 |      |       |
| Surrogate: p-Terphenyl-d14      |                  |          | 5160        | ug/kg | 6620         |              | 77.9        | 47-130 |      |       |
| Surrogate: 2-Fluorobiphenyl     |                  |          | <i>3750</i> | ug/kg | 6620         |              | 56.7        | 34-130 |      |       |
| Surrogate: Phenol-d6            |                  |          | 3870        | ug/kg | 6620         |              | 58.5        | 30-130 |      |       |
| Surrogate: 2,4,6-Tribromophenol |                  |          | 4140        | ug/kg | 6620         |              | 62.6        | 30-130 |      |       |
| Surrogate: 2-Fluorophenol       |                  |          | 4220        | ug/kg | 6620         |              | 63.8        | 30-130 |      |       |

| Town of Maynard<br>Green Meadow Eleme             | Green Meadow Elementary School - Early Stelly Continued) |      |                    |       |                |                  |              |                |     | 4<br>2       |
|---------------------------------------------------|----------------------------------------------------------|------|--------------------|-------|----------------|------------------|--------------|----------------|-----|--------------|
| Polychlorinated Biphenyls (PCE                    | Bs)                                                      |      |                    |       |                |                  |              |                |     |              |
| Analyte                                           | Result                                                   | Qual | Reporting<br>Limit | Units | Spike<br>Level | Source<br>Result | %REC         | %REC<br>Limits | RPD | RPD<br>Limit |
| Batch: B4B1223 - 1_Semivolat                      | tiles Extractio                                          | ns   |                    |       |                |                  |              |                |     |              |
| Blank (B4B1223-BLK1)                              |                                                          |      |                    | Pr    | epared: 02/2   | 9/24 Analyze     | ed: 03/02/24 |                |     |              |
| Aroclor-1016                                      | ND                                                       |      | 66                 | ug/kg |                | •                |              |                |     |              |
| Aroclor-1221                                      | ND                                                       |      | 66                 | ug/kg |                |                  |              |                |     |              |
| Aroclor-1232                                      | ND                                                       |      | 66                 | ug/kg |                |                  |              |                |     |              |
| Aroclor-1242                                      | ND                                                       |      | 66                 | ug/kg |                |                  |              |                |     |              |
| Aroclor-1248                                      | ND                                                       |      | 66                 | ug/kg |                |                  |              |                |     |              |
| Aroclor-1254                                      | ND                                                       |      | 66                 | ug/kg |                |                  |              |                |     |              |
| Aroclor-1260                                      | ND                                                       |      | 66                 | ug/kg |                |                  |              |                |     |              |
| Aroclor-1262                                      | ND                                                       |      | 66                 | ug/kg |                |                  |              |                |     |              |
| Aroclor-1268                                      | ND                                                       |      | 66                 | ug/kg |                |                  |              |                |     |              |
| PCBs (Total)                                      | ND                                                       |      | 66                 | ug/kg |                |                  |              |                |     |              |
| Surrogate: 2,4,5,6-Tetrachloro-m-xylene<br>(TCMX) |                                                          |      | 8.34               | ug/kg | 13.3           |                  | 62.6         | 36.2-130       |     |              |
| Surrogate: Decachlorobiphenyl (DCBP)              |                                                          |      | 6.03               | ug/kg | 13.3           |                  | 45.2         | 43.3-130       |     |              |

66

66

10.2

6.50

66

66

10.0

6.34

ug/kg

ug/kg

ug/kg

ug/kg

ug/kg

ug/kg

ug/kg

ug/kg

199

195

206

203

LCS (B4B1223-BS1)

Surrogate: 2,4,5,6-Tetrachloro-m-xylene

Surrogate: Decachlorobiphenyl (DCBP)

Surrogate: 2,4,5,6-Tetrachloro-m-xylene

Surrogate: Decachlorobiphenyl (DCBP)

LCS Dup (B4B1223-BSD1)

Aroclor-1016

Aroclor-1260

Aroclor-1016

Aroclor-1260

(TCMX)

167

167

13.3

13.3

167

167

13.3

13.3

Prepared: 02/29/24 Analyzed: 03/02/24

Prepared: 02/29/24 Analyzed: 03/02/24

119

117

76.4

48.8

124

122

75.2

47.5

58.2-125

65.5-130

36.2-130

43.3-130

58.2-125

65.5-130

36.2-130

43.3-130

3.68

3.91

20

20

| Town of Maynard Green Meadow Elem  Total Petroleum Hydrocarbons | ·                | ol - Ear |                    | Kentrol |                |                  |         |                | <del>/12/202</del><br>endum |              |
|-----------------------------------------------------------------|------------------|----------|--------------------|---------|----------------|------------------|---------|----------------|-----------------------------|--------------|
| Analyte                                                         | Result           | Qual     | Reporting<br>Limit | Units   | Spike<br>Level | Source<br>Result | %REC    | %REC<br>Limits | RPD                         | RPD<br>Limit |
| Batch: B4B1186 - 1_Semivola                                     | atiles Extractio | ons      |                    |         |                |                  |         |                |                             |              |
| Blank (B4B1186-BLK1)                                            |                  |          |                    |         | Prepared 8     | & Analyzed: 0    | 2/28/24 |                |                             |              |
| Total Petroleum Hydrocarbons                                    | ND               |          | 27                 | mg/kg   |                |                  |         |                |                             |              |
| Surrogate: Chlorooctadecane                                     |                  |          | 9.08               | mg/kg   | 8.33           |                  | 109     | 50-130         |                             |              |
| LCS (B4B1186-BS1)                                               |                  |          |                    |         | Prepared 8     | & Analyzed: 0    | 2/28/24 |                |                             |              |
| Total Petroleum Hydrocarbons                                    | 583              |          | 27                 | mg/kg   | 667            |                  | 87.5    | 44.7-125       |                             |              |
| Surrogate: Chlorooctadecane                                     |                  |          | 9.39               | mg/kg   | 8.33           |                  | 113     | 50-130         |                             |              |
| LCS Dup (B4B1186-BSD1)                                          |                  |          |                    |         | Prepared 8     | & Analyzed: 0    | 2/28/24 |                |                             |              |
| Total Petroleum Hydrocarbons                                    | 551              |          | 27                 | mg/kg   | 667            |                  | 82.6    | 44.7-125       | 5.71                        | 30           |
| Surrogate: Chlorooctadecane                                     |                  |          | 9.05               | mg/kg   | 8.33           |                  | 109     | 50-130         |                             |              |

06/12/2024 Addendum 2

## Item Definition

Wet Sample results reported on a wet weight basis.

ND Analyte NOT DETECTED at or above the reporting limit.

Page 42 of 43

Town of Maynard
NEW Green Meadows Flementary School Rearly Site Package 59 Greenhill Street

West Warwick, RI 02893

1-888-863-8522 PROJECT NAME/LOCATION PROJ. NO. 3096 MAYNARD CLIENT ACOMODO NO. SO REPORT TO: INVOICE TO: REMARKS CONTAINERS COMP GRAB SAMPLE I.D. DATE TIME 3 22724 Laboratory Remarks: Special Instructions: Sampled by: (Signature) Temp. received: List Specific Detection Limit Requirements: Cooled Received for Turnaround (Business Days)

Subcontracts the following tests: Radiologicals, Radon, Asbestos, UCMRs, Perchlorate, Bromate, Bromide, Sieve, Salmonella, Carbamates, CT ETPH

|        | Town of Green M                                                                                                                                                                                        |                                           | v School - Earlv Site                             | Package             |                                                 | 06/12/2024<br>Addendum 2 |  |  |
|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|---------------------------------------------------|---------------------|-------------------------------------------------|--------------------------|--|--|
|        |                                                                                                                                                                                                        |                                           | ssDEP Analytica                                   | S .                 | cation Form                                     |                          |  |  |
| Labo   | ratory Na                                                                                                                                                                                              | ıme: New England                          | Testing Laboratory                                | , Inc.              | Project #: 3096                                 |                          |  |  |
| Proje  | Project Location: Maynard RTN:                                                                                                                                                                         |                                           |                                                   |                     |                                                 |                          |  |  |
|        | This Form provides certifications for the following data set: list Laboratory Sample ID Number(s): 4B27035                                                                                             |                                           |                                                   |                     |                                                 |                          |  |  |
| Matrio | Matrices: ☐ Groundwater/Surface Water ☒ Soil/Sediment ☐ Drinking Water ☐ Air ☐ Other:                                                                                                                  |                                           |                                                   |                     |                                                 |                          |  |  |
| CAM    | CAM Protocol (check all that apply below):                                                                                                                                                             |                                           |                                                   |                     |                                                 |                          |  |  |
|        | 60 VOC M III B ☑ MassDEP VPH (GC/PID/FID) CAM IV A ☐ 8082 PCB CAM V A ☑ 9014 Total Cyanide/PAC CAM VI A ☐ 6860 Perchlorate CAM VI A ☐ CAM VIII B ☐                                                     |                                           |                                                   |                     |                                                 |                          |  |  |
|        | 70 SVOC 7010 Metals (GC/MS) 8081 Pesticides 7196 Hex Cr CAM III C □ CAM IV C □ CAM V B □ CAM VI B □ CAM IX A □                                                                                         |                                           |                                                   |                     |                                                 |                          |  |  |
|        | 010 Metals                                                                                                                                                                                             |                                           |                                                   |                     |                                                 |                          |  |  |
| A      | Affirmative Responses to Questions A through F are required for "Presumptive Certainty" status                                                                                                         |                                           |                                                   |                     |                                                 |                          |  |  |
| Α      | Custody,                                                                                                                                                                                               | properly preserv                          |                                                   |                     | cribed on the Chain-of<br>ld or laboratory, and |                          |  |  |
| В      |                                                                                                                                                                                                        | e analytical method<br>tocol(s) followed? | (s) and all associated                            | d QC requirements s | pecified in the selected                        | d ⊠ Yes □ No             |  |  |
| С      |                                                                                                                                                                                                        |                                           | actions and analyticated for all identified perfe |                     | specified in the selected n-conformances?       | d ⊠ Yes □ No             |  |  |
| D      |                                                                                                                                                                                                        | Assurance and Q                           |                                                   |                     | specified in CAM VII A ition and Reporting o    |                          |  |  |
| E      | VPH, EPH, APH, and TO-15 only a. VPH, EPH, and APH Methods only: Was each method conducted without significant ☐ Yes ☐ No                                                                              |                                           |                                                   |                     |                                                 |                          |  |  |
| _      | modification(s)? (Refer to the individual method(s) for a list of significant modifications). b. APH and TO-15 Methods only: Was the complete analyte list reported for each method?                   |                                           |                                                   |                     |                                                 |                          |  |  |
| F      | Were all applicable CAM protocol QC and performance standard non-conformances identified and evaluated in a laboratory narrative (including all "No" responses to Questions A through E)?   ☑ Yes ☐ No |                                           |                                                   |                     |                                                 |                          |  |  |
| Res    | ponses                                                                                                                                                                                                 | to Questions G, l                         | H and I below are re                              | equired for "Presu  | mptive Certainty" st                            | atus                     |  |  |
| G      | protocol(                                                                                                                                                                                              | s)?                                       | or below all CAM repor                            |                     |                                                 | ☑ Yes ☐ No¹              |  |  |
|        |                                                                                                                                                                                                        |                                           | re "Presumptive Certair<br>described in 310 CMR   |                     | cessarily meet the data ι<br>SC-07-350.         | sability and             |  |  |

# Re

Н Were all QC performance standards specified in the CAM protocol(s) achieved? Were results reported for the complete analyte list specified in the selected CAM protocol(s)? 

<sup>1</sup>All negative responses must be addressed in an attached laboratory narrative.

I, the undersigned, attest under the pains and penalties of perjury that, based upon my personal inquiry of those responsible for obtaining the information, the material contained in this analytical report is, to the best of my knowledge and belief, is accurate and complete.

| Signature: | Position: Laboratory Director |
|------------|-------------------------------|
|            |                               |

Printed Name: Richard Warila

Soil Sampling Report Green Meadow School April 2024

06/12/2024 Addendum 2 MAY 22, 2024 [ADD2]

Mount Vernon Group Architects, Inc., Project No. 02021.10

#### **SECTION 31 20 00**

#### **EARTH MOVING**

#### PART 1 - GENERAL

#### 1.01 RELATED DOCUMENTS

A. All the Contract Documents, including Drawings, General and Supplementary Conditions and Division 1 – General Requirements, apply to the Work of this Section.

### 1.02 SPECIAL INSTRUCTIONS

- A. The General Contractor shall become familiar with other Sections of the Specifications to determine the type and extent of work there under which affects the work of this section whether or not such work is specifically mentioned.
- B. Examine all drawings and all other Sections of the Specifications for the requirements therein affecting the work of this trade. Plans, surveys, measurements, and dimensions, under which the work is to be performed are believed to be correct to the best of the Architect's knowledge, but the Contractor shall have examined them for himself during the bidding period, as no allowance will be made for any errors or inaccuracies that may be found herein. The contractor shall reconcile all drawings.
- C. Where there is a conflict between drawings and these specifications, the stricter requirement and the interpretation that is most in favor of the owner shall be adopted at no additional cost to the owner.
- D. By submitting a bid, the Contractor affirms that he has carefully examined the site and all conditions affecting work under this Section. No claim for additional costs will be allowed because of lack of full knowledge of existing conditions.
- E. Coordinate work with that of all other trades affecting or affected by work of this Section. Cooperate with such trades to assure a steady progress of work under this Contract.

### 1.03 DESCRIPTION OF WORK

- A. The Base Bid shall include but is not limited to the following:
  - 1. Removing and stacking topsoil within the limits noted in the drawings.
  - Excavation of earth, and rock excavating to the elevations noted on the drawings or specified herein, whichever is
    deeper. Disposing of excavated material generated within the limit of excavation and installing structural fill within
    the footprint of the proposed building and within the influence zone starting from the natural sand and gravel or
    rock up to finish grade as shown on drawings.
  - 3. Removal and disposal of existing utilities as shown in the drawings.
  - 4. Removal and disposal of asphalt and concrete pavement, retaining walls, fences, curbing, brush, trees and tree stumps to the limits as shown on drawings. [ADD2]
  - 5. Improving the existing fill within proposed paved areas.
- B. The Work of this Section includes, but is not limited to, furnishing and installation of the following:
  - Do not commence any excavation or construction work until verification of the layout performed by the Engineer/Surveyor has been received and approved by the Architect.
  - 2. All materials, equipment, labor, and services required for all Earth Moving work, including all items incidental thereto, as specified herein and as shown on the Drawings:
  - 3. All excavated soil shall be removed from the site and disposed of.
  - No burning on the site shall be permitted.

06/12/2024 Addendum 2 MAY 22, 2024 [ADD2]

Mount Vernon Group Architects, Inc., Project No. 02021.10

- 5. Removing unsuitable materials from within the proposed building footprint and the clearing limits noted on the drawings, including asphalt, existing fill, and organic matter, construction debris, remnants of existing foundations, and other deleterious matter.
- 6. Improving the subgrade of the proposed paved areas in the existing fill as described in these specifications.
- Dewatering
- 8. Proof-rolling of exposed subgrade for fill, footings, foundations, slabs, walks, pavements, lawns and grasses, and exterior plants.
- 9. Performing test pits before the start of and during excavation as required by the Geotechnical Engineer;
- Removing and/or improving the existing fill in accordance with the requirements of Section 3.02 of these specifications.
- Amending the existing fill to meet the gradation requirements of Structural Fill and/or Ordinary Fill.
- 12. Fill slopes and site retaining walls.
- 13. Installing excavation support, shoring or bracing as necessary.
- 14. Protecting existing utilities during the different phases of the earthwork operations.
- 15. Disposing off-site of excess or unsuitable materials.
- 16. Placing bedding, sub-base and base course layers.
- 17. Stabilizing/mitigating saturated or otherwise disturbed materials.
- 18. Excavating and backfilling required for the installation of the building slab and footings, pavements, underground utilities including storm drainage, sanitary, electrical and water.
- 19. Pumping and/or bailing necessary to maintain excavated spaces free from water from any source whatsoever.
- 20. Preparation, submission of, and compliance with an approved, phased erosion control plan in accordance with DEP requirements for a SWPPP (Stormwater Pollution Prevention Plan) to include materials and measures required to control soil erosion resulting from construction operations for the duration of the project.
- 21. All temporary stormwater management controls shall be in accordance with the Town of Maynard Stormwater Drain System By-Laws Chapter 33, Stormwater Management By-Laws Chapter 34 latest addition and the Town of Maynard MS-4 permit. As enforced by the Town of Maynard (DPW) Department of Public Works or a DPW duly authorized representative.
- 22. Designation of an Erosion Control Supervisor and submission of weekly erosion control reports.
- 23. Coordination with Archaeological Monitor.
- 24. Sediment removal and disposal.
- 25. Maintenance of erosion control devices.
- 26. Removal of erosion control devices as directed.
- 27. Install temporary construction fencing and safety devices or controls as specified and as necessary.
- 28. Dust control and clean-up.
- 29. Performing material testing, and field density testing as needed.
- 30. Groundwater Control, dewatering, pumping, bailing, filtering, and control of groundwater and surface water for all work under this contract in accordance with item 1.13 of these specifications.
- 31. Refer to specification Section 31 21 01 Site Utilities Preparation for additional dewatering requirements.
- 32. Installing fencing and safety devices or controls as specified and as necessary.
- 33. Notifying all affected utility companies and Dig Safe before the start of work.
- 34. Processing and improving onsite marginal soil, as needed, including by crushing and blending, to meet the specifications herein.
- 35. Installing seismographs and monitoring vibration at the nearby existing buildings during construction. The cost of vibration monitoring shall be included in the base bid.

06/12/2024 Addendum 2 MAY 22, 2024 [ADD2]

Mount Vernon Group Architects, Inc., Project No. 02021.10

### 1.04 GENERAL REQUIREMENTS

- A. The Contractor shall furnish all labor, material, tools, and equipment necessary to excavate materials; segregate, track, handle, sample, analyze, and test excavated materials, backfill, and re-grade as indicated on the Drawings.
- B. The Contractor shall use suitable, amended on-site soils and fill, and soil from off-site sources, as needed. Please note that most of the on-site materials will likely not be suitable for reuse without amendment, nor will all required material gradations be present on the site. The contractor shall avoid mixing the reusable soils with fine-grained and/or organic soils.
- C. Rock blasted or excavated from the excavation area shall not be used directly for backfill below footings or retaining walls unless the rock is processed to meet the gradations of the individual fill materials as noted herein.
- D. The Contractor shall make excavations in such a manner and to such widths that will provide suitable room for performing the Work and shall furnish and place all sheeting, bracing, and supports, if necessary. Excavation support is anticipated for this project.
- E. The Contractor shall provide labor and material for all pumping and draining, as necessary; and shall render the bottom of excavation firm and unyielding, and dry and in all respects acceptable. The Contractor shall collect and properly dispose of all discharge water from dewatering systems in accordance with Town of Maynard Bylaws noted herein and all State requirements, regulations and permits.
- F. The contractor shall provide a dewatering system for the discharge water used during the installation of the geothermal wells. Refer to Section 31 21 00 Site Utilities Preparation for requirements.
- G. The Contractor shall raise the Site to final grades and compact the subgrade and intermediate layers to the required criteria set forth within this Section.
- H. The contractor shall provide routine monitoring of in-place excavation support system.
- I. Contractor shall protect and moisture condition all onsite and imported materials for proper installation, compaction, and use. This includes covering, drying, and adding moisture in order to maintain suitable workability of the soil materials. Failure by the Contractor to follow this requirement shall not be cause for additional cost to the Owner.

## 1.05 LAWS AND REGULATIONS

- A. Work shall be accomplished in accordance with regulations of local, county, state and national agencies or utility company standards as they apply.
- B. Comply with the rules, regulations, laws and ordinances of the Town of Maynard, of the State of Massachusetts, appropriate agencies of the State of Massachusetts and all other authorities having jurisdiction. Coordinate all work done within Town and State rights of way with the appropriate agencies. Provide all required traffic control and safety measures, including uniformed police officers per Town and State requirements. All labor, materials, equipment and services necessary to make the work comply with such requirements shall be provided without additional cost to the Owner.
- C. Comply with the provisions of the Manual of Accident Prevention in Construction of the Associated General Contractors of America, Inc., the Commonwealth of Massachusetts Rules and Regulations For the Prevention of Accidents in Construction Operations, and the requirements of the Occupational Safety and Health Administration (OSHA), United States Department of Labor.
- D. The Contractor shall procure and pay for all permits and licenses required for the complete work specified herein and shown on the Drawings.

## 1.06 RELATED WORK SPECIFIED ELSEWHERE

A. Carefully examine all the Contract Documents for requirements that affect the Work of this Section.

06/12/2024 Addendum 2 MAY 22, 2024 [ADD2]

Mount Vernon Group Architects, Inc., Project No. 02021.10

- B. Other Specification Sections which directly relate to the Work of this section include, but are not limited to, the following Sections:
  - 1. Section 31 09 00 Subsurface Investigation
  - 2. Section 31 10 00 Site Clearing
  - 3. Section 31 21 00 Site Preparation
  - 4. Section 31 21 01 Site Utilities Preparation
  - 5. Section 32 25 00 Erosion & Sedimentation Controls
  - Section 32 16 00 Wood Guard Rail
  - 7. Section 32-31 70 Chain Link Fences and Gates
  - 8. Section 33 32 23 Segmental Retaining Walls
  - 9. Section 33 61 37 Geothermal Ground -Source Heat Exchange System

### 1.07 REFERENCE SPECIFICATIONS [ADD2]

- A. Comply with applicable requirements of the following standards. Where these standards conflict with other specified requirements, the most restrictive requirements govern.
  - 1. American Society for Testing and Materials (ASTM):
    - a. ASTM C136, Sieve Analysis of Fine and Coarse Aggregates.
    - b. ASTM D1556, Density of Soil In Place by the Sand-Cone Method
    - c. ASTM D1557, Standard Test Methods for Laboratory Compaction Characteristics of Soil Using Modified Effort (56,000 ft-lbs/ft.<sup>3</sup> (2,700 kN-m/m<sup>3</sup>)).
    - d. ASTM D6938, Standard Test Method for In-Place Density and Water Content of Soil and Soil-Aggregate by Nuclear Methods (Shallow Depth).
    - e. ASTM D6913, Particle Size Analysis of Soils.
    - f. ASTM D2487, Standard Test Method for Classification of Soils for Engineering Purposes.
  - 2. Commonwealth of Massachusetts:
    - Massachusetts Department of Transportation (MassDOT), "Standard Specifications for Highways and Bridges" latest edition.
    - b. Commonwealth of Massachusetts State Building Code.
  - 3. American Association of State Highway and Transportation Officials (AASHTO):
    - a. AASHTO T-11, Standard Method of Test for amount of material finer than 0.075 mm sieve in aggregate.
    - b. AASHTO T-27, Standard Method of Test for sieve analysis of fine and coarse aggregates.
  - Occupational Safety and Health Act (OSHA) of 1970 (Public Law 91-596 of the United States, 29 USC Section 651 et seq.).
  - Deleted [ADD2]
  - 6. DD Phase Geotechnical Report, Proposed Green Meadow Elementary School dated April 24, 2024 [ADD2]

## 1.08 BENCH MARKS AND ENGINEERING

- A. Employ, with the Contract Price, a competent Civil Engineer or Land Surveyor, registered in Massachusetts, who shall perform the following work:
  - 1. All lines and grade work not presently established at the site shall be laid out by the Engineer/Surveyor in accordance with the Drawings and Specifications. Establish permanent benchmarks necessary for the work under this Contract. Maintain all established bounds and bench marks and replace as directed at no expense to the Owner any that are destroyed or disturbed.
  - 2. Establish all lines and grades for the work and verify all locations, property lines, work lines, and other dimensioned points indicated on the Contract Drawings for the existing site.

06/12/2024 Addendum 2 MAY 22, 2024 [ADD2]

Mount Vernon Group Architects, Inc., Project No. 02021.10

- Submit to the Architect, a written confirmation of locations of all lines, and any discrepancies between conditions
  and locations as they actually exist and those indicated on the Contract Drawings. Such confirmation shall bear
  the registration stamp of the Engineer/Surveyor.
- B. The General Contractor shall use GPS (Global Positioning System) to locate all horizontal and vertical data shown on the CAD drawings for all proposed site work.
- C. Do not commence any excavation or construction work until verification of the layout performed by the Engineer/Surveyor has been received and approved by the Architect.
- D. Do not commence any excavation or construction work until verification of the layout performed by the Engineer/Surveyor has been received and approved by the Architect.

#### 1.09 SOIL REPORT

- A. DD Phase Geotechnical Report, Proposed Green Meadows Elementary School Maynard Massachusetts dated: April 27, 2024 prepared by Lahlaf Geotechnical Consulting, Inc. is attached hereto, and hereby made part of the Contract Documents. [ADD2]
- B. The Owner assumes no responsibility for the General Contractor's failure to make his own site investigation and makes no representation other than the soils reports regarding the character of the soil or subsurface conditions which may be encountered during the performance of the work. The General Contractor shall refer to Section 31 09 00 Subsurface Investigation, and attached soil Reports. Failure by the General Contractor to be aware of existing site conditions shall not be cause for additional cost to the Owner.
- C. The subsurface explorations and geotechnical report were performed primarily for use in preparing the foundation design and are included for the convenience of the contractor. Use and interpretation of these data for purposes of the work shall be the responsibility of the Contractor. Subsurface conditions and groundwater levels are not considered as accurate for any times or locations other than the specific time and location of each of the explorations.
- D. Interpretation of this data for purposes of construction is the responsibility of the Contractor. It is the Contractor's responsibility to make interpretations and draw conclusions with respect to the character of materials to be encountered and groundwater conditions at the site and their impact upon Contractor's work based on his expert knowledge of the area, construction dewatering methods, and support of excavation methods. Contractor may, at his own expense, conduct additional subsurface testing as required for his own information after approval by the Owner.
- E. Information on subsurface conditions is made available for the convenience of the Bidders. The Owner does not represent to the General Contractor that the information is either an accurate or a comprehensive indication of subsurface conditions. Bidders are invited to review the information to apprise themselves of the information available, and also to make additional investigations at their own expense.
- F. Test boring location as depicted on the Drawings are located by tape measurements from existing site features and structures and shall only be considered as accurate as the procedure utilized.
- G. The Contractor shall be aware that the ground surface elevation was interpolated to the nearest foot and are approximate.
- H. No claim for extra cost or extension of time resulting from reliance by the General Contractor on information presented herein shall be allowed, except as provided in the Contract Documents.

## 1.10 EXISTING UTILITIES

- A. Locate and mark underground utilities to remain in service before beginning the work. Active utilities existing on the site and work areas shall be carefully protected from damage and relocated or removed as necessitated by the work. When an active utility line is exposed during construction, its location and elevation shall be plotted on the record drawings as described in this Section and both Architect and Utility Owner notified in writing.
- B. Active utilities existing at the site and work areas shall be carefully protected from damage and relocated or removed as required by the work. When an active utility line is exposed during construction, its location and elevation shall be plotted on the record drawings as described in this Section and both Architect and Utility Owner notified in writing.

06/12/2024 Addendum 2 MAY 22, 2024 [ADD2]

Mount Vernon Group Architects, Inc., Project No. 02021.10

C. Inactive or abandoned utilities encountered during construction shall be removed if within the building area or grouted, plugged, or capped. The location of such utilities shall be noted on the record drawings and reported in writing to the Architect.

### 1.11 SAMPLING AND TESTING

- A. The contractor shall submit two (2) 50-lbs samples of each type of fill material, in air-tight containers, proposed for use on-site in accordance with PART 2 PRODUCTS, to the Owner's testing agency for preliminary compliance testing at least two (2) weeks prior to use. No fill material shall be delivered to the site or placed until the material has been preliminarily approved. The final review of the material will be based on a sample tested by the owner's testing agency upon delivery of the material to the site. The gradation curves shall fit entirely within the envelopes defined by the limits specified herein for the material to be approved for use at the site.
  - 1. Samples shall be delivered to the office of the Architect or as directed.
  - 2. Samples required in connection with compaction tests will be taken and transported by the Soils Representative.
  - Additional tests, including grain-size analyses and laboratory compaction tests shall be performed on the material after it is delivered to the site.
  - 4. For on-site materials, submit representative samples, collected from each stockpile of excavated on-site material to be used, directly to the Owner's Geotechnical Consultant's office or as directed at least two (2) weeks in advance of use of these materials.
- B. Product Data: Submit location of pits for borrow material. Samples shall include name of source, name of material, sampling date, and intended use.
- C. Samples shall be representative of the source pit. If materials are found to vary once construction begins, the Contractor will be required to submit additional representative samples, for compliance testing, at his own cost.
- D. Compaction (Field Density) tests:
  - 1. Field density tests shall be performed at all bench and other site fixture pads.
  - 2. Compaction tests shall be performed on each lift of placed and compacted material and at every 100 feet within the same lift. Accordingly, it is the responsibility of the Contractor to provide ample notice to the testing agency to provide a field representative to perform field density tests.
- E. Materials imported to the site by the Contractor for on-site use shall not contain oil, hazardous waste, or deleterious materials.
  - The Contractor shall be responsible for all costs incurred by the Owner as a result of the Contractor's action to import materials containing concentrations of oil and/or hazardous materials to the site, including the cost of removing the contaminated soil, the cost of remediation of onsite soils affected by the contamination, and the cost of replacement..
  - In the event that site characterization of off-site borrow sources indicates that soils are acceptable to the Architect
    or Engineer for use, then chemical testing will not be required. It is anticipated that chemical testing would not
    normally be required for material from customarily utilized commercial borrow sources.
    - No fill material from "urban areas" will be accepted for fill at the site, even if chemical testing indicates no exceedances of "Reportable Concentrations".
    - If requested by the Owner or Engineer, based on review of the borrow site characterization, the Contractor shall conduct testing on proposed fill material and submit results prior to delivery to the site, at no additional cost to the Owner. Testing shall be conducted by a DEP-certified testing laboratory and shall include, at a minimum, the following analytical test data.
    - a. Total Petroleum Hydrocarbons (EPA Method 418.1) every 100 yards
    - b. Volatile Organic Compounds (EPA Method 8420) every 500 yards

06/12/2024 Addendum 2 MAY 22, 2024 [ADD2]

Mount Vernon Group Architects, Inc., Project No. 02021.10

- PCB and Pesticides (EPA Method 8080) every 500 yards
- d. Total RCRA Metals (EPA Method 6000-7000 series) every 500 yards
- e. Polynuclear Aromatic Hydrocarbons (EPA Method 8270) every 500 yards
- f. TCLP for those total parameters which exceed twenty times the TCP criteria every 500 yards.
- g. Total cyanide (EPA 9020)
- 3. All off-site material submitted for use on the project site shall conform to the S-1 Soils Standards contained in the Massachusetts Contingency Plan, dated October 1, 1993, Section 310 CMR 40.0975 or site soil background levels, whichever is lower. Samples will be chemically tested to determine their conformance with the S-1 Soils Standards and site soil background levels.
- 4. Testing parameters and testing frequencies may be reduced, as directed by the Soils Representative.
- 5. All sieve analyses for conformance of on-site and off-site fill materials to be used in the work shall be done by means of a mechanical wet sieve analysis and in accordance with ASTM D 6913 using the sieves listed in Sections 2.01, A. plus the following sieves: #40, #10, and 1 inch. [ADD2]

### 1.12 QUALITY ASSURANCE

- A. The Owner may retain and pay for the services of an independent testing agency (Soils Representative) to monitor backfill operations, perform laboratory tests on soil samples, and to perform field density tests; and a Geotechnical Engineer to periodically observe the earthwork operations, observe the preparation of the subgrade for footings, slabs, and paved areas, and to review laboratory and field test data. The geotechnical engineer may from time to time request that the contractor excavate tests pits ahead of excavation to confirm subsurface conditions. Test pits shall be performed at no additional cost to the Owner.
- B. The Engineer's duties do not include the supervision or direction of the actual work by the Contractor, his employees, or agents. Neither the presence of the Engineer nor any observation and testing by the Engineer shall excuse the contractor from defects discovered in his Work at that time or subsequent to the testing.
- C. The services of the Soils representative may include but are not limited to monitoring and performing observations of the backfill operations and testing during placement of fills and backfills within the proposed building, parking area, underneath structures in general, and controlled fill areas.
- D. Subgrades shall be observed and approved by the geotechnical engineer before placing fill. The compaction and material composition shall be approved by the geotechnical engineer before placement. The by the Architect, and/or Geotechnical Engineer prior to placing subsequent lifts. If inspections indicate subgrade does not meet specified requirements, the unsuitable subgrade shall be excavated, the unsuitable material shall be removed, and replaced with approved structural backfill material and compacted at no additional cost to the owner or architect. The work shall be done in accordance with this specification.
- E. Costs related to retesting due to unacceptable quality of work and failures discovered by testing shall be paid for by the Contractor at no additional expense to Owner, and the costs thereof will be deducted by the Owner from the Contract Sum.
  - The Soils Representative's presence or the Geotechnical Engineer does not include supervision or direction of
    the actual work by the Contractor, his employees or agents. Neither the presence of the Soils Representative,
    nor any observations and testing performed by him, nor any notice or failure to give notice shall excuse the
    Contractor from defects discovered in his work.
  - 2. The Owner reserves the right to modify the services of the Soils Representative or Geotechnical engineer.
- F. The contractor shall make provisions for allowing safe and timely observations and testing of Contractor's Work by the Geotechnical Engineer and by the Soils Representative. The presence of the independent testing agency and/or the Geotechnical Engineer does not include supervision or direction of the actual work of the Contractor, his employees or agents. Neither the presence of the Soils Representative and/or the Geotechnical Engineer, nor any observations and testing performed by them, nor failure to give notice of defects shall excuse the Contractor from defects discovered in his work.

06/12/2024 Addendum 2 MAY 22, 2024 [ADD2]

Mount Vernon Group Architects, Inc., Project No. 02021.10

- G. Pre-excavation Conference: Conduct conference at Project site to comply with requirements in Division 1 Section "Project Management and Coordination."
  - Before commencing earthwork, meet with representatives of the governing authorities, Owner, Architect, Engineer, consultants, Soils Representative, and other concerned entities. Review earthwork procedures and responsibilities including testing and inspection procedures and requirements. Notify participants at least 3 working days prior to convening conference. Record discussions and agreements and furnish a copy to each participant.
- H. Testing: Compaction tests will be required by the Owner and will be paid for by the owner. No specific testing schedule has been established at this time. If tests indicate that density requirement have not been achieved, the contractor continue compacting the tested material. All retesting is these areas shall be paid for by the contractor.
- I. The Owner's Testing Agency will perform water content, gradation tests on onsite and processed materials, and compaction tests at a frequency and at locations as required. The results of these tests will be submitted to the Architect, and a copy submitted to the Contractor, on a timely basis so that the Contractor can take such action as is required to remedy the indicated deficiencies.
- J. Contractor shall notify Architect when excavations have reached required subgrade and provide a minimum notice of 24 hours prior to placement of backfill on exposed subgrade. Density and Compaction Testing: The contractor is responsible to schedule compaction tests and allow adequate time for the proper execution of said tests. This section also applies to instances when the General Contractor resumes earthwork operations after a period of pause in earthwork operations that require observations by the Geotechnical Engineer.

### K. Testing frequency shall be as follows:

| Material                                                             | Responsible<br>Party | Situation               | Test                                                          | Minimum Frequency                                                        |
|----------------------------------------------------------------------|----------------------|-------------------------|---------------------------------------------------------------|--------------------------------------------------------------------------|
| Structural Fill/<br>Ordinary Fill/                                   | Contractor           | Source<br>Investigation | Grain Size                                                    | 1 per source                                                             |
| Processed Gravel for Subbase/                                        |                      | mvooligation            | Moisture Density Relationship                                 | 1 per source                                                             |
|                                                                      | Owner                | During                  | Grain Size t                                                  | 1 per source                                                             |
| Common Borrow/<br>Bedding Material/<br>Crushed Stone /<br>Pea Gravel |                      | Placement               | Moisture Density Relationship                                 | 1 per 100 tons                                                           |
|                                                                      | Owner                | As-Placed               | Dry Density and As-Placed Moisture                            | 2 per lift per location o<br>activity and no less than 1<br>every 500 sf |
| Loam Borrow                                                          | Contractor           | During<br>Placement     | PH, Nitrogen, Phosphorous, Potassium, and USDA Classification | 2 per Acre                                                               |
| Riprap                                                               | Contractor           | Source<br>Investigation | Source Material Certification                                 | 1 per source                                                             |
|                                                                      |                      | mvesugation             | Specific Gravity                                              | 1 per source                                                             |
|                                                                      | Contractor           | During<br>Placement     | Source Material Certification                                 | 1 per 500 tons                                                           |
|                                                                      |                      | . Idoomont              | Specific Gravity                                              | 1 per 500 tons                                                           |

06/12/2024 Addendum 2 MAY 22, 2024 [ADD2]

Mount Vernon Group Architects, Inc., Project No. 02021.10

The Owner reserves the right to modify the services of the Soils Representative or Geotechnical engineer.

#### 1.13 PROTECTION

- A. All rules and regulations governing the respective utilities shall be observed in executing all work under this Section.
- B. All work shall be executed in such a manner as to prevent any damage to existing streets, curbs, paving, service utility lines, structures and adjoining property. Monuments and benchmarks shall be carefully maintained and, if disturbed or destroyed and replaced.
- C. The work of this Section shall be performed in such a manner as to cause no interference with access by the abutters, Subcontractors or other Contractors to all portions of the site as is necessary for the normal conduct of their work.

### 1.14 DEFINITIONS

- A. MassDOT specifications shall mean "The Standard Specification for Highways and Bridges", Commonwealth of Massachusetts, Massachusetts Department of Transportation, latest edition, including supplements.
- B. The words "finished grades" as used herein mean the required final grade elevations indicated on the Drawings and defined in this specification section. Where not otherwise indicated, areas outside of buildings shall be given uniform slopes between points, for which finished grades are shown, or between such points and existing grade except that vertical curves or rounding shall be provided at abrupt changes in slope.
- C. Excavation: Removal of material encountered to subgrade elevations indicated and subsequent disposal of materials removed. See EXECUTION section for directions for treatment of excavations in rock.
- D. Unauthorized Excavation: Removal of materials beyond indicated subgrade elevations or dimensions without specific direction of the Architect. Unauthorized excavation, as well as remedial work directed by the Architect, shall be at the Contractor's expense. See EXECUTION section for instructions for treatment of unauthorized excavation.
- E. Additional Excavation: Excavation required beyond anticipated subgrade elevation. See EXECUTION section for procedures.
- F. Natural Subgrade: The undisturbed, inorganic native soil exposed below site fill and disturbed native soils at footing and/or structural fill bearing elevations; or Rock at least 12" below the footing bearing elevation, slabs on grade, or utilities.
- G. Subgrade: Surface or elevation remaining after completing excavation, or top surface of a fill or backfill immediately below subbase, drainage fill, or topsoil materials.
- H. Structure: Buildings, foundations, slabs, tanks, curbs, or other man made stationary features occurring above or below ground surface.
- I. Structural Fill: Imported or approved on site aggregate or select soil meeting the physical properties described in Section 2.1 MATERIALS, and compacted in place to form a supportive bearing surface.
- J. Unsuitable material: On-site materials which are of improper gradation to allow adequate compaction, and/or defined as organically contaminated (including roots), uncontrolled fill material, disturbed native material, or otherwise identified as improper for the intended use by the Architect. Refer to the Supplemental info section of the Geotechnical Engineering Report.
- K. Rock: All materials which, in the opinion of the Architect, require blasting or special impact tools such as jack hammers, sledges, chisels or devices similar in purpose which are designed for use in cutting or breaking materials that have compressive strengths in excess of 300 pounds per square inch in their natural states. Boulders larger than 3 cubic yards in volume in open excavations and larger than 1 cubic yard in trenches are classified as Rock.
- L. Zone of Influence: The area bounded by a one horizontal to one vertical (1H:1V) line sloping downward and outward from the bottom, outer edge of the footings and foundations.

06/12/2024 Addendum 2 MAY 22, 2024 [ADD2]

Mount Vernon Group Architects, Inc., Project No. 02021.10

- M. The words "invert" or "invert elevation" as used herein shall be defined as the elevation at the inside bottom surface of the pipe or channel.
- N. The words "bottom of the pipe" as used herein shall be defined as the base of the pipe at its outer surface
- O. Trench shall be defined as an excavation of any length where the width is less than twice the depth and where the shortest distance between payment lines does not exceed ten (10') feet. All other excavations shall be defined as open excavations.
- P. Rock (Mass & Rock): Excavated material in beds, ledges, unstratified masses, and conglomerate deposits that cannot be removed by rock excavating equipment equivalent to the following size and performance ratings (Caterpillar 340), without systematic drilling, ram hammering, ripping, or blasting, when permitted.
- Q. Heaved Rock shall be understood to be rock that heaves as a result of blasting and shall include blasted rock and rock disturbed by blasting operations. [ADD2]
- R. Common Borrow: See MATERIALS Section.
- S. Structural Fill: See MATERIALS Section.
- T. Bedding Fill for Pipe and Other Utility Structures: See MATERIALS Section.
- U. Bedding Fill for geothermal pipe trenches: See MATERIALS Section.
- V. Gravel Base Course for Paved Areas: See MATERIALS Section.
- W. Trenching Fill: See MATERIALS Section.
- X. Loam Borrow: See MATERIALS Section.
- Y. Filter Fabric: See MATERIALS Section.
- Z. Vapor Retarder: See MATERIALS Section.

## 1.15 SUBMITTALS

- A. Submit a detailed construction sequence plan for project excavation indicating temporary stockpile areas, side slopes of excavations, limits of required temporary excavation support and sequence and procedures for subgrade protection, excavation, concrete placement, moisture conditioning of on-site excavated soils used as fill, filling, backfill, and compaction.
- B. Submit Rock blasting plan shall be submitted at least 10 days before the start of blasting operations. This submittal shall include description of blasting operations, handling procedure and storage of explosives, blasting limits and depths, blasting sequence, measures to limit vibrations, as needed, measures to lo limit over-blast and rock heave to less than 2 feet, and measures to protect the existing building during blasting operations.
- C. Grain-size distribution analysis test data shall be delivered with the samples. The analysis shall be performed in accordance with ASTM D 6913 and shall at the minimum include the sieve sizes listed for the respective material in Part 2. The data shall include a plot of the gradation and the envelope of the specified material. A material shall be considered meeting the specifications when its gradation curve fits entirely within the specified envelope. Borrow materials with grain-size distribution curves that do not fall entirely within the specified envelope shall be deemed unacceptable.
- D. Provide submittals in accordance with requirements of Section 01 33 00 Submittal Procedures in accordance with requirements of the Contract Documents.
  - 1. Submit a detailed earthwork sequence plan for project excavation indicating temporary stockpile areas and procedures for subgrade protection.
- E. Submit a dewatering plan for review by the Architect at least two weeks before the start of construction. Dewatering and groundwater control systems shall be designed to keep excavations free of water and to avoid disturbance of the subgrade.

06/12/2024 Addendum 2 MAY 22, 2024 [ADD2]

Mount Vernon Group Architects, Inc., Project No. 02021.10

- F. Excavation and Excavation Support Plan: Submit at least 10 calendar days prior to the start of the work a detailed plan for the sequence of excavation, and methods to be used to shore roadways, sidewalks and other structures.
- G. Obtain required permits for discharge of dewatering effluent. Submit two copies of all permits obtained at least one week prior to system installation.
- H. Submit soil samples in accordance with Section 1.12 of these specifications.
- Submit representative samples of approved equivalent materials, such as Filter Fabric, for approval prior to delivery to the site.
- J. Submit gradations from suppliers of crushed stone for pipe bedding, structure bedding, and infiltration system encasement and bedding.
- K. Submit shop drawings and calculations for proprietary site retaining walls.

#### 1.16 EXAMINATION OF SITE AND DOCUMENTS

- A. It is hereby understood that the General Contractor has carefully examined the site and all conditions affecting work under this Section. No claim for additional costs shall be allowed because of a lack of knowledge of existing conditions as indicated in the Contract Documents, or obvious from observation of the site.
- B. Plans, surveys, measurements, and dimensions under which the work is to be performed are believed to be correct, but the General Contractor shall have examined them for himself during the bidding period and formed his own conclusions as to the full requirements of the work involved.

## 1.17 PROJECT COORDINATION

- A. Prior to start of earthwork, the General Contractor shall arrange an onsite meeting with the Architect and the Geotechnical Engineer for the purpose of establishing the General Contractor's schedule of operations, and scheduling observation and requirements. The Geotechnical Engineer may from time-to-time request that the General Contractor excavate test pits ahead of excavation to confirm subsurface conditions at no additional cost to the Owner.
- B. Protect all benchmarks, monuments, and property boundary pins. Replace if destroyed by General Contractor's operation.
- C. As construction proceeds, the Contractor shall be responsible for notifying the Geotechnical Engineer and the independent testing firm prior to the start of earthwork operations requiring observation and/or testing.

#### 1.18 PROJECT CONDITIONS

## A. "GEOTECHNICAL ENGINEERING REPORT"

- The geotechnical engineering report prepared for this site (which includes subsurface exploration data and an
  exploration location plan) referenced in this section is included in the Supplemental information section and is
  made available for the convenience and information to the Contractor only. It is expressly understood that the
  Owner will not be responsible for any interpretation, conclusions or generalizations made by the contractor
  based on the contractor's review of the report.
- B. Do not proceed with utility interruptions without Architect's written permission. Notify Architect not less than two days in advance of proposed utility interruptions.
- C. Contact utility-locator service for area where Project is located before excavating.
- D. Protect nearby structures from damage. All construction induced damage shall be repaired by the General Contractor at no additional expense to the Owner.
- E. The General Contractor shall obtain and pay for all permits and licenses required to complete the work of this Section.
- F. In case of conflict between regulations or between regulations and Specifications, the General Contractor shall comply with the strictest applicable codes, regulations, or Specifications at no additional cost to the owner.

06/12/2024 Addendum 2 MAY 22, 2024 [ADD2]

Mount Vernon Group Architects, Inc., Project No. 02021.10

- G. The General Contractor may perform additional test borings and other explorations at no cost to the Owner.
- H. Demolish and completely remove from site existing underground utilities indicated to be removed. Coordinate with utility companies and Town of New Bedford to shut off services if lines are active.

#### 1.19 SEQUENCING AND SCHEDULING

A. As construction proceeds, notify the Architect prior to the start of earthwork operations which require observations and testing. A minimum of 72 hours notification shall be provided for work that requires observation or testing

#### 1.20 AS BUILT SURVEY

- A. At the completion of the specified work, a field survey shall be performed by a surveyor registered in Massachusetts of the as built building, ground elevations (spot elevations 50' on center and at edges of pavement and or curbing, top and bottom of walls and utility structures, floor elevations, utilities, fencing, walls and all site improvements, limit-of-work line, property lines, and tree line within the limit of work. The surveyed information shall be presented in a AutoCAD electronic file format (latest version) and submitted to the Architect in the form of a CD with PDF'S at a scale of 1"=30'.
- B. All field survey work and presentative of the surveyed information shall be completed and submitted to the Architect within four weeks of completion of the construction as specified and as shown on the drawings.

### 1.21 MEASUREMENTS

- A. Measurement of Unsuitable Soil over-excavation:
  - 1. Strip vegetation, topsoil, buried organic material and fill in accordance with drawings. Remove existing asphalt, curbing, cobbles, boulders, concrete, metal, woods, and above and below ground structures.
  - 2. Remove unsuitable soils to top of natural soil as shown on the Contract Documents or as directed in the field by the Owner's Geotechnical Engineer.
  - 3. Quantity of blasted rock shall be measured by calculating the volume between the pay lines for excavated rock and the top of the rock surface as defined by rock probes performed before the start of blasting. The probes shall be performed in a grid with a maximum spacing of 50 feet. The probes shall extend at least 10 feet in rock. The probes shall be observed by the Geotechnical Engineer.
  - 4. Employ a Registered Land Surveyor to survey to bottom of the excavation for unsuitable soils throughout the building footprint. Excavations shall be surveyed at the corners, high and low points, and a maximum spacing for survey points of 20 feet in each direction on a grid.
  - 5. Quantities shall be measured in their original position to the limits of clearly defined vertical construction lines and to the depth required for the defined construction. Payment will be at the Contract Unit Rates.

## 1.22 UNIT PRICES

- A. The base bid shall include the excavating and disposing of excavated material generated within the limit of work and specified subgrades grades shown on the drawings or specified herein.
- B. Unit prices shall be provided for all items listed in Part 2- PRODUCTS. The unit rates shall include furnishing/processing, stockpiling, placing, and compacting the material).
- C. Provide unit rate for rock excavation in trenches and in open excavations, removed from the site, and any placement of fill required to bring excavated surface to specified subgrade.

06/12/2024 Addendum 2 MAY 22, 2024 [ADD2]

Mount Vernon Group Architects, Inc., Project No. 02021.10

D. Provide unit rate for rock excavation as open excavation, removed from the site, and any placement of fill required to bring excavated surface to specified subgrade.

### **PART 2 - PRODUCTS**

#### 2.01 FILL MATERIAL

A. Structural fill for support of Building foundations, floor slabs and base course for concrete sidewalks and pads shall be widely graded sand and gravel, free of clay, organic material, snow, ice, frozen soil or other deleterious materials, and conforming to the following graduation requirements. Soil finer than the No. 200 sieve shall be non-plastic. Structural Fill shall have a plastic index of less than 6 and shall be compacted in maximum 9-inch loose lifts to at least 95 percent of the Modified Proctor maximum dry density (ASTM D1557), with moisture contents within +- 2 percentage points of the optimum moisture content.

| U.S. Bureau of Standards | Percent Passing |             |
|--------------------------|-----------------|-------------|
| Sieve Size and Number    | Minimum         | Maximum     |
| 3- inches                | 100 percent     |             |
| 1-1/2 inch               | 80 percent      | 100 percent |
| 1/2 inch                 | 50 percent      | 100 percent |
| No.4                     | 30 percent      | 85 percent  |
| No.20                    | 15 percent      | 60 percent  |
| No.60                    | 5 percent       | 35 percent  |
| No.200                   | 0 percent       | *10 percent |

<sup>\* 0-5</sup> for the top 12 inches under sidewalks, exterior slabs, pads, and walkways

- 2. Material falling within the above Specifications, encountered during the excavation, shall be stored in segregated stockpiles for reuse as Compacted Structural Fill. All material shall be subject to approval by the Architect.
- B. Processed gravel for base course for bituminous concrete pavement shall be a processed material with angular particles meeting the requirements conforming to MassDOT Specifications Section M1.03.1.

| U.S. Bureau of Standards | Percent Passing |             |
|--------------------------|-----------------|-------------|
| Sieve Size and Number    | Minimum         | Maximum     |
| 3-inches                 | 100 percent     |             |
| 1-1/2 inch               | 70 percent      | 100 percent |
| No.3/4                   | 50 percent      | 85 percent  |
| No.4                     | 30 percent      | 60 percent  |
| No.200                   | 3 percent       | 10 percent  |

C. Ordinary Fill - Well-graded, natural inorganic soil approved by the Architect and meeting the following requirements to be used for general filling to subgrades in lawn areas and to the bottom of the subbase beneath pavements, sidewalks and other than specified above, and conforming to the following graduation requirements. Soil finer than the No. 200 sieve shall be non-plastic. Ordinary Fill shall have a plastic index of less than 6 and shall be compacted in maximum 9-inch loose lifts to at least 95 percent of the Modified Proctor maximum dry density (ASTM D1557), with moisture contents within +- 2 percentage points of the optimum moisture content.

| U.S. Bureau of Standards | Percent Passing |             |
|--------------------------|-----------------|-------------|
| Sieve Size and Number    | Minimum         | Maximum     |
| 6-inches                 | 100 percent     |             |
| 1 inch                   | 50 percent      | 100 percent |
| No.4                     | 20 percent      | 100 percent |
| No. 20                   | 10 percent      | 70 percent  |
| No.60                    | 5 percent       | 45 percent  |
| No.200                   | 0 percent       | 20          |

1. It shall be free of organic or other weak or compressible materials, of frozen materials, trash or other deleterious materials and of stones larger than six (6) inches maximum dimension.

06/12/2024 Addendum 2 MAY 22, 2024 [ADD2]

Mount Vernon Group Architects, Inc., Project No. 02021.10

- It shall be of such nature and character that it can be compacted to the specified densities in a reasonable length of time.
- 3. It shall be free of highly plastic clays, of all materials subject to decay, decomposition or dissolution and of cinders or other materials which shall corrode piping or other metal.
- 4. It shall have a maximum dry density of not less than one hundred (100) pounds per cubic foot.
- 5. Material from excavation on the site may be used as ordinary fill if it meets the above requirements.

### D. COMMON BORROW

- a. Common Borrow material shall be soil containing no stone larger than 8 inches and shall be substantially free of organic loam, wood, trash, or other objectionable materials which may be decomposable, compressible or which cannot be properly compacted. Onsite and offsite Common Borrow materials shall not contain more than 30 and 20% percent by weight of silt and clay, respectively.
  - 1 No Common Borrow shall be imported until available onsite Ordinary Fill has been used or with prior written approval from the Architect.
  - 2 Common Borrow material from off-site borrow sources shall contain no detectable concentrations of asbestos.
  - 3 Crushed concrete can be used as Common Borrow provided it meet the requirements of these specifications.
  - 4 Common Borrow can be used beneath the topsoil in landscaped areas, and at depths greater than 3 feet in paved areas.

### E. PROCESSED GRAVEL FOR SUBBASE

- Processed Gravel for Subbase shall be onsite or imported material conforming to Item M1.03.1 of the MassDOT Standard Specifications. This material can be used as subbase in the top 12 inches beneath paved area.
- 2. Processed Gravel for Subbase may be anticipated to be onsite in limited quantities.
- Crushed concrete shall not be used as Processed Gravel for Subbase.

## F. DENSE GRADED CRUSHED STONE FOR SUBBASE

- 1. Dense graded Crushed Stone for subbase shall be imported material conforming to Item M2.01.7 of the MassDOT Standard Specifications. This material shall be used as an alternate to Processed Gravel for Subbase in the top 12 inches immediately beneath paved areas.
- Crushed concrete shall not be used as Dense Graded Crushed Stone for Subbase.
- 3. Dense graded Crushed Stone for subbase are not anticipated to be present onsite.

### G. CRUSHED STONE

- Crushed stone shall consist of durable crushed rock or durable crushed gravel stone, free from ice and snow, sand, clay, loam, or other deleterious material, conforming to MassDOT specifications, Section M2.01.0 through M2.01.6 size as indicated on Drawings. Dense graded crushed stone shall be uniformly blended and conform to the following gradation requirements.
- 2. The crushed stone shall be reasonably free from clay, loam or deleterious material and not more than 1.0% of satisfactory material passing a No. 200 sieve will be allowed to adhere to the crushed stone. Where crushed stone is to be used for surfacing, this requirement shall be not more than 0.5% of satisfactory material passing a No. 200 sieve.

|            | Percent Passing By V |                |                |
|------------|----------------------|----------------|----------------|
| Sieve Size | 1/2-Inch Stone       | 3/4-Inch Stone | 1.5-Inch Stone |
| 2 inches   | 100                  | 100            | 100            |

06/12/2024 Addendum 2 MAY 22, 2024 [ADD2]

Mount Vernon Group Architects, Inc., Project No. 02021.10

| 1 ½ inch | 100    | 100    | 95-100 |  |
|----------|--------|--------|--------|--|
| 1 inch   | 100    | 100    | 35-70  |  |
| 3/4 inch | 100    | 90-100 | 0-25   |  |
| 5/8 inch | 100    |        |        |  |
| 1/2 inch | 85-100 | 10-50  |        |  |
| 3/8 inch | 15-45  | 0-20   |        |  |
| No. 4    | 0-15   | 0-5    |        |  |
| No. 8    | 0-5    |        |        |  |

### H. SAND

Sand shall consist of clean inert, hard, durable grains of quartz or other hard durable rock, free from clay, organics, surface coatings or other deleterious material, confirming to the MassDOT Specifications Section M1.04.1. Sand shall conform to the following gradation:

| Sieve Size | Percent Passing by Weight |
|------------|---------------------------|
| 1/2-inch   | 100                       |
| 3/8-inch   | 85-100                    |
| No. 4      | 60-100                    |
| No. 16     | 35-80                     |
| No. 50     | 10-55                     |
| No. 100    | 2-10                      |

### LOAM BORROW

Loam borrow shall meet the requirements of MassDOT Specifications for M1.05.0. Existing topsoil may also be excavated, stockpiled, screened and reused as loam on the project provided that the resultant material is consistent with the requirements of the MassDOT Specifications. All topsoil shall be screened free of roots, rocks and vegetative matter. The contractor shall amend and rehandle topsoil as needed to meet the standard specifications.

## J. FILTER FABRIC

1. Conform to MassDOT Specifications for Type III Fabric Embankment or Subgrade Stabilization, Section M9.50.0, Mirafi 140 Filter Fabric, or approved equivalent.

06/12/2024 Addendum 2 MAY 22, 2024 [ADD2]

Mount Vernon Group Architects, Inc., Project No. 02021.10

## K. VAPOR BARRIER

Vapor Retarder must have the following qualities:

- 1. WVTR less than or equal to 0.006 gr/ft2/hr as tested by ASTM E 96
- 2. ASTM E 1745 Class A (Plastics)
- 3. Vapor Retarder Products:
- Stego Wrap (15-mil) Vapor Barrier by Stego Industries, LLC, San Juan Capistrano, CA (877) 464-7834 www.stegoindustries.com, or approved equivalent.

### Accessories:

- 1. Vapor Retarding Seam Tape must have the following qualities:
  - a. Water Vapor Transmission Rate of 0.3 perms or lower by ASTM E 96
- 2. Vapor Proofing Mastic have the following qualities:
  - a. Water Vapor Transmission Rate of 0.3 perms or lower by ASTM E 96
- 3. Pipe Boots:
  - Construct pipe boots from vapor barrier material, pressure sensitive tape and/or mastic per manufacturer's instructions.

## L. ACCESSORIES

- A. Detectable Warning Tape: Acid- and alkali-resistant polyethylene film warning tape manufactured for marking and identifying underground utilities, a minimum of 6 inches wide and 4 mils thick, continuously inscribed with a description of the utility, with metallic core encased in a protective jacket for corrosion protection, detectable by metal detector when tape is buried up to 30 inches deep; colored as follows:
  - 1. Red: Electric
  - 2. Yellow: Gas
  - Orange: Telephone and other communications.
  - 4. Blue: Water System
  - 5. Green: Sewer

## L. UNDER-DRAINS

Under-slab drain pipes shall consist of 4" diameter Schedule 40 PVC with perforations in ¼ of the diameter and placed with the perforations down.

## PART 3 - EXECUTION

## 3.01 EXCAVATION

- B. Excavation of Subgrades
  - Topographic survey has been made of the project site following completion of the earthwork and this survey is included in the Bid Documents.

## B. General

Excavate all materials to the elevations, dimensions and form as shown on the Drawings and as specified for the
construction of the building, site walls, utility structures, utilities, paving, site improvements and other structures
necessary for the completion of the building, utilities, and site work. All unsuitable materials within the indicated

06/12/2024 Addendum 2 MAY 22, 2024 [ADD2]

Mount Vernon Group Architects, Inc., Project No. 02021.10

and specified limits shall be excavated and removed from the site. Unsuitable materials shall include the following:

- a. Pavements, utility structures, building foundations and other man-made structures.
- b. Peat, organic silts, and other organic materials subject to decomposition, consolidation, or decay.
- c. Miscellaneous fill including sand, gravel, cinders, ash, glass, wood, and metal.
- d. Ledge or boulders except as specified for fills herein.
- e. Material that contains more than 3 percent organic matter by weight.
- 2. All unsuitable materials within the indicated and specified limits shall be excavated and removed from the site. The removal shall vertically extend to the elevations of the bottom of existing fill and buried organic soil shown in the boring and test pit logs included in the Geotechnical Report or to the limits shown in the drawings, whichever is deeper. The excavation resulting from the removal of the unsuitable soils shall extend to the natural/native undisturbed soil. Horizontally, the removal shall extend to the limits of ZOI or 5 feet beyond the limits of the building and 2 feet outside the limits of footings of retaining walls, stairs, and ramps, whichever is greater. The excavations shall be carried to the bottom of the unsuitable materials but in case less than 12 inches beneath the bottom of footings and 12 inches beneath the bottom of slabs. The grades within the building and all footings shall be restored to the grades provided on the contract plans using compacted Structural Fill. [ADD2]
- 3. Employ a Registered Land Surveyor to survey to bottom of the excavation for unsuitable soils throughout the building footprint. Excavations shall be surveyed at the corners, high and low points, and a maximum spacing for survey points of 20 feet in each direction on a grid.
- 4. Control the grading so that ground is pitched to prevent water from running into excavated areas, damaging other structures, or adjacent properties.
- 5. Where soil has been softened or eroded by flooding, equipment, traffic, or placement during unfavorable weather, or such other conditions, it shall be removed and replaced by the Contractor with suitable material at no cost to the Owner.
- 6. The topsoil/subsoil layer, root balls, where encountered, organic soil, the existing fill, and other deleterious matter shall be entirely removed from within the proposed building footprint.
- Topsoil/subsoil, organic material, root balls, where encountered, and other deleterious material shall be entirely removed from within the gravel road and paved road limits, geothermal field limits and retaining wall installation limits.
- 8. Cobbles and boulders shall be removed at least 6 inches from beneath footings and 18 inches from beneath the bottom of slabs within the entire building footprint, and 2 feet beneath the bottom of paved areas. The resulting excavations shall be backfilled with compacted Structural Fill under the building and with ordinary Fill under the subbase of paved areas.
- 9. The contractor is cautioned that some of the natural sand at the site has silt contents higher than 20 percent. Such soils can be compacted at moisture contents within 2 percent of the optimum moisture content determined from the laboratory compaction test. Soils with more than 20 percent fine contents are generally very sensitive to moisture content variations and are susceptible to frost. Such soils are very difficult to compact at moisture contents that are much higher or much lower than the optimum moisture content determined from the laboratory compaction test. Therefore, strict moisture control shall be implemented during stockpiling, placement, and compaction of the onsite soils.
- 10. Maintain all subgrades for site improvements in satisfactory condition, protected against traffic and properly drained, until the surface improvement is placed. In areas to receive pavement or other surface materials, at top and bottom of embankments, along swales and elsewhere, place sufficient grade stakes to facilitate checking the subgrade levels. Correct all irregularities, compacting thoroughly any fill materials.
- 11. Minimum depth of excavation in rock shall be performed in accordance with the requirements in Section 3.04 E.
- 12. The base of the footing excavations in the natural soil shall be compacted with a dynamic vibratory compactor weighing at least 200 pounds and imparting a minimum of 4 kips of force to the subgrade. All compaction shall be to specified levels.
- 13. The subgrades of slabs and paved areas in the natural soil shall be compacted with a vibratory roller compactor imparting a dynamic effort of at least 40 kips. Where soft materials are encountered, they shall be removed and

06/12/2024 Addendum 2 MAY 22, 2024 [ADD2]

Mount Vernon Group Architects, Inc., Project No. 02021.10

- replaced with Structural Fill within the footprint of the proposed building and with Ordinary Fill within the proposed paved areas.
- 14. Where paved areas are located in existing fill areas, the existing fill shall be improved after the surficial topsoil and subsoil are removed by compacting the exposed subgrade in the fill using at least six (6) passes of a vibratory roller compactor imparting a dynamic effort of at least 40 kips. Where soft zones are revealed by the compaction effort and where organic soil is exposed, the soft materials or organic oil shall be removed and replaced with Ordinary Fill to the bottom of the subbase layer.
- 15. The Contractor shall obtain from the proper authority locations of all utilities within the scope of this work so that there will be no damage done to such utilities. Neither the Owner nor the Architect will be responsible for any such damage, and the Contractor shall restore any structure or utility so damaged without additional compensation. Written notifications to the appropriate utility agencies shall be made at least ten (10) days prior to the commencement of any work.
- 16. Excess Material Suitable excavated material which is required for fill and backfill shall be separately stockpiled as directed by the Architect. All surplus fill other than that required to complete the intent of the Contract shall become the property of the Contractor and shall be disposed of off the property by the Contractor. All excavated materials which, in the opinion of the Architect, are not suitable for fill or backfill shall be removed and disposed of off the property.
- 17. Any unsanitary conditions encountered, such as broken sewer mains or uncovered garbage shall be corrected or removed entirely as directed by the Architect.
- 18. The Contractor shall remove materials beneath the existing building to 12 inches beneath bottom of proposed footings, 12 inches beneath bottom of proposed slab, or to the bottom of the unsuitable material, whichever is deeper. In proposed paved areas, the Contractor shall remove a minimum of 18 inches beneath the existing grades. Refer to quantities in item. Should quantities of certain materials or classes of work be increased or decreased from what is shown in the drawings and specified herein, the Contract Unit Rates listed below shall be the basis of payment to the Contractor, or credit to the Owner, for such increase or decrease in the work. The Contract Unit Rates shall represent the exact net amount, per unit, to be paid to the Contractor in the case of increase in the quantities, and the exact amount to be refunded to the Owner in the case of decreases in the quantities. No additional adjustment shall be allowed for overhead, profit, insurance, or other direct or indirect expenses by the Contractor. Contract Unit Rates of materials shall include hauling, storing, stockpiling, moving, importing, spreading, and compacting. Increases or decrease in the quantities shall be approved by the Owner.
- 19. Amending the existing fill free of organic matter by adding and blending with crushed stone shall be allowed.

  Blending shall produce a uniform, homogeneous mixture. Blending by pushing with a dozer shall not be allowed.
- 20. To reduce the potential for mixing of organic soil with blasted rock intended for crushing, the topsoil, roots, tree stumps, and vegetation shall be removed before blasting. The remainder of the overburden soils and excavatable weathered rock shall not be removed before blasting.

### C. Excavation for Site Improvements

- 1. Excavate to the lines and grades shown on the Drawings and as specified to obtain the subgrades for the following items of work:
  - a. Concrete slabs on grade
  - b. Bituminous concrete road and parking pavement
  - c. Gravel road limits
  - d. Concrete paving
  - e. Curbing Seeded areas
  - f. Retaining Walls
  - g. Unspecified improvements to elevations noted on the drawings.

### D. Utilities and Utility Structures

 Construct surface subgrades including filling prior to excavation for utilities and utility structures. Excavate to the lines and grades shown on the Drawings and as specified herein to obtain the subgrade for the following items of work:

06/12/2024 Addendum 2 MAY 22, 2024 [ADD2]

Mount Vernon Group Architects, Inc., Project No. 02021.10

- a. Utility structures to grades shown on the Drawings in the building and outside the building. Remove by excavating all unsuitable materials; including buried organics, from under drainage structures and backfill with specified fills compacted in place to subgrades.
- b. Excavation for structures and other accessories shall have twelve (12) inch minimum and twenty-four (24)
- c. inch maximum clearance on all sides.
- d. All utility lines to 12 inches below bottom of utility lines or structures.
- e. Trench for water pipe to provide a minimum of five feet of cover above top of pipe.
- f. Unless otherwise shown, provide separate trenches for each utility. Lay all piping in open trenches except where tunneling is required. Excavation for structures and other accessories shall have 12 in. minimum and 24 in. maximum clearance on all sides.
- g. Grade the bottom of trenches evenly to have a constant pitch in the direction of flow and to insure a uniform compacted thickness of selected material as called for.
- E. Existing services and utilities encountered shall be immediately repaired, protected, and maintained in use until relocation of same has been completed or be cut and capped were directed or be prepared for connections when so required.
- F. Excavation Classification
  - 1. Unclassified Excavation For the purposes of payment, materials shall be unclassified except for those materials beyond the limits specified in Section item 3.01.F.2, as described in item 3.1-B of these specifications. pavement Excavation shall comprise and include the satisfactory excavation, removal, and disposal of all materials encountered within the lines and grades shown in the Drawings or limits specified herein, whichever is deeper, regardless of the nature of the materials, and shall be understood to include, but not be limited to, earth, topsoil, subsoil, hardpan, fill, foundations, pavements, curbs, piping, railroad track and ties, cobblestones, footings, bricks, concrete, abandoned drainage and utility structures, debris, and materials classified as unsuitable materials. All excavation and replacement, if applicable, with suitable material within the lines and grades shown in the Drawings or the limits specified herein, whichever is deeper, will be considered and bid as unclassified and shall be included in the Contractor's lump sum (i.e., shall not be paid for using Unit Rates). [ADD2]
  - 2. For bidding purposes, the limits of unclassified excavation (i.e., excavations included as part of the base bid and for which there will be no payment using Contract Unit Rates) to remove the existing fill and organic soil within the building, paved areas, and athletic fields shall be as follows:[ADD2]
    - a. 32,000 cubic yards of cut, this includes:
      - 20,000 cubic yards of blasted rock (Assume blasting within building footprint and 5 feet beyond to El. 210 feet.)
      - ii. 8,000 cubic yards of topsoil removal
      - iii. 4,000 cubic yards of unsuitable material[ADD2]
    - b. 16,000 cubic yards of fill, this includes:
      - i. 10,000 cubic yards from on-site materials
      - ii. 6,000 cubic yards of imported fill

(Assume Fill placed within proposed building and within zone of influence to El. 215 feet, and Ordinary Fill placed within proposed paved areas to 12 inches beneath the bottom of the pavement.)[ADD2]

3. All excavation and replacement, if applicable, with suitable material within the lines and grades shown in the drawings and in these specifications that are within the quantities listed in item 3.01.F.2 shall be considered and bid as unclassified and shall be included in the Contractor's lump sum (i.e., shall not be paid for using Contract Unit Rates). Excavations beyond these lines described herein and beyond the quantities listed in item 3.01.F.2in the item shall be measured and paid for after approval of the measurements by the Architects as Classified Excavation using the Contract Unit Rates for respective classification in accordance with the allowance included in the contract documents. All quantities shall be measured in place. There shall be no swell, fluff, of expansion factor allowed. Measurements using truck loads shall not be allowed. Should quantities be less than those listed in item 3.01.F.2, the Contractor shall provide a credit to the Owner using the contract unit rates.

06/12/2024 Addendum 2 MAY 22, 2024 [ADD2]

Mount Vernon Group Architects, Inc., Project No. 02021.10

- A. Petroleum Contaminated Soil Allowance: The Contractor shall carry in the base bid an allowance of 100 cubic yards for removal of unanticipated as directed in Section 01 22 00 Unit prices, petroleum contaminated soil materials.

  Allowance shall cover removal and disposal of petroleum contaminated soil and furnishing imported suitable backfill materials compacted in place as directed herein. The base bid shall cover all costs related to such excavation, removal off site, disposal, and replacement with compacted fill of approved material, overhead, and profit. No amount other than that herein specified will be paid by the Owner for the work defined herein.
  - If the total void volume of unanticipated petroleum contaminated material excavation, and its replacement with compacted fill exceeds the amount included in the Contract as listed above, the Owner shall pay the excess excavation and replacement at the Unit Rate submitted in the Bid Attachment – Unit Rates Schedule.
  - If the total quantity of unanticipated petroleum contaminated materials, and its replacement with compacted fill is less than the amount included in the Contract as listed above, the contract sum will be decreased by the difference in excavation and its replacement multiplied by the Unit Rate submitted in the Bid Attachment – Unit Rates Schedule.

## 3.02 FROST PROTECTION

- A. Protect excavation bottoms and sides against freezing. Provide protective insulating materials as necessary, including by means of heat blankets, and heating plant.
- B. A layer of fill shall not be left in an uncompacted state at the close of a day's operation when there is the potential for that layer to freeze.
- C. The Contractor shall not place any material on snow, ice, frozen soil, or soil that was permitted to freeze prior to compaction. Removal of these unsatisfactory materials will be at the Contractor's expense.
- D. Do not excavate to full indicated depth when freezing temperatures may be expected, unless work can be completed to subgrade, the materials installed, and the excavation backfilled the same day. Protect the excavation from frost if placing of materials or backfilling is delayed.
- E. The Contractor shall keep the operations under this Contract clear and free of accumulation of snow within the limits of Contract Lines as necessary to carry out the work.
- F. Frozen materials shall be installed on frozen ground. Fill materials shall be free of frost.
- G. The subgrade of footings and slabs shall be protected from frost before placing concrete. The subgrade on the sides of the footings shall be protected from frost after the footings are constructed until sufficient fill is placed to protect the bottom of footings from frost induced heave. Uninsulated slabs shall be covered with heat blankets until the slab areas are heated. The cover shall extend at least 4 feet beyond the limits of the slabs.

## 3.03 DISTURBANCE OF EXCAVATED AND FILLED AREAS DURING CONSTRUCTION

- A. The Contractor shall take the necessary steps to avoid disturbance of subgrade and underlying natural soils/compacted fill during excavation and filling operations. Methods of excavation and filling operations shall be revised as necessary to avoid disturbance of the subgrade and underlying natural soils/compacted fill, including restricting the use of certain types of construction equipment and their movement over sensitive or unstable materials. The Contractor shall coordinate with the Architect or Soils Representative to modify his operations as necessary to minimize disturbance and protect bearing soils, based on the Architect's or Soils Representative's observations.
- B. All excavated or filled areas disturbed during construction, all loose or saturated soil, and other areas that will not meet compaction requirements as specified herein shall be removed and replaced with compacted approved material in accordance with these Specifications. Fill that cannot be compacted within 48 hours because of its saturated condition shall be removed and replaced with compacted approved material in accordance with these Specifications. Costs of removal of disturbed material and replacement with approved material shall be borne by the Contractor.
- C. If requested by the Architect or Geotechnical Engineer, the Contractor shall place a six-inch layer of Crushed Stone or 12-inch layer of Granular Fill/Structural Fill over natural underlying soil to stabilize areas disturbed during construction.

06/12/2024 Addendum 2 MAY 22, 2024 [ADD2]

Mount Vernon Group Architects, Inc., Project No. 02021.10

- D. The placement of the Crushed Stone layer or Granular Fill/Structural Fill as well as material costs shall be borne by the Contractor. A geotextile fabric shall be used to separate the crushed stone from the natural soil and from the overlying fill when directed by the Geotechnical Engineer at no additional cost to the owner at no extra cost to the owner.
- E. Material that is above or below optimum moisture for compaction of the particular material in place as determined by the Architect or the Soils Representative and is disturbed by the Contractor during construction operations so that proper compaction cannot be reached shall be classified as unsuitable bearing materials. This material shall be removed and replaced with lean concrete, suitable/approved backfill material, or crushed stone as directed by the Geotechnical Engineer or Soils Representative at no additional cost to the Owner.

06/12/2024 Addendum 2 MAY 22, 2024 [ADD2]

Mount Vernon Group Architects, Inc., Project No. 02021.10

## 3.04 FILLS, BACKFILLS AND COMPACTION

## A. Samples and Testing

- 1. All fill material and its placement shall be subject to quality control testing. A qualified laboratory will be selected by the Owner to perform tests on materials. All costs of testing will be paid for by the Owner. Test results and laboratory recommendations shall be available to the Architect.
- B. Provide samples of each fill material from the proposed source of supply including on-site sources. Allow sufficient time for testing and evaluation of results before material is needed. Submit samples from alternate source if required.
- C. Architect will be sole and final judge of suitability of all material.
- D. The laboratory will determine maximum dry density and optimum water content in accordance with A.S.T.M.
- E. D-1557, Method D and the in-place density in accordance with A.S.T.M. D-1556.
- F. Tests of material as delivered shall be made from time to time. Materials in question shall not be used, pending test results. Tests of compacted materials will be made regularly. Remove rejected materials and replace with approved material.
- G. Cooperate with laboratory in obtaining field samples of in-place materials after compaction. Furnish incidental field labor in connection with these tests.

## H. Placing Fills and Compacting

1. Fill material shall be placed in horizontal layers not exceeding the maximum loose lift thickness with the minimum number of passes of compaction equipment as summarized on the table below. Each layer shall be compacted to the percentage of maximum dry density specified for the particular type of fill and at a water content equal to optimum water content plus or minus two (2) percent. The maximum dry density and optimum water content shall be as specified herein:

|                                                                                                 | May                  | Max. Loose Lift Thickness          |                           | Min, Number of Passes              |                           |  |  |
|-------------------------------------------------------------------------------------------------|----------------------|------------------------------------|---------------------------|------------------------------------|---------------------------|--|--|
|                                                                                                 | Max<br>Stone<br>Size | Below<br>Structures<br>& Pavements | Less<br>Critical<br>Areas | Below<br>Structures<br>& Pavements | Less<br>Critical<br>Areas |  |  |
| Hand-operated vibratory plate or light roller in confined areas                                 |                      |                                    |                           |                                    |                           |  |  |
|                                                                                                 | 4 in.                | 8 in.                              | 8 in.                     | 6                                  | 4                         |  |  |
| Hand-operated Vibratory drum rolle weighing at least 1,000# in confined areas                   | rs                   |                                    |                           |                                    |                           |  |  |
| commed areas                                                                                    | 6 in.                | 8 in.                              | 10 in.                    | 6                                  | 4                         |  |  |
| Light vibratory drum Roller, minimum weight at drum 5,000#, minimum Dynamic force 10,000#       |                      |                                    |                           |                                    |                           |  |  |
|                                                                                                 | 6 in.                | 10 in.                             | 12 in.                    | 6                                  | 4                         |  |  |
| Medium to heavy Vibratory dru<br>roller, Minimum weight at Dru<br>10,000#, minimum Dynamic Fore | m                    |                                    |                           |                                    |                           |  |  |
| 20,000#                                                                                         | 8 in.                | 12 in.                             | 12 in.                    | 6                                  | 4                         |  |  |

06/12/2024 Addendum 2 MAY 22, 2024 [ADD2]

Mount Vernon Group Architects, Inc., Project No. 02021.10

- Areas to be filled or backfilled shall be free of construction debris, refuse, compressible or decayable materials and standing water. Do not place fill when fill materials or layers below it are frozen.
- J. Notify the Architect when excavation is ready for inspection. Filling and backfilling shall not be started until conditions have been approved by the Architect.
- K. Before backfilling against walls, the permanent structures must be completed and sufficiently aged to attain strength required to resist backfill pressures without damage. Temporary bracing will not be permitted except by written permission from the Architect. When filling on both sides of a wall or pier, place fill simultaneously on each side. Correct any damage to the structure caused by backfilling operations at no cost to the Owner. Place no stones closer than 18 inches to wall surfaces.
- L. In confined areas adjacent to footings and foundation walls and in utility trenches beneath floor slab, the fill shall be compacted with hand operated vibration tampers. The maximum lift thickness shall be four inches. The degree of compaction attained shall be equivalent to that attained in the adjacent open areas where heavy rolling equipment is used.
- M. After the subgrade under concrete slabs and paved areas has been shaped to line, grade and cross-sections, it shall be rolled with an approved power roller weighing not less than six tons until thoroughly compacted. This operation shall include any reshaping, refilling or wetting required to obtain proper compaction. Any areas that subsequently settle shall be refilled to true subgrade and properly compacted.
- N. In freezing weather, a layer of fill shall not be left in an un-compacted state at the close of a day's operations. Prior to terminating operations for the day, the final layer of fill, after compaction, shall be rolled with a smooth-wheeled roller to eliminate ridges of soil left by tractors, trucks and compaction equipment.

## O. Placing Fills

- 1. In the building footprint Structural Fill shall be placed under the concrete footings and slabs. Ordinary Fill shall be placed under Processed Gravel for Subbase in paved areas. The material shall be placed and compacted in layers as described in the above table and compacted to at least 95 percent of maximum dry density as determined by A.S.T.M. Test D1557.with moisture contents within +- 2 percentage points of optimal moisture content. Incidental compaction due to traffic by construction equipment will not be credited toward the required minimum coverages.
- P. Placement of structural fill should not be conducted when air temperatures are low enough to cause freezing of the moisture in the fill during or before placement, approximately 32 degrees F., or below. Fill materials should not be placed on snow, ice or un-compacted frozen soil. Structural fill should not be placed on frozen soil. No fill should be allowed to freeze prior to compaction. At the end of each day's operations, the last lift of fill, after compaction, should be rolled by a smooth-wheeled roller to eliminate ridges of un-compacted soil and protected from freezing.

## Q. Deficiency of Fill Materials

- 1. Provide required additional fill materials as specified if a sufficient quantity of suitable materials is not available from the required excavation on the project site at no additional cost to the Owner.
- R. Where water content of the fill must be adjusted to meet this Specification, the fill shall be thoroughly disked to ensure uniform distribution of any water added.

### S. Fill and Backfill for Utilities

- 1. Backfill trenches only after pipe and leaching chambers have been inspected, tested and locations of pipes and appurtenances have been recorded.
- T. Each pipe section shall be laid on a 12 inches minimum bed of crushed stone as specified herein above. In addition, all underground utilities in the building and on the site including water lines, sanitary waste, vent piping, electrical conduit, mechanical piping, gas piping and storm drainage piping serving the roof drains and downspouts shall be set in a six inches bed of sand. Bed shall be shaped by means of hand shovels to give full and continuous support to the lower 1/3 of each pipe. Backfill by hand around pipe, until the crown of the pipe if covered by at least two (2) feet of sand for which there is a sieve analysis chart on page 8, paragraph 2.01D. Use sand or crushed stone and tamp firmly in layers not

06/12/2024 Addendum 2 MAY 22, 2024 [ADD2]

Mount Vernon Group Architects, Inc., Project No. 02021.10

exceeding six inches in thickness. Take care not to disturb the pipe. Compact the remainder of the backfill thoroughly with a rammer of suitable weight or with an approved mechanical tamper to achieve compaction of 95 percent as specified.

U. Trenches and utility structures shall be backfilled with greatest care; fill materials required for backfilling to subgrades shall be Structural Fill or Ordinary Fill as specified. Backfill shall be compacted to 95 percent as specified. No mud, frozen earth or stone more than six inches in greatest diameter or other objectionable material shall be used for refilling. Any selected material required for filling shall be furnished and placed by the Contractor

## 3.05 ROCK EXCAVATION

- A. Bedrock and boulders be encountered during excavation, the following shall apply:
  - 1. When rock is encountered within the building footprint and its zone of influence and site improvements it shall be excavated or ripped with a hydraulic excavator. When it is demonstrated to the satisfaction of the Architect and the Geotechnical Engineer that this material can no longer be removed with a hydraulic excavator and requires drilling and blasting, this material shall be classified as Rock Excavation.
- B. Intermittent drilling and ripping performed to increase production and not necessary to permit excavation of material.
- C. Measurements:
  - 1. When, during the process of excavation, rock is encountered, it shall be uncovered and exposed in such a manner that the unbroken ledge surface is clearly visible, and the Architect shall be notified by the General Contractor, before proceeding further. The areas in question shall then be cross-sectioned as hereinafter specified.
- D. The General Contractor shall perform rock probes at the site in a grid pattern before the start of excavations. At a minimum, the results of the probes should include the ground surface elevation and the elevation of the top of the rock. The probes should extend at least 10 feet beyond the perceived top of rock to make sure that the perceived top of rock is not a boulder.
- E. Failure on the part of the General Contractor to perform the probes and identify the depth to top of the rock surface and to notify the Architect and proceeding by the General Contractor with the rock excavation before cross-sections are taken, shall forfeit the General Contractor right of claim towards the stated allowance or additional payment over and above the stated allowance at the quoted unit price.
- F. The General Contractor shall employ and pay for a licensed Registered Civil Engineer or Land Surveyor to take cross-sections of rock before removal and to make computations of volume of rock encountered within the Payment Lines. Cross-sections shall be taken in the presence of the Geotechnical Engineer and the computations approved by the Architect. The Owner has the option to perform independent cross-sections and computations of rock quantities.
- G. Where removal of boulder or ledge is required the extent of this removal and basis of payment shall be determined by the Architect with payment made as stated in Unit Prices.

### H. Blasting

- Blasting: Obtain written permission and approval of method from local authorities before proceeding with rock excavation. Explosives shall be stored, handled, and employed in accordance with state and local regulations or, in the absence of such, in accordance with the provisions of the "Manual of Accident Prevention of Construction" of the Associated General Contractors of America, Inc.
- I. Notify the Architect at least 48 hours before any intended blasting and do no blasting without his specific approval of each blasting operation.
  - General Contractor shall present evidence that his insurance includes coverage for blasting operations before
    doing any blasting work. A pre and post survey shall be performed for all buildings and utilities within 250 feet of
    the nearest blasting operations, conforming to the Municipal ordinance governing blasting and the Municipal Fire
    Department regulations.
- J. All rock blasting shall be well covered with heavy mats or timbers chained together and the General Contractor shall take great care to do no damage to existing structures, utility lines and trees to remain.

06/12/2024 Addendum 2 MAY 22, 2024 [ADD2]

Mount Vernon Group Architects, Inc., Project No. 02021.10

- K. Any damage caused by the work of this General Contractor shall be repaired to the full satisfaction of the Architect at no additional cost to the Owner.
- L. Any rock fragments or loose material from blasting operations shall be removed. All voids shall be filled with a leveling layer of Structural Fill
- M. Additional blasting requirements:
  - a. Comply fully with National and Town of Maynard Regulations.
  - b. All documentation submitted with application for "Use and Handling' PERMIT. 527 CMR 13:04 (11) E-1 states "A Use and Handling" Permit may be suspended or revoked by the head of the Fire Department or the Marshal or their designees for any violation of 527 CMR 13:00, or MGL c. 148"
  - c. Meet all requirements of 527 CMR 13;00
  - d. Perform Pre-Blast Surveys completed per 527 CMR 13:00
  - e. No Blasting Saturdays, Sundays or Holidays.[ADD2]
  - f. All shots to be double matted unless approved in advance by the Town of Maynard Fire Chief.
  - g. Shot size limited to 500 lbs. unless approved in advance by the Town of Maynard Fire Chief.
  - h. Blast warning signals to be sounded in accordance with 527 CMR 13:00
  - i. 24 hours notification to the fire department of intent to blast.
  - j. The contractor shall schedule and pay for detail officers to block traffic on Tiger Drive at Great Road and at Fowler High School during the blast.
  - k. In or near residential areas, written notification must be distributed to homes advising of intent to blast at least three (3) days prior to blasting operations. Such written notification to include time frame of blasting operations and description of warning signals. The area of distribution shall be determined by the Fire Chief during pre-blast conference. A Fire Department detail shall be required unless waived by the Fire Chief.
  - I. Provide at least three (3) or more seismographs throughout construction.
  - m. All seismographs to be calibrated and certified according to manufactures specifications and 527 CMR 13:00
- N. Rock should be cut a minimum of 12 inches outside utility structures and a minimum of 18 inches on each side of utility pipes.[ADD2]
- O. Rock surfaces that heave due to blasting should be compacted with a vibratory roller that imparts a minimum of 40 kips to the rock surface. To reduce the magnitude of rock heave, drilling for blast holes should extend no more than 2 feet beneath proposed subgrades. Where the thickness of heaved rock is more than 2 feet, the heaved rock shall be removed and replaced with approved backfill material. Where the heaved rock thickness is less than 2 feet, the rock surface shall be compacted with at least 6 passes of vibratory roller compactor imparting a minimum effort of at least 40 kips. The thickness of the heaved rock shall be assessed by means of test pits performed during blasted rock excavation. [ADD2]
- P. Complaints:
- Q. Report all blasting complaints to the Architect within 24 hours of receipt thereof. Include the name, address, date, time received, date and time of blast complained about, and a brief description of the alleged damages or other circumstances upon which the complaint is predicated. Assign each complaint a number, and number all complaints consecutively in order of receipt.
- R. Submit a summary report to the Architect each week which indicates the date, time and name of person investigating the complaint, and the amount of damage, if any.
- S. When settlement of a claim is made, furnish the Architect with a copy of the release of claim by the claimant.
- T. Immediately notify the Architect, throughout the statutory period of liability, of any formal claim or demands made by attorneys on behalf of claimants, or of serving of any notice, summons, subpoena, or other legal documents incidental to litigation, and of any out-of-court settlement or court verdict resulting from litigation.
- U. Immediately notify the Architect of any investigations, hearings, or orders received from any governmental agency, board or body claiming to have authority to regulate blasting operations.

06/12/2024 Addendum 2 MAY 22, 2024 [ADD2]

Mount Vernon Group Architects, Inc., Project No. 02021.10

- V. Basis of Payment: The total amount of rock excavation shall be based upon the volume of rock excavated within and/or above the lines referred to in the next paragraph as "Payment Lines". The payment lines are only to be used as a basis of payment, and are not to be used as limits of excavation. Limits of excavation area as shown on the Drawings and as specified herein.
- W. Rock blasting if needed, shall be controlled to reduce vibrations and airblast overpressure to below thresholds established in the Contract Documents. The peak particle velocity shall be maintained at less than 2 inches per second (ips) for concrete foundations, 1ips for stone foundations, and 0.5 ips for rubble foundations at the nearest structure. [ADD2]
- X. Perform rock pre-splitting along the lines separating the blasting for the Early Site Package and the blasting slated to occur during the next phase so as to reduce the potential damage to the existing building during blasting operations. [ADD2]

06/12/2024 Addendum 2 MAY 22, 2024 [ADD2]

Mount Vernon Group Architects, Inc., Project No. 02021.10

Payment Lines for Rock Excavation:

- Payment shall be made for volume between El. 210 and the top rock defined by the rock probes. [ADD2]
- Y. Allowance for Rock Excavation: . The Base Bid shall cover all costs relating to such rock excavation, including blasting, removal and placement of the excavated material, overhead and profit. No amount other than that herein specified will be paid by the Owner for excavation herein defined.[ADD2]
  - 1. Quantities shall be measured by the volume of void created using survey points of the excavated area. The fixed Unit Rate shall be applicable to variations in excess of the allowance quantity up to 100% of the allowance quantity.
  - 2. If the total quantity of Rock Excavation, open and/or trench, is less than the amount of Rock Excavation included in the Contract as listed above, the Contract sum will be decreased by the difference in Rock Excavation multiplied at the fixed Unit Rate. Quantities shall be measured by the volume of void created using survey points of the excavated area. The fixed Unit Rate shall be applicable to variations of the allowance quantity by decreases of 100% of the allowance quantity.
  - 3. Hoe ramming rock shall be paid for as rock excavation and shall not be paid for as time and material (T&M).

### 3.5 REUSE OF ONSITE MATERIALS AND PROCESSING OF ONSITE MATERIALS

- A. Based on the borings and test pits, the existing fill contains up to 45 percent fines and the natural soil layer contains up to 45 percent fines. Subgrade support capacities may deteriorate when such soils become wet and/or disturbed. The Contractor shall keep exposed subgrades properly drained and free of ponded water. Subgrades shall be protected from machine and foot traffic to reduce disturbance. Placed onsite material that becomes soft and unsuitable to support additional lifts of fill shall be removed and replaced at no additional cost to the owner. The contractor shall not make claims due to difficulty handling the onsite material. The Fill and natural soil layer also contained up to 30 percent of cobbles and boulders ranging up to about 7 feet in diameter.
- B. Organic soils shall not be reused for backfill except as directed by the landscape architect in slopes of 4H:1V or flatter.[ADD2]
- C. Should onsite materials be encountered that are suitable for reuse in accordance with the requirements for these specifications, the Owner shall receive a credit from the contractor for the quantity of reused onsite material. The credit shall be based on the difference in unit rates between imported and onsite material for the particular soil designation. The contractor shall provide Unit Rates for these materials in his base bid.
- D. Excavated onsite soils which are suitable for re-use at the time of excavation but become frozen or too wet for re-use due to poor material handling practices shall be disposed of off-site and replaced as necessary at no additional cost to the Owner.
- E. The processing of the existing building concrete and brick materials into Ordinary Fill shall be allowed.
- F. The Contractor must inspect all existing stockpiles on site including soil testing for each stockpiled material.
- G. The Contractor must amend the existing stockpiles if testing determines that the stockpiles do not meet the specifications for their intended use. The Contractor shall provide third party sampling and testing for all soils amended on-site.

06/12/2024 Addendum 2 MAY 22, 2024 [ADD2]

Mount Vernon Group Architects, Inc., Project No. 02021.10

- H. The Contractor shall be allowed to mobilize a rock crusher to the site to process cobbles, boulders, blasted rock, and imported rock by blending these materials with the existing fill and natural soil and crushing them to produce a well graded materials, provided that these materials are maintained at suitable moisture contents for proper compaction processed material obtained by crushing blasted rock, boulders, and soil shall meet the gradation requirements of Ordinary Fill and Structural Fill. Material produced by the crushing operation shall be well graded so as to reduce the potential for formation of honeycombs during its placement and compaction. Honeycombing is defined as material placed with visible voids between particles. Crushed material shall have a gradation curve that falls entirely within the specified envelope when tested for gradation using the sieves listed in item 1.12-E.5. [ADD2] The Contractor shall be allowed to transport the material offsite to perform the operations described in this item offsite and bring back the processed material provided that the processing offsite does is separate from other operations and provided that the work is approved by the project environmental professional.
- I. The Contractor shall protect, and moisture condition all onsite and imported materials for proper installation, compaction, and use. This includes covering, drying, and adding moisture in order to maintain suitable workability of the soil materials. The contractor shall protect stockpiled unprocessed and processed materials from exposure to moisture using tarps. The tarps shall be secured so as not to be moved by wind or other action. No claim shall be made by the contractor, due to failure to comply with this requirement.
- J. When processing the blasted rock, the Contractor shall mix the blasted rock with onsite soil free of organic soil to produce a well graded processed material meeting the specification of the material for which it is intended for use.
- K. Before blasted rock, cobbles, and boulders that are crushed and processed onsite are reused, they shall be observed and approved by the geotechnical engineer. At the start of the crushing operations, the soil to rock proportions placed into the crusher shall be varied until the processed material meets the appropriate gradation requirements. The soil to rock proportion thus achieved shall be maintained throughout the duration of the project.
- L. The material placed into the crusher shall be free of organics, wood, and other deleterious matter.
- M. The jaws of the crusher shall be adjusted daily to maintain the crushing gradation.
- N. Excess blasted rock, processed or unprocessed, not used on site shall be the property of the Contractor and shall be removed offsite at no additional cost to the Owner.

### 3.06 OFF-SITE DISPOSAL OF SOILS

- A. All off-site disposal of soils shall meet the minimum requirements of the following as applicable:
  - 1. DEP Policy #Comm-97-001: Reuse and Disposal of Contaminated Soil at Massachusetts Landfills.
- B. DEP Policy #WSC-13-500: Similar Soils Provision Guidance
- C. The Contractor is responsible for any and all disposal characterization sampling and analysis and preparation of disposal applications as required by the facility to be used. Copies of all applications and approvals.

### 3.07 TEMPORARY STEEL SHEETING

A. An excavation support system will be required to construct the proposed foundations near roadways and sidewalks as referenced in the Drawings. The contractor is responsible for the adequacy of the excavation support system and shall retain the services of a Professional Engineer registered in the Commonwealth of Massachusetts to design the required excavation support systems. The contractor's Professional Engineer shall practice in a discipline applicable to excavation work, shall have experience in the design of excavation support system and shall design in conformance with OSHA requirements. The contractor's Professional Engineer shall provide sufficient on-site inspection and supervision to assure that the excavation support system is installed and functions in accordance with his design. Criteria listed here in defining the responsibilities of the construction manager's Professional Engineer are minimum requirements.

06/12/2024 Addendum 2 MAY 22, 2024 [ADD2]

Mount Vernon Group Architects, Inc., Project No. 02021.10

- B. The contractor shall submit the attached Certificate of Design completed and signed by the contractor and the Professional Engineer, identifying the Contractor's Professional Engineer who will be responsible for design of the excavation support system, and including, for record purposes only:
  - 1. An overall time schedule for construction of the braced excavation system.
- C. A description of the anticipated sequence of construction.
- D. Submit three (3) copies to the Architect of:
  - a. Complete details of braced excavation methods, equipment and sizes and lengths of materials proposed to be used
  - b. Details of vibration monitoring devices and reports.
  - c. Details of the means and methods that will be used in monitoring the integrity of the support system during its entire period of use to insure the safety of the excavation.
  - d. Complete computations of the design of the braced excavation system bearing the seal of the responsible Registered Professional Engineer duly registered licensed to practice within a discipline applicable to excavation work, in the state where the project is located.
  - e. Any other pertinent data required for record purposes by the Engineer.
- E. Receipt of the information by the Architect will not relieve the contractor of the sole responsibility for the adequacy of the braces excavation system, and for assuring that there will be no resulting damage to adjacent existing pavement, utilities, or structures, and for providing safe conditions within the sheeted areas.
- F. Further for the record, upon completion of the work of this section, the contractor shall submit three copies of all records of survey, vibration monitoring and inspection of existing structures to the Architect.
- G. Work shall not be started until all materials and equipment necessary for construction are either on the site of the work or satisfactorily available for immediate use as required.
- H. The sheeting shall be sufficiently tight to minimize any resulting lowering of the groundwater level outside the excavation.
- The sheeting shall be driven by approved means to the design elevation. No ends or edges of sheeting shall be left exposed in a manner, which could create a possible had to safety of the public or a hindrance to traffic of any kind.
- J. The satisfactory construction and maintenance of the excavation support system, complete in place, shall be the responsibility of the contractor.

## 3.08 SUBGRADE PREPARATION

- A. Bring all areas to required subgrade levels as specified and as determined from the Drawings.
- B. Maintain all subgrades for site improvements in satisfactory condition, protected against traffic and properly drained, until the surface improvement is placed. In areas to receive pavement or other surface materials, at top and bottom of embankments, along swales and elsewhere, place sufficient grade stakes to facilitate checking the subgrade levels. Correct all irregularities, compacting thoroughly any fill materials.
- C. Check all manhole covers, grates, valve boxes and similar structures for correct elevation and position and make, or have made any necessary adjustments in such structures.
- D. All subgrades must be inspected and approved by the Architect before site improvements are made.
- E. The asphalt, topsoil/subsoil, root balls, organic soil, existing fill, and other deleterious matter shall be entirely removed from within the proposed building footprint.
- F. Topsoil/subsoil, asphalt, organic material, root balls, and other deleterious material shall be entirely removed from within the paved areas.
- G. Tree stumps, root balls, and roots larger than ½ inch in diameter shall be removed and the cavities shall be filled with Structural Fill within the building footprint and Ordinary Fill beneath the subbase layer within paved areas.

06/12/2024 Addendum 2 MAY 22, 2024 [ADD2]

Mount Vernon Group Architects, Inc., Project No. 02021.10

- H. The base of the footing excavations in the natural soil shall be compacted with a dynamic vibratory compactor weighing at least 200 pounds and imparting a minimum of 4 kips of force to the subgrade, before placing concrete.
- The subgrades of slabs and paved areas in the natural soil shall be compacted with a heavy vibratory roller compactor imparting a dynamic effort of at least 40 kips.
- J. Where soft zones are revealed by the compaction effort and where organic soil is exposed, the soft materials or organic soil should be removed and replaced with Structural Fill within the building and with Ordinary Fill beneath the subbase of paved areas
- K. Due to the high susceptibility of the natural soil for disturbance under foot and vehicular traffic, a minimum of 12 inches of Structural Fill shall be placed under footings on top of the natural soil to provide a firm working surface during placement of formwork and rebar.
- L. Fill placed within the footprint of the proposed building shall meet the gradation and compaction requirements of Structural Fill.
- M. Fill placed under the subbase of paved areas, shall meet the gradation and compaction requirements of Ordinary Fill.
- N. Fill placed in the top 12 inches beneath sidewalks shall consist of Structural Fill with less than 5 percent fines.
- O. When crushed stone is required in the drawings or it is used for the convenience of the contractor, it shall be wrapped in a geotextile fabric for separation.
- P. The bottom of footings bearing in bedrock shall be prepared as level as possible and shall not be sloped steeper than 12H:1V. [ADD2]
- Q. Granular fill shall not be placed directly on rock surfaces containing voids. Suitably sized crushed stone or a geotextile for separation shall be placed on the fractured surface prior to placing the fill to limit migration of smaller particles into the voids. [ADD2]

## 3.09 PROTECTION, SHORING AND DEWATERING

- A. Protect open excavations with steel plates, fencing, warning lights and other suitable safeguards.
- B. Provide all pumps and pumping facilities to keep all excavations free from water from whatever source at all times, when work is in progress.
- C. The contractor shall comply with the Town of Maynard Stormwater Management Bylaws, Drainage System Bylaws and MS-4 General Permit requirements as enforced by the Maynard Department of Public Works.
- D. The Contractor shall control the grading in areas under construction on the site so that the surface of the ground will properly slope to prevent accumulation of groundwater and surface water in excavated areas and adjacent properties.
- E. The Contractor shall provide, at his own expense, adequate pumping and drainage facilities to maintain the excavated area sufficiently dry from groundwater and/or surface runoff so as not to adversely affect construction procedures nor cause excessive disturbance of underlying natural ground. The flows of all water resulting from pumping shall be managed so as not to cause erosion, siltation of drainage systems, or damage to adjacent property.
- F. The groundwater level shall me maintained at 12 inches beneath the bottom of excavation or deeper until the excavation is backfilled to at least 2 feet above the groundwater level.
- G. Damage resulting from the failure of the dewatering operations of the Contractor, and damage resulting from the failure of the Contractor to maintain all the areas of work in a suitable dry condition, shall be repaired by the Contractor, as directed by the Engineer, at no additional expense to the Owner. The Contractor's pumping and dewatering operations shall be carried out in such a manner as to prevent damage to the Contract work and so that no loss of ground will result from these operations. Precautions shall be taken to protect new work from flooding during storms or from other causes. Pumping shall be continuous to protect the work and/or to maintain satisfactory progress.
- H. All pipelines or structures not stable against uplift during construction or prior to completion shall be thoroughly braced or otherwise protected. Water from the trenches, excavations, and stormwater management operations shall be disposed of

06/12/2024 Addendum 2 MAY 22, 2024 [ADD2]

Mount Vernon Group Architects, Inc., Project No. 02021.10

in such a manner as to avoid public nuisance, injury to public health or the environment, damage to public or private property, or damage to the work completed or in progress.

- I. The Contractor shall excavate interceptor swales and ditches, as necessary, prior to the start of major earthmoving operations to reduce the potential for erosion and to keep areas as free from surface and ponded water as possible. All piping exposed above ground surface for this use, shall be properly covered to allow foot traffic and vehicles to pass without obstruction.
- J. Should surface, rain or groundwater be encountered during the operations, the Contractor shall furnish and operate pumps or other equipment and provide all necessary piping to keep all excavations clear of water at all times and shall be responsible for any damage to work or adjacent properties for such water. All piping exposed above ground surface for this use, shall be properly covered to allow foot traffic and vehicles to pass without obstruction.
- K. The presence of groundwater or stormwater in soil will not constitute a condition for which an increase in the contract price may be made. Under no circumstances place concrete fill, lay piping or install appurtenances in excavation containing free water. Keep utility trenches free of water until pipe joint material has hardened and backfilled to prevent flotation

## 3.10 DUST CONTROL

- A. Comply with 310 CMR 7.09 "Dust, Odor, Construction and Demolition" of the Commonwealth of Massachusetts.
- B. Maintain all excavations, embankments, stockpiles, haul roads, permanent access roads, plant sites, waste areas, borrow areas, and all other work areas free from dust which would cause the standards of air pollution to be exceed or case a hazard or nuisance to others.
- C. Take necessary measures to control dust resulting from construction operations and do prevent spillage of material on public roads and streets.
- D. Provide wet machine sweeping of street surfaces after each workday or as needed to minimize dust and sediment.

### 3.11 MAINTENANCE

- A. Protection of graded areas: protect newly graded areas from traffic and erosion. Keep free of trash and debris.
- B. Repair and reestablish grades in settled, eroded, and rutted areas to specified tolerances.
- C. Reconditioning compacted areas: where completed compacted areas are disturbed by subsequent construction operations or adverse weather, scarify surface, reshape, and compact to required density prior to further construction.
- D. Settling: where settling is measurable or observable at excavated areas during general project warranty period, remove surface (pavement, lawn or other finish), add fill material, compact, and replace surface treatment. Restore appearance, quality, and condition of surface or finish to match adjacent work, and eliminate evidence of restoration to greatest extent possible.
- E. Unless directed otherwise by the Town of Maynard Department of Public Works, erosion control measures shall be maintained, inspected, repaired as required by the Architect or Department of Public Works representative and left in place.

Mount Vernon Group Architects, Inc., Project No. 02021.10

06/12/2024 Addendum 2 MAY 22, 2024 [ADD2]

3.12 RUBBISH REMOVAL

A. The General General Contractor shall remove all waste and debris and dispose daily in accordance with requirements of Section 01 74 19 – Construction Waste Management and Disposal.

**END OF SECTION** 

Town of Maynard
Green Meadow Elementary School - Early Site Package
GREEN MEADOW ELEMENTARY SCHOOL - EARLY SITE PACKAGE
5 TIGER DRIVE, MAYNARD, MA 01754
Mount Vernon Group Architects, Inc., Project No. 02021.10

06/12/2024 Addendum 2 MAY 22, 2024 [ADD2]

THIS PAGE IS LEFT INTENTIONALLY BLANK