GEOTECHNICAL REPORT

Stage Road over North Branch Swift River Bridge Replacement Bridge No. C-21-005 Cummington, MA October 2024

Prepared for:

Town of Cummington

Gill Engineering Associates, Inc. 63 Kendrick Street Needham, MA 02494

Table of Contents

1. II	NTR	ODUCTION1	L
1.1. 1.2. 1.3.	. S	Scope of Report Existing Structure and Site History Site Description	1 1 1
2. S	UBS	SURFACE CONDITIONS	2
2.1. 2.2. 2.3.		Local Geology Subsurface Exploration 2 Subsurface Profile 2	2 2 2
2 2 2 2 2 2	.3.1. .3.2. .3.3. .3.4. .3.5.	 South Boring B-1	22333
2.4. 2.5.	. S	Seismic Design Category Evaluation3Liquefaction Potential4	3 4
3. R	RECO	OMMENDED FOUNDATION SYSTEM	1
3.1. 3.2. 3.3.	. (. (Shallow Foundation GRS-IBS Foundation She Shallow Foundation She	4 5 5
4. C	ONS	STRUCTION CONSIDERATIONS	5
4.1. 4.2. 4.3. 4.4.	. \ . H . (Water Table 5 Excavation 5 Obstructions 6 Protection of Adjacent Structures and Utilities 6	555
4.5.	. 5	Sequence of Construction Activities 6	5
5. C	ONC	CLUSION ϵ	5

Appendix

6.1.	Project Locus Map
------	-------------------

- 6.2. Surficial Geologic Map
- 6.3. As-Drilled Boring Plan
- 6.4. Boring Logs
- 6.5. Preliminary Design Calculations
- 6.6. Proposed Preliminary Structure Plans

1. INTRODUCTION

1.1. <u>Scope of Report</u>

The purpose of this report is to provide recommendations for the foundations for the replacement of Stage Road over the North Branch of the Swift River culvert, in the Town of Cummington, Massachusetts. The replacement is necessary due to the poor condition of the existing culvert, to restore the natural wildlife passageway and to provide adequate conveyance of stream flows in order to minimize damage from extreme water events. This report will evaluate the data from the subsurface exploration and provide the necessary parameters for designing proposed foundations. All parameters provided will be in accordance with AASHTO LRFD Bridge Design Specifications 9th Edition and the 2020 LRFD MassDOT Bridge Manual. The report will provide recommendations for the construction of the proposed foundations with guidance on minimizing potential construction issues.

1.2. Existing Structure and Site History

The culvert is located on Stage Road in Cummington, approximately 0.8 miles east of Nash Road and spans over the North Branch of the Swift River, a perennial stream with headwaters that originate approximately five miles upstream, as illustrated in Appendix 6.1 - Project Locus Map. The existing 12-foot diameter corrugated steel pipe culvert spans a length of 12-feet, original date of construction is approximately 1960. The out-to-out width of the structure is \pm 70 feet with a \pm 25 foot wide roadway with a varying slope. The existing culvert has deformations and severe section loss. The culvert deficiencies in conjunction with channel restrictions has caused the roadway to settle and water to flow beneath the culvert. The roadway is closed.

No plans were provided for the existing culvert. Dawood Engineering Inc. performed a survey of the site on August 9th, 2023 to verify the existing conditions.

1.3. <u>Site Description</u>

Stage Road is oriented west-to-east and provides 2 lanes of traffic. It is classified as a Rural Local road with an ADT of 388 as of 2017. The bridge location is bounded by light vegetation and trees.

At the project site, the North Branch of the Swift River channel consists of gravel and cobbles with some small boulders within the streambed. The stream site drainage area mostly consists of forested area and shrub swamps with low residential and no commercial development.

The site has an overhead utility along the eastbound shoulder of the roadway.

2. SUBSURFACE CONDITIONS

2.1. Local Geology

According to the Surficial Geologic Map of the Goshen Quadrangle, Massachusetts, the site is underlain by non-stratified till of sand, some silt, and little clay containing scattered pebble, cobble, and boulder clasts. Large boulders are common and there are areas of shallow bedrock. See Appendix 6.2 for a snapshot of the map.

2.2. <u>Subsurface Exploration</u>

The subsurface exploration consisted of four (4) soil borings (designated as B-1 through B-4). Soil boring No. B-1 was completed approximately 12 feet west of the existing culvert centerline in the westbound travel lane. Soil boring No. B-2 was completed approximately 22 feet west of the existing culvert centerline in the eastbound travel lane. Soil boring No. B-3 was completed approximately 16 feet east of the existing culvert centerline in the westbound travel lane. Soil boring No. B-4 was completed approximately 9 feet east of the existing culvert centerline in the eastbound travel lane. The borings were drilled using a 4 inch casing and a 1-3/8 inch split spoon sampler between June 9th 2020 and June 10th 2020 by New England Boring Contractors of Glastonbury, Connecticut and observed by Comprehensive Environmental Inc. CEI. See Appendix 6.3 for an as-drilled boring site plan and Appendix 6.4 for boring logs. The boring logs were provided to Gill Engineering by the Town of Cummington. GEA concurs with the information presented in the boring logs.

2.3. Subsurface Profile

2.3.1. South Boring B-1

The existing ground grade at B-1 is at 1131.0'. Below the top foot of asphalt, the first 7' consists of medium dense sand which overlays a layer of dry medium dense sand which overlays a wet very dense layer of sand and gravel down to 27' at which the boring augured through 3' of rock to obtain the final sample at the practical refusal at 32'. No bedrock or ledge was encountered during the soil exploration. Ground water was measured at a depth of 20'.

2.3.2. North Boring B-2

The existing ground grade at B-2 is at 1130.5'. Below the top foot of asphalt, the first 12' consists of medium dense sand which overlays a layer of dry loose to medium dense sand to 17' which overlays a wet very dense layer of sand and gravel down to 32' at which the final sample at the practical refusal was taken at 31'. No bedrock or ledge was encountered during the soil exploration. Ground water was measured at a depth of 17 feet.

2.3.3.North Boring B-3

The existing ground grade at B-3 is at 1132.5'. Below the top foot of asphalt, the first 12' consists of dry loose to medium dense sand which overlays a layer of dry medium dense sand and silt down to 17 feet which overlays a wet very dense layer of sand down to 22' which overlays a layer of wet very dense till and weathered rock with sand to a depth of 27' at which the auger encountered conglomerate clasts of rounded and subangular cobbles to a depth of 40'. Ground water was measured at a depth of 22'.

2.3.4.North Boring B-4

The existing ground grade at B-4 is at 1132.0'. Below the top foot of asphalt, the first 7 feet consists of medium dense sand which overlays a layer of dry loose to medium dense sand which overlays a dry very dense layer of sand down to 17' which overlays a layer of wet very dense sand and gravel to a depth of 27'at which the boring augured through 3' of boulder or rock to obtain the final sample at the practical refusal at 32'. No bedrock or ledge was encountered during the soil exploration. Ground water was measured at a depth of 21'.

2.3.5. Soil Parameters

See Table 1 for recommended soil parameters for design. See Appendix 6.5 for calculations.

Layer	Unit Weight γ (lb/ft³)	Friction Angle Φ
Upper (0' to 20')	120	35
Lower (>20')	120	38

1. Friction angle based upon SPT N160 Correlation and AASHTO Table 10.4.6.2.4-1

2. Gravel borrow per MassDOT M1.03.0

Table 1: Recommended Soil Parameters

2.4. <u>Seismic Design Category Evaluation</u>

Seismic design parameters were determined using the 2011 AASHTO Guide Specifications for LRFD Seismic Bridge Design, and the 2020 MassDOT Bridge Manual. Calculations are presented in Appendix 6.5 – Preliminary Design Calculations. The following are recommended seismic parameters for design:

Site Class (AASHTO Table 3.10.3.1-1): D (Medium dense soil with 15<N<50 blows/ft)

Seismic Design Category (SDC): A

<u>Mapped Ground and Spectral Response (</u>AASHTO LRFD Bridge Design): 7% Probability of Exceedance in 75 Years (1,000 year event)

- Peak Horizontal Ground Acceleration (PGA): 0.06
- Horizontal Response Spectral Acceleration, 0.2 Sec (S_s): 0.14
- Horizontal Response Spectral Acceleration, 1.0 Sec (S₁): 0.04

Site Factors (AASHTO LRFD Bridge Design, Table 3.10.3.2-1, 3.10.3.2-2, & 3.10.3.2-3):

- Zero-Period (F_{pga}): 1.6
- Short Period (F_a): 1.6
- Long Period (F_v): 2.4

Design Spectral Response Parameters for Site Class D:

- A_s: 0.10 G
- S_{DS}: 0.224 G
- S_{D1}: 0.10 G

Seismic Zone (AASHTO LRFD Bridge Design, Table 3.10.6-1)

• Seismic Zone: 1

2.5. <u>Liquefaction Potential</u>

Based on the location of the bridge site being in low seismic zone, seismically induced settlement should not be significant; therefore, there is a low potential for liquefaction in the event of seismic activity. The soils present are generally non-plastic loose to medium dense sand with traces of gravel and well-graded. The encountered groundwater table was estimated based on observations during subsurface exploration, groundwater is estimated at 20 feet below the roadway surface. Additionally, the site has a low probability of having an event that would trigger liquefaction (M<6.0).

3. RECOMMENDED FOUNDATION SYSTEM

3.1. Shallow Foundation

The stiff soil will provide adequate bearing resistance to support a spread footing foundation. Since the scale of the project is small, precast wingwalls and abutments could be transported to the site and lowered into place with a crane. Factored bearing resistance and settlement will vary depending on the footing width.

The bottom of spread footing will need to be low enough to accommodate frost protection and be outside the limits of predicted scour. A spread footing foundation for a wingwall should be designed to the parameters in Table 1 and section 2-4 of this report. Embankment slopes may be constructed at 1.5:1 with added stone rip-rap per MassDOT LRFD Bridge Manual Standard 2.4.1.

3.2. GRS-IBS Foundation

The proposed project is a good candidate for a GRS-IBS abutments. To construct the GRS-IBS abutments, structural fill is placed in lifts over geotextile reinforcing and faced with modular blocks. The soil and fabric create a composite material that effectively dissipates the superstructure loads into the soil. The GRS-IBS abutments can be constructed with a backhoe and does not require specialized construction knowledge.

A GRS-IBS abutment would be outside the limits of predicted scour. The abutment should be designed to the parameters in Table 1 and section 2-4 of this report. Wood guardrail posts are not to be used as they cannot penetrate the GRS-IBS structural fill. Although facing blocks are not considered structural, they should be resistant to freeze thaw cycles and salt exposure. Care shall be taken to grade so that water does not flow behind the modular facing.

3.3. Deep Foundation

A deep foundation is not recommended for this site as it does not provide an economic advantage over a shallow foundation.

4. CONSTRUCTION CONSIDERATIONS

4.1. Water Table

Groundwater was measured during the sub surface exploration method at a varying depths from 17 to 22 feet. Fluctuations with this elevation are expected with the seasonal flows of the stream. Since the bottom of footing is below this elevation dewatering will be required during construction in order to maintain construction in the dry. Discharge of pumped water should be performed in accordance with all federal, state and local regulations which may require a discharge permit.

4.2. Excavation

As required by OSHA regulations, lateral support is required for any excavation depth greater than four feet and where 1.5:1 slope cannot be maintained. Items for temporary earth support should be included in the contract documents. The design of any temporary support earth (SOE) is the responsibility of the Contractor and should be designed in accordance with MassDOT and AASHTO requirements.

The proposed abutment construction may require a water barrier system to maintain work in the dry and minimize impacts to the adjacent stream channel and/or wetlands. Portions of the existing substructure may be left in place as a temporary barrier. The water barrier system may consist of sheet pile, sand bags or a portadam. The top of water barrier will need to be set above the 2-year high water elevation.

4.3. Obstructions

Due to the existing structure not having a foundation, there are no anticipated obstructions. However, to allow for the stream to flow without obstruction during the construction process, the existing culvert shall remain in place until the proposed structure is built.

4.4. Protection of Adjacent Structures and Utilities

The only known utility that would require protection during construction is the overhead line that is located along the South side of the bridge. Coordination with the utility company shall be performed to determine required construction clearances and to determine if any temporary measures to the utility would be needed.

4.5. <u>Sequence of Construction Activities</u>

No traffic staging is required with the road closure. Sequencing may be required for the relocation of the overhead utility.

5. CONCLUSION

The soil conditions for the proposed bridge will allow for a GRS-IBS abutment. The bottom of footing should be set a minimum of 4 feet below grade for frost protection and should be set below estimated scour depths unless adequate scour protection is provided. Rip-rap may be an option to protect the foundation from scour. Alternatively, the footing may be supported on piles, but this would be costly in comparison to a shallow foundation.

6.1. Project Locus Map

6.2. Surficial Geologic Map

Map units were modified from Hatch and Warren (1982). Some shallow-bedrock areas were interpreted from analysis of topographic (lidar) and soils data. Some postglacial units were mapped using 2005 orthophoto images.

Thin till—Nonsorted, nonstratified matrix of sand, some silt, and little clay containing scattered pebble, cobble, and boulder clasts; large surface boulders are common; unit was mapped where till is generally less than 10 to 15 ft thick including areas of shallow bedrock. Predominantly consists of upper till of the last glaciation; loose to moderately compact, generally sandy, commonly stony. Two facies are present in some places: a looser, coarser grained ablation facies, melted out from supraglacial position; and an underlying more compact, finer grained lodgement facies deposited subglacially. In general, both ablation and lodgement facies of upper till derived from fine-grained bedrock are finer grained, more compact, less stony and have fewer surface boulders than upper till derived from coarse-grained crystalline rocks. Across Massachusetts, fine-grained bedrock sources include the red Mesozoic sedimentary rocks of the Connecticut Valley lowland, marble in the western river valleys, and fine-grained schists in upland areas

Surficial Materials Map of the Goshen Quadrangle, Massachusetts

Compiled by Janet R. Stone and Mary L. DiGiacomo-Cohen 2018 Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government $% \left({{\rm D}} \right) = {\rm D} \left({{\rm D} \left({{\rm D} \right) = {\rm D} \left({{\rm D}} \right) = {\rm D} \left({{\rm D}} \right) = {\rm D} \left({{\rm D} \left({{\rm D} \right) = {\rm D} \left({{\rm D} \right) = {\rm D} \left({{$

For sale by U.S. Geological Survey, Box 25286, Denver Federal Center, Denver, CO 80225; https://store.usgs.gov; 1–888–ASK–USGS (1–888–275–8747)

Suggested citation: Stone, J.R., and DiGiacomo-Cohen, M.L., comps., 2018, Surficial materials map of the Goshen quadrangle, Massachusetts, quadrangle 31 *in* Stone, J.R., Stone, B.D., DiGiacomo-Cohen, M.L., and Mabee, S.B., comps., Surficial materials of Massachusetts—A 1:24,000-scale geologic map database: U.S. Geological Survey Scientific Investigations Map 3402, 1 sheet, scale 1:24,000, https://doi.org/10.3133/sim3402.

> ISSN 2329-132X (online) https://doi.org/10.3133/sim3402

6.3. As-Drilled Boring Plan

BORING NOTES:

- 1. LOCATION OF BORINGS ARE SHOWN ON THE PLANS THUS: ullet
- 2. BORINGS ARE TAKEN FOR THE PURPOSE OF DESIGN AND SHOW CONDITIONS AT THE BORING POINTS ONLY, BUT DO NOT NECESSARILY SHOW THE NATURE OF THE MATERIALS TO BE ENCOUNTERED DURING CONSTRUCTION.
- 3. WATER LEVELS SHOWN ON THE BORING LOGS WERE OBSERVED AT THE TIME OF TAKING BORINGS AND DO NOT NECESSARILY SHOW THE TRUE GROUND WATER LEVEL.
- 4. FIGURES IN COLUMNS INDICATE NUMBER OF BLOWS REQUIRED TO DRIVE A 13" I.D. SPLIT SPOON SAMPLER 6" USING A 140 POUND WEIGHT FALLING 30".
- 5. BORING SAMPLES ARE STORED AT GILL ENGINEERING ASSOCIATES, 63 KENDRICK STREET NEEDHAM, MA 02494. THE CONTRACTOR MAY EXAMINE THE SOIL AND SAMPLES BY CONTACTING GILL ENGINEERING ASSOCIATES.
- 6. BORINGS WERE MADE ON 11/24/2020.
- 7. ALL BORINGS WERE MADE BY NEW ENGLAND BORING CONTRACTORS OF 40 FORDWAY STREET DERRY, NH 03038.
- 8. ASSUMED DATUM IS USED THROUGHOUT.

BORING LOCATIONS										
BORING NO.	NORTHING	EASTING	STATION	OFFSET	SURFACE ELEV.	H.B.E				
B-1	2998830.97	286298.82	20+36.07	14.19'RT	1130.99	1104.00±				
B-2	2998819.21	286285.81	20+50.07	21.36'RT	1130.88	1099.00±				
B-3	2998799.84	286327.82	20+50.80	24.89'LT	1132.46	1101.00±				
B-4	2998787.75	286316.75	20+68.33	19.63'LT	1132.15	1106.00±				

C. BY APPRV. BY DESCRIPTION 63 KENDRICK STREET	NEEDHAM, MA 02434 781-355-7100 781-355-7101 (FAX)	FESSIONAL ENGINEER DATE
BATE DATE DATE DATE DATE DATE DATE DATE D	TOWN OF CUMMINGTON	U BRIDGE REPLACEMENT OF CUMMINGTON C-21-005 STAGE ROAD OVER SWIFT RIVER Z Registered pressure Registered pressure

6.4. Boring Logs

Boring No. B-1 Comprehensive Environmental Inc. Page 1 of 1 Bridge Number: C-21-005 City/Town: Cummington Project File Number: Contract Number: Total Hours: Location: Stage Road over North Branch of Swift River Date & Time Started: 6/9/2020 8:00AM 3 Groundwater Depth (Feet): 20 Date & Time: 6/9/2020 9:30AM Date & Time Completed: 6/9/2020 11:00AM Coordinates: N2998853 E286283 Driller's Name: Mike St. John of New England Boring Contractors Ground Elevation (Feet): 1131.0 Inspector's Name: Nick Shaw of CEI Blow Counts per 6 Inches Depth Sample Depth Range Recovery Strata **Field Description** (Feet) Number (Feet) (inches) Changes Coring Times Minutes per Foot S1 0-2 14-10-10-13 8 Dry, medium dense, brown, SAND, some gravel _ _ 5 S2 5-7 5-8-14-18 6 Dry, medium dense, brown, SAND, some gravel -_ -S3 17 10 10-12 9-15-14-13 Dry, medium dense, brown, SAND some silt _ -_ S4 15-17 8 15 6-7-7-5 Dry, loose to medium dense, brown, SAND. some silt _ -20 S5 20-22 12-9-31-80 12 Wet, medium dense to dense, brownish grey, SAND, little gravel _ 25' -S6 25-27 15 25 58-43-251/3" Wet, very dense, brownish grey, SAND and GRAVEL, augered through rock to take final _ sample at 30-32' _ -30' 30 S7 30-32 130-141/3" 9 Wet, very dense, grey, GRAVEL Practical refusal and end of exploration @ 31' Remarks: Autohammer used for both split spoon sampler and driving Arrow-Board: 0 Protective Device - Stand: Box: Signs: 2 Solid Pipe: Casing. Well Depth: Cones: 2 Stick Up Pipe: Screen Pipe: Penetration Resistance (N) Guide Type of Drill Rig: Cohesionless Soils (Sands, Gravels) Cohesive Soils (Silts, Clays) Size: 4in Casing Type: HW **Relative Density** Penetration Resistance Penetration Resistance Hammer Weight:140 lbs Consistency Very Loose Very Soft Fall: 30in 0 - 40 - 24 – 10 Loose Soft 2 - 4Depth: 31ft Medium Dense 10 - 304 – 8 Sampler Type: Split Spoon Size:2in Medium Stiff Dense 30 - 508 – 15 Automatic Hammer Weight: 140 lbs Stiff Very Dense Over 50 Very Stiff 15 – 30 Safety Hammer Weight: Hard Over 30 Donut Hammer Weight: N = Sum of Second and Third 6" Blow counts Fall: Terms Used for Second Entry of Descriptions: and = 40-50%, some = 10-40%, trace = 10% or less Core Barrel Type: NX Size: 2.125in

			Comp	roboncivo Envi	ronmonto	Lino		Boring No.	B-2
					Page 1 of 1				
City/Town: Cummington Bridge Number: C-21-005					Project File Number: Contract Number:			er:	
Location	n: Stage Roa	d over North Bra	nch of Swift R	iver	Date & Tim	ne Started: 6/9/20	020 11:30AM		Total Hours:
Ground	water Depth	(Feet): 17	Date & Time	e: 6/9/2020 1:00PM	Date & Tim	ne Completed: 6/9	9/2020 3:00F	M	0.0
Coordin	ates: N2998	857 E286260			Driller's Na	me: Mike St. Joh	n of New En	gland Boring Co	ntractors
Ground	Elevation (F	eet): 1131.0			Inspector's	Name: Nick Sha	w of CEI		
Depth	Sample	Depth Range	Blow Cou	ints per 6 Inches	Recovery	г		tion	Strata
(Feet)	Number	(Feet)	Coring Time	s Minutes per Foot	(inches)	г 	-leid Descrip	lion	Changes
- -	S1	0-2	7	7-8-6-10	12	Dry, medium de gravel	ense, brown,	SAND, some	
- 5 -	S2	5-7	7-	15-17-14	16	Dry, medium de gravel	ense, brown,	SAND trace	
- - 10 -	S3	10-12	1	0-5-5-8	16	Dry, medium de	ense, brown,	SAND some silt	
- - 15 - -	S4	15-17		8-7-6-5	6	Wet, loose to m some gravel	medium dense, brown, SAND		
- 20 -	S5	20-22	19	-15-12-44	10	Wet, dense to v GRAVEL	very dense, b	rown SAND and	20'
- - 25 - -	S6	25-27	23	-23-45-16	5	Wet, dense to v	very dense, g	ery dense, grey, GRAVEL	
- - 30	S7	30-32	19	91-132/4"	10	Wet, very dens Practical refuse	very dense, grey, GRAVEL, some till tical refuse and end of exploration @ 31'		,
Remarks: Autohammer used for both split spoon sampler and driving Casing.				Arrow-Boa Signs: 2 Cones: 2	rd: 0	Protective Well Depth Stick Up Pi	Device – Stand: : Solid F pe: Screen	Box: Pipe: Pipe:	
Penetration Resistance (N) Guide			Soils (Silte	Clavs)	Lype of Dri	III Rig: be: HW/	Size: /in		
Relativ	e Density	Penetration R	Resistance	Consistency	Penetrati	on Resistance	Hamm	er Weight:140 lb	S 5126. 4111
Very	Loose	0 - 4	4	Very Soft		0 – 2	Fall: 3	Din	
	oose m Donas	4 – 1	0	Soft		2 – 4	Depth:	31ft	
ivieaiu	nn Dense ense	10 — 3 30 — 4	50 50	Stiff	ç	4 – ð 3 – 15	Sampler Ty	/pe: Split Spoon atic Hammer We	Size:2in Sight: 140 lbs
Verv	Dense	Over	50	Verv Stiff	1	5 – 30	Safetv	Hammer Weigh	t:
,		0.01		Hard	Ö	ver 30	Donut	Hammer Weight	
		N = Sum c	of Second and	Third 6" Blow count	S		Fall:		
Terms l	Jsed for Sec	ond Entry of Des	criptions: and	= 40-50%, some = 7	10-40%, trac	e = 10% or less	Core Barre	I Type: NX	Size: 2.125in

1	an	E E	11/10	
	6	~	A	2)
B	U	1		
16			1	/

Comprehensive Environmental Inc.

Boring No. B-3

								Fage I OI I	
City/Town: Cummington Bridge Number: C-21-005			Project File Number: Cont			Contract Num	ber:		
Location	: Stage Roa	ad over No	rth Branch of Swift R	liver	Date & Time Started: 6/8/2020 8:00AM				Total
Groundwater Depth (Feet): Date & Time:6/8/2020 10:00AM				Date & Time Completed: 6/8/2020 2:30PM				Hours: 6.5	
Coordina	ates: N2998	822 E286	311		Driller's Na	me: Mike St. John of I	New England	Boring Contrac	ctors
Ground	Elevation (F	eet): 1132	2.5		Inspector's	Name: Nick Shaw of	CEI		
Depth	Sample	Depth Range	Blow Counts pe	er 6 Inches	Recovery	Field	Description		Strata
(Feel)		(Feet)	Coring Times Mini	utes per Foot	(inches)	<u> </u>			Changes
- -	S1	0-2	8-8-7-	8	22	Dry, medium dense, asphalt	brown, SANI	D, trace	
- 5 - -	S2	5-7	9-5-4-	7	14	Dry, loose to mediur some silt	n dense, brov	vn, SAND,	
- 10 - -	S3	10-12	13-5-7	-8	21	Dry, loose to mediur and silt	n dense, brov	vn, SAND,	
- - 15 - -	S4	15-17	6-24-21	-7	7	Dry, medium dense, silt	dark brown,	SAND and	
- - 20 - -	S5	20-22	43-33-35-65		14	Wet, very dense, da some silt	dark brown/grey, SAND,		
- - 25 - -	S6	25-27	55-230-10	5-108	19	Wet, very dense, da WEATHERED ROC	rk brown/grey K, some sanc	r, TILL/ I	25'
-	504	00.05							30'
30 - - - - 35	RC1	30-35	4:48 3:11 7:08 8:51 6:27			30'-35' Conglomerat to subangular, prima range to fine gravels	merate. Clasts are rounded primarily cobbled sized but avel sized. REC=36"/60"=60% merate. Clasts are rounded to marily cobble sized, but range vel sized. REC= 60"/60" = 100%		
- - - - 40	RC2	36-40	5:46 8:19 6:31 9:52 4:01			36-40' Conglomerate subangular, primarily to fine and gravel siz			
Remarks: Autohammer used for both split spoon sampler and driving Casing.			ampler and	Arrow-Boar Signs: 2 Cones: 2	rd: 0	Protective I Well Depth: Stick Up Pip	Device – Stand: Solid be: Scree	Box: Pipe: n Pipe:	
C	ohesionless	Soils (Sai	nds, Gravels)	Coh	esive Soils (Silts, Clays)	Casing Typ	e: HW	Size: 4in
Relativ	e Density	Peneti	ation Resistance	Consistency	Penetr	ation Resistance	Hamme	er Weight:140 I	bs
very	LOOSE DOSE		0 – 4 4 – 10	very Soft Soft		0 – 2 2 – 4	⊢all: 30 Depth:	in 31ft	
Mediu	m Dense		10 – 30	Medium Stiff		4 – 8	Sampler Ty	pe: Split Spoor	Size:2in
De	ense Dense		30 – 50 Over 50	Stiff		8 – 15 15 – 30	Automatic	Hammer Weigh	nt: 140 lbs
very	Delige			Hard		Over 30	Donut I	Hammer Weigh	it:
		N =	Sum of Second and	Third 6" Blow	counts		Fall:		
Terms l	Jsed for Sec	cond Entry	of Descriptions: and	= 40-50%, som	ne = 10-40%	, trace = 10% or less	Core Barrel	Type: NX Siz	ze: 2.125in

							Boring No. B-4		B-4
Comprehensive E					Environmental Inc. Page 1 of 1				1
City/Town: Cummington Bridge Number: C-21-005				Project File Number: Contract Nur			ber:		
Locatior	n: Stage Roa	ad over No	orth Branch of Swift R	liver	Date & Tim	ne Started: 6/10/2020 8	3:00AM		Total Hours:
Ground 21	water Depth	(Feet):	Date & Time:6/10/2	020 9:30AM	Date & Tim	ne Completed: 6/10/20	20 12:00PM		4
Coordin	ates: N2998	802 E286	290		Driller's Na	me: Mike St. John of I	New England	d Boring Contrac	ctors
Ground	Elevation (F	eet): 1132	2.0		Inspector's	Name: Nick Shaw of	CEI		
Depth	Sample	Depth	Blow Counts pe	er 6 Inches	Recovery	Field	Docorintion		Strata
(Feet)	Number	(Feet)	Coring Times Minu	utes per Foot	(inches)		Description		Changes
-	S1	0-2	10-8-7-	-5	13	Dry, medium dense,	brown, SAN	ID, some	
-						gravel			
-									
5	S2	5-7	12-11-8	8-8	19	Dry, medium dense,	brown, SAN	ID trace	
-						gravel			
-									
-									
10	S3	10-12	4-5-9-1	6	15	Dry, loose to medium	n dense, bro	wn, SAND,	
-						Some silt			
-									
-									
15	S4	15-17	21-25-20-26		14	Dry, dense, grey, SAND, trace gravel			
-									
-									
-									
20	S5	20-22	28-40-38	3-39	16	Wet, very dense, bro	wn/grey, SA	ND and	
-						GRAVEL			
-									
-									
25	S6	25-27	43-182/	/5"	12	Wet, very dense, bro	wn/grey, SA	ND and	
-						GRAVEL, augered th	nrough bould	der or rock to	
-						Take sample at 50-5	2		
-									25'
30	S7	30-35	140-162	2/3"	9	Wet, very dense, gre	ey, GRAVEL		
						Practical refusal and	end of expl	oration at 31'	31'
Remark	s: Autohamı	<u>l</u> mer used f	or both split spoon sa	ampler and	Arrow-Boa	rd: 0	Protective	Device – Stand:	Box:
driving					Signs: 2		Well Depth	n: Solid I	Pipe: n Pino:
Casing	•		Penetration Resist	tance (N) Guide	e Cones. 2		Type of Dr	ill Rig:	ii i ipe.
C Relativ	ohesionless	Soils (Sa	nds, Gravels)	Consistency	esive Soils (S	Silts, Clays)	Casing Ty	pe: HW	Size: 4in
Very	Loose	Penel	0 - 4	Very Soft	Peneu	0 - 2	Fall: 3	0in	bs
	oose		4 - 10	Soft		2 – 4	Depth	: 31ft	0
Mediu D	m Dense ense		10 – 30 30 – 50	Medium Stiff		4 – 8 8 – 15	Sampler T	ype: Split Spoor Hammer Weigh	n Size:2in nt: 140 lbs
Very	Dense		Over 50	Very Stiff		15 – 30	Safety	Hammer Weigh	nt:
		N =	- Sum of Second and	Hard	counts	Over 30	Donut	Hammer Weigh	it:
Terms I	Jsed for Sec	cond Entrv	of Descriptions: and	= 40-50%, son	ne = 10-40%.	, trace = 10% or less	Core Barre	el Type: NX Siz	ze: 2.125in

6.5. Preliminary Design Calculations

CLIENT TOWN OF CUMMINGTON PROJECT BRIDGE REPLACEMENT BRIDGE NO. C-2 I -005 (775) SUBJECT DESIGN CALCULATIONS

PAGE	1 OF 8
CALC BY	MMS
CHECK B	r_PAG
DATE_M	ARCH 2024

Soil Strength

Geotechnical Calculations

Soil Strength

C-21-005

References:

(1) AASHTO LRFD Bridge Design Manual, 9th Edition.

(2) Boring Logs, provided by CEI.

Soil Strength Calculation

$\gamma_w =$	0.062 kcf		
$\gamma_{sat} =$	0.120 kcf		
$\gamma'=$	0.058 kcf =	0.120 kcf -	0.062 kcf
$\sigma'_v = \gamma$	$v_{sat} \times h_1 + \gamma' \times h_1$	2	

(1) 10.4.6.2.4 $C_N = .77 \times \log_{10} \left(\frac{40}{\sigma' v}\right) < 2$ (1) Eq. 10.4.6.2.4-1 $N1 = C_N N$ $N_{60} = (\frac{ER}{60\%})NV$ (1) Eq. 10.4.6.2.4-2 ER = 0.80 for automatic trip hammer

(1) Eq. 10.4.6.2.4-3

Boring B-1

Water Table = 20.00 ft

 $N1_{60} = C_N N_{60}$

To Depth (ft)	h ₁ , Depth Above Water Table (ft)	h ₂ , Depth Below Water Table (ft)	σ' _v (ksf)	C _N	N blows/ft	$NI = C_N N$ blows/ft	N ₆₀ = (ER/60%)N blows/ft	N I ₆₀ = C _N N ₆₀ blows/ft
2.00	2.00	0.00	0.24	1.71	20.00	34.22	26.67	45.62
7.00	7.00	0.00	0.84	1.29	22.00	28.42	29.33	37.90
12.00	12.00	0.00	1.44	1.11	29.00	32.24	38.67	42.98
17.00	17.00	0.00	2.04	1.00	14.00	13.93	18.67	18.58
22.00	20.00	2.00	2.52	0.93	40.00	37.01	53.33	49.34
27.00	20.00	7.00	2.80	0.89	43.00	38.22	57.33	50.96
32.00	20.00	12.00	3.09	0.86	130.00	111.30	173.33	48.4

Boring B-2

Water Table = I 7.00 ft

(2)

(2)

To Depth (ft)	h ₁ , Depth Above Water Table (ft)	h ₂ , Depth Below Water Table (ft)	σ' _v (ksf)	C _N	N blows/ft	NI = C _N N blows/ft	N _{GO} = (ER/60%)N blows/ft	$N I_{60} = C_N N_{60}$ blows/ft
2.00	2.00	0.00	0.24	1.71	14.00	23.95	18.67	31.94
7.00	7.00	0.00	0.84	1.29	32.00	41.34	42.67	55.12
12.00	12.00	0.00	1.44	1.11	10.00	11.12	13.33	14.82
17.00	17.00	0.00	2.04	1.00	13.00	12.94	17.33	17.25
22.00	17.00	5.00	2.33	0.95	27.00	25.68	36.00	34.24
27.00	17.00	10.00	2.62	0.91	68.00	62.02	90.67	82.69
32.00	17.00	15.00	2.90	0.88	191.00	167.52	254.67	223.36

CLIENT TOWN OF CUMMINGTON PROJECT BRIDGE REPLACEMENT BRIDGE NO. C-2 I -005 (775) SUBJECT DESIGN CALCULATIONS

PAGE	3 OF 8
CALC BY	MMS
CHECK B	y PAG
date_M	ARCH 2024

Geotechnical Calculations

Soil Strength

C-21-005

Boring B-3

Water Table = 22.00 ft (2) N I $_{\rm GO}$ = $N_{GO} =$ h₁, Depth h₂, Depth To Depth $NI = C_NN$ σ'_{v} $C_{\rm N}$ N blows/ft $C_N N_{60}$ Above Water Below Water (ER/60%)N (ft) (ksf) blows/ft Table (ft) Table (ft) blows/ft blows/ft 2.00 2.00 0.00 0.24 1.71 15.00 25.66 20.00 34.22 7.00 0.00 0.84 1.29 12.00 15.50 7.00 9.00 11.63 12.00 12.00 0.00 1.44 1.11 12.00 13.34 16.00 17.79 17.00 17.00 0.00 2.04 1.00 45.00 44.78 60.00 59.7I 22.00 22.00 0.00 2.64 0.91 68.00 61.81 90.67 82.41 2.93 446.67 390.53 27.00 22.00 5.00 0.87 335.00 292.90 35.00 22.00 13.00 3.39 0.83 N/A N/A N/A N/A 40.00 22.00 18.00 3.68 0.80 N/A N/A N/A N/A

Boring B-4

Water Table = 21.00 ft

To Depth (ft)	h ₁ , Depth Above Water Table (ft)	h ₂ , Depth Below Water Table (ft)	σ' _v (ksf)	C _N	N blows/ft	$N I = C_N N$ blows/ft	N ₆₀ = (ER/60%)N blows/ft	$N I_{60} = C_N N_{60}$ blows/ft
2.00	2.00	0.00	0.24	1.71	15.00	25.66	20.00	34.22
7.00	7.00	0.00	0.84	1.29	19.00	24.55	25.33	32.73
12.00	12.00	0.00	1.44	1.11	14.00	15.56	18.67	20.75
17.00	17.00	0.00	2.04	1.00	45.00	44.78	60.00	59.71
22.00	21.00	1.00	2.58	0.92	78.00	71.52	104.00	95.36
27.00	21.00	6.00	2.87	0.88	182.00	160.44	242.67	213.92
32.00	21.00	11.00	3.15	0.85	140.00	118.93	186.67	158.57

(2)

CLIENT TOWN OF CUMMINGTON PROJECT BRIDGE REPLACEMENT BRIDGE NO. C-2 I -005 (775) BRIDGE NO. DESIGN CALCULATIONS

PAGE	4 OF 8
CALC BY	MMS
CHECK BY	PAG
date MA	RCH 2024

Geotechnical Calculations

Soil Strength

C-21-005

(|)

Drained Friction Angle

Table 10.4.6.2.4-1—Correlation of *SPT N*1₆₀ Values to Drained Friction Angle of Granular Soils (modified after r Bowles, 1977)

N1 ₆₀	¢ <i>f</i>
<4	25-30
4	27-32
10	30-35
30	35-40
50	38-43

Conservatively use lower values of range:					
NIG	2	φ _f			
<4		25			
4		27			
10		30			
30		35			
50		38			

	To Depth (ft)	N I _{GO}	N I _{GOlow}	N I _{GOhigh}	Ø _{flow}	Ø _{fhigh}	Øf
	2.00	36.50	30.00	50.00	35.00	38.00	35.00
	7.00	35.31	30.00	50.00	35.00	38.00	35.00
	12.00	24.09	10.00	30.00	30.00	35.00	33.00
Γ	17.00	38.81	30.00	50.00	35.00	38.00	36.00
	22.00	65.34	50.00	50.00	38.00	38.00	38.00
	27.00	184.53	50.00	50.00	38.00	38.00	38.00
Γ	32.00	176.78	50.00	50.00	38.00	38.00	38.00

Recommended Friction Angle

Depth of Footing =	20.00 ft
Average, Ø _f =	35°
Above Footing, $\phi_{f} =$	35°
Below Footing, Ø _f =	38°

CLIENT TOWN OF CUMMINGTON PROJECT BRIDGE REPLACEMENT BRIDGE NO. C-2 I -005 (775) SUBJECT DESIGN CALCULATIONS 5 OF 8CALC BY MMSCHECK BY PAGDATE MARCH 2024

Bearing Resistance

	CLIENT TOWN OF CUMMINGTON	PAGE 6 OF 8
	PROJECT BRIDGE REPLACEMENT	CALC BY MMS
	BRIDGE NO. C-2 -005 (775)	CHECK BY PAG
ENGINEERING	SUBJECT DESIGN CALCULATIONS	DATE MARCH 2024

Geotechnical Calculations

Bearing Resistance

C-21-005

References:

(1) FHWA Design and Construction Guidelines for Geosynthetic Reinforces Soil Abutment and Integrated Bridge Systems, 2018.

(2) AASHTO LRFD Manual for Bridge Design, 9th Edition.

Calculate Factored Bearing Resistance, q R

Note: Bearing Resistance Factors are dependent on the friction angle of the foundation and are taken from (1) Table 9. Bearing Resistance Factors are dimensionless.

Bearing Resistance Factor, N _c = Bearing Resistance Factor, N _{γ} = Bearing Resistance Factor, N _q =	46.10 48.00 33.30				
Effective Unit Weight of Foundation Soil, $\gamma'_{\rm f}$ =	57.60 pcf				
Effective Foundation Width, B' = B_{RSF} = Depth of Embedment, D _f = D_{RSF} =	.00 ft .33 ft				
Factored Bearing Resistance, $q_R =$.5 ksf =	0.65 x	(0.00 ksf x	46.10 +	48.00 +
		0.00 x	1.33 ft x		-0.00 1

CLIENT TOWN OF CUMMINGTON PROJECT BRIDGE REPLACEMENT BRIDGE NO. C-2 I -005 (775) SUBJECT DESIGN CALCULATIONS

PAGE	7 OF 8
CALC BY	MMS
CHECK BY _	PAG
date MA	RCH 2024

Seismic Design Response Spectrum

Geotechnical Calculations

Seismic Design

C-21-005

References:

(1) AASHTO LRFD Bridge Design Specifications 2020, 9th Edition.

Design Spectra Based on General Procedure

(1) Figure 3. 10.4.1-1

6.6. Proposed Preliminary Structure Plans

COMMONWEALTH OF MASSACHUSETTS MassDOT, Highway Division APPROVED UNDER PROVISIONS OF MASS. GEN. LAWS CH 85 S 35

DATE

BRIDGE ENGINEER