




January 15, 2025

610869-128933

#### ADDENDUM NO. 1

To Prospective Bidders and Others on:

#### **NATICK**

Pedestrian/Bike Bridge Superstructure Replacement, N-03-007, Spring Street over the MBTA

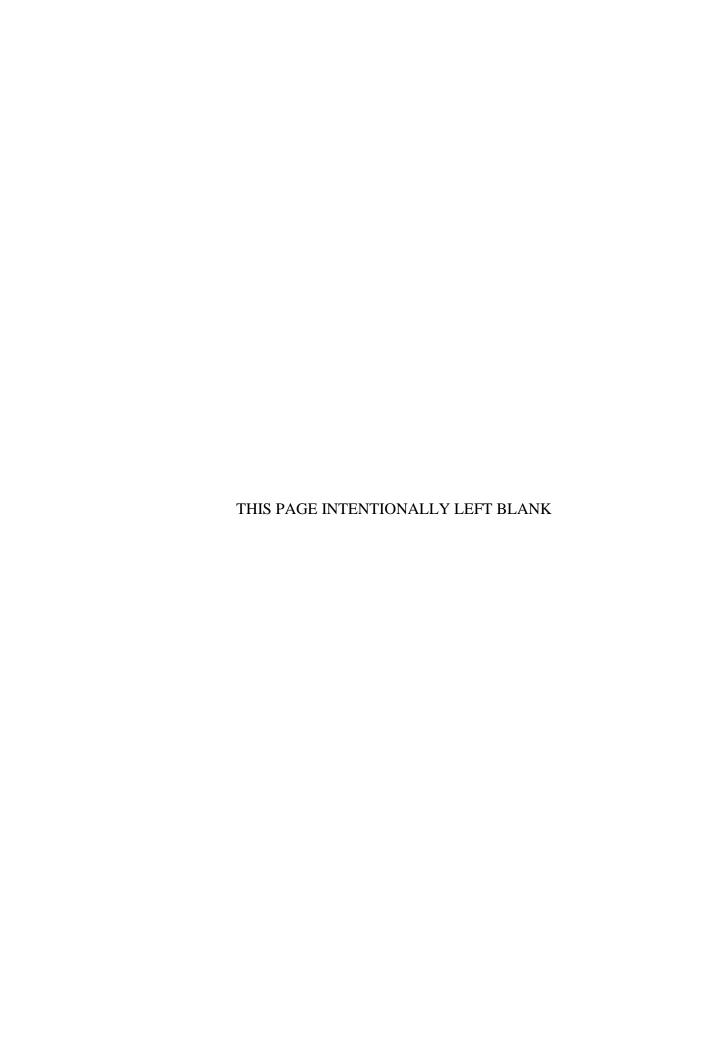
THIS PROPOSAL TO BE OPENED AND READ: WEDNESDAY, JANUARY 22, 2025 at 2:00 P.M. Transmitting revisions to the Contract Documents as follows:

QUESTIONS AND RESPONSES: One page.

DOCUMENT 00010: Revised page 2.

<u>DOCUMENT A00803:</u> Inserted new document (34 pages).

<u>DOCUMENT A00804:</u> Inserted new document (96 pages).


Take note of the above, substitute the revised page for the original, insert new documents in proper order, and acknowledge <u>Addendum No. 1</u> in your Expedite Proposal file before submitting your bid.

Very truly yours,

Eric M. Cardone, P.E. Construction Contracts Engineer

SP

cc: W Brown, Project Manager



# NATICK PEDESTRIAN/BIKE BRIDGE SUPERSTRUCTURE REPLACEMENT, N-03-007, SPRING STREET OVER THE MBTA

(610869-128933)

Questions and Responses

Addendum No. 1, January 15, 2025

#### Kinetic Demolition & Engineering, LLC, email dated, January 13, 2025

- Question 1) Are there any existing plans, inspection reports, and/or rating reports available for the existing structure?
- Response 1) There are no existing bridge plans on file. See new Documents A00803 and A00804.

#### Contech Engineered Solutions LLC, email dated, January 14, 2025

- Question 2) Considering the shallow depth requirement for the bridge from top of deck to lowest steel member, we are trying to understand our constraints as much as possible. It appears that the concrete deck thickness as measured at the centerline is 6.5" from top of deck to vertical centerline of the SIP form, please confirm. Is there are a certain SIP form corrugation pattern that this is based upon? Also it does not appear that the SIP forms are resting on the floor beams as there is additional space shown between, please confirm that this is a detailing error and it is understood that SIP's will rest on the floor beams.
- Response 2) This will be answered in a future addendum.
- Question 3) What is the weight per linear foot of the 8" steel gas main (including pipe supports)?
- Response 3) This will be answered in a future addendum.



(1) Addendum No. 1, January 15, 2025

|   |                                                                                                          | 1 Addendum No. 1, January 15, 2025 |
|---|----------------------------------------------------------------------------------------------------------|------------------------------------|
|   | TABLE OF CONTENTS (Continued)                                                                            |                                    |
|   | DOCUMENT 00860<br>COMMONWEALTH OF MASSACHUSETTS PUBLIC EMPLOYMEN                                         | VT LAWS 00860-1 through 2          |
|   | DOCUMENT 00861 STATE PREVAILING WAGE RATES                                                               |                                    |
|   | DOCUMENT A00801 SPECIAL PROVISIONS                                                                       | A00801-1 through 164               |
|   | DOCUMENT A00802 DETAIL SHEETS                                                                            | A00802-1 through 6                 |
| 1 | DOCUMENT A00803 STRUCTURES INSPECTION FIELD REPORT                                                       |                                    |
| 1 | DOCUMENT A00804 PRELIMINARY STRUCTURE REPORT APRIL 18, 2023                                              | <u> </u>                           |
|   | DOCUMENT A00808 PROJECT UTILITY COORDINATION FORM                                                        | <u> </u>                           |
|   | DOCUMENT A00809 WATERING LOG FOR MASSDOT PLANTINGS                                                       | Ç                                  |
|   | DOCUMENT A00810 MASSDOT HERBICIDE USE REPORT                                                             | Ç                                  |
|   | DOCUMENT A00811  MASSACHUSETTS BAY TRANSPORTATION AUTHORITY RAILROAD OPERATIONS DIRECTORATE              | Ç.                                 |
|   | DOCUMENT A00812  MASSACHUSETTS BAY TRANSPORTATION AUTHORITY FLAGGING REQUEST FORM                        | Ç                                  |
|   | DOCUMENT A00813  MASSACHUSETTS BAY TRANSPORTATION AUTHORITY SPECIAL INSTRUCTIONS AND CONSTRUCTION SAFETY | A00813-1 through 28                |
|   | DOCUMENT A00814  MASSACHUSETTS BAY TRANSPORTATION AUTHORITY PTC INFRASTRUCTURE CHANGE REQUIREMENTS       | A00814-1 through 64                |
|   | DOCUMENT A00815 WORK ZONE SAFETY TEMPORARY TRAFFIC CONTROL                                               | A00815-1 through 86                |
|   | DOCUMENT A00820<br>REQUEST FOR RELEASE OF MASSDOT AUTOCAD FILES FORM.                                    | A00820-1 through 2                 |
|   | DOCUMENT A00875<br>POLICY DIRECTIVE P-22-001 AND POLICY DIRECTIVE P-22-002.                              |                                    |
|   | DOCUMENT B00420<br>PROPOSAL                                                                              | B00420-1 through 16                |
|   | DOCUMENT B00842 SCHEDULE OF PARTICIPATION BY MINORITY OR WOMEN BUS ENTERPRISE (M/WBE)                    |                                    |
|   | DOCUMENT B00843 MINORITY OR WOMENS BUSINESS ENTERPRISE PARTICIPATIO LETTER OF INTENT                     |                                    |
|   | DOCUMENT B00846<br>M/WBE OR SDVOBE JOINT CHECK ARRANGEMENT APPROVAL                                      | FORMB00846-1 through 2             |
|   | DOCUMENT B00847 JOINT VENTURE AFFIDAVIT                                                                  | B00847-1 through 4                 |
|   | *** END OF DOCUMENT ***                                                                                  | •                                  |

Addendum No. 1, January 15, 2025

DOCUMENT A00803

## STRUCTURES INSPECTION FIELD REPORT

Addendum No. 1, January 15, 2025

### THIS PAGE INTENTIONALLY LEFT BLANK

## MASSACHUSETTS DEPARTMENT OF TRANSPORTATION PAGE 1 OF 6

2-DIST B.I.N. 03 29N

## STRUCTURES INSPECTION FIELD REPORT CLOSED/REHABILITATION INSPECTION

BR. DEPT. NO. N-03-007

| CITY/TOWN                          | RUCTURE NO   | 11-Kilo. POINT 90-ROU  |                                 |                 | OUTINE  | E INSP. DATE | 93*- INSPECTION DATE |                             | DATE      |                 |      |  |  |  |
|------------------------------------|--------------|------------------------|---------------------------------|-----------------|---------|--------------|----------------------|-----------------------------|-----------|-----------------|------|--|--|--|
| NATICK                             | 03007-29     | 000.241 JU             |                                 |                 | JUN '   | 1, 2020      | JUN 1, 2020          |                             | 20        |                 |      |  |  |  |
| 07-FACILITY CARRIED                | MEMORIAL     | NAME/LOCAL NAME        |                                 | 27-             | YR BUIL | T 106        | -YR REBUILT          | YR REHAB'D (                | NON I     | 106)            |      |  |  |  |
| HWY SPRING ST                      |              | DEFLUI                 | MERI DIGERON                    | IMO             |         | 1896         |                      | 0000                        | 00        | 00              |      |  |  |  |
| 06-FEATURES INTERSECTED            |              | 26-FUNCTIO             | NAL CLASS                       | DIST. BF        | RIDG    | E INSPE      | CTION                | ENGINEER N                  | 1. Azizi  |                 |      |  |  |  |
| RR MBTA/CSX                        |              | Urban L                | _ocal                           |                 |         |              |                      |                             |           |                 |      |  |  |  |
| 43-STRUCTURE TYPE                  |              | 22-OWNER<br>State High | 21-MAINTAINER way State Highway | TEAM L          | EAD     | ER D. S      | mith                 |                             |           |                 |      |  |  |  |
| 303 : Steel Girder & Floorbe       | eam          | Agency                 | Agency                          | y               |         |              |                      |                             |           |                 |      |  |  |  |
| 107-DECK TYPE                      |              | WEATHER                | TEMP. (air)                     | TEAM MEMBERS    |         |              |                      |                             |           |                 |      |  |  |  |
| 8 : Timber                         |              | Clear                  | r 14°C                          | Michael McGinty |         |              |                      |                             |           |                 |      |  |  |  |
| TTEM 50 DECV                       | 3            |                        | M 41 STRUCTUR                   | E OPE           | ZN,     | POST         | ED O                 | R CLOSE                     | D         |                 |      |  |  |  |
| ITEM 58 DECK                       | 3            | <b>┘</b> ┃ ̄ <u></u>   |                                 |                 |         |              |                      |                             |           |                 |      |  |  |  |
| ITEM 59 SUPERSTRUCTURE             | E 2          |                        | K:CLOSE                         | ED              |         |              |                      | Date : 07/09/               |           |                 | 1998 |  |  |  |
| ITEM 60 SUBSTRUCTURE               | 7            | ITIEN                  | M 36 TRAFFIC S                  | AFET            | Y       |              |                      | ТОТА                        | AL HOURS  |                 | 8    |  |  |  |
| ITEM 60 - (From U/W Repo           | rt) N        |                        |                                 | 36              |         | COND         | DEF                  | _                           | E HOORS 6 |                 |      |  |  |  |
| ( )                                | ,            | ¬ I                    | lge Railing                     | 0               | _       | 0            | -                    | PLAN                        | (Y/N)     |                 | N    |  |  |  |
| ITEM 61 CHANNEL                    | N            |                        | nsitions                        | 0               |         | 0            | -                    | _                           |           |                 |      |  |  |  |
| KEEN (1 /Frank HAM Barras          | . N          | ¬ I — · · ·            | oroach Guardrail                | 0               | -       | 0            | -                    | (V.C.I                      | R.) (Y/N) |                 | N    |  |  |  |
| ITEM 61 - (From U/W Report         | rt) N        | D. App                 | oroach Guardrail                | 0               |         | 0            | TAPE#:               |                             |           |                 |      |  |  |  |
| ITEM 62 CULVERT                    | N            | Pedest<br>(If YES      | (Y/N) Y                         |                 |         | Barrio       | ades In Pla          | ce (Y/N)                    | •         | Y               |      |  |  |  |
| ITEM 62 - (From U/W Report         | rt) N        |                        | . ,                             | (Y/N)           |         | N            | TYPE                 | YPE: <b>JERSEY BARRIERS</b> |           |                 |      |  |  |  |
| SIGNS Not Applicable               |              | <u> </u>               |                                 |                 |         |              |                      | At bridge                   | Advano    |                 |      |  |  |  |
|                                    |              |                        | Signs In Place (Y=Yes ,N=No,    |                 |         |              | N S N S Y            |                             |           |                 |      |  |  |  |
| Legend: BRIDGE CLOSED              |              |                        | NR=Not Required) Legibility/    |                 |         |              | 7 7 7                |                             |           |                 |      |  |  |  |
|                                    |              |                        |                                 |                 |         |              | Visibility 7         |                             |           |                 |      |  |  |  |
|                                    |              |                        |                                 |                 |         |              | Τ.                   |                             |           | ( <b>3</b> .7.0 | N.T. |  |  |  |
| To be filled out by District Bridg | e Inspection | <u>Engineer</u>        |                                 |                 |         |              | 4                    | CCESSIE                     |           | (Y/)<br>leeded  |      |  |  |  |
| 1) This bridge is scheduled for:   |              |                        |                                 |                 |         |              |                      | ift Bucket                  |           | N               | N    |  |  |  |
| ,                                  |              | Damain (               | ) Ramoual ( )                   | I /             |         | . ( <b>v</b> | , L                  | adder                       |           | Υ               | N    |  |  |  |
| Replacement ( ) Rehabilitation     | n ( ) 1      | xepair (               | ) Kemovai ( )                   | ) Unknown (X)   |         |              |                      | oat                         |           | N               | N    |  |  |  |
| 2) 16 - 1 - 4 - 4 - 4              |              | . n. ·                 |                                 |                 |         |              | V                    | Vader                       |           | N               | N    |  |  |  |
| 2) If under construction please    | answer the f | ollowing:              |                                 |                 |         |              | Ir                   | nspector 50                 |           | N               | N    |  |  |  |
| Contract Number:                   | (            | Completion Date:       |                                 |                 |         | F            | Rigging              |                             | N         | N               |      |  |  |  |
|                                    |              |                        |                                 |                 |         | s            | taging               |                             | N         | N               |      |  |  |  |
| Contractor:                        | nt Engineer: |                        |                                 |                 |         | T            | Traffic Control      |                             |           | N               |      |  |  |  |
| Scope of Work:                     |              |                        |                                 |                 |         |              | RR Flagger           |                             |           | N               |      |  |  |  |
| Scope of work.                     |              |                        |                                 |                 | P       | Police       |                      |                             | N         |                 |      |  |  |  |
| P. 1                               |              |                        |                                 |                 |         |              | Other:               |                             | N         | N               |      |  |  |  |
| Remarks:                           |              |                        |                                 |                 |         |              |                      |                             |           |                 |      |  |  |  |
|                                    |              |                        |                                 |                 |         |              |                      |                             |           |                 |      |  |  |  |
|                                    |              |                        |                                 |                 |         |              |                      |                             |           |                 |      |  |  |  |
|                                    |              |                        |                                 |                 |         |              |                      |                             |           |                 |      |  |  |  |
| X=UNKNOWN                          | N=NOT APE    | PLICABLE               | - H=HI                          | DDEN/           | IN      | ACCE         | SSIR                 | l F                         | R=REI     | MOV             | /ED  |  |  |  |

Addendum No. 1, January 15, 2025 PAGE 2 OF 6

 CITY/TOWN
 B.I.N.
 BR. DEPT. NO.
 8.-STRUCTURE NO.
 INSPECTION DATE

 NATICK
 29N
 N-03-007
 N03007-29N-DOT-CLP
 JUN 1, 2020

#### REMARKS

#### **BRIDGE ORIENTATION**

According to the rating report, the approaches are North and South and the elevations are East and West. This is a single span riveted plate through girder bridge with a timber deck. There are 2 girders numbered West to East with 5 floorbeams numbered South to North. There are 13 roadway stringers in each bay numbered West to East and 6 bays numbered South to North.

#### **GENERAL REMARKS**

#### **Posting**

The South "Bridge Closed" sign located at the corner of Spring St. and Middlesex Ave. is within 150 ft. from the bridge and is sufficient to act as both the *At bridge* and *Advance* signs. **See Photo 1.** There is a "Bridge Closed" sign at both the North *At bridge* and *Advance*. **See Photo 2.** 

#### Pedestrian Access

There are two concrete Jersey barriers across both bridge approaches spaced apart to allow pedestrian access to the bridge. **See Photo 3.** 

The bituminous concrete wearing surface has heavy transverse and map cracking with several bituminous patches throughout.

Pedestrian access to both timber sidewalks is blocked by a 5 ft. high chain link fence and "Danger Pedestrian Traffic Prohibited" signs at all four sidewalk ends. The Southeast sign is covered with vegetation. **See Photo 4.** 

Several sidewalk planks are missing and many planks and stringers throughout both sidewalks are heavily rotted and loose. The West sidewalk has an 11 ft. long x full width section that is missing. **See Photo 5.** 

#### Collision Damage

There is old minor collision damage to girder #1 at the floorbeam #4 connection. The gusset plate in this area is bent down and there is a minor scrape to the underside of the bottom flange/cover plate of the girder. There are minor collision scrapes to the underside of the bottom flange of girder #2. All of the above mentioned collision damage is over the North railroad track.

#### Floor Stringers

The stringers throughout all bays show heavy surface rusting and areas of minor to heavy rust flaking. **See Photo 6.** 

The seats to stringers #1, #2, #4 and #13 on floorbeam #2, #12 and #13 at floorbeam #3, and #8, #9, #12 and #13 on floorbeam #4 have areas of 100% section loss.

In bays #3 and #4 there are many stringers that have intermittent areas of 100% section loss throughout to the top and bottom flanges and isolated web locations. Stringer #2 in bay #3 has areas of 100% section loss to the web. **See Photos 7 and 8.** 

Note, the stringers in addition to resting on the seats are riveted to the floorbeams.

See Fracture Critical Inspection dated 6/01/20 for additional comments on girders and floorbeams.

#### Photo Log

Photo 1: South intersection with Middlesex Ave.

Photo 2: North approach.
Photo 3: South approach.
Photo 4: North approach.
Photo 5: West sidewalk.

Photo 6: Underside looking North.

Photo 7: Floorbeam bay #3. Photo 8: Floorbeam bay #4.

REM(2)10-16 A00803 - 4

PAGE 3 OF 6

 CITY/TOWN
 B.I.N.
 BR. DEPT. NO.
 8.-STRUCTURE NO.
 INSPECTION DATE

 NATICK
 29N
 N-03-007
 N03007-29N-DOT-CLP
 JUN 1, 2020



Photo 1: South intersection with Middlesex Ave.



Photo 2: North approach.

PAGE 4 OF 6

CITY/TOWN B.I.N. BR. DEPT. NO. 8.-STRUCTURE NO. INSPECTION DATE

NATICK 29N N-03-007 N03007-29N-DOT-CLP JUN 1, 2020



Photo 3: South approach.



Photo 4: North approach.

PAGE 5 OF 6

 CITY/TOWN
 B.I.N.
 BR. DEPT. NO.
 8.-STRUCTURE NO.
 INSPECTION DATE

 NATICK
 29N
 N-03-007
 N03007-29N-DOT-CLP
 JUN 1, 2020



Photo 5: West sidewalk.



Photo 6: Underside looking North.

PAGE 6 OF 6

 CITY/TOWN
 B.I.N.
 BR. DEPT. NO.
 8.-STRUCTURE NO.
 INSPECTION DATE

 NATICK
 29N
 N-03-007
 N03007-29N-DOT-CLP
 JUN 1, 2020



Photo 7: Floorbeam bay #3.



Photo 8: Floorbeam bay #4.

Report Date: July 14, 2021 Classification . State Information BDEPT#= N03007 Agency Br.No. (112) NBIS Bridge Length L.O. MHD Town= Natick Ν (104) Highway System B.I.N= 29N AASHTO= 032.0 (26) Functional Class -Urban Local 19 RANK= 0 H.I.= FHWA Select List= N (6/21/2017) (100) Defense Highway 0 Identification (101) Parallel Structure Ν N0300729NDOTCLP (8) Structure Number (102) Direction of Traffic -2 2-way traffic 151000000 (5) Inventory Route (103) Temporary Structure Ν 03 (2) State Highway Department District 43895 (105) Federal Lands Highways 0 017 (4) Place code (3) County Code RR MBTA/CSX (110) Designated National Network Ν (6) Features Intersected HWY SPRING ST (20) Toll -On free road 3 (7) Facility Carried .3 MI. W. OF ST-27 (9) Location (21) Maintain -State Highway Agency 01 0000.241 (11) Kilometerpoint (22) Owner -State Highway Agency 01 (12) Base Highway Network (37) Historical Significance not eligible Ν Condition 00000000000 Code (13) LRS Inventory Route & Subroute (58) Deck 3 (16) Latitude 42 DEG 17 MIN 07.22 SEC (59) Superstructure 2 00.90 SEC (17) Longitude 71 DEG 21 MIN 7 (60) Substructure (98) Border Bridge State Code Share (61) Channel & Channel Protection Ν (99) Border Bridge Structure No. (62) Culverts Ν Structure Type and Material Load Rating and Posting Code (43) Structure Type Main: Steel Code 303 H 10=M 9 (31) Design Load -1 Girder & Floorbeam Jointless bridge type: Not applicable (63) Operating Rating Method -Allowable Stress (AS) 2 (44) Structure Type Appr: 0.00 (64) Operating Rating Other Code 000 (65) Inventory Rating Method -Allowable Stress (AS) 2 (45) Number of spans in main unit 001 (66) Inventory Rating 0.00 (46) Number of approach spans 0000 O (70) Bridge Posting (107) Deck Structure Type -8 (41) Structure -Closed K Code Appraisal Code (108) Wearing Surface / Protective System: (67) Structural Evaluation 0 A) Type of wearing surface -**Bituminous** Code 6 (68) Deck Geometry 5 0 B) Type of membrane -None Code (69) Underclearances, vert. and horiz. O C) Type of deck protection -Code 0 None N (71) Waterway adequacy Age and Service (72) Approach Roadway Alignment 7 (27) Year Built 1896 (36) Traffic Safety Features 0 0 0 0 (106) Year Reconstructed 0000 (113) Scour Critical Bridges Ν (42) Type of Service: On -Highway-Ped Inspections 24 MO Under -Railroad Code 52 (90) Inspection Date 06/01/20 (91) Frequency (93) CFI DATE (92) Critical Feature Inspection: (28) Lanes: On Structure 02 00 Under structure (A) Fracture Critical Detail 24 MO A) 06/01/20 (29) Average Daily Traffic 000000 (B) Underwater Inspection 00 MOB) 00/00/00 Ν (30) Year of ADT (109) Truck ADT 00 % (C) Other Special Inspection 00 MO C) 00/00/00 Ν (19) Bypass, detour length 002 KM Geometric Data (\*) Other Inspection () Ν 00 MO \*) 00/00/00 0019.5 M (48) Length of maximum span (\*) Closed Bridge 12 MO \*) 06/09/21 (49) Structure Length 00021.0 M (\*) UW Special Inspection 00 00/00/00 N MO \*) (50) Curb or sidewalk: 01.5 M Right 01.8 M (\*) Damage Inspection MO \*) 00/00/00 Rating Loads (51) Bridge Roadway Width Curb to Curb 006.7 M Type 3S2 Report Date 00/00/00 Type 3 Type HS H20 (52) Deck Width Out to Out 010.8 M Operating 0.0 0.0 0.0 0.0 (32) Approach Roadway Width (w/shoulders) 005.5 M Inventory 0.0 0.0 0.0 0.0 (33) Bridge Median -No median Code 0 Field Posting (34) Skew DEG (35) Structure Flared 00 Ν Status CLOSED Posting Date 07/09/98 (10) Inventory Route MIN Vert Clear 99.99 M 3 Axle 5 Axle Single 2 Axle Actual (47) Inventory Route Total Horiz Clear 06.7 M Recommended (53) Min Vert Clear Over Bridge Rdwy 99.99 M Missing Signs Ν 05.38 M (54) Min Vert Underclear ref R Misc. (55) Min Lat Underclear RT ref R 06.1 M Bridge Name **DEFLUMERI DIGERONIMO** (56) Min Lat Underclear LT  $00.0\,M$ N Anti-missile fence Ν Acrow Panel N Jointless Bridge Navigation Data Freeze/Thaw N: Not Applicable (38) Navigation Control -Not applicable, no waterway Code Ν Accessibility (Needed/Used) (111) Pier Protection Code N/NLiftbucket N/N Rigging N/N Other (39) Navigation Vertical Clearance 000 0 M Staging Y/NLadder (116) Vert-lift Bridge Nav Min Vert Clear M N/NN/NTraffic Control Inspection (40) Navigation Horizontal Clearance 0000.0 M RR Flagperson N/NWader Y/NHours: 800 Police N/NInspector 50 N/N

THIS PAGE INTENTIONALLY LEFT BLANK

## MASSACHUSETTS DEPARTMENT OF TRANSPORTATION PAGE 1 OF 6

STRUCTURES INSPECTION FIELD REPORT B.I.N.

## FRACTURE CRITICAL INSPECTION

BR. DEPT. NO. N-03-007

| CITY/TOWN 8STRUCTURE |                                                                             |                                      |                                                             |                                                                                              | 1                                                         | 11-Kilo. POINT 90-ROUTINE INSP. DATE |                |               |                | Е 93а -      | 93a - F.C. INSP. DATE |              |  |  |
|----------------------|-----------------------------------------------------------------------------|--------------------------------------|-------------------------------------------------------------|----------------------------------------------------------------------------------------------|-----------------------------------------------------------|--------------------------------------|----------------|---------------|----------------|--------------|-----------------------|--------------|--|--|
| NΑ                   | TICK                                                                        |                                      |                                                             | N03007-29N-DOT-CLP 000.241                                                                   |                                                           |                                      | Jun 1, 2020    |               |                |              | Jun 1, 2020           |              |  |  |
| 07-F                 | ACILITY CARRIED                                                             |                                      |                                                             | MEMORIAL NAMI                                                                                | MEMORIAL NAME/LOCAL NAME 27-YR BUILT 106-YR REBUILT *YR F |                                      |                |               |                |              | R REHAB'D (NON 106)   |              |  |  |
| Н۷                   | VY SPRING ST                                                                |                                      |                                                             | DEFLUME                                                                                      | DEFLUMERI DIGERONIMO 1896 0000 0                          |                                      |                |               |                |              | 000                   | 0000         |  |  |
| 06-F                 | EATURES INTERSECTED                                                         |                                      |                                                             | 26-FUNCTIONAL O                                                                              | CLASS                                                     | DIST. BRIDGE IN                      | SPECTI         | ON ENG        | GINEER         | M. Az        | cizi                  |              |  |  |
| RF                   | MBTA/CSX                                                                    |                                      |                                                             | Urban Loca                                                                                   | al                                                        |                                      |                |               |                |              |                       |              |  |  |
| 43-S                 | TRUCTURE TYPE                                                               |                                      |                                                             | 22-OWNER                                                                                     | 21-MAINTAINER<br>State Highway                            | TEAM LEADER 1                        | D. Smith       | I             |                |              |                       |              |  |  |
| 30                   | 3 : Steel Girder & F                                                        | loorbe                               | am                                                          | Agency                                                                                       | Agency                                                    |                                      |                |               |                |              |                       |              |  |  |
|                      | DECK TYPE                                                                   |                                      |                                                             | WEATHER                                                                                      | TEMP. (air)                                               | TEAM MEMBER                          |                |               |                |              |                       |              |  |  |
| 8 :                  | Timber                                                                      |                                      |                                                             | Sunny                                                                                        | 14°C                                                      | M. MCGIN                             | IT             |               |                |              |                       |              |  |  |
| WF                   | CIGHT POSTING                                                               |                                      | plicable                                                    | X                                                                                            | At                                                        | oridge                               | Advan          | се            |                | ANIC         | (\//NI\               |              |  |  |
|                      | tual Posting                                                                |                                      | N Single                                                    | │ Signs In I                                                                                 |                                                           | s                                    | N              | S             |                | ANS          | (Y/N)                 | : N          |  |  |
|                      |                                                                             | 7   -                                |                                                             | Y=Yes,N<br>NR=Not F                                                                          |                                                           |                                      |                |               |                | C.R.)        | (Y/N)                 | : N          |  |  |
|                      | ecommended Posting N                                                        |                                      | N N                                                         | Legibility Visibility                                                                        | ′   /                                                     |                                      | $/\parallel$   |               |                | ,            | ( , , , ,             |              |  |  |
|                      |                                                                             | EJDMT Da                             | ite: 00/00                                                  | 0/0000                                                                                       | 2                                                         | ا ا                                  |                |               | <u> </u>       | PE#:         |                       |              |  |  |
| $\mathbf{R}^{A}$     | ATING                                                                       |                                      |                                                             | Recommo                                                                                      | end for Rating o                                          | r Rerating (Y/N                      | ۱. ا           | V             | · ·            |              | ive prior             |              |  |  |
| Ra                   | ting Report (Y/N):                                                          | Date:                                |                                                             |                                                                                              |                                                           | - recruing (1714                     | ,. <u> </u>    |               | HIGH (         | ) MEI        | DIUM (                | LOW ( )      |  |  |
|                      | Inspection data at tin                                                      | ne of exist                          | ting rating                                                 | REAS                                                                                         | SON:                                                      |                                      |                |               |                |              |                       |              |  |  |
| 1 58                 | •                                                                           | 62:                                  |                                                             | /16/1977                                                                                     |                                                           |                                      |                |               |                |              |                       |              |  |  |
| FR                   | ACTURE CRITICAL N                                                           | <i>ИЕМВЕ</i>                         | R(S):                                                       |                                                                                              |                                                           |                                      |                |               |                |              |                       |              |  |  |
|                      |                                                                             | CRACK                                | WELD'S                                                      | LOCATION OF CORF                                                                             | ROSION, SECTION LO                                        | SS (%), CRACKS,                      | COND           |               |                |              | MEMBER<br>NALYSIS     | Deficiencies |  |  |
|                      | MEMBER                                                                      | (Y/N):                               | CONDITION<br>(0-9)                                          | COLLISION DAMAG                                                                              | GE, STRESS CONCEN                                         | TRATION, ETC.                        | PREVIOUS (0-9) | PRESENT (0-9) | H-20           | 3            | 3S2                   | Denciencies  |  |  |
| Α                    | Item 59.2 -                                                                 | N                                    | NI                                                          | See remarks                                                                                  | in commen                                                 | ts section.                          | _              | 2             | 7              | 40           | 4.5                   | C A          |  |  |
|                      | Floorbeams                                                                  | N                                    | N                                                           |                                                                                              |                                                           |                                      | 2              | 2             | 7              | 10           | 15                    | S-A          |  |  |
| В                    | Item 59.4 - Girders                                                         | N                                    | N                                                           | See remarks                                                                                  | in commen                                                 | ts section.                          | 4              | 4             | 32             | 40           | 53                    | S-A          |  |  |
|                      | or Beams                                                                    | 13                                   | 13                                                          |                                                                                              |                                                           |                                      | 7              | 7             | 32             |              | 33                    | J-A          |  |  |
| С                    |                                                                             |                                      |                                                             |                                                                                              |                                                           |                                      |                |               |                |              |                       |              |  |  |
|                      |                                                                             |                                      |                                                             |                                                                                              |                                                           |                                      |                |               |                |              |                       |              |  |  |
| D                    |                                                                             |                                      |                                                             |                                                                                              |                                                           |                                      |                |               |                |              |                       |              |  |  |
|                      |                                                                             |                                      |                                                             |                                                                                              |                                                           |                                      |                |               |                |              |                       |              |  |  |
| E                    |                                                                             |                                      |                                                             |                                                                                              |                                                           |                                      |                |               |                |              |                       |              |  |  |
| L                    |                                                                             |                                      |                                                             |                                                                                              |                                                           |                                      |                |               |                |              |                       |              |  |  |
|                      | st of field tests performed                                                 | :                                    |                                                             |                                                                                              |                                                           |                                      |                |               |                |              | I-59                  | I-60         |  |  |
| <u>  N</u>           | <u>one</u>                                                                  |                                      |                                                             |                                                                                              | (Overall Previous Condi                                   |                                      |                |               |                | ndition)     |                       |              |  |  |
|                      |                                                                             |                                      |                                                             |                                                                                              | (Overs                                                    | II Current Con                       | dition)        |               |                |              | 2                     | 7            |  |  |
| L                    |                                                                             |                                      |                                                             |                                                                                              | (Overa                                                    | Current COII                         | araori)        |               |                |              |                       |              |  |  |
|                      | FICIENCY: A defect in a str                                                 |                                      | equires correct                                             | ive action.                                                                                  |                                                           |                                      |                |               |                |              |                       |              |  |  |
|                      | TEGORIES OF DEFICIENCE<br>- Minor Deficiency - Deficiencies<br>holes, Minor |                                      | or in nature, gene                                          | rally do not impact the structura                                                            | al integrity of the bridge and                            | could easily be repaired.            | Examples       | include bu    | t are not limi | ted to: Spal | led concrete,         | Minor pot    |  |  |
| s=                   | Severe/Major Deficiency - Deficiency - Deficiency                           | eficiencies which<br>of corroded reb | eer, minor scourin<br>h are more exten<br>ars. Considerable | y, ∪logged drainage, etc.<br>sive in nature and need more p<br>settlement. Considerable scou | planning and effort to repair.                            | Examples include but an              | e not limite   | d to: Mode    | rate to major  | deteriorati  | on in concret         | e, Exposed   |  |  |
| ll .                 | S= Critical Structural Defici                                               | ency _ A def                         | iciency in a struc                                          |                                                                                              |                                                           |                                      |                |               |                |              |                       |              |  |  |
|                      | 5– Critical Structural Deficien                                             | cv - A defici                        | ency in a compor                                            | ent or element of a bridge that                                                              | poses an extreme hazard o                                 | unsafe condition to the              | public, but    | does not in   | npair the stru | ctural integ | rity of the bri       | dge.         |  |  |
|                      |                                                                             | • Example                            | es include but are<br>ailing, etc.                          | not limited to: Loose concrete                                                               | nanging down over traffic o                               | pedestrians, A hole in a             | sidewalk t     | nat may ca    | use injuries   | o pedestria  | ris, Missing s        | ection of    |  |  |
| -                    | GENCY OF REPAIR:                                                            |                                      |                                                             |                                                                                              |                                                           | -                                    |                |               |                |              |                       |              |  |  |
| ll .                 |                                                                             | =                                    |                                                             | ection Engineer (DBIE) to report<br>nce Engineer or the Responsibl                           | <u>=</u>                                                  |                                      | -              | tion Report   | t].            |              |                       |              |  |  |
| ll .                 |                                                                             | -                                    |                                                             | or the Responsible Party (if not                                                             |                                                           |                                      |                |               | -              |              |                       |              |  |  |
|                      | X=UNKNOWN                                                                   |                                      | N NOT A                                                     | PPI ICABI F                                                                                  | 11-11                                                     | IDDEN/INAC                           | 2500           | DIE           |                |              | D DE                  | MOVED        |  |  |

29N

03

Addendum No. 1, January 15, 2025 PAGE 2 OF 6

 CITY/TOWN
 B.I.N.
 BR. DEPT. NO.
 8.-STRUCTURE NO.
 INSPECTION DATE

 NATICK
 29N
 N-03-007
 N03007-29N-DOT-CLP
 JUN 1, 2020

#### REMARKS

#### **BRIDGE ORIENTATION**

According to the rating report, the approaches are North and South and the elevations are East and West. This is a single span riveted plate through girder bridge with a timber deck. There are 2 girders numbered West to East with 5 floorbeams numbered South to North. There are 13 roadway stringers in each bay numbered West to East and 6 bays numbered South to North.

#### **GENERAL REMARKS**

This WAS NOT a hands on inspection. This was a visual inspection performed from the ground only due to the continued inability to get flagging services provided by CSX Railroad.

#### **ITEM 59 - SUPERSTRUCTURE**

#### Item 59.2 - Floorbeams

There is severe section loss throughout the floorbeams, up to 100%, mostly at the ends beyond the cover plates. The location of the heaviest section loss is adjacent to the built up areas. The condition of the floorbeams with the section loss is as follows:

Floorbeam #2 at the West end: The South side of the built up bottom flange has 100% section loss adjacent to the cover plate, 34 in. long x up to 3 in. wide. The angle is back to original thickness at 36 in. from the cover plate.

The bottom angle on the North side has areas of up to 100% section loss adjacent to the cover plate, 24 in. long x 4 in. wide. There is heavy pitting on top of the bottom angle from the cover plate to the end of the floorbeam. **See Photo 1.** 

Floorbeam #2 at the East end: The South side of the bottom angle has 100% section loss adjacent to the cover plate, 21 in. long x up to 1-1/2 in. wide. The angle is back to original thickness at 25 in. from the cover plate.

The bottom angle on the North side has areas of up to 100% section loss adjacent to the cover plate, 28 in. long x 3 in. wide. The angle is back to original thickness at 30 in. from the cover plate. **See Photo 2.** 

Floorbeam #3 at the West end: The South side bottom angle has 100% section loss adjacent to the cover plate, 17 in. long x 2 in. wide. The angle is back to original thickness at 20 in. from the cover plate. The North side bottom angle has areas of up to 100% section loss throughout, starting at the cover plate with some areas 3/4 in. wide. **See Photo 3.** 

Floorbeam #3 at East end: The bottom angle on the South side has 100% section loss adjacent to the cover plate, 24 in. long x 2 in. wide. The angle is back to original thickness at 20 in. from the cover plate. **See Photo 4.** 

The bottom angle on the North side has areas of up to 100% section loss adjacent to the cover plate, 12 in. long x up to 3/4 in. wide. The angle is back to original thickness at 14 in. from the cover plate.

Floorbeam #4 at West end: The bottom angle on the South side has 100% section loss adjacent to the cover plate, 10 in. long x 3/4 in. wide. The angle is back to original thickness at 15 in. from the cover plate. The bottom angle on the North side has an area of 100% section loss starting at 8 in. out from the cover plate to 18 in. x 2-1/2 in. wide. **See Photo 5.** 

A00803 - 12

Addendum No. 1, January 15, 2025 PAGE 3 OF 6

 CITY/TOWN
 B.I.N.
 BR. DEPT. NO.
 8.-STRUCTURE NO.
 INSPECTION DATE

 NATICK
 29N
 N-03-007
 N03007-29N-DOT-CLP
 JUN 1, 2020

#### REMARKS

#### Item 59.4 - Girders or Beams

Both girders have up to 50% section loss to the bottom flanges at the interior South ends at the bearings. Both girders have up to 15% section loss to the bottom flanges and the interior North ends.

The bottom flange of girder #1 has a 12 in. long x 1 in. wide area of 100% section loss at floorbeam #5.

There is an approximately 12 in. long x 2 in. wide area of 100% section loss to the bottom flange of girder #1 at floorbeam #1. **See Photo 6.** 

Both girders have moderate to heavy paint peeling and surface rusting with intermittent areas of rust pack between bottom flanges and interior web faces.

There is old minor collision damage to girder #1 at floorbeam #4. The gusset plate in this area is bent down and there is a minor scrape to the underside of the bottom flange. There are minor collision scrapes to the underside of the bottom flange of girder #2 above the North railroad tracks.

#### **Photo Log**

Photo 1: West end of floorbeam #2.
Photo 2: East end of floorbeam #2.
Photo 3: West end of floorbeam #3.
Photo 4: East end of floorbeam #3.
Photo 5: West end of floorbeam #4.
Photo 6: Girder #1 at floorbeam #1.

REM(2)10-16

PAGE 4 OF 6

CITY/TOWN B.I.N. BR. DEPT. NO. 8.-STRUCTURE NO. INSPECTION DATE

NATICK 29N N-03-007 N03007-29N-DOT-CLP JUN 1, 2020



Photo 1: West end of floorbeam #2.



Photo 2: East end of floorbeam #2.

PAGE 5 OF 6

CITY/TOWN B.I.N. BR. DEPT. NO. 8.-STRUCTURE NO. INSPECTION DATE

NATICK 29N N-03-007 N03007-29N-DOT-CLP JUN 1, 2020



Photo 3: West end of floorbeam #3.



Photo 4: East end of floorbeam #3.

PAGE 6 OF 6

CITY/TOWN B.I.N. BR. DEPT. NO. 8.-STRUCTURE NO. INSPECTION DATE

NATICK 29N N-03-007 N03007-29N-DOT-CLP JUN 1, 2020



Photo 5: West end of floorbeam #4.

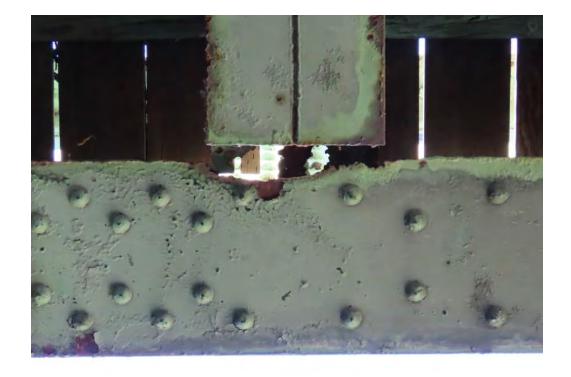



Photo 6: Girder #1 at floorbeam #1.

| State Information                                                      | ClassificationCode                                                                                                                                           |
|------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|
| BDEPT#= N03007 Agency Br.No.                                           | (112) NBIS Bridge Length Y                                                                                                                                   |
| Town= Natick L.O. MHD                                                  | (104) Highway System N                                                                                                                                       |
| <b>B.I.N= 29N</b> AASHTO= 032.0                                        | (26) Functional Class - Urban Local 19                                                                                                                       |
| RANK= 0 H.I.= 0 FHWA Select List= N (6/21/2017)                        | (100) Defense Highway 0                                                                                                                                      |
| Identification   N0300729NDOTCLP                                       | (101) Parallel Structure N                                                                                                                                   |
| (0) Structure Number                                                   | (102) Direction of Traffic - 2-way traffic 2                                                                                                                 |
| (5) Inventory Route 151000000 (2) State Highway Department District 03 | (103) Temporary Structure N                                                                                                                                  |
| (3) County Code 017 (4) Place code 43895                               | (105) Federal Lands Highways 0                                                                                                                               |
| (6) Features Intersected RR MBTA/CSX                                   |                                                                                                                                                              |
| (7) Facility Carried HWY SPRING ST                                     | , , ,                                                                                                                                                        |
| (9) Location .3 MI. W. OF ST-27                                        | (21) Maintain - State Highway Agency 01                                                                                                                      |
| (11) Kilometerpoint 0000.241                                           | (22) Owner - State Highway Agency 01                                                                                                                         |
| (12) Base Highway Network N                                            |                                                                                                                                                              |
| (13) LRS Inventory Route & Subroute 00000000000                        | ConditionCode                                                                                                                                                |
| (16) Latitude 42 DEG 17 MIN 07.22 SEC                                  | (50) D. I.                                                                                                                                                   |
| (17) Longitude 71 DEG 21 MIN 00.90 SEC                                 | (59) Superstructure 2                                                                                                                                        |
| . , ,                                                                  | (60) Substructure 7                                                                                                                                          |
| . ,                                                                    | (61) Channel & Channel Protection N                                                                                                                          |
| (99) Border Bridge Structure No. #                                     | (62) Culverts N                                                                                                                                              |
| Structure Type and Material  (42) Structure Type Mein Steel Code 202   | Load Rating and PostingCode                                                                                                                                  |
| (43) Structure Type Main: Steel Code 303                               | (31) Design Load - H 10=M 9 1                                                                                                                                |
| Girder & Floorbeam Jointless bridge type: Not applicable               | (63) Operating Rating Method - Allowable Stress (AS) 2                                                                                                       |
| (44) Structure Type Appr:                                              | (64) Operating Rating 00.0                                                                                                                                   |
| Other Code 000                                                         | (65) Inventory Rating Method - Allowable Stress (AS) 2                                                                                                       |
| (45) Number of spans in main unit 001                                  | (66) Inventory Rating 00.0                                                                                                                                   |
| (46) Number of approach spans 0000                                     | (70) Bridge Posting 0                                                                                                                                        |
| (107) Deck Structure Type - Timber Code 8                              | (41) Structure - Closed K AppraisalCode                                                                                                                      |
| (108) Wearing Surface / Protective System:                             |                                                                                                                                                              |
| A) Type of wearing surface - Bituminous Code 6                         | (67) Structural Evaluation 0 (68) Deck Geometry 5                                                                                                            |
| B) Type of membrane - None Code 0                                      | (69) Underclearances, vert. and horiz.                                                                                                                       |
| C) Type of deck protection - None Code 0                               | (71) Waterway adequacy N                                                                                                                                     |
| Age and Service                                                        | (72) Approach Roadway Alignment 7                                                                                                                            |
| (27) Year Built 1896                                                   | (36) Traffic Safety Features 0 0 0 0                                                                                                                         |
| (106) Year Reconstructed 0000                                          | (113) Scour Critical Bridges N                                                                                                                               |
| (42) Type of Service: On - Highway-Ped                                 | Inspections                                                                                                                                                  |
| Under - Railroad Code 52                                               | (90) Inspection Date 06/01/20 (91) Frequency 24 MC                                                                                                           |
| (28) Lanes: On Structure 02 Under structure 00                         | (92) Critical Feature Inspection: (93) CFI DATE                                                                                                              |
| (29) Average Daily Traffic 000000                                      | (A) Fracture Critical Detail Y 24 MO A) 06/01/20                                                                                                             |
| (30) Year of ADT 2019 (109) Truck ADT 00 %                             | (B) Underwater Inspection N 00 MO B) 00/00/00                                                                                                                |
| (19) Bypass, detour length 002 KM                                      | (C) Other Special Inspection N 00 MO C) 00/00/00                                                                                                             |
| Geometric Data                                                         | (*) Other Inspection () N 00 MO *) 00/00/00                                                                                                                  |
| (48) Length of maximum span 0019.5 M                                   | (*) Closed Bridge Y 12 MO *) 06/09/2                                                                                                                         |
| (49) Structure Length 00021.0 M                                        | (*) UW Special Inspection N 00 MO *) 00/00/00                                                                                                                |
| (50) Curb or sidewalk: Left 01.5 M Right 01.8 M                        | (*) Damage Inspection MO *) 00/00/00                                                                                                                         |
| (51) Bridge Roadway Width Curb to Curb 006.7 M                         | Rating Loads Rating Loads                                                                                                                                    |
| (52) Deck Width Out to Out 010.8 M                                     | Report Date         00/00/00         H20         Type 3         Type 3S2         Type HS           Operating         0.0         0.0         0.0         0.0 |
| (32) Approach Roadway Width (w/shoulders) 005.5 M                      | Inventory 0.0 0.0 0.0 0.0                                                                                                                                    |
| (33) Bridge Median - No median Code 0                                  | Field Posting                                                                                                                                                |
| (34) Skew 00 DEG (35) Structure Flared N                               | Status CLOSED Posting Date 07/09/98                                                                                                                          |
| (10) Inventory Route MIN Vert Clear 99.99 M                            | 2 Axle 3 Axle 5 Axle Single                                                                                                                                  |
| (47) Inventory Route Total Horiz Clear 06.7 M                          | Actual                                                                                                                                                       |
| (53) Min Vert Clear Over Bridge Rdwy 99.99 M                           | Recommended                                                                                                                                                  |
| (54) Min Vert Underclear ref R 05.38 M                                 | Missing Signs N                                                                                                                                              |
| `                                                                      | Misc                                                                                                                                                         |
| (55) Min Lat Underclear RT ref R 06.1 M                                | Bridge Name DEFLUMERI DIGERONIMO                                                                                                                             |
| (56) Min Lat Underclear LT 00.0 M  Navigation Data                     | N Anti-missile fence N Acrow Panel N Jointless Bridge                                                                                                        |
| (38) Navigation Control - Not applicable, no waterway Code N           | Freeze/Thaw N : Not Applicable                                                                                                                               |
| (111) Pier Protection Code N                                           | Accessibility (Needed/Used)                                                                                                                                  |
| , i i i j i i i i i i i i i i i i i i i                                | N. (N. 1.50) 1                                                                                                                                               |
| 30) Navigation Vertical Clearance                                      | N/N Liftbucket N/N Rigging N/N Other                                                                                                                         |
| (39) Navigation Vertical Clearance 000.0 M                             | Y/N Ladder N/N Staging                                                                                                                                       |
| (116) Vert-lift Bridge Nav Min Vert Clear                              | Y / N Ladder N / N Staging N / N Boat N / N Traffic Control                                                                                                  |
| · · · · -                                                              | Y/N Ladder N/N Staging                                                                                                                                       |

THIS PAGE INTENTIONALLY LEFT BLANK

## MASSACHUSETTS DEPARTMENT OF TRANSPORTATION PAGE 1 OF 6

2-DIST B.I.N. 29N 03

## STRUCTURES INSPECTION FIELD REPORT CLOSED/REHABILITATION INSPECTION

BR. DEPT. NO. N-03-007

|                                       |                         |              |         | TRUCTURE NO.             |            |                         |                                      |                |               |             |                 | SP. DATE           | 93*- INSPE |             |      |  |
|---------------------------------------|-------------------------|--------------|---------|--------------------------|------------|-------------------------|--------------------------------------|----------------|---------------|-------------|-----------------|--------------------|------------|-------------|------|--|
| NATICK NO                             |                         |              |         | 103007-29N-DOT-CLP       |            |                         | 000.241 Jl                           |                | JU            | JUL 9, 1998 |                 | JUN 8, 2022        |            | 22          |      |  |
| 07-FACILITY CARRIED                   |                         |              |         | MEMORIAL NAME/LOCAL NAME |            |                         |                                      | 27             | 7-YR B        | UILT        | 106-YR          | REBUILT            | YR REHAB'I | O (NON      | 106) |  |
| HWY SPRING ST                         |                         |              |         | )EFLU                    | JME        | RI DIGERON              | IIM                                  | <b>o</b>       | 189           | 96          | 0               | 000                | 0          | 000         |      |  |
| 06-FEATURES II                        | NTERSECTED              |              | 26      | -FUNCTI                  | ONAL       | CLASS                   | DIST                                 | —↓<br>Γ. BRID  | GE INS        | SPECTION    | ON ENG          | GINEER M           | . Azizi    |             |      |  |
| RR MB1                                | A/CSX                   |              | U       | Jrban                    | Loc        | al                      |                                      |                |               |             |                 |                    |            |             |      |  |
| 43-STRUCTURE                          |                         |              |         | -OWNER                   |            | 21-MAINTAINER           | TΕΔ                                  | M LEA          | DER I         | Fiiol       |                 |                    |            |             |      |  |
|                                       | el Girder & Floorb      | neam         | St      | tate Hig                 |            | State Highway           | LLI                                  | W LL           | DEK I         | . 1 ijoi    |                 |                    |            |             |      |  |
| 107-DECK TYPE                         |                         | Cuiii        | _       | gency<br>EATHER          |            | Agency                  | TEA                                  | MAG            | ADEDO         |             |                 |                    |            |             |      |  |
| 8 : Timbe                             |                         |              | W.      | Clea                     |            | TEMP. (air) <b>14°C</b> | TEAM MEMBERS  Kristen Houatchanthara |                |               |             |                 |                    |            |             |      |  |
| o . Hillibe                           |                         |              |         | TOICE                    | A I        | 14 0                    |                                      |                |               |             |                 |                    |            |             |      |  |
| ITEM 58                               | DECK                    |              | 3       | ITE                      | CM 4       | STRUCTUR                | RE C                                 | PEN            | , <b>PO</b> . | STED        | OR (            | CLOSEL             | )          |             |      |  |
| III EWI 30                            | DLCK                    |              |         |                          |            |                         |                                      |                |               | 1           |                 |                    |            |             |      |  |
| <b>ITEM 59</b>                        | SUPERSTRUCTU            | RE           | 2       |                          |            | K:CLOSE                 | ΞD                                   |                |               |             | Da              | te:                | 07/09/19   | 998         |      |  |
|                                       |                         |              |         |                          |            |                         |                                      |                |               | J           |                 | ı —                |            |             |      |  |
| ITEM 60                               | SUBSTRUCTURE            |              | 7       | ITE                      | EM 30      | 6 TRAFFICS              | SAF                                  | ETY            |               |             |                 | TOTAL              | L HOURS    |             | 8    |  |
|                                       |                         |              |         |                          |            | _                       |                                      | 36             | COND          | Г           | DEF             | IOIA               | LHOURS     |             | 0    |  |
| ITEM 60                               | - (From U/W Rep         | ort)         | N       | A. Br                    | idae F     | Railing                 |                                      | 0              | 0             | ] [         | -               | DI ANG             |            | , [         |      |  |
| IDDA-64                               | CHANNEL                 |              | N       |                          | ansitic    | -                       |                                      | 0              | 0             | 1           | _               | PLANS              | S (Y/N     | •)          | N    |  |
| IIEM 61                               | CHANNEL                 |              | IN      |                          |            | h Guardrail             |                                      | 0              | 0             | 1           | _               | (V.C.R.            | ) (Y/N     | <u>,</u>    | N    |  |
| ITFM 61                               | - (From U/W Rep         | ort)         | N       | 11                       | •          | ch Guardrail Ends       |                                      | 0              | 0             | 1           |                 | (V.C.R.) (Y/N) N   |            |             | IN   |  |
| 111271101                             | - (ITOIII O/W Kep       | Oi t)        |         | D. A                     | ргоас      | iii Guaiuiaii Eilus     |                                      |                | U             |             | TAPE#:          |                    |            |             |      |  |
| ITEM 62                               | CULVERT                 |              | N       | Pede                     | strian     | Access                  | ~//                                  | ., Г           |               | Da-         |                 | I Dl               | · OV/N     | n [         | Y    |  |
|                                       |                         |              | _       | (If YES please explain)  |            |                         | (Y/N) Y                              |                | Ваі           | rricade     | es In Plac      | e (Y/N             | 0          | T           |      |  |
| <b>ITEM 62</b>                        | - (From U/W Rep         | ort)         | N       | Road                     | lwav /     | Abandoned               | (Y/I                                 | N)             | N             | TYI         | PE: _           | JERSE'             | Y BARR     | <b>IERS</b> |      |  |
|                                       |                         |              |         |                          |            |                         |                                      | , <sub>_</sub> |               |             |                 |                    |            |             |      |  |
| SIGNS                                 | Not Applicable          |              |         |                          |            |                         | ۵.                                   |                | <b>D</b> I    | Г           | At I            | <b>bridge</b><br>S | Adva<br>N  | nce<br>S    |      |  |
| Legend:                               |                         |              |         |                          |            |                         | Signs In Place (Y=Yes ,N=No,         |                |               |             | YNR             |                    |            |             |      |  |
| Legenu.                               | BRIDGE CLOSE            | J            |         |                          |            |                         | NR=Not Required) Legibility/         |                |               |             | 7 7 7           |                    |            |             |      |  |
|                                       |                         |              |         |                          | Visibility |                         |                                      |                |               | <u> </u>    | 7 7 7           |                    |            |             |      |  |
|                                       |                         |              |         |                          |            |                         |                                      |                |               |             |                 |                    |            |             |      |  |
| To be fille                           | d out by District Brid  | ge Inspectio | n Ei    | ngineer                  | <u>-</u>   |                         |                                      |                |               |             | ACC             | ESSIBIL            | .ITY       | (Y/         | N)   |  |
| 1) This h                             | widow io oak adulad far |              |         |                          |            |                         |                                      |                |               |             | [a              |                    |            | Needed      |      |  |
| 1) I mis bi                           | ridge is scheduled for  | r;           |         |                          |            |                         |                                      |                |               |             | Lift B          |                    |            | N           | N    |  |
| Replacement                           | t ( ) Rehabilitati      | ion ()       | Rep     | pair (                   | ) 1        | Removal ( )             | Un                                   | ıknow          | n (           | <b>X</b> )  |                 |                    |            | Υ           | N    |  |
|                                       |                         |              |         |                          |            |                         |                                      |                |               |             | Boat            |                    |            | N           | N    |  |
| 2) If unde                            | r construction please   | e answer th  | e foll  | ollowing:                |            |                         |                                      |                |               |             | Wade            |                    |            | N           | N    |  |
|                                       | 1                       |              |         |                          |            |                         |                                      |                |               |             | ·               | ctor 50            |            | N           | N    |  |
| Contract Number: Amount:              |                         |              |         |                          | Compl      | etion Date:             |                                      |                |               |             | Rigging         |                    |            | N           | N    |  |
|                                       |                         |              |         |                          |            |                         |                                      |                |               |             | Stagi           |                    |            | N           | N    |  |
| Contractor: Reside                    |                         |              | ident E | Engineer:                |            |                         |                                      |                |               |             | Traffic Control |                    |            | N           | N    |  |
| Scope of Work:                        |                         |              |         |                          |            |                         |                                      |                |               |             |                 | lagger             |            | Y           | N    |  |
| • • • • • • • • • • • • • • • • • • • |                         |              |         |                          |            |                         |                                      |                |               |             | Police          |                    |            | N           | N    |  |
| <u> </u>                              |                         |              |         |                          |            |                         |                                      |                | Other         | :           |                 | N                  | N          |             |      |  |
| Remarks:                              |                         |              |         |                          |            |                         |                                      |                |               |             |                 |                    |            |             |      |  |
|                                       |                         |              |         |                          |            |                         |                                      |                |               |             |                 |                    |            |             |      |  |
|                                       |                         |              |         |                          |            |                         |                                      |                |               |             |                 |                    |            |             |      |  |
|                                       |                         |              |         |                          |            |                         |                                      |                |               |             |                 |                    |            |             |      |  |
|                                       |                         |              |         |                          |            |                         |                                      |                |               |             |                 |                    |            |             |      |  |
| X=UNKN                                | OWN                     | N=NOT A      | PPI     | ICARI                    | E          | H=HI                    | DDI                                  | =N/IN          | IACC          | ESS         | 1131 =          |                    | R=R        | EMO         | /ED  |  |

A00803 - 19

Addendum No. 1, January 15, 2025 PAGE 2 OF 6

 CITY/TOWN
 B.I.N.
 BR. DEPT. NO.
 8.-STRUCTURE NO.
 INSPECTION DATE

 NATICK
 29N
 N-03-007
 N03007-29N-DOT-CLP
 JUN 8, 2022

#### REMARKS

#### **BRIDGE ORIENTATION**

According to the rating report, the approaches are north and south and the elevations are east and west. This is a single span riveted plate through girder bridge with a timber deck. There are two girders numbered west to east with five floorbeams numbered south to north. There are thirteen roadway stringers in each bay numbered west to east and six bays numbered south to north.

#### **GENERAL REMARKS**

#### **Posting**

The south "Bridge Closed" sign located at the corner of Spring Street and Middlesex Avenue is within 150' from the bridge and is sufficient to act as both the *At bridge* and *Advance* signs. **See photo 1**.

There is a "Bridge Closed" sign at both the North At bridge and Advance. See photo 2.

#### Pedestrian Access

There are two concrete Jersey barriers across both bridge approaches spaced apart to allow pedestrian access to the bridge. **See photo 3**.

The bituminous concrete wearing surface has heavy transverse and map cracking with several bituminous patches throughout.

Pedestrian access to both timber sidewalks is blocked by a 5' high chain link fence and "Danger Pedestrian Traffic Prohibited" signs at all four sidewalk ends. The southeast sign is covered with vegetation. **See photo 3**.

Several sidewalk planks are missing and many planks and stringers throughout both sidewalks are heavily rotted and loose. **See photo 4**.

The west sidewalk has an 11' long x full width section that is missing. **See photo 5.** 

#### Collision Damage

There is old minor collision damage to girder 1 at the floorbeam 4 connection. The gusset plate in this area is bent down and there is a minor scrape to the underside of the bottom flange/cover plate of the girder. There are minor collision scrapes to the underside of the bottom flange of girder 2. All of the above mentioned collision damage is over the north railroad track.

#### Floor Stringers

The stringers throughout all bays show heavy surface rusting and areas of minor to heavy rust flaking. **See photo 6**.

The seats to stringers 1, 2, 4, and 13 on floorbeam 2, 12, and 13 at floorbeam 3, and 8, 9, 12, and 13 on floorbeam 4 have areas of 100% section loss.

In bays 3 and 4 there are many stringers that have intermittent areas of 100% section loss throughout to the top and bottom flanges and isolated web locations. Stringer 2 in bay 3 has areas of 100% section loss to the web. **See photo 7.**.

Note, the stringers in addition to resting on the seats are riveted to the floorbeams.

See Fracture Critical Inspection dated 6/08/22 for additional comments on girders and floorbeams.

#### Photo Log

Photo 1: South intersection with Middlesex Ave.

Photo 2: North approach.

Photo 3: South end.

Photo 4: West sidewalk.

Photo 5: West sidewalk, missing section.

Photo 6: Underside, looking north.

Photo 7: Floorbeam, bay #3.

REM.(2)7-96
A00803 - 20

PAGE 3 OF 6

 CITY/TOWN
 B.I.N.
 BR. DEPT. NO.
 8.-STRUCTURE NO.
 INSPECTION DATE

 NATICK
 29N
 N-03-007
 N03007-29N-DOT-CLP
 JUN 8, 2022



Photo 1: South intersection with Middlesex Ave.



Photo 2: North approach.

PAGE 4 OF 6

 CITY/TOWN
 B.I.N.
 BR. DEPT. NO.
 8.-STRUCTURE NO.
 INSPECTION DATE

 NATICK
 29N
 N-03-007
 N03007-29N-DOT-CLP
 JUN 8, 2022



Photo 3: South end.



Photo 4: West sidewalk.

PAGE 5 OF 6

 CITY/TOWN
 B.I.N.
 BR. DEPT. NO.
 8.-STRUCTURE NO.
 INSPECTION DATE

 NATICK
 29N
 N-03-007
 N03007-29N-DOT-CLP
 JUN 8, 2022



Photo 5: West sidewalk, missing section.



Photo 6: Underside, looking north.

Addendum No. 1, January 15, 2025

PAGE 6 OF 6

CITY/TOWN B.I.N. BR. DEPT. NO. 8.-STRUCTURE NO. INSPECTION DATE

NATICK 29N N-03-007 N03007-29N-DOT-CLP JUN 8, 2022



Photo 7: Floorbeam, bay #3.

Report Date: May 26, 2023

| State Inform                               | nation                              | Cla                                                    | ssificationCode              |
|--------------------------------------------|-------------------------------------|--------------------------------------------------------|------------------------------|
| BDEPT#= N03007                             | Agency Br.No.                       | (112) NBIS Bridge Length                               | Y                            |
| Town= Natick                               | L.O. MHD                            | (104) Highway System                                   | N                            |
| B.I.N= 29N                                 | AASHTO= 032.0                       | (26) Functional Class - Url                            | ban Local 19                 |
| RANK= 0 H.I.= 0 Identifica                 | FHWA Select List= N (6/21/2017)     | (100) Defense Highway                                  | 0                            |
| (8) Structure Number                       | N0300729NDOTCLP                     | (101) Parallel Structure                               | N                            |
| (5) Inventory Route                        | 151000000                           | (102) Direction of Traffic -                           | 2-way traffic 2              |
| (2) State Highway Department District      | 03                                  | (103) Temporary Structure                              | N                            |
| (3) County Code 017 (4) Place co           | ode 43895                           | (105) Federal Lands Highways                           | 0                            |
| (6) Features Intersected                   | RR MBTA/CSX                         | (110) Designated National Network                      | N                            |
| (7) Facility Carried                       | HWY SPRING ST                       | (20) Toll - On free road                               | 3                            |
| (9) Location                               | .3 MI. W. OF ST-27                  | (21) Maintain - State Highwa                           | ay Agency 01                 |
| (11) Kilometerpoint                        | 0000.241                            | (22) Owner - State Highwa                              | y Agency 01                  |
| (12) Base Highway Network                  | N                                   | (37) Historical Significance                           | not eligible N               |
| (13) LRS Inventory Route & Subroute        | 00000000000                         | C                                                      | ConditionCode                |
| (16) Latitude                              | 42 DEG 17 MIN 07.22 SEC             | (58) Deck                                              | 3                            |
| (17) Longitude                             | 71 DEG 21 MIN 00.90 SEC             | (59) Superstructure                                    | 2                            |
| (98) Border Bridge State Code              | Share %                             | (60) Substructure                                      | 7                            |
| (99) Border Bridge Structure No. #         |                                     | (61) Channel & Channel Protection                      | N                            |
| Structure Type a                           | and Material                        | (62) Culverts                                          | N<br>ting and PostingCode    |
| (43) Structure Type Main: Steel            | Code 303                            | (31) Design Load - H 10=M 9                            | 1                            |
| Girder & Floorbeam Jo                      | intless bridge type: Not applicable | · , •                                                  | vable Stress (AS)            |
| (44) Structure Type Appr:                  |                                     | (64) Operating Rating                                  | 00.0                         |
| Other                                      | Code 000                            |                                                        | vable Stress (AS) 2          |
| (45) Number of spans in main unit          | 001                                 | (66) Inventory Rating                                  | 0.00                         |
| (46) Number of approach spans              | 0000                                | (70) Bridge Posting                                    | 0                            |
| (107) Deck Structure Type - Timber         | Code 8                              | (41) Structure - Closed                                | K                            |
| (108) Wearing Surface / Protective System: |                                     | A                                                      | ppraisalCode                 |
| A) Type of wearing surface - Bitumine      | ous Code 6                          | (67) Structural Evaluation                             | 0                            |
| B) Type of membrane - None                 | Code 0                              | (68) Deck Geometry                                     | 5                            |
| C) Type of deck protection - None          | Code 0                              | (69) Underclearances, vert. and horiz.                 | 0                            |
| Age and S                                  | ervice                              | (71) Waterway adequacy (72) Approach Roadway Alignment | N<br>7                       |
| (27) Year Built                            | 1896                                | (36) Traffic Safety Features                           | 0 0 0 0                      |
| (106) Year Reconstructed                   | 0000                                | (113) Scour Critical Bridges                           | N                            |
| (42) Type of Service: On - High            | way-Ped                             | ` ,                                                    | spections                    |
| Under - Railroad                           | Code 52                             | (90) Inspection Date 07/09/98                          | (91) Frequency 24 MC         |
| (28) Lanes: On Structure 02                | Under structure 00                  | (92) Critical Feature Inspection:                      | (93) CFI DATE                |
| (29) Average Daily Traffic                 | 000000                              | (A) Fracture Critical Detail                           | y 24 MO A) 06/08/23          |
| (30) Year of ADT 2019 (109)                | Truck ADT 00 %                      | (B) Underwater Inspection                              | N 00 MOB) 00/00/00           |
| (19) Bypass, detour length                 | 002 KM                              | (C) Other Special Inspection                           | N 00 MOC) 00/00/00           |
| Geometric                                  |                                     | (*) Other Inspection ()                                | N 00 MO*) 00/00/00           |
| (48) Length of maximum span                | 0019.5 M                            | (*) Closed Bridge                                      | Y 12 MO*) 06/08/23           |
| (49) Structure Length                      | 00021.0 M                           | (*) UW Special Inspection                              | N 00 MO*) 00/00/0            |
| (50) Curb or sidewalk: Left                | 01.5 M Right 01.8 M                 | (*) Damage Inspection                                  | MO *) 00/00/00<br>ting Loads |
| (51) Bridge Roadway Width Curb to Curb     | 006.7 M                             | Report Date 00/00/00                                   | H20 Type 3 Type 3S2 Type HS  |
| (52) Deck Width Out to Out                 | 010.8 M                             | Operating                                              | 0.0 0.0 0.0 0.0              |
| (32) Approach Roadway Width (w/shoulders)  | 005.5 M                             | Inventory                                              | 0.0 0.0 0.0 0.0              |
| (33) Bridge Median - No median             | Code 0                              | Fiel                                                   | Id Posting                   |
| ` ,                                        | tructure Flared N                   | Status CLOSED                                          | Posting Date 07/09/98        |
| (10) Inventory Route MIN Vert Clear        | 99.99 M                             |                                                        | 3 Axle 5 Axle Single         |
| (47) Inventory Route Total Horiz Clear     | 06.7 M                              | Actual<br>Recommended                                  |                              |
| (53) Min Vert Clear Over Bridge Rdwy       | 99.99 M                             | Missing Signs N                                        |                              |
| (54) Min Vert Underclear ref               | R 05.38 M                           |                                                        | Misc.                        |
| (55) Min Lat Underclear RT ref             | R 06.1 M                            | Bridge Name DEFLUMERI DIGER                            | ONIMO                        |
| (56) Min Lat Underclear LT  Navigation     | 00.0 M                              | N Anti-missile fence N Acro                            | ow Panel N Jointless Bridge  |
| 38) Navigation Control - Not applicable, n |                                     | Freeze/Thaw N : Not Applicable                         |                              |
| 111) Pier Protection                       | Code N                              | # Stairs On/Adjacent 0 Stair Ov                        |                              |
| 39) Navigation Vertical Clearance          | 000.0 M                             | Accessibilit                                           | ty (Needed/Used)             |
| 116) Vert-lift Bridge Nav Min Vert Clear   | M                                   | N / N Liftbucket N / N F                               | Rigging N / N Other          |
| 40) Navigation Horizontal Clearance        | 0000.0 M                            |                                                        | Staging                      |
| .,g                                        | 3333.0 W                            |                                                        | Traffic Control Inspection   |
|                                            |                                     |                                                        | RR Flagperson Hours: 008     |
|                                            |                                     | N / N Inspector 50 N / N                               | Police                       |

THIS PAGE INTENTIONALLY LEFT BLANK

## MASSACHUSETTS DEPARTMENT OF TRANSPORTATION PAGE 1 OF 6

2-DIST B.I.N. 03 29N

## STRUCTURES INSPECTION FIELD REPORT FRACTURE CRITICAL INSPECTION

BR. DEPT. NO. N-03-007

| CITY  | /TOWN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                      | 8                                        | STRUCTURE NO.                                                    |                                     | 11-Kilo. POINT               | 90-ROU        | JTINE I     | NSP. DAT       | Е 93а - 1      | F.C. INSP.      | DATE          |      |
|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|------------------------------------------|------------------------------------------------------------------|-------------------------------------|------------------------------|---------------|-------------|----------------|----------------|-----------------|---------------|------|
| NA    | тіск                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                      |                                          | N03007-29N-I                                                     | Jι                                  | ıl 9, ′                      | 1998          | ,           | Jun 8, 2022    |                |                 |               |      |
| 07-F  | ACILITY CARRIED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      | · ·                                      | MEMORIAL NAMI                                                    | E/LOCAL NAME                        |                              |               |             |                |                | (NON 10         | 6)            |      |
| Н٧    | Y SPRING ST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                      |                                          | DEFLUME                                                          | DEFLUMERI DIGERONIMO 1896 0000 0000 |                              |               |             |                |                |                 |               |      |
| 06-FI | EATURES INTERSECTED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                      |                                          | 26-FUNCTIONAL O                                                  | CLASS                               | DIST. BRIDGE II              | NSPECTI       | ON EN       | GINEER         | M. Az          | izi             |               |      |
| RR    | MBTA/CSX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                      |                                          | Urban Loca                                                       | al                                  |                              |               |             |                |                |                 |               |      |
|       | TRUCTURE TYPE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                      |                                          | 22-OWNER<br>State Highway                                        | 21-MAINTAINER<br>State Highway      | TEAM LEADER                  | L. Fijol      |             |                |                |                 |               |      |
| 303   | 3 : Steel Girder & F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | loorbe                               | am                                       |                                                                  | Agency                              |                              |               |             |                |                |                 |               |      |
|       | DECK TYPE<br><b>Timber</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                      |                                          | weather<br>Clear                                                 | TEMP. (air) 14°C                    | TEAM MEMBER                  |               | NTH         | ΔRΔ            |                |                 |               |      |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |                                          |                                                                  |                                     |                              |               |             |                |                |                 |               |      |
| WE    | IGHT POSTING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Not Ap                               | olicable                                 | X                                                                | N                                   | bridge<br>S                  | Advan<br>N    | ice<br>S    | PI             | ANS            | (Y/N)           | : N           |      |
| Ac    | tual Posting                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | I N                                  | N N                                      | Signs In I<br>(Y=Yes,N:                                          | riace                               |                              |               |             | ╗╟═            |                | . ,             |               |      |
| Re    | commended Posting                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | I N                                  | N N                                      | NR=Not R                                                         | ' '    /                            |                              |               |             | ₹    (V        | .C.R.)         | (Y/N)           | : N           |      |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | EJDMT Da                             | nte: 00/00                               | /0000 Visibility                                                 | ·                                   |                              |               |             | <u></u>        | \PE#:          |                 |               |      |
| -     | TING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                      |                                          | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,                          |                                     |                              |               |             | If VES         | nloaso o       | ive prior       | itur          |      |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <b>5</b> . F                         |                                          | Recomme                                                          | end for Rating o                    | or Rerating (Y/N             | i): I         | N           | HIGH (         | ) MED          | •               | LOW (         | )    |
| Rai   | ing Report (Y/N):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Date:                                |                                          | <br>REAS                                                         | SON-                                |                              |               |             |                |                |                 |               |      |
|       | Inspection data at tin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                      |                                          |                                                                  |                                     |                              |               |             |                |                |                 |               |      |
| I 58  | : <b>6</b>   159: <b>7</b>   160: <b>6</b>   1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 62:                                  | Date : 11,                               | /16/1977                                                         |                                     |                              |               |             |                |                |                 |               |      |
| FR    | ACTURE CRITICAL M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | MEMBE                                | R(S):                                    |                                                                  |                                     |                              |               |             |                |                |                 |               |      |
|       | MEMBER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | CRACK                                | WELD'S<br>CONDITION                      | LOCATION OF CORR                                                 | ROSION, SECTION LO                  |                              | PREVIOUS      | PRESENT     |                | TING OF I      |                 | Deficienc     | cies |
|       | Item 59.2 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (Y/N):                               | (0-9)                                    | See remarks                                                      | in common                           | to coetion                   | (0-9)         | (0-9)       |                |                |                 |               |      |
| 1 A 1 | Floorbeams                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | N                                    | N                                        | See remarks                                                      | in commen                           | its section.                 | 2             | 2           | 7              | 10             | 15              | S-A           | ١.   |
| _     | Item 59.4 - Girders<br>or Beams                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | N                                    | N                                        | See remarks                                                      | in commen                           | ts section.                  | 4             | 4           | 32             | 40             | 53 S-A          |               |      |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |                                          |                                                                  |                                     |                              |               |             |                |                |                 |               |      |
| С     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |                                          |                                                                  |                                     |                              |               |             |                |                |                 |               |      |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |                                          |                                                                  |                                     |                              |               |             |                |                |                 |               |      |
| D     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |                                          |                                                                  |                                     |                              |               |             |                |                |                 |               |      |
| Е     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |                                          |                                                                  |                                     |                              |               |             |                |                |                 |               |      |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |                                          |                                                                  |                                     |                              |               |             |                |                |                 |               |      |
| Lis   | t of field tests performed:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                      |                                          |                                                                  |                                     |                              |               |             |                |                | I-59            | I-60          |      |
| No    | one                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                      |                                          |                                                                  | (Over                               | (Overall Previous Condition) |               |             |                |                |                 |               |      |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |                                          |                                                                  | ,                                   |                              |               |             |                |                | 2               | 7             |      |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |                                          |                                                                  | (Over                               | all Current Cor              | iaiuon)       |             |                |                |                 |               |      |
|       | FICIENCY: A defect in a str                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                      | quires correctiv                         | ve action.                                                       |                                     |                              |               |             |                |                |                 |               |      |
|       | TEGORIES OF DEFICIENCE  Minor Deficiences                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                      | r in nature, genera                      | ally do not impact the structural                                | integrity of the bridge and         | could easily be repaired.    | Examples in   | nclude but  | are not limite | ed to: Spalle  | d concrete, N   | linor pot     |      |
| IVI   | • Minor Deficiency Deficiencies Minor Deficiency Notes, Minor Severe/Major Deficiency De | corrosion of ste<br>eficiencies whic | eel, Minor scouring<br>h are more extens | g, Clogged drainage, etc.<br>ive in nature and need more pla     | anning and effort to repair.        | Examples include but are     | e not limited | to: Modera  | ate to major   | deterioration  | in concrete,    | Exposed and   |      |
|       | zara, major benefetty                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | orroded rebars,                      | Considerable settl                       | ement, Considerable scouring                                     | or undermining, Moderate            | to extensive corrosion to    | structural st | eel with me | easurable los  | ss of section  | , etc.          | ral integrity |      |
|       | S= Critical Structural Defic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                      | e bridge.<br>ency in a compone           | ent or element of a bridge triat po                              | ooses an extreme hazard o           | or unsafe condition to the   | public but d  | loes not im | pair the stru  | ctural integri | tv of the bride | ie. Examples  |      |
| C-F   | C-H= Critical Hazard Deficiency  Adeficiency in a component or element of a bridge that poses an extreme hazard or unsafe condition to the public, but does not impair the structural integrity of the bridge. Examples include but are not limited to: Loose concrete hanging down over traffic or pedestrians, A hole in a sidewalk that may cause injuries to pedestrians, Missing section of bridge railing, etc.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                      |                                          |                                                                  |                                     |                              |               |             |                |                |                 |               |      |
| UR    | GENCY OF REPAIR:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                      |                                          |                                                                  |                                     |                              |               |             |                |                |                 |               |      |
| ll .  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                                    |                                          | ction Engineer (DBIE) to report                                  |                                     |                              | -             | D           |                |                |                 |               |      |
| ll .  | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -                                    |                                          | ce Engineer or the Responsible r the Responsible Party (if not a | - ·                                 |                              |               |             |                |                |                 |               |      |
|       | K=UNKNOWN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                      | N NOT A                                  | PPLICABLE                                                        |                                     | HIDDEN/INAC                  |               |             |                |                |                 | MOVE          |      |

A00803 - 27

Addendum No. 1, January 15, 2025 PAGE 2 OF 6

 CITY/TOWN
 B.I.N.
 BR. DEPT. NO.
 8.-STRUCTURE NO.
 INSPECTION DATE

 NATICK
 29N
 N-03-007
 N03007-29N-DOT-CLP
 JUN 8, 2022

#### REMARKS

#### **BRIDGE ORIENTATION**

According to the rating report, the approaches are north and south and the elevations are east and west. This is a single span riveted plate through girder bridge with a timber deck. There are 2 girders numbered west to east with 5 floorbeams numbered south to north. There are 13 roadway stringers in each bay numbered west to east and 6 bays numbered south to north.

#### **GENERAL REMARKS**

This WAS NOT a hands on inspection. This was a visual inspection performed from the ground only due to the continued inability to get flagging services provided by CSX Railroad.

#### **ITEM 59 - SUPERSTRUCTURE**

#### Item 59.2 - Floorbeams

There is severe section loss throughout the floorbeams, up to 100%, mostly at the ends beyond the cover plates. The location of the heaviest section loss is adjacent to the built up areas. The condition of the floorbeams with the section loss is as follows:

#### Floorbeam #2:

#### West end:

The south side of the built up bottom flange has 100% section loss adjacent to the cover plate, 34" long x up to 3" wide. The angle is back to original thickness at 36" from the cover plate.

The bottom angle on the north side has areas of up to 100% section loss adjacent to the cover plate, 24" long x 4" wide. There is heavy pitting on top of the bottom angle from the cover plate to the end of the floorbeam. **See photo 1.** 

#### East end:

The south side of the bottom angle has 100% section loss adjacent to the cover plate, 21" long x up to 1-1/2" wide. The angle is back to original thickness at 25" from the cover plate.

The bottom angle on the north side has areas of up to 100% section loss adjacent to the cover plate, 28" long x 3" wide. The angle is back to original thickness at 30" from the cover plate. **See photo 2.** 

#### Floorbeam #3:

#### West end:

The south side bottom angle has 100% section loss adjacent to the cover plate, 17" long x 2" wide. The angle is back to original thickness at 20" from the cover plate.

The north side bottom angle has areas of up to 100% section loss throughout, starting at the cover plate with some areas 3/4" wide. **See photo 3.** 

#### East end:

The bottom angle on the south side has 100% section loss adjacent to the cover plate, 24" long x 2" wide. The angle is back to original thickness at 20" from the cover plate. **See photo 4.** 

The bottom angle on the north side has areas of up to 100% section loss adjacent to the cover plate, 12" long x up to 3/4" wide. The angle is back to original thickness at 14" from the cover plate.

#### Floorbeam #4:

#### West end:

The bottom angle on the south side has 100% section loss adjacent to the cover plate, 10" long x 3/4" wide. The angle is back to original thickness at 15" from the cover plate.

REM.(2)7-96 A00803 - 28 Proposal No. 610869-128933

Addendum No. 1, January 15, 2025 PAGE 3 OF 6

| CITY/TOWN | B.I.N. | BR. DEPT. NO. | 8STRUCTURE NO.     | INSPECTION DATE |
|-----------|--------|---------------|--------------------|-----------------|
| NATICK    | 29N    | N-03-007      | N03007-29N-DOT-CLP | JUN 8, 2022     |

#### REMARKS

The bottom angle on the north side has an area of 100% section loss starting at 8" out from the cover plate to 18 " x 2-1/2" wide. **See photo 5.** 

#### Item 59.4 - Girders or Beams

Both girders have up to 50% section loss to the bottom flanges at the interior south ends at the bearings. Both girders have up to 15% section loss to the bottom flanges and the interior north ends.

The bottom flange of girder #1 has a 12" long x 1" wide area of 100% section loss at floorbeam #5.

There is an approximately 12" long x 2" wide area of 100% section loss to the bottom flange of girder #1 at floorbeam #1. **See photo 6.** 

Both girders have moderate to heavy paint peeling and surface rusting with intermittent areas of rust pack between bottom flanges and interior web faces.

There is old minor collision damage to girder #1 at floorbeam #4. The gusset plate in this area is bent down and there is a minor scrape to the underside of the bottom flange. There are minor collision scrapes to the underside of the bottom flange of girder #2 above the north railroad tracks.

#### **Photo Log**

Photo 1: West end of floor beam #2.
Photo 2: East end of floorbeam #2.
Photo 3: West end of floorbeam #3.
Photo 4: East end of floorbeam #3.
Photo 5: West end of floorbeam #4.
Photo 6: Girder #1 at floorbeam #1.

REM.(2)7-96

PAGE 4 OF 6

 CITY/TOWN
 B.I.N.
 BR. DEPT. NO.
 8.-STRUCTURE NO.
 INSPECTION DATE

 NATICK
 29N
 N-03-007
 N03007-29N-DOT-CLP
 JUN 8, 2022



Photo 1: West end of floor beam #2.



Photo 2: East end of floorbeam #2.

PAGE 5 OF 6

 CITY/TOWN
 B.I.N.
 BR. DEPT. NO.
 8.-STRUCTURE NO.
 INSPECTION DATE

 NATICK
 29N
 N-03-007
 N03007-29N-DOT-CLP
 JUN 8, 2022



Photo 3: West end of floorbeam #3.



Photo 4: East end of floorbeam #3.

PAGE 6 OF 6

CITY/TOWN B.I.N. BR. DEPT. NO. 8.-STRUCTURE NO. INSPECTION DATE

NATICK 29N N-03-007 N03007-29N-DOT-CLP JUN 8, 2022




Photo 5: West end of floorbeam #4.



Photo 6: Girder #1 at floorbeam #1.

Classification . State Information BDEPT#= Agency Br.No. N03007 (112) NBIS Bridge Length L.O. MHD Ν Town= Natick (104) Highway System B.I.N= 29N AASHTO= 032.0 (26) Functional Class -Urban Local 19 RANK= 0 FHWA Select List= N (6/21/2017) (100) Defense Highway n Identification (101) Parallel Structure Ν N0300729NDOTCLP (8) Structure Number (102) Direction of Traffic -2 151000000 2-way traffic (5) Inventory Route Ν (103) Temporary Structure 03 (2) State Highway Department District 017 (4) Place code 43895 (105) Federal Lands Highways (3) County Code Ν MBTA/CSX (110) Designated National Network (6) Features Intersected HWY SPRING ST (20) Toll -(7) Facility Carried On free road 3 .3 MI. W. OF ST-27 (21) Maintain -State Highway Agency (9) Location 01 State Highway Agency (11) Kilometerpoint 0000.241 (22) Owner -01 (12) Base Highway Network (37) Historical Significance not eligible Ν Condition Code (13) LRS Inventory Route & Subroute 00000000000 (58) Deck 3 07.22 SEC (16) Latitude 42 DEG 17 MIN (59) Superstructure 2 71 DEG 21 MIN 00.90 SEC (17) Longitude (60) Substructure 7 (98) Border Bridge State Code Share (61) Channel & Channel Protection Ν (99) Border Bridge Structure No. (62) Culverts Ν Structure Type and Material Load Rating and Posting \_ Code (43) Structure Type Main: Steel Code 303 (31) Design Load -H 10=M 9 1 Girder & Floorbeam Jointless bridge type: Not applicable (63) Operating Rating Method -Allowable Stress (AS) 2 (44) Structure Type Appr: (64) Operating Rating 00.0 Other Code იიი (65) Inventory Rating Method -Allowable Stress (AS) 2 (45) Number of spans in main unit 001 (66) Inventory Rating 0.00 (46) Number of approach spans 0000 (70) Bridge Posting 0 (107) Deck Structure Type -8 (41) Structure -Closed K Code Appraisal Code (108) Wearing Surface / Protective System: (67) Structural Evaluation 0 A) Type of wearing surface -Bituminous Code (68) Deck Geometry 5 B) Type of membrane -None Code 0 (69) Underclearances, vert. and horiz. 0 C) Type of deck protection -Code 0 None (71) Waterway adequacy N Age and Service (72) Approach Roadway Alignment 7 (27) Year Built 1896 (36) Traffic Safety Features 0 0 0 0 (106) Year Reconstructed 0000 (113) Scour Critical Bridges Ν (42) Type of Service: On -Highway-Ped Inspections 07/09/98 24 MO Under -Railroad 52 (90) Inspection Date (91) Frequency Code (93) CFI DATE (92) Critical Feature Inspection: (28) Lanes: On Structure 02 იი Under structure (A) Fracture Critical Detail 24 MO A) 06/08/22 (29) Average Daily Traffic 000000 00/00/00 (B) Underwater Inspection 00 MOB) (30) Year of ADT (109) Truck ADT 00 % N (C) Other Special Inspection 00 MO C) 00/00/00 002 KM (19) Bypass, detour length Geometric Data (\*) Other Inspection () 00 MO \*) 00/00/00 N (48) Length of maximum span 0019 5 M (\*) Closed Bridge 12 MO \*) 06/08/22 (49) Structure Length 00021.0 M 00/00/00 (\*) UW Special Inspection 00 MO \*) N (50) Curb or sidewalk: 01.5 M Right 01.8 M (\*) Damage Inspection MO \*) 00/00/00 Rating Loads (51) Bridge Roadway Width Curb to Curb 006.7 M Type 3S2 Report Date 00/00/00 Type 3 Type HS H20 (52) Deck Width Out to Out 010.8 M Operating 0.0 0.0 0.0 0.0 (32) Approach Roadway Width (w/shoulders) 005.5 M Inventory 0.0 0.0 0.0 0.0 (33) Bridge Median -No median Code Field Posting (34) Skew DEG (35) Structure Flared 00 Ν Status CLOSED Posting Date 07/09/98 99.99 M (10) Inventory Route MIN Vert Clear 5 Axle Single 2 Axle 3 Axle (47) Inventory Route Total Horiz Clear Actual  $06.7 \, M$ Recommended (53) Min Vert Clear Over Bridge Rdwy 99.99 M Missing Signs Ν 05.38 M (54) Min Vert Underclear ref R Misc. (55) Min Lat Underclear RT ref R 06.1 M Bridge Name **DEFLUMERI DIGERONIMO** (56) Min Lat Underclear LT  $00.0\,M$ N Anti-missile fence N Acrow Panel N Jointless Bridge Navigation Data Freeze/Thaw N: Not Applicable (38) Navigation Control -Not applicable, no waterway Code Ν # Stairs On/Adiacent Stair Owner(s) (111) Pier Protection Code Accessibility (Needed/Used) (39) Navigation Vertical Clearance 000 0 M N/N Other N / N Liftbucket N/NRigging (116) Vert-lift Bridge Nav Min Vert Clear M Y / N Ladder Staging (40) Navigation Horizontal Clearance 0000.0 M N/NBoat Traffic Control Inspection N/NWader RR Flagperson Y/NHours: 008 N/NInspector 50 N / N Police

THIS PAGE INTENTIONALLY LEFT BLANK

Addendum No. 1, January 15, 2025

DOCUMENT A00804

## PRELIMINARY STRUCTURE REPORT April 18, 2023

Addendum No. 1, January 15, 2025

### THIS PAGE INTENTIONALLY LEFT BLANK

**April 18, 2023** 

## PRELIMINARY STRUCTURE REPORT

Town of Natick
Spring Street
over MBTA/CSX
Bridge No. N-03-007 (29N)











## Submitted to:



## Submitted by:



WSP USA, Inc. 100 North Parkway, Suite 110 Worcester, MA 01605 Tel: 508.248.1970 Web Site: www.wsp.com

### **TABLE OF CONTENTS**

| LOCATION MAP                    | PAGE<br>ii |
|---------------------------------|------------|
| EXECUTIVE SUMMARY               | 1          |
| EXISTING BRIDGE DESCRIPTION     | 1          |
| CURRENT CONDITION ASSESSMENT    | 2          |
| STRUCTURAL ANALYSIS/EVALUATION  | 6          |
| CONCLUSIONS AND RECOMMENDATIONS | 8          |
| ESTIMATED CONSTRUCTION COST     | 9          |

#### FIGURES:

Figure 1 – North and South Abutment Cross-Sections

#### **APPENDICES:**

Appendix A – Inspection Reports

Appendix B – General Photos and Existing Abutment Condition Photos

Appendix C – Preliminary Construction Cost Summaries

Appendix D – 2002 Geotechnical Report

Appendix E – Abutment Analysis



#### **EXECUTIVE SUMMARY:**

WSP evaluated the subject bridge to develop recommendations for the extent of rehabilitation or replacement required for the existing structurally deficient structure. The evaluation included reviewing the current 2022 inspection reports, an additional field evaluation performed by WSP in November 2022, reviewing the 2002 Geotechnical Report and performing preliminary stability analysis of the abutments.

The recommended approach for the proposed structure, which will carry pedestrian and bicycle traffic only, is to remove and replace the existing single-span superstructure and rehabilitate and reuse the existing abutments.

Given the condition of the existing timber deck and girder-floorbeam-stringer superstructure, which has been closed to vehicular traffic since 1998, repair or rehabilitation is not deemed practical or cost effective to provide a structure with a 75-year service life. Therefore, it is recommended that the superstructure be entirely replaced. The focus of this report is evaluating whether the existing abutments are suitable for reuse in support of a new pedestrian/bicycle bridge.

#### **EXISTING BRIDGE DESCRIPTION**

The existing bridge is a single span and carries Spring Street over two (2) MBTA/CSX railroad tracks in the Town of Natick. The superstructure is a through girder bridge consisting of two (2) built-up steel through girders, five (5) built-up steel floorbeams, nineteen (19) rolled steel stringers (including sidewalk stringers) and a timber deck with asphalt overlay. The bridge was constructed in 1896 and has been closed to vehicular traffic since 1998. There are concrete barricades with an opening at either end of the bridge and the timber sidewalks are blocked by a combination of barrier and chain link fencing. During the field visit, it was observed that pedestrians are still regularly crossing the bridge.

The North and South abutments are composed of granite stone masonry blocks, which are believed to rest directly on bedrock. The South abutment wingwalls are parallel with the abutment stem and the North abutment wingwalls are splayed.

The Spring Street alignment is skewed from the intersection with Middlesex Avenue South of the bridge and runs along a tangent over the bridge through the North approach. At the North approach, the alignment curves in the Northwesterly direction and extends in a tangent line to the intersection of Cochituate Street. The profile over the bridge is approximately a crest vertical curve with a gradual slope on the North approach and a steep grade of approximately 8.0% on the South approach. There is no discernable bridge skew.

The span length is 64'-7" and the overall out-to-out width of the structure is 35'-6"±. The curb-to-curb width of the structure is 21'-10"±. Along each side of the roadway, there is a 5'-6"± wide timber sidewalk.

There is a 10" diameter water main along the inside of the East through girder on top of the sidewalk and an 8" diameter gas main along the top of the West through girder (see Photos #7 and #8, respectively of the General Photos in Appendix B). There are overhead electric and telecommunication lines over the West side of the bridge that continue along both approaches. There is a low-voltage power line parallel to the tracks under the bridge near the North abutment. Along the front of the South abutment, there is a partially buried and deteriorated pipe, with large rust holes. This pipe will be investigated for future submissions.

#### **CURRENT CONDITION ASSESSMENT**

The most recent inspections of the bridge are a closed/rehabilitation inspection and a fracture critical inspection, both conducted by MassDOT in June 2022. These inspections were visual inspections only, performed from the ground, due to access issues with CSX. In November 2022, WSP personnel completed a visual and hands-on inspection of the existing abutments being evaluated for reuse. In November 2001, a subsurface exploration program was performed by Zoino-Hebert, Inc. at each of the abutments under the guidance of WSP personnel to assist in determining the geometry of the existing abutments in addition to the subsurface soil conditions.

Sketches of the existing abutment sections are included in the figures and the 2022 inspection reports are included in the appendices of this report. Select photos from the WSP field visit are included within this condition assessment narrative and additional photos are provided in Appendix B.

### <u>Deck ITEM 58 (NBIS Condition Rating – 3 (Serious))</u>

#### **Deck Condition:**

From the most recent closed/rehabilitation inspection report, the deck condition is classified as serious. The top of the timber deck between the sidewalks is obscured by pavement, which has significant cracking throughout. The undersides of the planks typically show significant rotting. The sidewalks have numerous loose or missing planks and access to both sidewalks is prevented by chain link fencing.

#### <u>Superstructure ITEM 59 (NBIS Condition Rating – 2 (Critical))</u>



View of the underside of the bridge.



East elevation of the bridge.

### **Steel Through Girders:**

The steel through girders are in poor condition. There is typically moderate to heavy paint peeling and surface rusting with intermittent areas of pact rust between the bottom flange angles and interior web faces. Both girders have up to 50% section loss to the interior half of the bottom flange near the South bearing and up to 15% section loss to the interior half of the bottom flange near the North bearing.

The bottom flange of Girder 1 has a 12" long x 2" wide area of 100% section loss at Floorbeam 1. At Floorbeam 4, there is minor collision damage and the gusset plate is bent down and there is a minor scrape to the bottom flange. The underside of the bottom flange of Girder #2 has minor collision scrapes above the North railroad track.

#### **Steel Floorbeams:**

The steel floorbeams are in critical condition with areas of severe section loss throughout, but particularly beyond the ends of the bottom flange cover plates.

There are five floorbeams and the 2022 fracture critical inspection report lists section losses for floorbeams 2, 3 and 4 as follows:

Floorbeam 2: The bottom flange near the West end of the cover plate has areas of 100% section loss measuring 34" long x up to 3" wide at the South leg and 24" long x 4" wide at the North leg. At the East end of the cover plate, the bottom flange has areas of up to 100% section loss measuring 21" long x up to 1.5" wide at the South leg and 28" long x 3" wide at the North leg.

Floorbeam 3: The bottom flange beyond the West end of the cover plate has areas of up to 100% section loss x up to 0.75" wide at the North leg and the South leg has an area of 100% section loss measuring 17" long x 2" wide. The bottom flange near the East end of the cover plate has areas of 100% section loss measuring 24" long x 2" wide at the South leg and 12" long x 0.75" wide at the North leg.

Floorbeam 4: The bottom flange near the West end of the cover plate has areas of 100% section loss measuring 10" long x 3/4" wide at the South leg and 18" long x 2-1/2" wide at the North leg.

## **Steel Stringers:**

The steel stringers are in critical condition and typically show heavy surface rusting and areas of minor to heavy rust flaking. In Bays 3 and 4, there are numerous full depth holes to the top and bottom flanges and to the web in isolated locations. The stringer seat connections at floor beams 2, 3 and 4 have scattered areas of full depth loss.



Typical condition of the stringers, showing significant section loss to the bottom flanges.

#### <u>Substructure ITEM 60 (NBIS Condition Rating – 7 (Good))</u>

#### **Abutments:**

The condition of both abutments is listed as good per the most recent 2022 inspections. There are no deficiencies noted for the abutments in the current inspection report. From the recent field visit, the stone masonry shows no significant signs of deterioration. There are scattered areas of missing or deteriorated mortar, some with moss growth. No cracked stones were observed and there are no visible signs of settlement or misalignment. There is a short granite block retaining wall in front of the North Abutment. At the time of the WSP field visit, there was water trapped between the abutment and the wall that was roughly 1' deep (see Photo #3 of the Condition Photos in Appendix B). Along the front of the South Abutment, there is a partially buried and deteriorated pipe, with large rust holes (see Photo #4 of the Condition Photos in Appendix B). This pipe will be investigated for future submissions.



South Abutment, showing general condition of the abutment and wingwalls.



North Abutment, showing general condition of the abutment.



Typical condition of the North Abutment Wingwalls.



Typical example of area of deteriorated or missing mortar (South Abutment, near bridge seat, shown).

#### STRUCTURAL ANALYSIS/EVALUATION

#### Seismic Criteria:

Based upon the boring information and the provisions outlined in the MassDOT LRFD Bridge Manual and the AASHTO Guide Specifications for LRFD Seismic Bridge Design, the bridge is classified as SDC A (see Appendix D for the 2002 Geotechnical Report and the abutment sketches under the Figures, which compile information on the soil properties and bedrock depth from the Geotechnical Report). Per the MassDOT manual, for single-span conventional bridges classified as SDC A, the abutments themselves do not need to be designed for seismic forces, nor does the inertial mass of the abutment itself or the seismic soil force need to be considered in design. However, connections between the superstructure and substructure do need to be designed in accordance with Article 4.6 of the AASHTO Guide Specifications for LRFD Seismic Bridge Design. In addition, minimum support lengths (i.e. bridge seat widths) need to be checked to ensure compliance with Article 4.12. In addition, the connection of the proposed cap to the existing masonry abutments will be designed to handle the seismic load. The following Seismic Design Parameters were determined in support of the design requirements stated above.

- Design Return Period = 1000 years (conventional structure, non-essential)
- Site Class = B
  - Site Class B was determined due to the abutments being founded on bedrock. Additionally, the soils located above the footings are not anticipated to have significant influence on the dynamic response of the structure.
- Seismic Design Category = SDC A
- As = 0.070
- Horizontal Design Connection Force = 25% x Tributary Dead Load (As > 0.05)
- Minimum Support Lengths = 12"± for both abutments

#### **Capacity of Existing Steel Superstructure:**

The existing superstructure was designed for unknown loading. As stated previously, the bridge was closed in 1998 due to advanced deterioration. MassDOT recommended that the superstructure be removed per the Scope of Work provided to WSP. Given the age and level of deterioration of the superstructure, rehabilitation of the superstructure is not believed to be practical.

#### **Capacity of Existing Abutments:**

#### Subsurface Exploration:

No plans were located which give dimensions of the substructure. The geometries of the existing stone masonry abutments were determined based on field measurements of the exposed portions of the abutments and a subsurface investigation program performed in November 2001. The 2002 Geotechnical Report is included in Appendix D and the abutment sketches under the Figures, compile information on the assumed abutment geometry, soil properties and bedrock depth. The subsurface investigation included a line of eight (8) probes running perpendicular to the back of each abutment to establish the

approximate abutment geometry. One (1) boring was performed at each abutment to confirm the bedrock elevation. At both abutments, the first probe (approximately 2' from the back of the backwall) hit what is believed to be the top of abutment and the second probe (2' from probe 1) hit an obstruction at a much lower elevation (either the back of the abutment or bedrock). The remaining probes consistently hit obstructions around midheight of the abutment walls. The borings at both abutments also took 10' cores starting near the same elevation. The abutments appear to have a very slender shape and it is assumed that they rest directly on bedrock. Based on the first two probes, the 2002 Geotechnical Report estimated that the abutment width is at least 1.9 meters =  $6'-2^{3}/4$ ", and this width was assumed in the stability calculations in the Geotechnical Report as well as in the current report.

#### Stability Analysis:

The 2002 Geotechnical Report analyzed the existing abutments for a superstructure replacement project that was ultimately cancelled. The proposed plan was to re-use the existing abutments for a single-span composite steel beam bridge designed to support two lanes of vehicular traffic. The North abutment was determined to control, by inspection, since it was assumed to be slightly taller. It appears that the analysis was per the AASHTO Standard Specifications for Highway Bridges. The report determined the following factors of safety for stability:

2002 Geotechnical Report abutment analysis results (for a vehicular bridge project that was ultimately canceled):

|             | Factor of | Required Factor |
|-------------|-----------|-----------------|
|             | Safety    | of Safety       |
| Overturning | 2.35      | 2.00            |
| Sliding     | 3.76      | 1.50            |
| Bearing     | 3.84      |                 |

For this report, stability was investigated per the AASHTO LRFD Guide Specifications for the Design of Pedestrian Bridges. The abutments were evaluated for 90 psf pedestrian load and an H10 vehicle. It was agreed upon with MassDOT that the bridge will have a clear path width of 10 feet. Per AASHTO, path widths up to and including 10 feet require a design load of at least H5. Since pedestrian load still controls, the abutments were checked for H10 load. The abutment width, backfill friction angle, approximate abutment height and bedrock bearing resistance were taken per the 2002 Geotech Report. Per MassDOT's LRFD Bridge Manual, Part I, Section 3, all cantilever and gravity abutments founded on rock shall assume at-rest soil pressure. However, in agreement with the 2002 Geotech Report, active earth pressure was assumed for this abutment analysis (which results in a lower, less conservative, overturning soil pressure compared to at-rest). Given the very slender assumed abutment geometry and the likely more flexible nature of stacked granite blocks compared to reinforced concrete, it is assumed that the abutments rotate and deflect sufficiently to cause active earth pressure. Also, it is likely that there is a leveling pad between the abutment blocks and bedrock that would further allow for

abutment rotation. Conservatively, no passive restraint was assumed for the fill in front of the abutments.

The abutments have been in place for over 120 years, and there are no signs of structural distress or movement. From a more analytical perspective, both abutments were determined to meet AASHTO LRFD requirements for stability, including bearing, sliding and eccentricity/overturning (See Appendix E). Given the unusually slender abutment geometry, an approach slab was required at both abutments, to remove live load surcharge, to satisfy stability requirements. The stability analysis results are as follows:

Current Analysis, Based on Proposed Design (not including Construction Case):

|             | $R_r/R_u$ |                                   |
|-------------|-----------|-----------------------------------|
| Overturning | 1.27      | Eccentricity Limit/Eccentricity   |
| Sliding     | 3.16      | Factored Resistance/Factored Load |
| Bearing     | 1.62      | Factored Resistance/Factored Load |

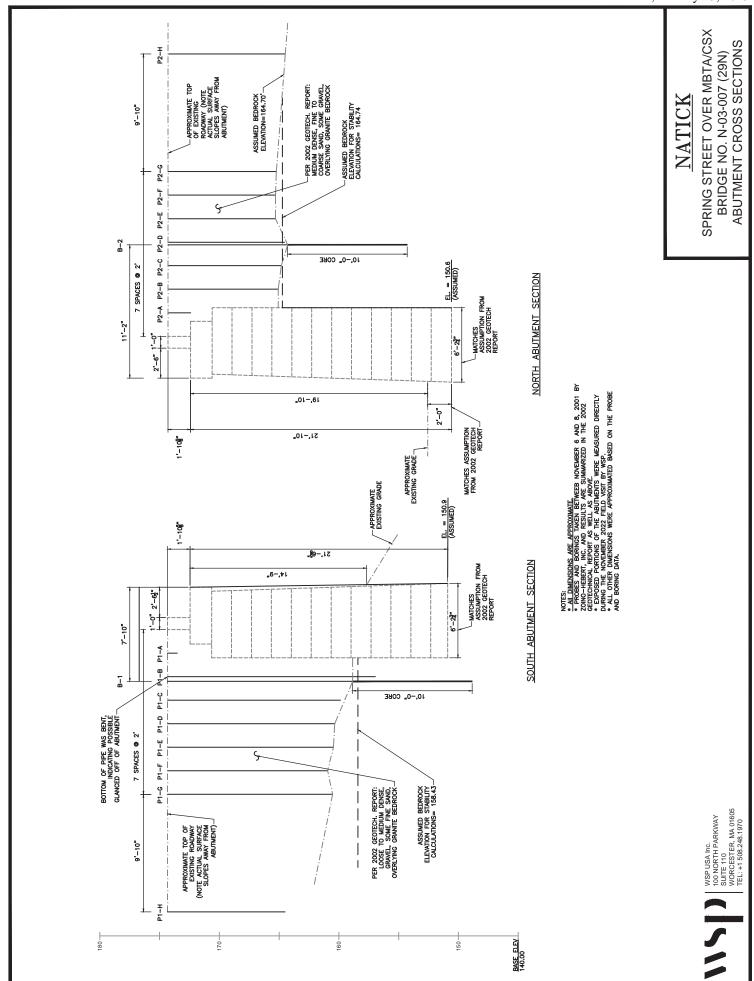
#### **CONCLUSIONS and RECOMMENDATIONS:**

WSP's recommendations for the Final Design Scope of Work for this bridge are as follows:

- 1. There is significant deterioration to the timber deck and the steel stringers, floor beams and through-girders. It is recommended to replace the entire single span superstructure with a single span prefabricated steel truss.
- 2. An added benefit of superstructure replacement is that the current vertical clearance can potentially be increased.
- 3. The existing abutments are generally in good condition. They meet AASHTO stability requirements when evaluated for the proposed design loads. It is recommended to retain the existing abutments and rehabilitate them as necessary to accommodate the proposed prefabricated bridge superstructure. Given the proximity of the existing abutments to the railroad tracks, reusing the abutments is highly advantageous given it minimizes track interference. Replacing any larger portions of the existing substructure would drastically change the scope of the project. Considering the limited bridge footprint, the constraints of the MBTA tracks and that the proposed bridge will be open exclusively to pedestrians, complete replacement of the substructure should be avoided to the extent practical.

#### **ESTIMATED CONSTRUCTION COST:**

The table below provides preliminary construction cost estimates for the proposed steel superstructure replacement alternative and includes a 35% contingency. A cost is provided for a superstructure replacement as well as a full replacement of both the superstructure and substructure. The estimated costs also include the highway work associated with reconstructing the bridge approaches. See Appendix C for a detailed breakdown of the estimated bridge construction costs.


As stated previously, the recommended scope of work is to replace the existing bridge superstructure and retain/rehabilitate the existing substructure to the greatest extent possible.

|                                         | Superstructure Replacement,<br>Substructure Rehabilitation,<br>& Highway Work | Full Replacement of<br>Superstructure and<br>Substructure,<br>& Highway Work |
|-----------------------------------------|-------------------------------------------------------------------------------|------------------------------------------------------------------------------|
| Prefabricated Steel Pedestrian<br>Truss | \$1,930,544                                                                   | \$3,002,000                                                                  |

**Table 1: Cost Estimates** 

## **Figures**

**North and South Abutment Cross-Sections** 



## Appendix A

**Inspection Reports** 

MASSACHUSETTS DEPARTMENT OF TRANSPORTATION PAGE 15, 2025

2-DIST B.I.N. 03 29N

## STRUCTURES INSPECTION FIELD REPORT **CLOSED/REHABILITATION INSPECTION**

BR. DEPT. NO. N-03-007

| CITY/TOWN NATICK                  |               | RUCTURE NO          | N-DOT-CLP                      |                                     |          |          | OUTINE INS |           | 93*- INSPECTION DATE  JUN 8, 2022 |               |          |
|-----------------------------------|---------------|---------------------|--------------------------------|-------------------------------------|----------|----------|------------|-----------|-----------------------------------|---------------|----------|
|                                   | N             |                     |                                | 000.                                |          |          | JUL 9, 1   |           | •                                 |               |          |
| 07-FACILITY CARRIED               |               | MEMORIAL 1          |                                | 27                                  | -YR BUII |          |            | `         |                                   | .06)          |          |
| HWY SPRING ST                     | MERI DIGERON  |                     |                                | 1896                                |          | 000      | 000        | U         |                                   |               |          |
| 06-FEATURES INTERSECTED           |               | 26-FUNCTION         |                                | DIST. B                             | RID      | GE INSPE | ECTION ENG | GINEER M. | Azizi                             |               |          |
| RR MBTA/CSX                       |               | Urban L             |                                |                                     |          |          |            |           |                                   |               |          |
| 43-STRUCTURE TYPE                 |               | 22-OWNER State High | 21-MAINTAINER  State Highway   | TEAM I                              | LEA      | DER L. F | ijol       |           |                                   |               |          |
| 303 : Steel Girder & Floorb       | eam           | Agency              | Agency                         |                                     |          |          |            |           |                                   |               |          |
| 107-DECK TYPE                     |               | WEATHER             | TEMP. (air)                    | TEAM I                              |          |          | atchant    | hara      |                                   |               |          |
| 8 : Timber                        |               | Clear               | 14°C                           | 1110                                |          |          |            |           |                                   |               |          |
| ITEM 58 DECK                      | 3             | ITEN                | M 41 STRUCTUR                  | RE OP                               | EN,      | , POST   | TED OR     | CLOSED    | )                                 |               |          |
| HEM 30 DEGR                       |               |                     |                                |                                     |          |          |            |           |                                   |               |          |
| ITEM 59 SUPERSTRUCTUL             | RE 2          |                     | K:CLOSE                        | ΕD                                  |          |          | Da         | te:       | 07/09/199                         | 8             |          |
|                                   |               | <u> </u>            |                                |                                     |          |          |            |           |                                   |               |          |
| ITEM 60 SUBSTRUCTURE              | 7             | ITEN                | A 36 TRAFFIC S                 | SAFET                               | TY.      |          |            | TOTAI     | HOURS                             | 8             | 3        |
| ITEM 60 - (From U/W Rep           | ort) N        | <b>┐</b> ┃┌──       |                                | 3                                   | 6        | COND     | DEF        |           |                                   |               |          |
| TTEM 60 - (From O/W Rep           | ort) N        | A. Brid             | ge Railing                     | (                                   | 0        | 0        | -          | PLANS     | (Y/N)                             |               | N        |
| ITEM 61 CHANNEL                   | N             | B. Tran             | sitions                        | (                                   | 0        | 0        | -          |           | . ,                               |               |          |
|                                   |               | C. App              | roach Guardrail                |                                     | 0        | 0        | -          | (V.C.R.   | ) (Y/N)                           |               | N        |
| ITEM 61 - (From U/W Rep           | ort) N        | D. App              | roach Guardrail Ends           |                                     | 0        | 0        | -          | TAP       | E#:                               |               |          |
| 7000                              |               |                     |                                |                                     |          |          |            |           | _                                 |               |          |
| ITEM 62 CULVERT                   | N             |                     | rian Access<br>please explain) | (Y/N) Y Barricades In Place (Y/N) Y |          |          |            |           | 1                                 |               |          |
| ITEM 62 - (From U/W Rep           | ort) N        | <b>I</b> '          | . ,                            | TYPE: JERSEY BARR                   |          |          | / BARRIEI  | RS        |                                   |               |          |
| TIENT 02 (FIGHT 6) TO INCP        |               | Roadw               | yay Abandoned                  | (Y/N)                               |          | N        |            |           |                                   |               |          |
| SIGNS Not Applicable              |               |                     |                                |                                     |          |          | At         | bridge    | Advance                           |               |          |
|                                   |               |                     |                                | -                                   |          | Place    | N          | S         | N                                 | S             | $\neg$   |
| Legend: BRIDGE CLOSEI             | )             |                     |                                | (Y=Yes ,N=No, NR=Not Required)      |          |          |            |           |                                   |               |          |
|                                   |               |                     |                                | Legil<br>Visib                      |          |          | 7 7        |           | 7 7 7                             | <b>/</b> 7    | <u>'</u> |
|                                   |               |                     |                                |                                     |          |          |            |           |                                   |               |          |
| To be filled out by District Brid | ge Inspection | <b>Engineer</b>     |                                |                                     |          |          | ACC        | ESSIBIL   | ITY                               | ( <b>Y</b> /I | N)       |
| 1) This bridge is scheduled for   |               |                     |                                |                                     |          |          | L:# D      |           |                                   | eded          | Used     |
| ,                                 |               |                     |                                |                                     |          |          | Lift B     |           |                                   | N             | N        |
| Replacement ( ) Rehabilitation    | on ( ) I      | Repair (            | ) Removal ( )                  | Unkn                                | iow      | n (X     | Boat       | <u> </u>  |                                   | Y<br>N        | N<br>N   |
|                                   |               |                     |                                |                                     |          |          | Wade       |           | N<br>N                            | N             |          |
| 2) If under construction please   | answer the f  | ollowing:           |                                |                                     |          |          |            | ector 50  |                                   | N             | N        |
| Contract Nymber:                  | Amonet        |                     | amulation Deter                |                                     |          |          | Riggi      |           |                                   | N             | N        |
| Contract Number:                  | Amount:       |                     | ompletion Date:                |                                     |          |          | Stagi      |           |                                   | N             | N        |
| Contractor:                       | Resider       | nt Engineer:        |                                |                                     |          |          | -11        | c Control |                                   | N             | N        |
| Academ Engineer.                  |               |                     |                                |                                     |          |          |            | lagger    |                                   | Y             | N        |
| Scope of Work:                    |               |                     |                                |                                     |          |          | Police     |           |                                   | N             | N        |
|                                   |               |                     |                                |                                     |          |          | Othe       |           |                                   | N             | N        |
| Remarks:                          |               |                     |                                |                                     |          |          |            |           |                                   |               |          |
|                                   |               |                     |                                |                                     |          |          |            |           |                                   |               |          |
|                                   |               |                     |                                |                                     |          |          |            |           |                                   |               |          |
|                                   |               |                     |                                |                                     |          |          | _          |           |                                   |               |          |
|                                   |               |                     |                                |                                     |          |          |            |           |                                   |               |          |
| X=UNKNOWN                         | N=NOT APE     | LICABLE             | . U-UI                         | DDEN                                | I/IN     | ACCE     | SSIBLE     |           | R=REM                             | 0             |          |

A00804 - 17

| CITY/TOWN | B.I.N. | BR. DEPT. NO. | 8STRUCTURE NO.     | INSPECTION DATE |
|-----------|--------|---------------|--------------------|-----------------|
| NATICK    | 29N    | N-03-007      | N03007-29N-DOT-CLP | JUN 8, 2022     |

#### REMARKS

#### **BRIDGE ORIENTATION**

According to the rating report, the approaches are north and south and the elevations are east and west. This is a single span riveted plate through girder bridge with a timber deck. There are two girders numbered west to east with five floorbeams numbered south to north. There are thirteen roadway stringers in each bay numbered west to east and six bays numbered south to north.

#### **GENERAL REMARKS**

#### **Posting**

The south "Bridge Closed" sign located at the corner of Spring Street and Middlesex Avenue is within 150' from the bridge and is sufficient to act as both the *At bridge* and *Advance* signs. **See photo 1**.

There is a "Bridge Closed" sign at both the North At bridge and Advance. See photo 2.

#### Pedestrian Access

There are two concrete Jersey barriers across both bridge approaches spaced apart to allow pedestrian access to the bridge. **See photo 3**.

The bituminous concrete wearing surface has heavy transverse and map cracking with several bituminous patches throughout.

Pedestrian access to both timber sidewalks is blocked by a 5' high chain link fence and "Danger Pedestrian Traffic Prohibited" signs at all four sidewalk ends. The southeast sign is covered with vegetation. **See photo 3**.

Several sidewalk planks are missing and many planks and stringers throughout both sidewalks are heavily rotted and loose. **See photo 4**.

The west sidewalk has an 11' long x full width section that is missing. **See photo 5.** 

#### Collision Damage

There is old minor collision damage to girder 1 at the floorbeam 4 connection. The gusset plate in this area is bent down and there is a minor scrape to the underside of the bottom flange/cover plate of the girder. There are minor collision scrapes to the underside of the bottom flange of girder 2. All of the above mentioned collision damage is over the north railroad track.

#### Floor Stringers

The stringers throughout all bays show heavy surface rusting and areas of minor to heavy rust flaking. **See photo 6**.

The seats to stringers 1, 2, 4, and 13 on floorbeam 2, 12, and 13 at floorbeam 3, and 8, 9, 12, and 13 on floorbeam 4 have areas of 100% section loss.

In bays 3 and 4 there are many stringers that have intermittent areas of 100% section loss throughout to the top and bottom flanges and isolated web locations. Stringer 2 in bay 3 has areas of 100% section loss to the web. **See photo 7.**.

Note, the stringers in addition to resting on the seats are riveted to the floorbeams.

See Fracture Critical Inspection dated 6/08/22 for additional comments on girders and floorbeams.

#### Photo Log

Photo 1: South intersection with Middlesex Ave.

Photo 2: North approach.

Photo 3: South end.

Photo 4: West sidewalk.

Photo 5: West sidewalk, missing section.

Photo 6: Underside, looking north.

Photo 7: Floorbeam, bay #3.

REM.(2)7-96 A00804 - 18



Photo 1: South intersection with Middlesex Ave.



Photo 2: North approach.



Photo 3: South end.



Photo 4: West sidewalk.



Photo 5: West sidewalk, missing section.



Photo 6: Underside, looking north.



Photo 7: Floorbeam, bay #3.

Proposal No. 610869-128933 Addendum No. 1, January 15, 2025

| Report Date: Novemb                                                                    | oer 21, 2022<br>State Information |               | DEFLUN      | Proposal N<br>MERI DIGERO | To. 610869-128933<br>DNIMO                                          | A<br>Classification                                                              | ddendum N    | o. 1, January 15,        |
|----------------------------------------------------------------------------------------|-----------------------------------|---------------|-------------|---------------------------|---------------------------------------------------------------------|----------------------------------------------------------------------------------|--------------|--------------------------|
| BDEPT#= N03007                                                                         |                                   | Agency Br.Ne  | ٥.          |                           | (112) NBIS Bridge Length                                            | Olassinoation                                                                    |              | Y                        |
| Town= Natick                                                                           |                                   |               | L.          | O. MHD                    | (104) Highway System                                                |                                                                                  |              | N                        |
| B.I.N= 29N                                                                             |                                   |               | AASH1       | ΓO= 032.0                 | (26) Functional Class -                                             | Urban Local                                                                      |              | 19                       |
| RANK= 0 H.I.=                                                                          | 0 Identification                  | FHWA Sele     | ect List= N | N (6/21/2017)             | (100) Defense Highway                                               |                                                                                  |              | 0                        |
| (8) Structure Number                                                                   | Identification                    |               | N030072     | 9NDOTCLP                  | (101) Parallel Structure                                            |                                                                                  |              | N                        |
| (5) Inventory Route                                                                    |                                   |               |             | 151000000                 | (102) Direction of Traffic -                                        | 2-wa                                                                             | ay traffic   | 2                        |
| (2) State Highway Department D                                                         | istrict                           |               |             | 03                        | (103) Temporary Structure                                           |                                                                                  |              | N                        |
| (3) County Code 017                                                                    | (4) Place code                    |               |             | 43895                     | (105) Federal Lands Highways                                        |                                                                                  |              | 0                        |
| (6) Features Intersected                                                               |                                   |               | RR          | MBTA/CSX                  | (110) Designated National Network                                   | <                                                                                |              | N                        |
| (7) Facility Carried                                                                   |                                   |               | HWY         | SPRING ST                 | (20) Toll - On free road                                            | I                                                                                |              | 3                        |
| (9) Location                                                                           |                                   |               | .3 MI. \    | W. OF ST-27               | (21) Maintain - State H                                             | ighway Agency                                                                    |              | 01                       |
| (11) Kilometerpoint                                                                    |                                   |               |             | 0000.241                  | (22) Owner - State Hi                                               | ghway Agency                                                                     |              | 01                       |
| (12) Base Highway Network                                                              |                                   |               |             | N                         | (37) Historical Significance                                        | not eligib                                                                       | ole          | N                        |
| (13) LRS Inventory Route & Sub                                                         | route                             | 00000000      |             |                           | (50) D. I.                                                          | Condition _                                                                      |              | Code                     |
| (16) Latitude                                                                          |                                   | 42 DEG        |             | 07.22 SEC                 | (58) Deck<br>(59) Superstructure                                    |                                                                                  |              | 3 2                      |
| (17) Longitude                                                                         |                                   | 71 DEG        |             | 00.90 SEC                 | (60) Substructure                                                   |                                                                                  |              | 7                        |
| (98) Border Bridge State Code                                                          |                                   |               | Shar        | e %                       | (61) Channel & Channel Protection                                   |                                                                                  |              | N                        |
| (99) Border Bridge Structure No.                                                       |                                   |               |             |                           | (62) Culverts                                                       |                                                                                  |              | N                        |
|                                                                                        | ucture Type and Ma                | iteriai       | 0-4-        | 202                       | Loa                                                                 | d Rating and P                                                                   | osting       | Code                     |
| (43) Structure Type Main:                                                              | Steel                             | . bridge type | Code        | 303                       | (31) Design Load - H 10=                                            | M 9                                                                              |              | 1                        |
| Girder & Floorbeam                                                                     | Jointiess                         | bridge type:  | i Not ap    | oplicable                 | (63) Operating Rating Method -                                      | Allowable Stres                                                                  | ss (AS)      | 2                        |
| (44) Structure Type Appr:                                                              |                                   |               | Cada        | 000                       | (64) Operating Rating                                               |                                                                                  |              | 0.00                     |
| Other                                                                                  | .:+                               |               | Code        | 000<br>001                | . ,                                                                 | Allowable Stres                                                                  | ss (AS)      | 2                        |
| (45) Number of spans in main ur                                                        | iit.                              |               |             | 0000                      | <ul><li>(66) Inventory Rating</li><li>(70) Bridge Posting</li></ul> |                                                                                  |              | 00.0                     |
| <ul><li>(46) Number of approach spans</li><li>(107) Deck Structure Type -</li></ul>    | Timber                            |               |             | Code 8                    | (41) Structure - Closed                                             |                                                                                  |              | K                        |
| (108) Wearing Surface / Protectiv                                                      |                                   |               |             | Code 0                    | (11) Structure Closed                                               | Appraisal _                                                                      |              | Code                     |
| A) Type of wearing surface -                                                           | Bituminous                        |               |             | Code 6                    | (67) Structural Evaluation                                          |                                                                                  |              | 0                        |
| B) Type of membrane -                                                                  | None                              |               |             | Code 0                    | (68) Deck Geometry                                                  |                                                                                  |              | 5                        |
| C) Type of deck protection -                                                           | None                              |               |             | Code 0                    | (69) Underclearances, vert. and ho                                  | riz.                                                                             |              | 0                        |
| -7 31                                                                                  | Age and Service                   |               |             |                           | (71) Waterway adequacy                                              |                                                                                  |              | N                        |
| (27) Year Built                                                                        |                                   |               |             | 1896                      | (72) Approach Roadway Alignment                                     |                                                                                  |              | 7                        |
| (106) Year Reconstructed                                                               |                                   |               |             | 0000                      | (36) Traffic Safety Features                                        |                                                                                  |              | 0 0 0 0                  |
| (42) Type of Service: On -                                                             | Highway-P                         | ed            |             |                           | (113) Scour Critical Bridges                                        | Inspections                                                                      |              | N                        |
| Under - Railroad                                                                       |                                   |               | (           | Code 52                   | (90) Inspection Date 07/09/9                                        | 98                                                                               | (91) Freque  | ncy 24 MO                |
| (28) Lanes: On Structure                                                               | 02                                | Under         | structure   | 00                        | (92) Critical Feature Inspection:                                   |                                                                                  |              | (93) CFI DATE            |
| (29) Average Daily Traffic                                                             |                                   |               |             | 000000                    | (A) Fracture Critical Detail                                        | Υ                                                                                | 24 MO A      | 06/08/22                 |
| (30) Year of ADT                                                                       | 2019 (109) Truck                  | ADT           |             | 00 %                      | (B) Underwater Inspection                                           | N                                                                                | 00 MO B      | 3) 00/00/00              |
| (19) Bypass, detour length                                                             |                                   |               |             | 002 KM                    | (C) Other Special Inspection                                        | N                                                                                | 00 MO C      | 00/00/00                 |
|                                                                                        | Geometric Data                    |               |             |                           | (*) Other Inspection ()                                             | N                                                                                | 00 MO *      | ) 00/00/00               |
| (48) Length of maximum span                                                            |                                   |               |             | 0019.5 M                  | (*) Closed Bridge                                                   | Υ                                                                                | 12 MO *      | ) 06/08/22               |
| (49) Structure Length                                                                  |                                   |               |             | 00021.0 M                 | (*) UW Special Inspection                                           | N                                                                                | 00 MO *      | •                        |
| (50) Curb or sidewalk:                                                                 |                                   | 5 M           | Right       |                           | (*) Damage Inspection                                               | Rating Loads                                                                     | MO *         | ) 00/00/00               |
| (51) Bridge Roadway Width Curb                                                         | to Curb                           |               |             | 006.7 M                   | Report Date 00/00/00                                                | H20                                                                              |              | pe 3S2 Type HS           |
| (52) Deck Width Out to Out                                                             |                                   |               |             | 010.8 M                   | Operating                                                           | 0.0                                                                              | 0.0          | 0.0 0.0                  |
| (32) Approach Roadway Width (                                                          | •                                 |               |             | 005.5 M                   | Inventory                                                           | 0.0                                                                              | 0.0          | 0.0 0.0                  |
| (33) Bridge Median - No med                                                            |                                   |               | Code        |                           |                                                                     | Field Posting                                                                    |              |                          |
| (34) Skew 00 DEG                                                                       | (35) Structur                     | e Flared      |             | N                         | Status CLOSED                                                       |                                                                                  | Posting Date | 07/09/98                 |
| (10) Inventory Route MIN Vert Cl                                                       |                                   |               |             | 99.99 M                   | 2 Axle<br>Actual                                                    | 3 Axle                                                                           | 5 Axle       | Single                   |
| (47) Inventory Route Total Horiz                                                       |                                   |               |             | 06.7 M<br>99.99 M         | Recommended                                                         |                                                                                  |              |                          |
| <ul><li>(53) Min Vert Clear Over Bridge</li><li>(54) Min Vert Underclear ref</li></ul> | rawy<br>R                         |               |             | 99.99 M<br>05.38 M        | Missing Signs N                                                     |                                                                                  |              |                          |
| (55) Min Lat Underclear RT ref                                                         | R                                 |               |             | 05.36 M                   |                                                                     | Misc                                                                             |              |                          |
| ,                                                                                      | N                                 |               |             | 00.1 M                    | Bridge Name DEFLUMERI D                                             | IGERONIMO                                                                        |              |                          |
| (56) Min Lat Underclear LT                                                             | ■ Navigation Data                 |               |             | 00.0101                   |                                                                     | Acrow Panel                                                                      | N Jo         | ointless Bridge          |
| (38) Navigation Control - Not                                                          | applicable, no wat                |               |             | Code N                    | Freeze/Thaw N : Not Applicable                                      | -in One (1)                                                                      |              |                          |
| (111) Pier Protection                                                                  |                                   | •             |             | Code                      | •                                                                   | air Owner(s)                                                                     | d/Llcod/     |                          |
| (39) Navigation Vertical Clearanc                                                      | е                                 |               |             | 000.0 M                   | ·                                                                   | ssibility (Neede                                                                 |              | / N O#                   |
| (00) Harigation Fortion Grounding                                                      |                                   |               |             | М                         | N / N Liftbucket N                                                  | N Rigging                                                                        | N            | / N Other                |
| (116) Vert-lift Bridge Nav Min Vert                                                    | Clear                             |               |             | IVI                       | V/N Loddon                                                          | / NI C+~~:                                                                       |              |                          |
|                                                                                        |                                   |               |             | 0000.0 M                  |                                                                     | N Staging                                                                        | atrol        |                          |
| (116) Vert-lift Bridge Nav Min Vert                                                    |                                   |               |             |                           | N/N Boat N                                                          | <sup>/</sup> N Staging<br><sup>/</sup> N Traffic Cor<br><sup>/</sup> N RR Flagpe |              | Inspection<br>Hours: 008 |

MASSACHUSETTS DEPARTMENT OF TRANSPORTATION PAGE 1. January 15, 2025

2-DIST B.I.N. 03 29N

## STRUCTURES INSPECTION FIELD REPORT FRACTURE CRITICAL INSPECTION

BR. DEPT. NO. N-03-007

| CITY                | /TOWN                                                                                                                                                            |                                                                                                                      | 8                                                                                              | -STRUCTURE NO.                                                                                       | 1                                                                                                                     | 1-Kilo. PO                                                         | DINT                                                              | 90-ROU                                                       | JTINE II                                                  | NSP. DAT                                      | Е 93а -                                                            | F.C. INSP.                                  | DATE                                    |
|---------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|-------------------------------------------------------------------|--------------------------------------------------------------|-----------------------------------------------------------|-----------------------------------------------|--------------------------------------------------------------------|---------------------------------------------|-----------------------------------------|
| NA                  | TICK                                                                                                                                                             |                                                                                                                      |                                                                                                | N03007-29N-I                                                                                         | DOT-CLP                                                                                                               | 000.2                                                              | 241                                                               | Jι                                                           | ıl 9, 1                                                   | 1998                                          |                                                                    | Jun 8                                       | , 2022                                  |
|                     | CILITY CARRIED  YY SPRING ST                                                                                                                                     |                                                                                                                      | ·                                                                                              | MEMORIAL NAME <b>DEFLUME</b>                                                                         | E/LOCAL NAME RI DIGERON                                                                                               | OMI                                                                | 27-YR I                                                           | BUILT<br><b>896</b>                                          |                                                           | REBUII                                        | T *YR                                                              | REHAB'I                                     | O (NON 106)                             |
| 06-FI               | MBTA/CSX                                                                                                                                                         | CLASS                                                                                                                | DIST. BF                                                                                       | RIDGE IN                                                                                             | ISPECTI                                                                                                               | ON ENG                                                             | GINEER                                                            | M. Az                                                        | sizi                                                      |                                               |                                                                    |                                             |                                         |
| 303<br>107-I        | RUCTURE TYPE  3: Steel Girder & F  DECK TYPE  Timber                                                                                                             | loorbe                                                                                                               | am                                                                                             |                                                                                                      | 21-MAINTAINER<br>State Highway<br>Agency<br>TEMP. (air)                                                               |                                                                    | EADER MEMBER DUAT                                                 | LS                                                           | NTH                                                       | ARA                                           |                                                                    |                                             |                                         |
| WE                  | IGHT POSTING                                                                                                                                                     | Not Ap                                                                                                               | plicable                                                                                       | X                                                                                                    | At                                                                                                                    | bridge                                                             |                                                                   | Advan                                                        | се                                                        | DI                                            | ANS                                                                | (Y/N)                                       | : N                                     |
| Re                  | tual Posting  Commended Posting  Noted Date: 00/00/0000                                                                                                          |                                                                                                                      | N N N N ate: 00/00                                                                             | Signs In II (Y=Yes,N: NR=Not R Legibility Visibility                                                 | =No,<br>Required)                                                                                                     | S                                                                  |                                                                   | N<br>[                                                       | \$                                                        | (V                                            | .C.R.)<br>APE#:                                                    | (Y/N)                                       |                                         |
| RA                  | TING                                                                                                                                                             |                                                                                                                      |                                                                                                | Recomme                                                                                              | end for Rating o                                                                                                      | r Reratii                                                          | na (Y/N                                                           | ۱. 🗀                                                         | N I                                                       |                                               |                                                                    | give prior                                  |                                         |
| Rat                 | ing Report (Y/N):                                                                                                                                                | Date:                                                                                                                |                                                                                                | -                                                                                                    |                                                                                                                       | . INGIALII                                                         | y (1/1 <b>1</b>                                                   | ,· _ '                                                       | •                                                         | HIGH (                                        | ) MEI                                                              | DIUM (                                      | ) LOW ( )                               |
| I 58                | Inspection data at time: 6   159: 7   160: 6   1                                                                                                                 | ne of exist<br>62:                                                                                                   | 0 0                                                                                            | /16/1977                                                                                             | SON:                                                                                                                  |                                                                    |                                                                   |                                                              |                                                           |                                               |                                                                    |                                             |                                         |
| FR                  | ACTURE CRITICAL M                                                                                                                                                | <i>IEMBE</i>                                                                                                         | <i>R(S)</i> :                                                                                  |                                                                                                      |                                                                                                                       |                                                                    |                                                                   |                                                              |                                                           |                                               |                                                                    |                                             |                                         |
|                     | MEMBER                                                                                                                                                           | CRACK<br>(Y/N):                                                                                                      | WELD'S<br>CONDITION<br>(0-9)                                                                   |                                                                                                      | ROSION, SECTION LO<br>GE, STRESS CONCEI                                                                               |                                                                    |                                                                   | PREVIOUS (0-9)                                               |                                                           |                                               | RATING A                                                           | MEMBER<br>NALYSIS                           | Deficiencies                            |
| 1 <b>A</b> 1        | ltem 59.2 -<br>Floorbeams                                                                                                                                        | N                                                                                                                    | N                                                                                              | See remarks                                                                                          | in commen                                                                                                             | ts sec                                                             | tion.                                                             | 2                                                            | 2                                                         | 7                                             | 10                                                                 | 15                                          | S-A                                     |
| D                   | Item 59.4 - Girders<br>or Beams                                                                                                                                  | N                                                                                                                    | N                                                                                              | See remarks                                                                                          | in commen                                                                                                             | ts sec                                                             | tion.                                                             | 4                                                            | 4                                                         | 32                                            | 40                                                                 | 53                                          | S-A                                     |
| С                   |                                                                                                                                                                  |                                                                                                                      |                                                                                                |                                                                                                      |                                                                                                                       |                                                                    |                                                                   |                                                              |                                                           |                                               |                                                                    |                                             |                                         |
| D                   |                                                                                                                                                                  |                                                                                                                      |                                                                                                |                                                                                                      |                                                                                                                       |                                                                    |                                                                   |                                                              |                                                           |                                               |                                                                    |                                             |                                         |
| Е                   |                                                                                                                                                                  |                                                                                                                      |                                                                                                |                                                                                                      |                                                                                                                       |                                                                    |                                                                   |                                                              |                                                           |                                               |                                                                    |                                             |                                         |
| Lis                 | t of field tests performed:                                                                                                                                      |                                                                                                                      |                                                                                                |                                                                                                      |                                                                                                                       |                                                                    |                                                                   | 1                                                            | 1                                                         | 1                                             | 1                                                                  | I-59                                        | I-60                                    |
| No                  | <u>one</u>                                                                                                                                                       |                                                                                                                      |                                                                                                |                                                                                                      | (Over                                                                                                                 | all Previ                                                          | ous Co                                                            | nditio                                                       | 1)                                                        |                                               |                                                                    | 2                                           | 7                                       |
|                     |                                                                                                                                                                  |                                                                                                                      |                                                                                                |                                                                                                      | (Overa                                                                                                                | all Curre                                                          | ent Con                                                           | dition)                                                      |                                                           |                                               |                                                                    | 2                                           | 7                                       |
|                     | FICIENCY: A defect in a stru                                                                                                                                     |                                                                                                                      | quires correcti                                                                                | ve action.                                                                                           |                                                                                                                       |                                                                    |                                                                   |                                                              |                                                           |                                               |                                                                    |                                             |                                         |
| M=<br>S=<br>C-S     | TEGORIES OF DEFICIENCE Minor Deficiency Deficiencies Notes, Minor Severe/Major Deficiency Deficiency E Critical Structural Deficiency E Critical Hazard Deficien | which are mino<br>corrosion of ste<br>eficiencies whice<br>rroded rebars,<br>iency Adef<br>iency Adeficie<br>include | h are more exten<br>Considerable sett<br>ficiency in a struct<br>e bridge.<br>ency in a compon | sive in nature and need more platement, Considerable scouring of                                     | anning and effort to repair.<br>or undermining, Moderate t<br>ses an extreme unsafe con<br>coses an extreme hazard or | Examples inc<br>o extensive of<br>dition due to the<br>unsafe cond | lude but are<br>orrosion to s<br>the failure or<br>ition to the p | not limited<br>structural st<br>imminent to<br>public, but d | to: Modera<br>eel with me<br>ailure of the<br>oes not imp | ate to major<br>easurable lose<br>e element w | deterioratior<br>ss of section<br>hich will affe<br>ctural integri | n in concrete,<br>, etc.<br>ect the structu | Exposed and ural integrity ge. Examples |
| I = 1<br>A =<br>P = | ASAP- [Action/Repair should Prioritize- [Shall be prioritized by                                                                                                 | be initiated by<br>y District Mainte                                                                                 | District Maintena<br>enance Engineer                                                           | ection Engineer (DBIE) to report once Engineer or the Responsible or the Responsible Party (if not a | e Party (if not a State owne<br>a State owned bridge) and                                                             | d bridge) upo<br>repairs made                                      | n receipt of when funds                                           | the Inspect<br>and/or ma                                     | npower is a                                               |                                               |                                                                    |                                             |                                         |
| `                   | K=UNKNOWN                                                                                                                                                        |                                                                                                                      | N=NOT A                                                                                        | PPLICABLE                                                                                            | LI_L                                                                                                                  | IIDDEN                                                             | /INIAC                                                            | CECC                                                         | DIE                                                       |                                               |                                                                    | D-DE                                        | MOVED                                   |

| CITY/TOWN | B.I.N. | BR. DEPT. NO. | 8STRUCTURE NO.     | INSPECTION DATE |
|-----------|--------|---------------|--------------------|-----------------|
| NATICK    | 2011   | N 02 007      | NOSCOZ SON DOT CLD | 11111 0 2022    |
| NATION    | 29N    | N-03-007      | N03007-29N-DOT-CLP | JUN 8, 2022     |

#### REMARKS

#### **BRIDGE ORIENTATION**

According to the rating report, the approaches are north and south and the elevations are east and west. This is a single span riveted plate through girder bridge with a timber deck. There are 2 girders numbered west to east with 5 floorbeams numbered south to north. There are 13 roadway stringers in each bay numbered west to east and 6 bays numbered south to north.

#### **GENERAL REMARKS**

This WAS NOT a hands on inspection. This was a visual inspection performed from the ground only due to the continued inability to get flagging services provided by CSX Railroad.

#### **ITEM 59 - SUPERSTRUCTURE**

#### Item 59.2 - Floorbeams

There is severe section loss throughout the floorbeams, up to 100%, mostly at the ends beyond the cover plates. The location of the heaviest section loss is adjacent to the built up areas. The condition of the floorbeams with the section loss is as follows:

#### Floorbeam #2:

#### West end:

The south side of the built up bottom flange has 100% section loss adjacent to the cover plate, 34" long x up to 3" wide. The angle is back to original thickness at 36" from the cover plate.

The bottom angle on the north side has areas of up to 100% section loss adjacent to the cover plate, 24" long x 4" wide. There is heavy pitting on top of the bottom angle from the cover plate to the end of the floorbeam. **See photo 1.** 

#### East end:

The south side of the bottom angle has 100% section loss adjacent to the cover plate, 21" long x up to 1-1/2" wide. The angle is back to original thickness at 25" from the cover plate.

The bottom angle on the north side has areas of up to 100% section loss adjacent to the cover plate, 28" long x 3" wide. The angle is back to original thickness at 30" from the cover plate. **See photo 2.** 

#### Floorbeam #3:

#### West end:

The south side bottom angle has 100% section loss adjacent to the cover plate, 17" long x 2" wide. The angle is back to original thickness at 20" from the cover plate.

The north side bottom angle has areas of up to 100% section loss throughout, starting at the cover plate with some areas 3/4" wide. **See photo 3.** 

#### East end:

The bottom angle on the south side has 100% section loss adjacent to the cover plate, 24" long x 2" wide. The angle is back to original thickness at 20" from the cover plate. **See photo 4.** 

The bottom angle on the north side has areas of up to 100% section loss adjacent to the cover plate, 12" long x up to 3/4" wide. The angle is back to original thickness at 14" from the cover plate.

#### Floorbeam #4:

#### West end:

The bottom angle on the south side has 100% section loss adjacent to the cover plate, 10" long x 3/4" wide. The angle is back to original thickness at 15" from the cover plate.

REM.(2)7-96 A00804 - 25

| CITY/TOWN | B.I.N. | BR. DEPT. NO. | 8STRUCTURE NO.     | INSPECTION DATE |
|-----------|--------|---------------|--------------------|-----------------|
| NATICK    | 29N    | N-03-007      | N03007-29N-DOT-CLP | JUN 8, 2022     |

#### REMARKS

The bottom angle on the north side has an area of 100% section loss starting at 8" out from the cover plate to 18 " x 2-1/2" wide. **See photo 5.** 

#### Item 59.4 - Girders or Beams

Both girders have up to 50% section loss to the bottom flanges at the interior south ends at the bearings. Both girders have up to 15% section loss to the bottom flanges and the interior north ends.

The bottom flange of girder #1 has a 12" long x 1" wide area of 100% section loss at floorbeam #5.

There is an approximately 12" long x 2" wide area of 100% section loss to the bottom flange of girder #1 at floorbeam #1. **See photo 6.** 

Both girders have moderate to heavy paint peeling and surface rusting with intermittent areas of rust pack between bottom flanges and interior web faces.

There is old minor collision damage to girder #1 at floorbeam #4. The gusset plate in this area is bent down and there is a minor scrape to the underside of the bottom flange. There are minor collision scrapes to the underside of the bottom flange of girder #2 above the north railroad tracks.

#### **Photo Log**

Photo 1: West end of floor beam #2.
Photo 2: East end of floorbeam #2.
Photo 3: West end of floorbeam #3.
Photo 4: East end of floorbeam #3.
Photo 5: West end of floorbeam #4.
Photo 6: Girder #1 at floorbeam #1.



Photo 1: West end of floor beam #2.



Photo 2: East end of floorbeam #2.



Photo 3: West end of floorbeam #3.



Photo 4: East end of floorbeam #3.

CITY/TOWN B.I.N. BR. DEPT. NO. 8.-STRUCTURE NO. INSPECTION DATE

NATICK 29N N-03-007 N03007-29N-DOT-CLP JUN 8, 2022



Photo 5: West end of floorbeam #4.



Photo 6: Girder #1 at floorbeam #1.

Proposal No. 610869-128933 Addendum No. 1, January 15, 2025

| report zate.                                                                             | er 21, 2022<br>State Information |               | F<br>EFLUM | roposal N<br>ERI DIGERO | To. 610869-128933<br>DNIMO                                                             | Addeno                      | dum No. 1, January 15,           |
|------------------------------------------------------------------------------------------|----------------------------------|---------------|------------|-------------------------|----------------------------------------------------------------------------------------|-----------------------------|----------------------------------|
| BDEPT#= N03007                                                                           |                                  | Agency Br.No. |            |                         | (112) NBIS Bridge Length                                                               | Classification              | Code<br>Y                        |
| Town= Natick                                                                             |                                  | ,             | L.C        | D. MHD                  | (104) Highway System                                                                   |                             | N                                |
| B.I.N= 29N                                                                               |                                  |               | AASHT      | O= 032.0                | (26) Functional Class -                                                                | Urban Local                 | 19                               |
| RANK= 0 H.I.=                                                                            | 0<br>Identification _            | FHWA Select   | List= N    | (6/21/2017)             | (100) Defense Highway                                                                  |                             | 0                                |
| (8) Structure Number                                                                     | identification _                 | NO            | 0300729    | NDOTCLP                 | (101) Parallel Structure                                                               |                             | N                                |
| (5) Inventory Route                                                                      |                                  |               |            | 151000000               | (102) Direction of Traffic -                                                           | 2-way traff                 | ic 2                             |
| (2) State Highway Department Dis                                                         | strict                           |               |            | 03                      | (103) Temporary Structure                                                              |                             | N                                |
| (3) County Code 017                                                                      | (4) Place code                   |               |            | 43895                   | (105) Federal Lands Highways                                                           |                             | 0                                |
| (6) Features Intersected                                                                 |                                  |               |            | MBTA/CSX                | (110) Designated National Network                                                      |                             | N                                |
| (7) Facility Carried                                                                     |                                  |               |            | SPRING ST               | (20) Toll - On free road                                                               |                             | 3                                |
| (9) Location                                                                             |                                  |               | .3 MI. V   | V. OF ST-27             |                                                                                        | ghway Agency                | 01                               |
| (11) Kilometerpoint (12) Base Highway Network                                            |                                  |               |            | 0000.241                | (22) Owner - State Hig<br>(37) Historical Significance                                 | hway Agency<br>not eligible | 01<br>N                          |
| (13) LRS Inventory Route & Subro                                                         | nute                             | 00000000000   | 10         | N                       | (37) Historical Significance                                                           | Condition                   | Code                             |
| (16) Latitude                                                                            | outo                             | 42 DEG 17     |            | 07.22 SEC               | (58) Deck                                                                              |                             | 3                                |
| (17) Longitude                                                                           |                                  | 71 DEG 21     |            | 00.90 SEC               | (59) Superstructure                                                                    |                             | 2                                |
| (98) Border Bridge State Code                                                            |                                  |               | Share      |                         | (60) Substructure                                                                      |                             | 7                                |
| (99) Border Bridge Structure No.                                                         | #                                |               |            |                         | (61) Channel & Channel Protection                                                      |                             | N                                |
| Struc                                                                                    | cture Type and Ma                | terial        |            |                         | (62) Culverts                                                                          | Rating and Posting          | Code                             |
| (43) Structure Type Main:                                                                | Steel                            |               | Code       | 303                     | (31) Design Load - H 10=N                                                              |                             | 1                                |
| Girder & Floorbeam                                                                       | Jointless                        | bridge type:  | Not ap     | plicable                | , ,                                                                                    | Allowable Stress (AS)       | •                                |
| (44) Structure Type Appr:                                                                |                                  |               |            |                         | (64) Operating Rating                                                                  |                             | 00.0                             |
| Other                                                                                    |                                  |               | Code       | 000                     | . ,                                                                                    | Allowable Stress (AS        | ,                                |
| (45) Number of spans in main unit                                                        | i                                |               |            | 001                     | (66) Inventory Rating                                                                  |                             | 00.0                             |
| (46) Number of approach spans                                                            | Timbon                           |               |            | 0000                    | <ul><li>(70) Bridge Posting</li><li>(41) Structure - Closed</li></ul>                  |                             | 0<br>K                           |
| <ul><li>(107) Deck Structure Type -</li><li>(108) Wearing Surface / Protective</li></ul> | Timber                           |               |            | Code 8                  | (41) Structure - Closed                                                                | Appraisal                   | Code                             |
| A) Type of wearing surface -                                                             | Bituminous                       |               |            | Code 6                  | (67) Structural Evaluation                                                             |                             | 0                                |
| B) Type of membrane -                                                                    | None                             |               |            | Code 0                  | (68) Deck Geometry                                                                     |                             | 5                                |
| C) Type of deck protection -                                                             | None                             |               |            | Code 0                  | (69) Underclearances, vert. and hor                                                    | iz.                         | 0                                |
| -7 71                                                                                    | Age and Service                  |               |            |                         | (71) Waterway adequacy                                                                 |                             | N<br>-                           |
| (27) Year Built                                                                          |                                  |               |            | 1896                    | <ul><li>(72) Approach Roadway Alignment</li><li>(36) Traffic Safety Features</li></ul> |                             | 7 0 0 0 0                        |
| (106) Year Reconstructed                                                                 |                                  |               |            | 0000                    | (113) Scour Critical Bridges                                                           |                             | 0 0 0 0<br>N                     |
| (42) Type of Service: On -                                                               | Highway-Pe                       | ed            |            |                         | (113) Ocour Critical Bridges                                                           | Inspections                 | 14                               |
| Under - Railroad                                                                         |                                  |               | С          | ode 52                  | (90) Inspection Date 07/09/98                                                          | 3 (91)                      | ) Frequency 24 MO                |
| (28) Lanes: On Structure                                                                 | 02                               | Under stru    | ıcture     | 00                      | (92) Critical Feature Inspection:                                                      |                             | (93) CFI DATE                    |
| (29) Average Daily Traffic                                                               |                                  |               |            | 000000                  | (A) Fracture Critical Detail                                                           | γ 24                        | MO A) 06/08/22                   |
| (30) Year of ADT                                                                         | 019 (109) Truck                  | ADT           |            | 00 %                    | (B) Underwater Inspection                                                              | N 00                        | MO B) 00/00/00                   |
| (19) Bypass, detour length                                                               | ■ Geometric Data                 |               |            | 002 KM                  | (C) Other Special Inspection                                                           | N 00                        | MO C) 00/00/00                   |
| (48) Length of maximum span                                                              | Geometric Data                   |               |            | 0019.5 M                | (*) Other Inspection () (*) Closed Bridge                                              | N 00                        | MO *) 00/00/00<br>MO *) 06/08/22 |
| (49) Structure Length                                                                    |                                  |               |            | 00021.0 M               | (*) UW Special Inspection                                                              | γ 12<br>N 00                | MO *) 00/00/00                   |
| (50) Curb or sidewalk:                                                                   | Left 01.                         | 5 M           | Right      | 01.8 M                  | (*) Damage Inspection                                                                  | 14 00                       | MO *) 00/00/00                   |
| (51) Bridge Roadway Width Curb                                                           | to Curb                          |               |            | 006.7 M                 | D 1 D 1 00/00/00                                                                       | Rating Loads                | 0 T 000 T 110                    |
| (52) Deck Width Out to Out                                                               |                                  |               |            | 010.8 M                 | Report Date 00/00/00 Operating                                                         | H20 Type                    |                                  |
| (32) Approach Roadway Width (w.                                                          | /shoulders)                      |               |            | 005.5 M                 | Inventory                                                                              | 0.0 0.0                     |                                  |
| (33) Bridge Median - No media                                                            | an                               |               | Code       | 0                       |                                                                                        | Field Posting               |                                  |
| (34) Skew 00 DEG                                                                         | (35) Structure                   | e Flared      |            | N                       | Status CLOSED                                                                          | Posti                       | ng Date 07/09/98                 |
| (10) Inventory Route MIN Vert Cle                                                        | ear                              |               |            | 99.99 M                 | 2 Axle                                                                                 | 3 Axle                      | 5 Axle Single                    |
| (47) Inventory Route Total Horiz C                                                       |                                  |               |            | 06.7 M                  | Actual                                                                                 |                             |                                  |
| (53) Min Vert Clear Over Bridge R                                                        | •                                |               |            | 99.99 M                 | Recommended Missing Signs N                                                            |                             |                                  |
| (54) Min Vert Underclear ref                                                             | R                                |               |            | 05.38 M                 | Missing Signs N                                                                        | Misc                        |                                  |
| (55) Min Lat Underclear RT ref                                                           | R                                |               |            | 06.1 M                  | Bridge Name DEFLUMERI DI                                                               | GERONIMO                    |                                  |
| (56) Min Lat Underclear LT                                                               | Navigation Data                  |               |            | 00.0 M                  |                                                                                        | Acrow Panel                 | N Jointless Bridge               |
|                                                                                          | applicable, no wate              |               | (          | Code N                  | Freeze/Thaw N : Not Applicable                                                         |                             |                                  |
| (111) Pier Protection                                                                    |                                  | ,             |            | Code                    | •                                                                                      | ir Owner(s)                 | 1/                               |
| (39) Navigation Vertical Clearance                                                       |                                  |               |            | 000.0 M                 | ·                                                                                      | sibility (Needed/Used       |                                  |
| (116) Vert-lift Bridge Nav Min Vert                                                      | Clear                            |               |            | M                       |                                                                                        | N Rigging N Staging         | N/N Other                        |
| (40) Navigation Horizontal Clearan                                                       | ce                               |               |            | 0000.0 M                | N/N Boat N/                                                                            |                             |                                  |
|                                                                                          |                                  |               |            |                         | N/N Wader Y/                                                                           |                             | Inspection                       |
|                                                                                          |                                  |               |            |                         | N / N Inspector 50 N /                                                                 | =-                          | Hours: 008                       |
|                                                                                          |                                  |               |            |                         |                                                                                        |                             |                                  |

## **Appendix B**

**General Photos and Existing Abutment Condition Photos** 



Photo 1: East elevation of the bridge, looking West.



Photo 2: South approach roadway leading up to the bridge, looking North.



Photo 3: North approach roadway leading up to the bridge, looking South.



Photo 4: Roadway over the bridge, looking North.



Photo 5: Typical condition of the underside of the bridge, looking North



Photo 6: Typical condition of the abutments (South Abutment shown), looking South.



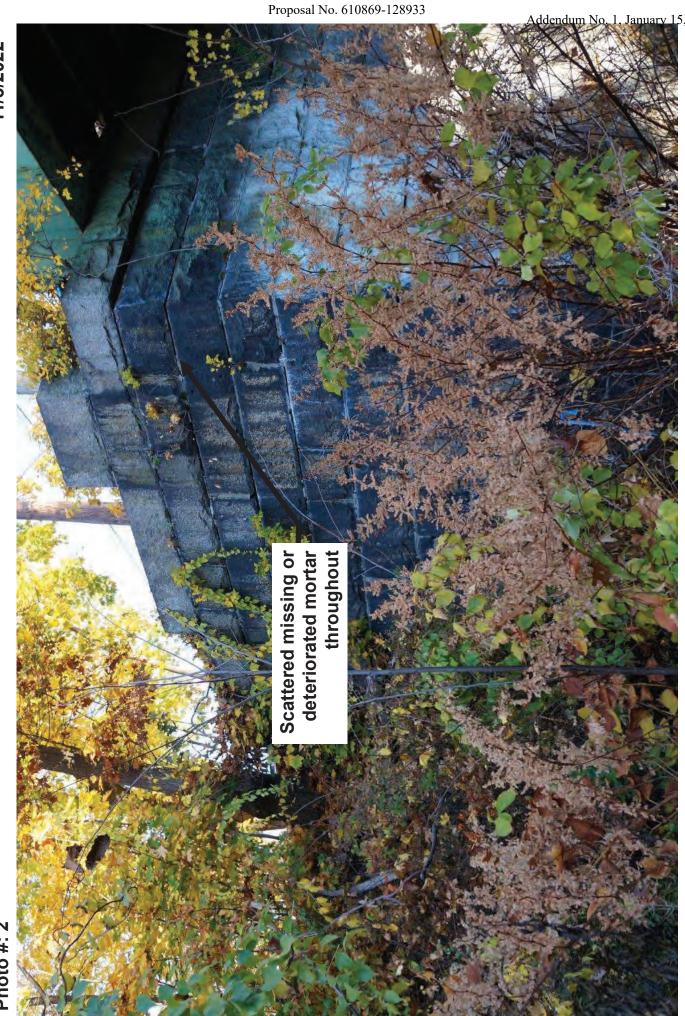
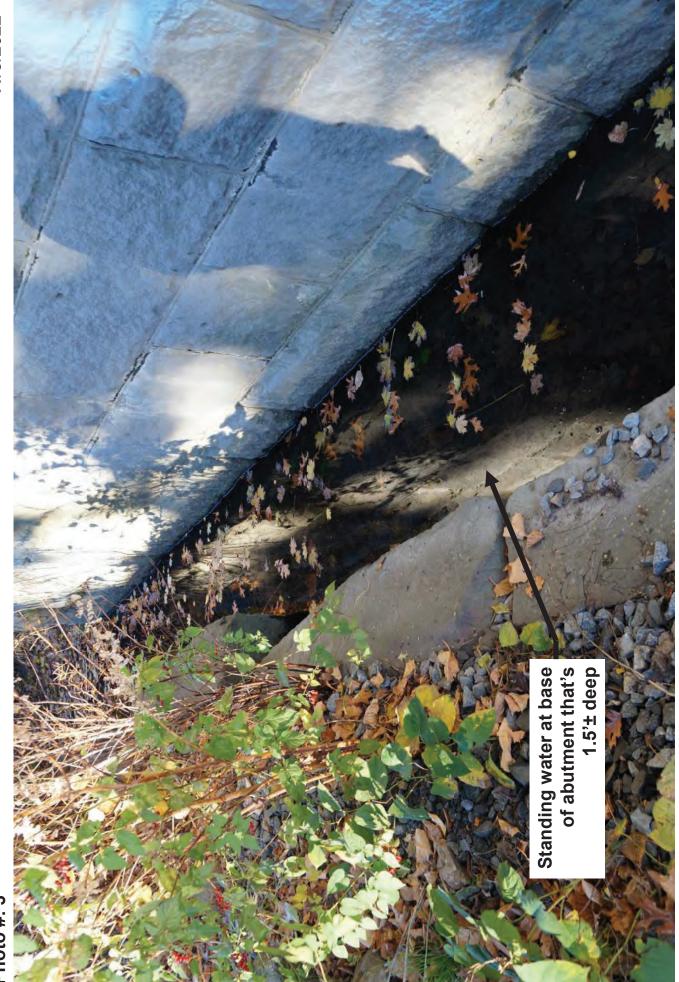

Photo 7: Water utility attached to the top of the East sidewalk (photo from 2001), looking Northeast.

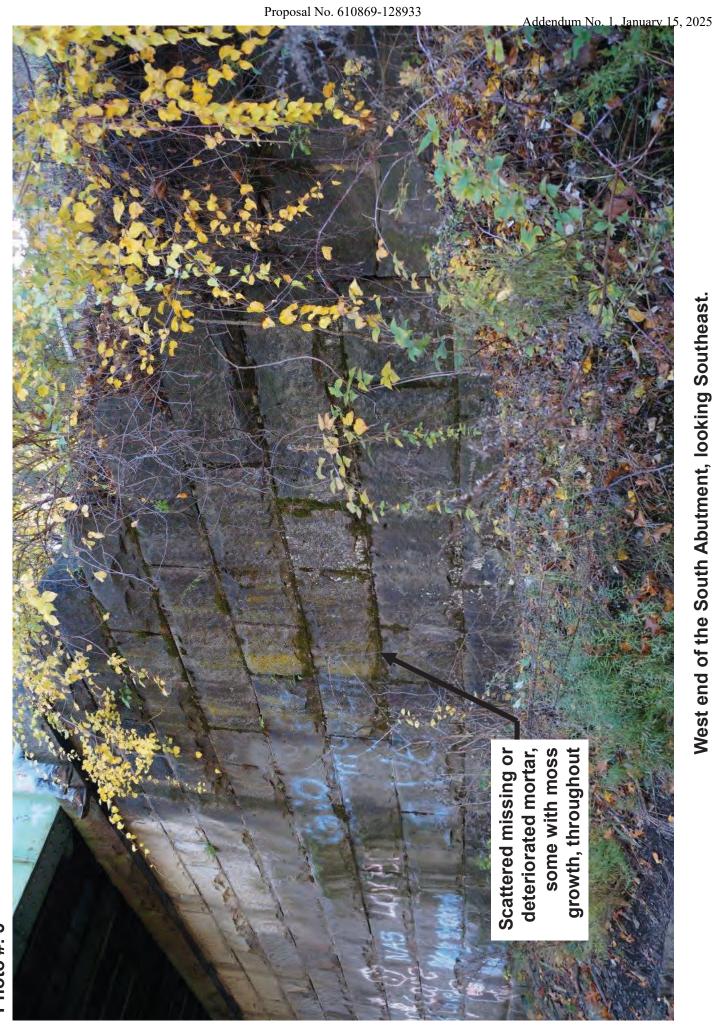


Photo 8: Gas utility attached to the top of the West through girder, looking Southwest.


**Spring Street Bridge** 





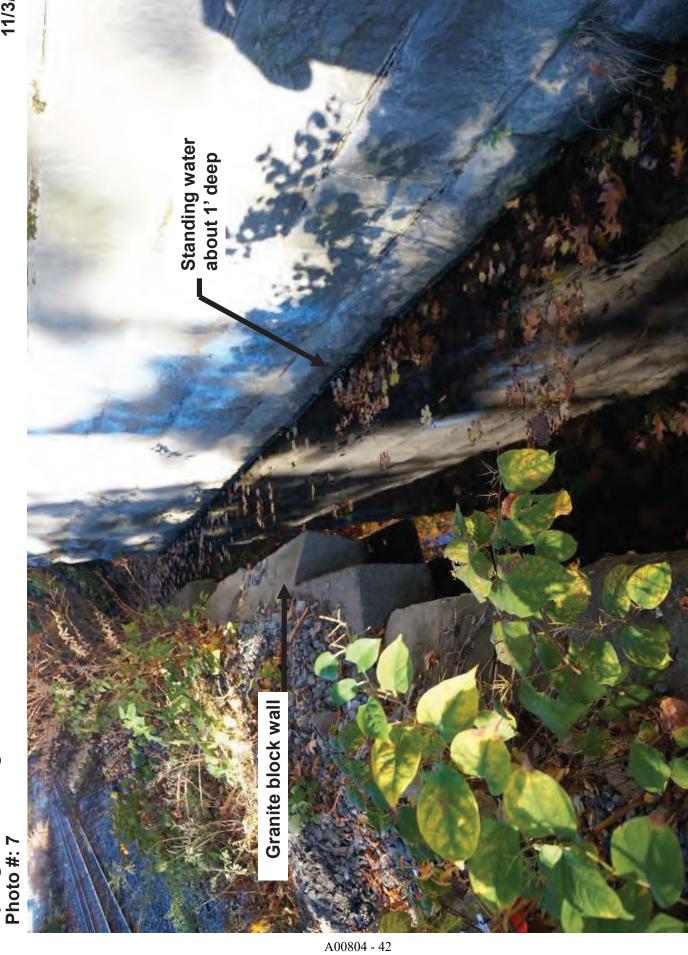

West end of the North Abutment, looking Northeast.

Base of the North Abutment, looking Northwest.



A00804 - 38






West end of the South Abutment, looking Southeast.



East end of the South Abutment, looking South.

**Spring Street Bridge** 



Granite wall and standing water at the base of the North Abutment, looking West.

Natick: Spring Street over MBTA/CSX: Preliminary Structure Report Br. No. N-03-007 (29N) (MassDOT Project File No. 610869)

# Appendix C

**Preliminary Construction Cost Summaries** 



## MASSACHUSETTS DEPARTMENT OF TRANSPORTATION - HIGHWAY DIVISION PROJECT MANAGEMENT DIVISION

FA#

BRIDGE NO. **BRIDGE SECTION** N-03-007 12/7/2022

Natick TOWN STATION TBD (Middlesex Ave. to Cochituate St.) Prefab. Ped. Bridge **SPAN** (1) 65'-8"+/-

ROAD Spring Street 10'-0" (Shared Use Path) **ROADWAY LENGTH** 65'-8"+/-

**OVER** MBTA/CSX WALKS CL. UNDER BR. 18'-0"

H-5

**CLASS** 

#### PRELIMINARY STRUCTURES REPORT ESTIMATE OF QUANTITIES AND COST OF BRIDGE

Spec?

|   | ITEM NO. | QTY   | UNITS | ITEM                                                      | UNIT<br>PRICE | AMOUNT    |
|---|----------|-------|-------|-----------------------------------------------------------|---------------|-----------|
|   |          |       |       |                                                           |               |           |
| * | 114.1    | 1     | LS    | Demolition of Superstructure of Bridge No. N-03-007 (29N) | \$267,600     | \$267,600 |
| * | 127.     | 17    | CY    | Concrete Excavation                                       | \$1,000.00    | \$17,000  |
|   | 140.     | 55    | CY    | Bridge Excavation                                         | \$40.00       | \$2,200   |
| * | 144.     | 11    | CY    | Class B Rock Excavation                                   | \$150.00      | \$1,650   |
|   | 151.2    | 15    | CY    | Gravel Borrow for Backfilling Structures and Pipes        | \$50.00       | \$750     |
| * | 184.1    | 15    | TON   | Disposal of Treated Wood Products                         | \$260.00      | \$3,900   |
| * | 908.40   | 240   | SY    | Repointing                                                | \$200.00      | \$48,000  |
| * | 912.4    | 150   | EA    | Drilled and Grouted #4 Dowels                             | \$50.00       | \$7,500   |
| * | 964.3    | 898.0 | SF    | Elastomeric Protective Coating                            | \$5.00        | \$4,490   |
| * | 994.01   | 1     | LS    | Temporary Protective Shielding Bridge No. N-03-027        | \$22,000      | \$22,000  |
| * | 995.     | 1     | LS    | Bridge Structure, Bridge No. N-03-027                     | \$558,359     | \$558,359 |
|   |          |       | 1     |                                                           |               |           |

Years until mid way through Const. =

yrs

1.5

Bridge Subtotal = \$933,449 Highway Subtotal (\$30 / SF \* 16,671 SF) = Inflation (3% Per Year) = \$450,120

\$62,725 Contingency (35%) = \$484,249

Bridge Item Total = \$1,930,544



#### MASSACHUSETTS DEPARTMENT OF TRANSPORTATION - HIGHWAY DIVISION PROJECT MANAGEMENT DIVISION **BRIDGE SECTION**

**LENGTH** 

BRIDGE NO. N-03-007 12/7/2022

H-5

| TOWN    | Natick                 |
|---------|------------------------|
| STATION | TBD (Middlesex Ave. to |
|         | Cochituate St.)        |
| TYPE    | Prefab. Ped. Bridge    |
| SPAN    | (1) 65'-8"+/-          |

(1) 65'-8"+/-

| FA#     |                          |  |
|---------|--------------------------|--|
| ROAD    | Spring Street            |  |
| ROADWAY | 10'-0" (Shared Use Path) |  |

65'-8"+/-

**OVER** MBTA/CSX **WALKS** CL. UNDER BR. 18'-0"

CLASS

#### PRELIMINARY STRUCTURES REPORT ESTIMATE OF QUANTITIES AND COST OF BRIDGE

Spec?

|          |        |       |                                      | UNIT        |           |
|----------|--------|-------|--------------------------------------|-------------|-----------|
| ITEM NO. | QTY    | UNITS | ITEM                                 | PRICE       | AMOUNT    |
|          |        |       |                                      |             |           |
| 114.1    |        |       | BREAKDOWN OF ITEM 114.1              |             |           |
| Sub-Item |        |       | DEMOLITION OF SUPERSTRUCTURE         |             |           |
| No.      |        |       | OF BRIDGE NO. N-03-007 (29N)         |             |           |
| 117.1    | 1      | LS    | General Engineering Costs            | \$6,000.00  | \$6,000   |
| 117.2    | 112500 | LB    | Structural Steel Removal             | \$0.80      | \$90,000  |
| 117.3    | 29000  | LB    | Timber Deck Removal                  | \$0.30      | \$8,700   |
| 117.4    | 45800  | LB    | Bituminous Wearing Surface Removal   | \$3.00      | \$137,400 |
| 117.5    | 40     | FT    | Remove Existing Concrete Barriers    | \$50.00     | \$2,000   |
| 117.6    | 1      | LS    | Relocate Existing Utilities          | \$20,000.00 | \$20,000  |
| 665.     | 140    | FT    | Chain Link Fence Removed and Stacked | \$25.00     | \$3,500   |
|          |        |       |                                      |             |           |

TOTAL = \$267,600

> SAY = \$267,600

|          |       |    | BREAKDOWN OF ITEM 995.                            |              |           |
|----------|-------|----|---------------------------------------------------|--------------|-----------|
| 995.     |       |    | BRIDGE STRUCTURE                                  |              |           |
| Sub-Item |       |    | BRIDGE NO. N-03-007 (29N)                         |              |           |
| No.      |       |    |                                                   |              |           |
| 901.     | 22    | CY | 4000 PSI, 1.5 Inch, 565 Cement Concrete           | \$1,250.00   | \$27,500  |
| 904.     | 12    | CY | 4000 PSI, 3/4 Inch, 610 Cement Concrete           | \$2,300.00   | \$27,600  |
| 904.4    | 20    | CY | 4000 PSI, 3/4 Inch, 585 HP Cement Concrete        | \$2,470.00   | \$49,400  |
| 910.1    | 11000 | LB | Steel Reinforcement for Structures - Epoxy Coated | \$2.75       | \$30,250  |
| 955.1    | 267   | FT | Timber Rub Railing                                | \$20.00      | \$5,340   |
| 960.01   | 1     | LS | Prefabricated Tubular Steel Truss Superstructure  | \$404,768.24 | \$404,768 |
| 970.     | 500   | SF | Damp-Proofing                                     | \$3.00       | \$1,500   |
| 972.1    | 20    | FT | Cover Plate System                                | \$600.00     | \$12,000  |
|          |       |    |                                                   |              |           |

TOTAL = \$558,358 SAY = \$558,359

\$1,340,000.00

## **CONSTRUCTION COST ESTIMATE - December 7, 2022**

### **Natick**



## Spring Street over MBTA/CSX Br. No. N-03-007 (29N)

#### BRIDGE FULL REPLACEMENT ALTERNATIVE

(Includes Full Abutment and Wingwall Replacement)
Project File No. 610869

**Bridge Dimensions** 

|          |      |           | mage Bimens |        |      |             |
|----------|------|-----------|-------------|--------|------|-------------|
|          | feet | allowance | sidewalk    | offset | feet | square feet |
|          |      | feet      | feet        | feet   |      |             |
| Length = | 67.0 | 0.0       |             |        | 67.0 |             |
| Width =  | 20.0 |           |             |        | 20.0 |             |
| Area =   |      |           |             |        |      | 1340.0      |
| _        |      |           |             |        |      | Urban Local |

| Bridge Rehabilitat       | ion: |                                       |       |      |              |
|--------------------------|------|---------------------------------------|-------|------|--------------|
|                          | s.f. | of                                    | /s.f. | = \$ | -            |
|                          |      | Subtotal 1 (Bridge Construction Cost) |       | \$   | 1,340,000.00 |
|                          |      |                                       |       |      |              |
| <b>Additional Costs:</b> |      |                                       |       |      |              |

(a)

\$1,000.00 /s.f.

\$2,000,000.00

1340.0 s.f.

100%

Temporary Traffic Signals:

**Bridge Replacement:** 

| Temporary Earth Support (for RI    | R Track Protection) |   |          |       | = \$ | 100,000.00 |
|------------------------------------|---------------------|---|----------|-------|------|------------|
| Removal/Deconstruction of Existing | ng Structure:       |   |          |       | = \$ | 350,000.00 |
| Temporary Utility Bridge:          | 350.0 s.f.          | a | \$500.00 | /s.f. | = \$ | 175,000.00 |

of

Subtotal 2 (Bridge and Highway Cost)

Reconstruct roadway approaches:

-- mi

| <b>Highway</b> | (Of Subtotal 1)    |            | =_ \$ |              |
|----------------|--------------------|------------|-------|--------------|
|                |                    | Subtotal 3 | \$    | 2,460,137.00 |
| <b>TMP</b>     | 3% (Of Subtotal 2) |            | = \$  | 73,804.11    |
|                |                    | Subtotal 4 | \$    | 2,533,941.11 |

TOTAL \$ 3,002,941.11 SAY = \$ 3,002,000.00

Notes: \* Assume no detour required, add small amount for TMP for contingency

\* This cost estimate assumes a full bridge replacement.

\* Contingency includes inflation

Natick: Spring Street over MBTA/CSX: Preliminary Structure Report Br. No. N-03-007 (29N) (MassDOT Project File No. 610869)

# **Appendix D**

## 2002 Geotechnical Report

(Note, the abutment stability calculations included at the end of this 2002 report are based on a different proposed superstructure from a design project that was cancelled)

Addendum No. 1, January 15, 2025

## THE COMMONWEALTH OF MASSACHUSETTS

OCT | 1 2002

## MASSACHUSETTS HIGHWAY DEPARTMENT

## INTEROFFICE MEMORANDUM

TO:

Alex Bardow, Bridge Engineer

THROUGH: John Blundo, Deputy Chief Engineer of Highway I

FROM:

Nabil Hourani, Geotechnical Engineer

DATE:

October 9, 2002

**SUBJECT:** 

NATICK - Bridge No. N-3-7

Spring Street over CSX Railroad

Project File No.: 126201

The Geotechnical Section has completed a soil and foundation investigation for the bridge, which is in the Pre-Engineered/Pre-Fabricated Program. Enclosed, please find a copy of the Geotechnical Report prepared by Mr. John Pettis of this section. A copy of this report should be forwarded to the design consultant, Chas. Sells, Inc.

We will be prepared to perform any additional analysis necessary during the final design stage. If you have any questions please contact me at x-8832, or John Pettis at x-8831.

JP/jp

Copy: Engineering Expediting - Michael Bloukos (w/o attachment)

Design Consultant – Chas. Sells, Inc.

attach.

# **GEOTECHNICAL REPORT**

BRIDGE NO. N-3-7 SPRING STREET OVER CSX RAILROAD NATICK, MASSACHUSETTS

SUBMITTED BY: JOHN PETTIS, P.E.

October 2002



Massachusetts Highway Department Geotechnical Section 10 Park Plaza, Boston, MA 02116

## TABLE OF CONTENTS

|                                                                                                                                                              | Page |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| 1. Introduction 1.1 Existing Conditions                                                                                                                      | 1    |
| 1.2 Proposed Construction                                                                                                                                    |      |
| 2. Subsurface Investigation                                                                                                                                  | 1    |
| <ul> <li>3. Foundation Recommendations</li> <li>3.1 Reused Abutments</li> <li>3.2 Seismic Considerations</li> <li>3.3 Construction Considerations</li> </ul> | 2    |
| Figure 1 - Project Location Map                                                                                                                              | 3    |
| Figure 2 – Project Key Plan with Boring Locations                                                                                                            | 4    |
| Figure 3 – Square Longitudinal Section with Subsurface Information                                                                                           | 5    |
| Appendix A - Boring Logs and Bedrock Core Photos and Description Sheet                                                                                       | 6    |
| Appendix B - Calculations                                                                                                                                    | 13   |

#### 1. INTRODUCTION

## 1.1 Existing Conditions

This report presents the results of a soil and foundation investigation for bridge no. N-3-7, located in Natick. Figure 1 of this report shows the location map for this project.

The existing one span bridge carries Spring Street over the CSX Railroad. The bridge was built in 1896 and has a structural length of 21.0 meters. Stone masonry abutments and wingwalls support the existing superstructure. The stones used to build the substructure are of consistent height and the abutments and wingwalls appear to be in very good condition. Old plans dated 1928 were found but do not contain any details of the substructures. The bridge is currently closed, and will remain so during construction.

### 1.2 Proposed Construction

It is the understanding of the Geotechnical Section that the preferred scheme consists of cuttingdown and reusing the existing abutments. New concrete bridge seats are to be constructed on top of the cut-down abutments. The new superstructure shall be a precast, precompressed, composite concrete-steel panelized system. Figure 2 shows the alignment of the bridge.

#### 2. SUBSURFACE INVESTIGATION

The field investigation for this project consisted of two borings and two lines of probes. Zoino-Hebert, Inc. conducted the borings and probes between November 6 and 8, 2001. Justin Downing of Chas. Sells, Inc. inspected the borings and probes. The boring locations are shown on figure 2 of this report. The logs for the borings are contained in Appendix A.

The standard sampling technique (split-spoon sampler advanced during Standard Penetration Testing) was used at the borings. Each boring was terminated after coring 3 meters into bedrock, which began at depths of 4.72 and 3.05 meters, respectively. Based on the depth to bedrock at the borings it appears that the abutments bear directly on bedrock. Ground water was not encountered at either boring.

Based on the borings, a review of the samples, and the Standard Penetration Test (SPT) N-values, the subsurface conditions at the project location consists of the following:

South abutment: 4.7 meters loose to medium dense, gravel, some fine sand,

overlying granite bedrock.

North abutment: 3.05 meters medium dense, fine to coarse sand, some gravel,

overlying granite bedrock.

The Bedrock Geology Map for the Natick Quadrangle identifies bedrock in the project area as Dedham Granodiorite, describing it as rock ranging from granite to quartz diorite. The rock mass was classified as "fair rock" using the Rock Mass Rating (RMR) System. This RMR value

value is based partly on point load testing on selected samples of the recovered bedrock core. Refer to Appendix A for photos of the entire recovered core runs and close-ups of the top of each run.

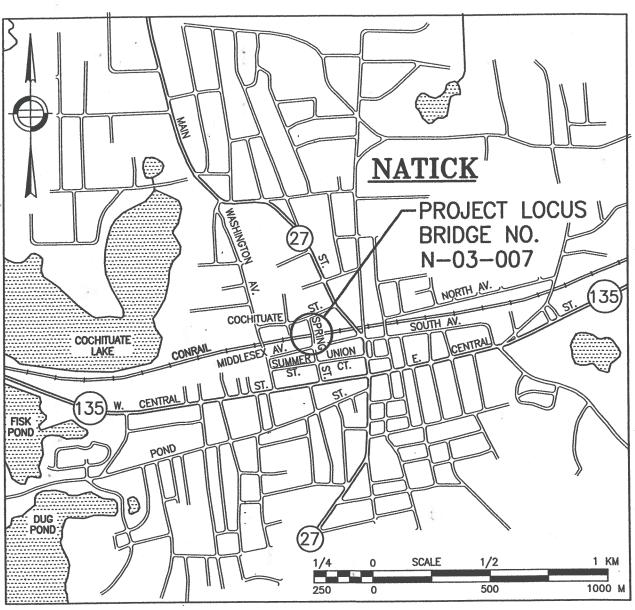
The two lines of probes were laid out to aid in determining the configuration of the abutments. The consistency of the refusal depth in the probes also appears to give a good indication of the location of the top of rock behind the abutments.

The following table summarizes the distance from the probes to the respective face of abutment backwall.

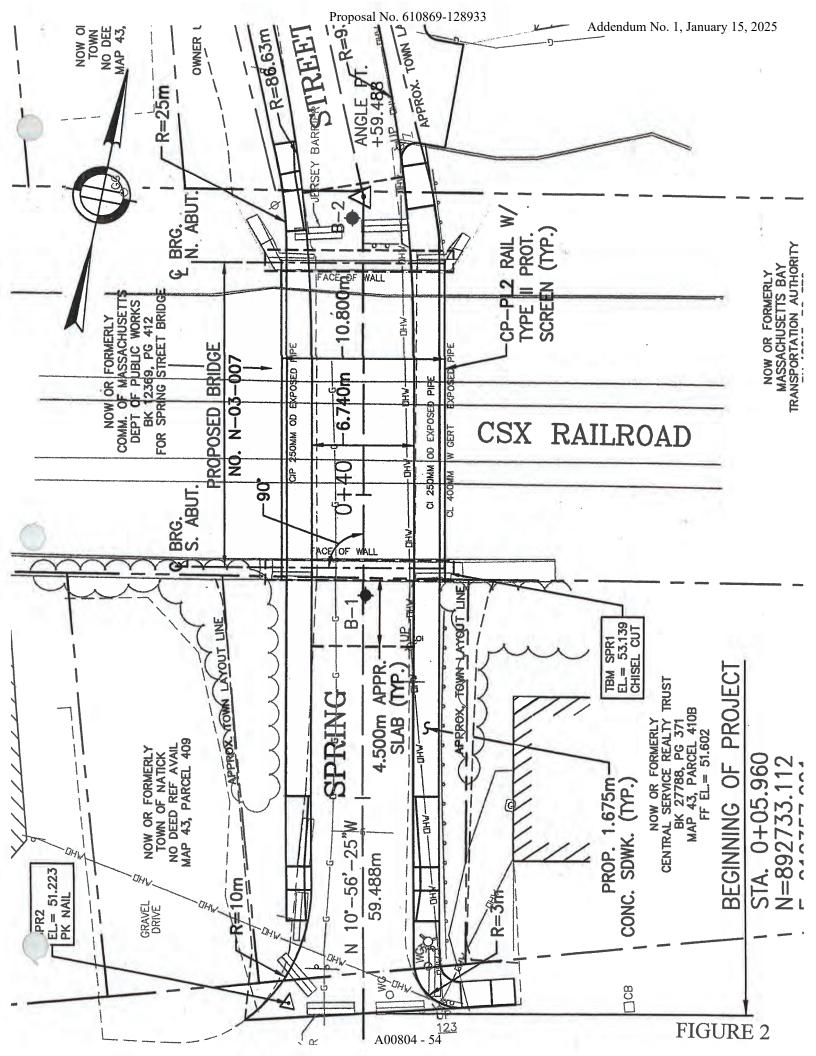
| South<br>Abutment | Dist. From<br>backwall, m | Depth of<br>Refusal, m | North<br>Abutment | Dist. From backwall, m | Depth of<br>Refusal, m |
|-------------------|---------------------------|------------------------|-------------------|------------------------|------------------------|
| P1-A              | 0.6                       | 0.25                   | P2-A              | 0.6                    | 0.58                   |
| P1-B              | 1.2                       | 5.3*                   | P2-B              | 1.2                    | 2.81                   |
| P1-C              | 1.8                       | 4.41                   | P2-C              | 1.8                    | 2.89                   |
| P1-D              | 2.4                       | 4.26                   | P2-D              | 2.4                    | 2.97                   |
| P1-E              | 3.0                       | 4.23                   | P2-E              | 3.0                    | 2.74                   |
| P1-F              | 3.6                       | 4.08                   | P2-F              | 3.6                    | 2.74                   |
| P1-G              | 4.2                       | 4.21                   | P2-G              | 4.2                    | 2.76                   |
| P1-H              | 7.2                       | 3.0                    | P2-H              | 7.2                    | 2.99                   |

<sup>\*</sup>It was noted in the field that when the pipe was retrieved at probe P1-B that the bottom section of pipe was bent, indicating that the pipe may have glanced off the abutment. Therefore, the depth to refusal at this location may be lower than indicated.

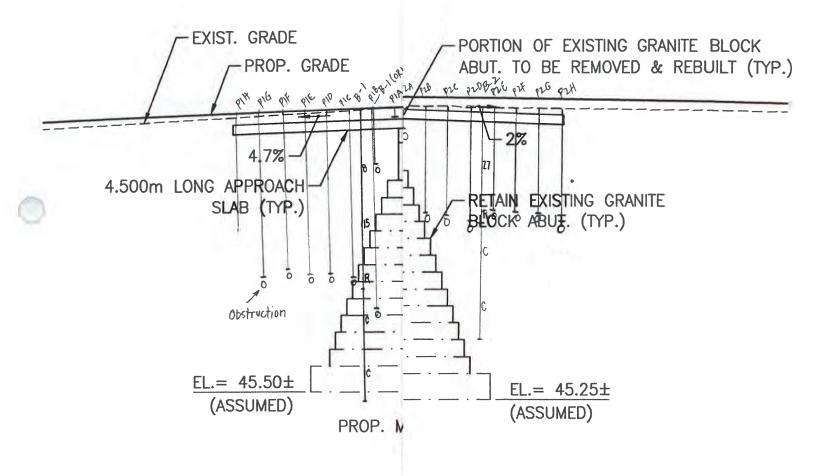
Refer to figure 3 for a review of the above conditions.


#### 3. FOUNDATION RECOMMENDATIONS

#### 3.1 Reused Abutments


Based on the subsurface investigation it appears that both abutments rest directly on bedrock. The factored bearing capacity was calculated to be 1500 KN/m², based on a performance factor of 0.6. Settlement is expected to be negligible. The factor of safety against overturning and sliding were calculated to be 2.35 and 3.76, respectively. The unfactored maximum toe pressure was determined to be 657 KN/m².

#### 3.2 Seismic Considerations


Based on the MHD Bridge Section's interpretation of the AASHTO recommended seismic design map, the design horizontal acceleration is 0.17g. The project has Soil Profile Type I, and Site Coefficient (S) = 1.0. The soil at the project location is judged to be not susceptible to liquefaction.



LOCUS PLAN



ARING N. ABUT. A. 0+55.152



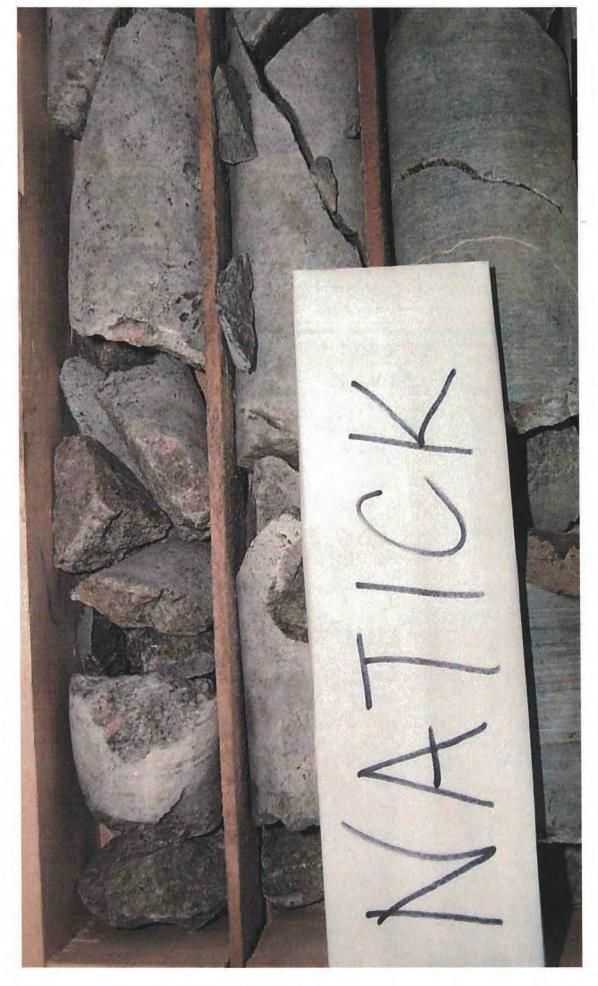
\*note: when retrieved pipe @ PIB, bottom sec pipe may have glanced off abutme

For B-1 and B-2: #'s indicate SPT "N" value: R = Refusal (N = 120) C = Cored Bedrock A00804-55

## APPENDIX A

# BORING LOGS AND BEDROCK CORE PHOTOS AND DESCRIPTION SHEET

Proposal No. 610869-128933 ddendum No. 1, January 15, 2025 BORING NUMBER: ZOINO-HEBERT, INC. Natick GEOTECHNICAL & ENVIRONMENTAL DRILLING SERVICES Spring St Bridge over CSX Railroad SURFACE ELEVATION: 3034 POST ROAD Bridge # N-3-7 WARWICK, RI 02886 STA: OFF: CASING SAMPLER CORE BAR. ENGINEER/ARCHITECT: Mass Highway START: 11-8-01 AT: 08:30 DRILLING FOREMAN: B. Hasse TYPE: HW SS HХ FINISH: 11-8-01 AT: 15:00 MUD INSPECTOR: SIZE, I.D.: 102 mm 51 mm J Downing TOTAL HOURS: GROUNDWATER OBSERVATIONS HAMMER WT. 136 kg 63.5 kg CONTRACT NO. OUR FILE NO. DATE TIME DEPTH STABILIZATION TIME HAMMER FALL 610 mm 760 mm None Encountered DEPTH CASING BLOWS FIELD CLASSIFICATION IN DEPTH RANGE SAMPLE CORING TIMES No. METERS BLOWS PER .15M IN METERS PER .3M 0.05 <sub>0</sub> 0-0.05 Asphalt S1 1.22-1.82 4-4-4-5 Moist, loose, brown, COARSE GRAVEL, some fine Sand, trace inorganinc Silt 2 S2 2.7-3.3 9-5-10-32 Moist, medium dense, brown, COARSE GRAVEL, trace fine sand, trace inorganic silt S3 4.26-4.5 67-120/.075 Moist, very dense, grey, MEDIUM TO COARSE GRAVEL, some inorganic, trace fine sand 4.72 C1 4.72-5.63 8-8-13 Highly Fractured GRANITE Percent Recovery = 100% 7-8-7 Highly Fractured GRANITE C2 5.63-6.4 6 Percent Recovery 100% 6-7-6-9 C3 6.40-7.78 Highly Fractured GRANITE Percent Recovery = 100% 7.78 Bottom of Boring at 7.78m 10 12 14 16 18 20 Remarks: Engineer instructed 1st sample at 1.2 m SCALE: 1:100


Proposal No. 610869-128933 Addendum Ner 1, January 15, 2025 ZOINO-HEBERT, INC. Natick GEOTECHNICAL & ENVIRONMENTAL DRILLING SERVICES Spring St Bridge over CSX Railroad SURFACE ELEVATION: 3034 POST ROAD Bridge # N-3-7 WARWICK, RI 02886 STA: SAMPLER CORE BAR. ENGINEER/ARCHITECT: Mass Highway CASING START: 11-7-01 AT: 09:30 DRILLING FOREMAN: B. Hasse TYPE: SS NX FINISH: 11-7-01 AT: 16:00 51 mm SIZE, I.D.: 102 mm MUD INSPECTOR: J Downing TOTAL HOURS: GROUNDWATER OBSERVATIONS HAMMER WT. 136 kg 63.5 kg OUR FILE NO. CONTRACT NO. DEPTH STABILIZATION TIME HAMMER FALL 610 mm 760 mm DATE TIME None Encountered DEPTH CASING BLOWS FIELD CLASSIFICATION IN DEPTH RANGE SAMPLE No. CORING TIMES METERS IN METERS BLOWS PER .15M PER .3M .05 Asphalt 0-0.05 S1 1.22-1.82 17-15-12-17 Moist, medium dense, brown, FINE to COARSE SAND, some fine gravel, trace inorganic silt 2 S2 2.7-2.93 35-120/.075 Dry, very dense, brown, COARSE SAND, some coarse gravel, 3.05 trace inorganic silt 15-7-9-8-10 C1 3.05-4.57 Top of Bedrock Coarse Grain GRANITE 100% Recovery 4.57-6.1 5-7-9-10-10 Coarse grain GRANITE C2 100% Recovery Bottom of Boring @ 6.10m 8 10 12 14 16 18 20 Remarks: Engineer instructed 1st sample at 1.2 m SCALE: 1:100



A00804 - 59



A00804 - 60



A00804 - 61

|                                                                                                                                                                                                                       | OG OGAGINATO CHA                           | BOCK CORE DESCRIPTION AND CLASSIFICATION                                                                             | ON AND CLASSIFICAT                                                 | NO                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|----------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|---------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                       | UNDANI                                     | Ch CONE DESCINITING                                                                                                  | ON WIND CENTROL                                                    |                                                   | Completed by / date                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| City/Town: $NA7/Ck$<br>Bridge or Hwy No.: $N-3-7$                                                                                                                                                                     | Boring No.:<br>Core length drilled/recov.: | 8-1 18-2<br>3m/3m 3m/3m                                                                                              | Core diameter: $63$<br>Average Core rate: $B_{M\dot{m}_{\lambda}}$ | 15.5m 5/ MM<br>12/0.5m 15min/0.5m                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                       | Igneous -granite, syenite, diorite,        |                                                                                                                      | gabbro, pegmatite, rhyolite, diabase, basalt,                      | , basalt, tuff                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                       | Sedimentary - shale, si                    | , siltstone, graywacke, sandstone, conglomerate, limestone, dolomite, gypsum                                         | idstone, conglomerate,                                             | limestone, dolomite, gy                           | mnsd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                       | Metamorphic - slate, pl                    | Metamorphic - slate, phyllite, schist, gneiss, quartzite, apphibalite, marble, hornfels                              | iartzite, apphibolite, ma                                          | ble, hornfels                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Grain Size                                                                                                                                                                                                            | amorphous                                  | fine grained                                                                                                         | medium                                                             | coarse                                            | very coarse                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                       | <0.075 mm                                  | 0.075-0.5 mm                                                                                                         | 0.5-2 mm                                                           | 2-5 mm                                            | >5 mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Secondary items                                                                                                                                                                                                       | infilling, voids, veins, fo                | infilling, voids, veins, fossils, bedding planes, foliation, intermittant weathered zones                            | oliation, intermittant wea                                         | thered zones                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Weathering - fresh-rock rings under hammer blow, may show some staining, crystals are bright; slightly-weathering limited to joints, rings under hammer blow,                                                         | ner blow, may show som                     | e staining, crystals are t                                                                                           | oright; slightly-weathern                                          | ng limited to joints, rings                       | s under hammer blow,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| some discoloring of crystals; moderate - weathering extends throughout the rock, has dull sound when struck by hammer, most minerals are dull and discolored some discolored to soil rock "fabric" is not discernable | reathering extends through                 | ghout the rock, has dull                                                                                             | sound when struck by the complete - reduced to                     | nammer, most minerals<br>soil rock "fabric" is no | are dull and discolored of discernable                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| severe - rock labric is evedent and rock                                                                                                                                                                              | s painty maple, some na                    |                                                                                                                      |                                                                    |                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ñl                                                                                                                                                                                                                    | 10                                         | 4-10                                                                                                                 | 2-4                                                                | (1-2)                                             | use uniaxial test here                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Uniaxial compressive strength (MPa)                                                                                                                                                                                   | 250                                        | 100-250                                                                                                              | 50-100                                                             | 25-50                                             | 5-25 1-5 <1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| General hardness*                                                                                                                                                                                                     | very hard                                  | hard                                                                                                                 | moderate                                                           | low                                               | friable soft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Ratino                                                                                                                                                                                                                |                                            | 12                                                                                                                   | 7                                                                  | (4)                                               | 2 1 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 2. Drill Core Quality (RQD = pieces>0.1 m / run length; neglect                                                                                                                                                       | n / run length; neglect ve                 | vertial joints, do not count drill breaks, measure from core centers)                                                | drill breaks, measure fr                                           | om core centers)                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ROD (%) 410 63 - 81 812                                                                                                                                                                                               | 90-100                                     | 12-90                                                                                                                | 20-75                                                              | 25-50                                             | <25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 1                                                                                                                                                                                                                     | 20                                         | Like                                                                                                                 | 13 (Call                                                           | 8                                                 | The state of the s |
| 3. Spacing of discontinuities                                                                                                                                                                                         | >2 m                                       | 0.6 - 2 m                                                                                                            | 200 - 600 mm                                                       | 60 - 200 mm                                       | < 60 mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Rating                                                                                                                                                                                                                | 20                                         | 15                                                                                                                   | Ω.                                                                 | 8                                                 | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 4. Condition of dicontinuities                                                                                                                                                                                        | very rough surfaces                        | slightly rough surfaces                                                                                              | slightly rough surfaces                                            | slickenslide surfaces                             | soft gouge>5 mmthick                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                       | not continuous                             | seperation < 1 mm                                                                                                    | seperation < 1 mm                                                  | gouge < 5 mm thick                                | seperation > 5 mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                       | no seperation                              | slightly weathered walls                                                                                             | highly weathered wall                                              | seperation 1-5 mm                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Rating                                                                                                                                                                                                                | 30                                         | 25                                                                                                                   | (Z0)                                                               | 10                                                | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 5. Groundwater General Conditions                                                                                                                                                                                     | completely dry                             | damp                                                                                                                 | wet                                                                | dripping                                          | flowing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                       | 15                                         | 10                                                                                                                   | ( 7                                                                | 4                                                 | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| B. Rating adjustment for discontinuity orientations                                                                                                                                                                   | ntations                                   | •                                                                                                                    |                                                                    |                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Strike/dip orient. of discontinuities                                                                                                                                                                                 | very favorable                             | favorable                                                                                                            | fair                                                               | unfavorable                                       | very unfavorable                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Foundations                                                                                                                                                                                                           | 0                                          | -2                                                                                                                   | \\ \( \frac{1}{2} \)                                               | -15                                               | -25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Slopes                                                                                                                                                                                                                | 0                                          | -5                                                                                                                   | -25                                                                | -50                                               | 09-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Rock Mass Rating                                                                                                                                                                                                      | +10+8+20+7-7 = 42                          |                                                                                                                      |                                                                    |                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                       | 81 - 100                                   | 61 - 80                                                                                                              | (41 - 60)                                                          | 21 - 41                                           | <20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Description                                                                                                                                                                                                           | very good rock                             | good rock                                                                                                            | Agil-rock                                                          | poor rock                                         | very poor rock                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| very hard - cannot scratch with knife, knife leaves steel on surface, breaking                                                                                                                                        | steel on surface, breaking of s            | of specimen requires several hard hammer blows; hard - difficult to scratch, scratch is faintly visible, hard hammer | d hammer blows; hard - diffic                                      | ult to scratch, scratch is faint                  | lly visible, hard hammer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| blow needed to break, rebounds when impacted by ballpeen hammer, moderal                                                                                                                                              | ballpeen hammer, moderate -                | ie - readily scratched by knife, moderate blow will fracture specimen, splits when impacted by ballpeen hammer       | oderate blow will fracture spe                                     | cimen, splits when impacted                       | by ballpeen hammer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| low - can gouge to 3 mm deep by knife, dents when impacted by 1/2 kg ballpeen hammer, similar to strength of concrete; friable - can be crumpled in hand, thin pieces can be broken by finger                         | impacted by 1/2 kg ballpeen t              | nammer, similar to strength of                                                                                       | concrete; friable - can be cru                                     | mpled in hand, thin pieces co                     | an be broken by finger                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| pressure craters when impacted by balloeen hammer; soft - can be carved by knife, easily scratched by fingernail, easily crumpled by hand                                                                             | er: soft - can be carved by kni            | fe, easily scratched by fingern                                                                                      | nail, easily crumpled by hand                                      |                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| מפספתים' משפופ תוופון שולבפורה א בחולב                                                                                                                                                                                |                                            |                                                                                                                      |                                                                    |                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

# APPENDIX B CALCULATIONS

| MASS | ASS HIGHWAY |
|------|-------------|
|------|-------------|

assachusetts Highway Department, Geotechnical Section Ten Park Plaza, Boston, MA 02116

| Project  | NATICK     | N-3-7            |  |
|----------|------------|------------------|--|
| Engineer | J. PETTIS' | Date             |  |
| Reviewer |            | Date             |  |
| -        |            | Sheet No. / of S |  |

1565.06 KN/Abrt from Consultant S DLS/ab 229.68 550 96.25 2441 = QV QH = 0.1QV = 244.1KN for backfill, &= 33° Y=19KN/m3 S=3 &= 22° Ka = 0.265 (Conservatively assuming all back till is soil, likely partly nick) Pa = { (0.265) (19 km/m3) (7.3') = 134.2 km/m Pah = Pa cos 22° = 124.4 km/m Par = Pa sin 22° = 50.26 km/m



Project NATICK N-3-7
Engineer J. PCTT) Date

Reviewer Date

Sheet No. 2 of 5

wassachusetts Highway Department, Geotechnical Section Ten Park Plaza, Boston, MA 02116

| VSL A | butleryth, L=10.8m | Force per m, kt             | Money Arm, M | Moment per M, kov. 1      |
|-------|--------------------|-----------------------------|--------------|---------------------------|
|       | Q <sub>H</sub>     | 244.1 /10.8                 | 6.7          | 151.43                    |
|       | Pah                | -124.4<br>= -103.65         | 7.3/3        | -302.71                   |
|       | Qv                 | 2441/10.8                   | 0.55         | 124.31                    |
|       | Par                | 50.26                       | 1.9          | 95.49                     |
|       | Ab-t               | (7.3m)(1.9m)(1m)(25.9km/m3) | 1.9/2        | 341.24                    |
|       |                    | ΣFv= 635.48                 |              | ΣM <sub>70</sub> ε=409.76 |
|       |                    | 4.2.                        |              |                           |

$$\overline{X} = \frac{409.76}{635.48} = 0.645$$
 (Win middle third)

$$FS_0 = \frac{409.76 + 302.71}{302.71} = 2.35 > 2.0$$

$$FS_{5} = \frac{635.48 + 35^{\circ} + 22.60}{124.4} = 3.76 > 1.5$$

Sheet No. 3

of



Project NATICK N-3-7
Engineer J.PETTIS Date
Reviewer Date

Massachusetts Highway Department, Geot**echni**cal Section Ten Park Plaza, Boston, MA 02116

using B=1.9 m

$$e_B = \frac{1.9}{2} - 0.645 = 0.305$$

Since la L B/6

$$2max = (635.48 \text{ kH/m} \times 10.8 \text{m}) \left[ 1 + \frac{6(0.305)}{1.9} \right]$$

$$= 656.6 \text{ kH/m}^{2}$$

Buring Capacity:

$$FS_{BC} = \frac{2520 \, \text{kn/m}^2}{656.6 \, \text{km/m}^2} = 3.84$$

for plans

for plans

factorial capacity =  $2520 \text{ kN/nex} \left( \phi = 06 \right) = 15/0 = 1500 \text{ kN/m}^2$ 

## **Point Load Strength Index**

Location:

date

Borehole ref:

NATICK N-3-7 B-1 0 B-2

Description

GRAW ITE

(MN/M2)

| from | to    |                                                       |                                                                                 |                                                                                                          |                                                                                                                                                                             | (MIN/W)                                                                                                                                                                                                    |                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                             |
|------|-------|-------------------------------------------------------|---------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|      |       | D-mm                                                  | P-kN                                                                            | De <sup>2</sup> -mm <sup>2</sup>                                                                         | De-mm                                                                                                                                                                       | 1.                                                                                                                                                                                                         | F                                                                                                                                                                                                                    | 19(80)                                                                                                                                                                                                                                                      |
|      |       |                                                       | 5.5                                                                             | 5776                                                                                                     | 76                                                                                                                                                                          |                                                                                                                                                                                                            |                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                             |
|      |       | 1                                                     | 14                                                                              | 8032                                                                                                     | 90                                                                                                                                                                          | 1.74                                                                                                                                                                                                       |                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                             |
|      |       |                                                       | 13                                                                              | 5776                                                                                                     | 76                                                                                                                                                                          | 2.25                                                                                                                                                                                                       |                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                             |
| d    | 95    |                                                       | 4                                                                               | 5776                                                                                                     | 76                                                                                                                                                                          | 0.69                                                                                                                                                                                                       |                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                             |
|      |       |                                                       |                                                                                 |                                                                                                          |                                                                                                                                                                             |                                                                                                                                                                                                            |                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                             |
| d    | 64    | 5/                                                    | 20                                                                              | 2601                                                                                                     | 51                                                                                                                                                                          | 7.69                                                                                                                                                                                                       |                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                             |
| d    | 1     | 51                                                    | 8                                                                               | 2601                                                                                                     | 5/                                                                                                                                                                          | 3.08                                                                                                                                                                                                       |                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                             |
| d    |       |                                                       | 12                                                                              | 1                                                                                                        | . 51                                                                                                                                                                        | 4.61                                                                                                                                                                                                       |                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                             |
| d    |       | 51                                                    | 13                                                                              | 2601                                                                                                     | 51                                                                                                                                                                          | 5.00                                                                                                                                                                                                       | ,                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                             |
|      |       |                                                       |                                                                                 |                                                                                                          |                                                                                                                                                                             |                                                                                                                                                                                                            |                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                             |
|      |       |                                                       |                                                                                 |                                                                                                          |                                                                                                                                                                             |                                                                                                                                                                                                            |                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                             |
|      |       |                                                       |                                                                                 |                                                                                                          |                                                                                                                                                                             |                                                                                                                                                                                                            |                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                             |
|      |       |                                                       |                                                                                 |                                                                                                          |                                                                                                                                                                             |                                                                                                                                                                                                            |                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                             |
|      |       |                                                       |                                                                                 |                                                                                                          | ,                                                                                                                                                                           |                                                                                                                                                                                                            |                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                             |
|      |       |                                                       |                                                                                 |                                                                                                          |                                                                                                                                                                             |                                                                                                                                                                                                            |                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                             |
|      |       |                                                       |                                                                                 |                                                                                                          |                                                                                                                                                                             |                                                                                                                                                                                                            |                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                             |
|      |       |                                                       |                                                                                 |                                                                                                          |                                                                                                                                                                             |                                                                                                                                                                                                            |                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                             |
|      |       |                                                       |                                                                                 |                                                                                                          |                                                                                                                                                                             |                                                                                                                                                                                                            |                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                             |
|      |       |                                                       |                                                                                 |                                                                                                          |                                                                                                                                                                             |                                                                                                                                                                                                            |                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                             |
|      |       |                                                       |                                                                                 |                                                                                                          |                                                                                                                                                                             |                                                                                                                                                                                                            |                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                             |
|      | d d d | Type W-mm  d 70  Q 76  d 127  d 95  d 64  d 64  d 114 | Type W-mm D-mm  d 70 7h  Q 76 83  d 127 76  d 95 76  d 64 51  d 64 51  d 114 51 | Type W-mm D-mm P-kN  d 70 7h 5.5  Q 76 83 14  d 127 76 13  d 95 76 4  d 64 5/ 20  d 64 5/ 8  d 114 51 12 | Type W-mm D-mm P-kN De <sup>2</sup> -mm <sup>2</sup> d 70 76 5.5 5776  Q 76 83 14 8032  d 127 76 13 5776  d 95 76 4 5776  d 64 5/ 20 266/  d 64 5/ 8 260/  d 114 51 12 260/ | Type W-mm D-mm P-kN De <sup>2</sup> -mm <sup>2</sup> De-mm  d 70 7h 5.5 5776 76  a 76 83 14 8032 90  d 127 76 13 5776 76  d 95 76 4 5776 76  d 64 5/ 20 266/ 5/  d 64 5/ 5/ 8 260/ 5/  d 114 51 12 260/ 5/ | Type W-mm D-mm P-kN De²-mm² De-mm I,  d 70 7h 5.5 5776 76 0.95  Q 76 83 14 8032 90 1.74  d 127 76 13 5776 76 2.25  d 95 76 4 5776 76 0.69  d 64 51 20 2661 51 7.69  d 64 51 8 2601 51 3.08  d 114 51 12 2601 51 4.61 | Type W-mm D-mm P-kN De <sup>2</sup> -mm <sup>2</sup> De-mm I <sub>9</sub> F  d 70 7h 5.5 5776 76 0.95  Q 76 83 14 8032 90 1.74  d 127 76 13 5776 76 2.25  d 95 76 4 5776 76 0.69  d 64 51 20 2661 51 7.69  d 64 51 8 2601 51 3.08  d 114 51 12 2601 51 4.61 |

| T | y | p | 8 | d | a | ta |  |
|---|---|---|---|---|---|----|--|
|---|---|---|---|---|---|----|--|

d - diametral

a - axial

b - block

i - irregular lump

relationship to weakest plane

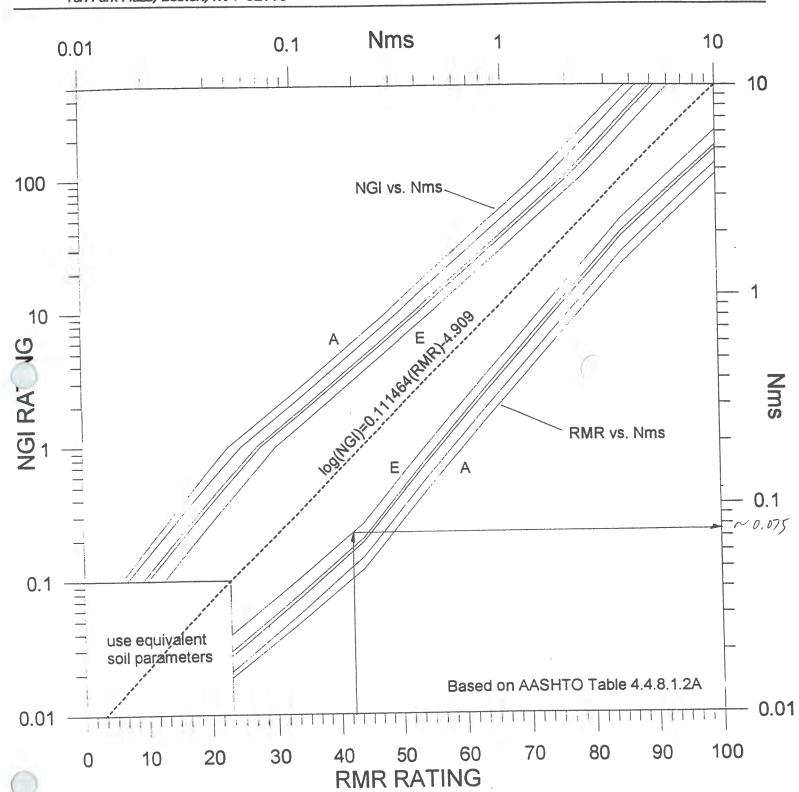
- perpendicular

// - parallel

Figure 11

| Re | sul | t su | mm | ary |
|----|-----|------|----|-----|

Result summary /. 4 MN/m² CB-/
mean I<sub>s</sub>(50) // 5./ MN/m² CB-/


| Signed | John Pethis |
|--------|-------------|
| Date   | 5/02        |

A00804 - 67



Project NATICE N-3-7
Engineer J. PETITS Date
Reviewer Date
Sheet No. 5 of 5

Ivassachusetts Highway Department, Geotechnical Section Ten Park Plaza, Boston, MA 02116



Natick: Spring Street over MBTA/CSX: Preliminary Structure Report Br. No. N-03-007 (29N) (MassDOT Project File No. 610869)

# **Appendix E**

**Abutment Analysis** 

Tbl. 10.5.5.2.2-1



**Design Properties:** 

Comp By: **NPB 7/21** Chkd By: GNM 12/22

Internal Friction Angle:

Project: NATICK: Shared Use Path over MBTA

Subject: Design Calculations: Bridge No. N-03-007 (29N)

Job No.: 52680A41 **NORTH ABUTMENT** References STABILITY CHECK & DESIGN - For determining  $k_a$ , per C3.11.5.3, the friction angle between fill and concrete wall can be taken as  $\delta = 0.67 * \phi_f$  or directly from Table C3.11.5.3-1. - For sliding, per C3.11.5.3,  $tan(\delta)$  = 0.8 \*  $tan(\phi_f)$  for p/c on soil OR  $tan(\delta) = 1.0 * tan(\phi_f)$  for concrete cast on soil Concrete Unit Weight,  $\gamma_c$  = 0.150 kip/ft3 Soil Unit Weight,  $\gamma_s$  = 0.120 kip/ft3 Bituminous Unit Weight,  $\gamma_b$  = 0.140 kip/ft3 Granite Unit Weight,  $\gamma_g$  = 0.165 kip/ft3 Soil Below Footing,  $\phi_f$  = 35.0 ° - See Geotech Report Backfill Soil, φ<sub>f</sub> = 33.0 ° (typical backfill) 0.5760 rad Slope Angle of Soil,  $\beta$  = 0.00° 0.0000 rad Angle of Backface of Wall,  $\theta$  = 90.0° 1.5708 rad Friction Angle Between Fill and Wall,  $\delta$  = 22.0 ° - See Geotech Report 0.3840 rad 174.50 ft Top of Backwall Elevation = Bridge Seat Elevation = 171.75 ft Bottom of Footing Elevation = 150.59 ft Proposed Truss Length, L = **65.50** ft Bridge Skew = 0.000 ° (from vertical) Abutment Length, La = 35.80 ft Abutment Height, Ha = 23.91 ft (Bottom of Abutment to Top of Backwall) Abutment Width, W = 6.23 ft Live Load Surcharge Height, h<sub>s</sub> = **0.00** ft AASHTO LRFD Construction Surcharge Height, h<sub>cs</sub> = 3.000 ft (estimated) Tbl. 3.11.6.4-1 Height of Water Table, h<sub>w</sub> = 0.00 ft 2520.00 kN/m<sup>2</sup> - See 2002 Geotech Report Nominal Bearing Resistance, p<sub>n</sub> = 52.64 kips/ft<sup>2</sup> Resistance Factor,  $\Phi_b$  = AASHTO LRFD 0.45

|                                                          | Wall Height | Surcharge |                                    |
|----------------------------------------------------------|-------------|-----------|------------------------------------|
|                                                          | ft          | ft        |                                    |
| Surcharge Height for Abutments Perpendicular to Traffic: | 5           | 4         |                                    |
|                                                          | 10          | 3         |                                    |
|                                                          | 20          | 2         |                                    |
| Height =                                                 | 7.760       | 3.448     | ft, based on H20, from Bridge Code |
|                                                          |             | 1.724     | ft, based on H10                   |

23.69 kips/ft<sup>2</sup>

Factored Bearing Resistance,  $p = p_n * \Phi_b =$ 

Job No :



Comp By: **NPB 7/21**Chkd By: **GNM 12/22** 

Project: NATICK: Shared Use Path over MBTA

Subject: Design Calculations: Bridge No. N-03-007 (29N)

#### NORTH ABUTMENT

#### STABILITY CHECK & DESIGN

# Assumptions:

- 1. Analysis is done according to the methods outlined in AASHTO LRFD Manual.
- 2. Analysis performed checking per foot of footing length.
- 3. Per MassDOT, all cantilever and gravity walls founded on rock shall assume at-rest soil pressure. However, active earth pressure is assumed for this abutment analysis. Given the very slender assumed abutment shape and the likely more flexible nature of stacked granite blocks compared to a reinforced concrete abutment with the same dimensions, it is assumed that the abutment rotates/deflects enough to cause active earth pressure. Also it is likely that there is a leveling pad between the abutment and bedrock that could further allow for rotation.

 $\sin^2(\theta + \phi) =$ 

 $sin(\theta - \delta) =$ 

 $sin(\phi + \delta) =$ 

 $sin(\phi - \beta) =$  $sin(\theta + \beta) =$ 

 $\sin^2\theta =$ 

0.703

1.000

0.927

0.819

0.545

1.000

# MassDOT LRFD Br. Manual Pt. I - 3.1.5

52680A41

References

# **Earth Pressure Coefficient:**

#### Active Earth Pressure Coefficient:

Values for the coefficient of active lateral earth pressure may be taken as:

$$k_{\alpha} = \frac{\sin^2(\theta + \phi_f')}{\Gamma \left[\sin^2\theta \sin(\theta - \delta)\right]}$$
(3.11.5,3-1)

in which:

$$\Gamma = \left[1 + \sqrt{\frac{\sin(\phi_f' + \delta)\sin(\phi_f' - \beta)}{\sin(\theta - \delta)\sin(\theta + \beta)}}\right]^2$$
 (3.11.5.3-2)

#### where:

 $\delta$  = friction angle between fill and wall (degrees)

β = angle of fill to the horizontal as shown in Figure 3.11.5.3-1 (degrees)

θ = angle of back face of wall to the horizontal as shown in Figure 3.11.5.3-1 (degrees)

 $\phi'_f$  = effective angle of internal friction (degrees)

# At-rest Earth Pressure Coefficient:

$$K_o = 1 - \sin \phi$$
  
= **0.455**

## Design Earth Pressure Coefficient:

$$K_d$$
 = 0.5 \*  $(K_o + K_a)$  = 0.360 Walls <5ft and founded on soil 
$$K_a = 0.264$$
 Walls >5ft and founded on soil 
$$K_o = 0.455$$
 Use when founded on rock

Use K<sub>o</sub> = 0.264

AASHTO LRFD 3.11.5.2

MassDOT LRFD Br. Manual 3.1.6



Comp By: **NPB 7/21** 

Height of Stem (3) =

EL =

Width of Abutment =

19.660

150.590

6.230

Project: NATICK: Shared Use Path over MBTA

Subject: Design Calculations: Bridge No. N-03-007 (29N)

Job No.:

Bedrock Flevation = 164.740

Height of Bedrock H<sub>b</sub> =

14.150 ft

Bearing Height = 21.160 ft

ft

52680A41

#### Chkd By: GNM 12/22 **NORTH ABUTMENT** References STABILITY CHECK & DESIGN Calculate Loads on Abutment: Superstructure Dead Loads: - Approach Slab Load Calculation: - Live load, by inspection, is controlled by pedestrian load instead of the H10 truck. Length of Approach Slab, L = 15.000 ft Width of Approach Slab, W = 10.000 ft Thickness of Approach Slab, $t_{slab}$ = 10.000 in Thickness of Pavement Structure Above Slab, $t_{pave}$ = 14.000 in Weight of Approach Slab, $w_{slab} = \overline{(L^*W^*t^*\gamma_c)/2 + (L^*W^*t^*\gamma_b)/2}$ 21.625 kips - Moment is taken about the toe of the footing Centerline of Bearing from Toe of Abutment = 1.000 ft (1 foot from face of cap) Centerline of Approach Slab from Toe of Abutment = 2.750 Total Per Foot Moment Arm Moment V ∗ a R $V = R/L_a$ а [kip] [kip] [ft] [kip\*ft] DC Reaction, R<sub>DC</sub> = 62.031 1.00 From Contech 1.73 1.73 DW Reaction, R<sub>DW</sub> = 8.200 0.23 0.23 1.00 LL Reaction, R<sub>LL</sub> = 29.475 0.82 1.00 0.82 (Pedestrian Controls) Approach Slab Reaction, R<sub>App</sub> = 21.625 0.60 2.75 1.66 Abutment Dead Load, DC: Width of Abutment Cap = 3.000 ft Width of Backwall = 1.333 ft CL App. Width of Bridge Seat = Top of Pavement EL = 174.500 (equals top of backwall) 1.667 Slab ft 0.500 Width of App. Slab Seat = ft Top of Backwall EL = 174.500 (average) Approach Slab & Fill Above Height of Backwall = 2.750 ft **CL Bearing** Bridge Seat EL = 171.750 (average) Cap Height = 1.500 ft Soil Height = 7.760 Bottom of Cap EL = 170.250

52680A41

References



Comp By: **NPB 7/21** Chkd By: **GNM 12/22**  Project: NATICK: Shared Use Path over MBTA

Subject: Design Calculations: Bridge No. N-03-007 (29N)

#### NORTH ABUTMENT

STABILITY CHECK & DESIGN

- Moment is taken about the toe of the abutment

|            | Base | Height | Shape  | Material          | Weight, V | Mom. Arm          | Moment   |
|------------|------|--------|--------|-------------------|-----------|-------------------|----------|
| Section    | (ft) | (ft)   | Factor | Density           | (kip)     | (ft)              | (kip-ft) |
| 1-Backwall | 1.33 | 0.75   | 1.00   | 0.150             | 0.15      | 2.33              | 0.35     |
| 2-Backwall | 0.83 | 2.00   | 1.00   | 0.150             | 0.25      | 2.08              | 0.52     |
| 2-Cap      | 3.00 | 1.50   | 1.00   | 0.150             | 0.68      | 1.50              | 1.01     |
| 3A-Stem    | 6.23 | 19.66  | 1.00   | 0.165             | 20.21     | 3.12              | 62.95    |
| 3B-Stem    | 0.00 | 0.00   | 1.00   | 0.150             | 0.00      | 0.00              | 0.00     |
| 3C-Stem    | 0.00 | 0.00   | 1.00   | 0.150             | 0.00      | 0.00              | 0.00     |
| 4-Footing  | 0.00 | 0.00   | 1.00   | 0.150             | 0.00      | 0.00              | 0.00     |
|            |      |        |        | V <sub>DC</sub> = | 21.28     | M <sub>DC</sub> = | 64.84    |

# Vertical Earth Pressure, EV:

- Moment is taken about the toe of the footing

|              | Base | Height | Shape  | Material          | Weight, V | Mom. Arm          | Moment   |
|--------------|------|--------|--------|-------------------|-----------|-------------------|----------|
| Section      | (ft) | (ft)   | Factor | Density           | (kip)     | (ft)              | (kip-ft) |
| 5A-Heel Soil | 3.23 | 2.25   | 1.00   | 0.120             | 0.87      | 4.62              | 4.02     |
| 5B-Heel Soil | 0.00 | 0.00   | 1.00   | 0.120             | 0.00      | 0.00              | 0.00     |
| 5C-Heel Soil | 0.00 | 0.00   | 1.00   | 0.120             | 0.00      | 0.00              | 0.00     |
|              |      |        |        | V <sub>EV</sub> = | 0.87      | M <sub>EV</sub> = | 4 02     |

- Consider soil over Toe of Footing for Bearing Resistance Check Only

|             | Base | Height | Shape  | Material           | Weight, V | Mom. Arm           | Moment   |
|-------------|------|--------|--------|--------------------|-----------|--------------------|----------|
| Section     | (ft) | (ft)   | Factor | Density            | (kip)     | (ft)               | (kip-ft) |
| 6A-Toe Soil | 0.00 | 0.00   | 1.00   | 0.120              | 0.00      | 0.00               | 0.00     |
| 6B-Toe Soil | 0.00 | 0.00   | 1.00   | 0.120              | 0.00      | 0.00               | 0.00     |
|             |      |        |        | V <sub>EV2</sub> = | 0.00      | M <sub>EV2</sub> = | 0.00     |



Comp By: **NPB 7/21**Chkd By: **GNM 12/22** 

Project: NATICK: Shared Use Path over MBTA

Subject: Design Calculations: Bridge No. N-03-007 (29N)

NORTH ABUTMENT
STABILITY CHECK & DESIGN

52680A41

References

Horizontal Earth Pressure, EH:

Earth Pressure Force:

$$F_{EH} = 0.5 * \gamma_s * K_d * (H - h_w)^2$$
  
= 0.96 kip

Components:

$$\begin{aligned} F_{\text{EH-h}} &= F_{\text{EH}} \cdot \cos(90 - \theta + \delta) \\ &= 0.89 \text{ kip} \\ F_{\text{EH-v}} &= F_{\text{EH}} \cdot \sin(90 - \theta + \delta) \\ &= 0.36 \text{ kip} \end{aligned}$$

Overturning Moment:

 $Moment\ Arm\ for\ Backfill,\ a_b = (H-h_w)/3 + H_b \quad \textit{(triangular\ pressure\ on\ back\ of\ abutment,\ therefore\ H/3)}$ 

= 16.74 ft  

$$M_{EH-O} = F_{EH-h} \cdot a_b$$
  
= 14.83 kip-ft

Resisting Moment:

Resisting Moment Arm, 
$$a_r = \frac{6.23}{M_{EH-R} = F_{EH-V} \cdot a_r}$$
 ft (abutment width)



Comp By: **NPB 7/21** Chkd By: GNM 12/22 Project: NATICK: Shared Use Path over MBTA

Subject: Design Calculations: Bridge No. N-03-007 (29N)

**NORTH ABUTMENT** 

52680A41 References

AASHTO LRFD

3.11.6.4

# STABILITY CHECK & DESIGN

#### Live Load Surcharge, LS:

Live Load Surcharge can be ignored since approach slabs are provided.

Surcharge Force:

$$\begin{array}{ll} F_{LS} = K_d \cdot \gamma_s \cdot h_s \cdot H & \textit{(Height is conservatively to top of backwall)} \\ = & 0.00 \text{ kip} \\ \\ \text{Components:} \\ F_{LS \cdot h} = F_{LS} \cdot \cos(90 - \theta \ + \delta) \\ = & 0.00 \text{ kip} \\ \\ F_{LS \cdot v} = F_{LS} \cdot \sin(90 - \theta \ + \delta) \\ = & 0.00 \text{ kip} \\ \end{array}$$

Overturning Moment:

Moment Arm for Surcharge, 
$$a_s = H / 2 + H_b$$
 (constant pressure on back of abutment, therefore H/2)
$$= 18.03 \text{ ft}$$

$$M_{LS-O} = F_{LS-h} \cdot a_s$$

$$= 0.00 \text{ kip-ft}$$

Resisting Moment:

- for sliding and eccentricity:

Resisting Moment Arm, 
$$a_b = 6.23$$
 ft (applied at back face of stem)
$$M_{LS-R1} = F_{LS-v} \cdot a_b$$

$$= 0.00 \text{ kip-ft}$$

- for bearing:

Resisting Moment Arm, 
$$a_b = 6.23 \text{ ft}$$
 (applied at back face of stem)
$$M_{LS-R2} = F_{LS-v} \cdot a_b$$

$$= 0.00 \text{ kip-ft}$$

# Construction Surcharge, CS:

Surcharge Force:

$$\begin{split} F_{CS} &= \mathsf{K}_d \cdot \gamma_s \cdot \mathsf{h}_{cs} \cdot \mathsf{H} \\ &= 0.74 \text{ kip} \\ \text{Components:} \\ F_{CS\text{-h}} &= F_{CS} \cdot \cos(90 - \theta \ + \delta) \\ &= 0.68 \text{ kip} \\ F_{CS\text{-v}} &= F_{CS} \cdot \sin(90 - \theta \ + \delta) \\ &= 0.28 \text{ kip} \end{split}$$

Overturning Moment:

Moment Arm for Surcharge, 
$$a_s = H / 2 + H_b$$
 (constant pressure on back of abutment, therefore H/2) 
$$= 18.03 \text{ ft}$$

$$M_{CS-O} = F_{CS-h} \cdot a_s$$

$$= 12.35 \text{ kip-ft}$$

Resisting Moment:

- for sliding and eccentricity:

Resisting Moment Arm, 
$$a_b = 6.23$$
 ft (applied at back face of stem)
$$M_{CS-R1} = F_{CS-v} \cdot a_b$$

$$= 1.72 \text{ kip-ft}$$

- for bearing:

Resisting Moment Arm, 
$$a_b = 6.23$$
 ft (applied at back face of stem) 
$$M_{CS-R2} = F_{CS-v} \cdot a_b$$
 = 1.72 kip-ft



Comp By: NPB 7/21 Chkd By: GNM 12/22 Project: NATICK: Shared Use Path over MBTA

Subject: Design Calculations: Bridge No. N-03-007 (29N)

Job No.:

52680A41 References

From Contech

AASHTO LRFD

# **NORTH ABUTMENT**

## STABILITY CHECK & DESIGN

# Thermal Uniform Load, TU:

\* Assume elastomeric bearings and assume point of zero movement is at midspan.

\* Load is transferred to the abutments via bearing deflection

| $P_{TF(abut,)} =$                   | 6.00  | kip     | (Per Abutment)           |
|-------------------------------------|-------|---------|--------------------------|
| =                                   | 0.17  | kip     | (Per foot of Abutment)   |
| Moment Arm =                        | 21.16 | ft      | (Applied at bridge seat) |
| Overturning Moment, $M_{TF}$ =      | 3.5   | ft-k    |                          |
| $P_{TF,long} = P_{TF}^*cos(skew) =$ | 0.17  | kips    |                          |
| $P_{TF,trans} = P_{TF}*sin(skew) =$ | 0.00  | kips    |                          |
| $M_{TF,long} = M_{TF}^*cos(skew) =$ | 3.55  | kips/ft |                          |
| $M_{TF,trans} = M_{TF}*sin(skew) =$ | 0.00  | kips/ft |                          |

# Moment Transferred by Bearings, BRG:

- Neglect, assume negligible

14.6.3.2

$$M_u = 1.60^*(0.5 * E_c * I) * \vartheta_s / h_{rt}$$
 where: 
$$\vartheta_s = \text{All Rotations}$$
 
$$= 0.0000 \text{ radians}$$
 
$$I = 1/4 * \pi * (D/2)^4 * N_p$$
 where: 
$$Length \text{ of Pad (along abutment), b = 0.000} \text{ in }$$
 Width of Pad (perpendicular to abutment), h = 0.000 in 
$$N_p = 0.000 \text{ in }$$
 Width of Pad (perpendicular to abutment), h = 0.000 in 
$$N_p = 0.000 \text{ in }$$
 
$$N_p$$

|                                                           | Hardness (Shore A) |             |             |  |  |
|-----------------------------------------------------------|--------------------|-------------|-------------|--|--|
|                                                           | 50                 | 60          | 701         |  |  |
| Shear Modulus @ 73°F (ksi)                                | 0.095-0.130        | 0.130-0.200 | 0.200-0.300 |  |  |
| Creep deflection @ 25 yr<br>divided by initial deflection | 0,25               | 0.35        | 0.45        |  |  |

$$G_{max} = \begin{array}{c} \textbf{0.500} \text{ ksi} \\ \textbf{S} = (\texttt{L} * \texttt{W}) \ / \ [2 * \texttt{h}_{rt} * (\texttt{L} + \texttt{W})] \\ \textbf{h}_{prov.} = & 1.000 \text{ in} \\ \textbf{S} = & 0.938 \\ = & 2.1 \text{ ksi} \\ = & 0.000 \text{ ft-k} & (per beam) \\ \text{where:} \\ \textbf{N}_{brg} = & \textbf{2} \\ \textbf{M}_{u(abut.)} = & \texttt{M}_{u} * (\texttt{N}_{brg} \ / \ L_{a}) \\ = & 0.000 \text{ ft-k} & (per \text{ ft of abutment)} \\ \end{array}$$

 $M_{u,abut long} = M_{u,abut} * cos(skew) =$ 0.000 kips/ft  $M_{u,abut trans} = M_{u,abut} *sin(skew) =$ 0.000 kips/ft

52680A41



Comp By: **NPB 7/21**Chkd By: **GNM 12/22** 

Project: NATICK: Shared Use Path over MBTA

Subject: Design Calculations: Bridge No. N-03-007 (29N)

\_\_\_\_

|                                                                    | NORTH ABUTMENT                                |                                                | References        |
|--------------------------------------------------------------------|-----------------------------------------------|------------------------------------------------|-------------------|
|                                                                    | STABILITY CHECK & DESIGN                      |                                                |                   |
| Braking Force, BR:                                                 |                                               |                                                |                   |
| - Braking Force is ignored since bridge is intended for pedestrian | use.                                          |                                                |                   |
|                                                                    |                                               |                                                |                   |
| - Breaking Force shall be the maximum of                           | f:                                            |                                                | 3.6.4             |
| 1 - 25% - W <sub>truck</sub>                                       | <b>3 -</b> 5% * [V                            | N <sub>truck</sub> + (W <sub>lane *</sub> L)]  |                   |
| Weight of Truck, $W_{truck} = 0.0$ kip                             | Lane Load, w <sub>lane</sub> =                | <b>0.000</b> kip/ft                            |                   |
| = 0.0 kip                                                          | =                                             | 0.0 kip                                        |                   |
|                                                                    |                                               |                                                |                   |
| <b>2 -</b> 25% * W <sub>tandem</sub>                               | <b>4 -</b> 5% * [\                            | N <sub>tandem</sub> + (W <sub>lane *</sub> L)] |                   |
| Weight of Tandem, W <sub>tandem</sub> = <b>0.0</b> kip             | =                                             | 0.0 kip                                        |                   |
| = 0.0 kip                                                          |                                               |                                                |                   |
|                                                                    |                                               |                                                |                   |
| Controlling, F <sub>max</sub> =                                    | 0.0 kip                                       |                                                |                   |
| Max No. Lanes in same Direction, N <sub>L</sub> =                  | 1 (assume only (1) truck breaking in sam      | e direction)                                   |                   |
| Multiple Presence Factor, m =                                      | 1.20                                          |                                                |                   |
| Dreaking Fares F (N                                                | F \/                                          |                                                |                   |
| Breaking Force, $F_{BR} = (N_L \cdot$                              |                                               |                                                | Th. 1 0 0 4 4 0 4 |
| =                                                                  | 0.00 kip (per abutment)                       |                                                | Tbl. 3.6.1.1.2-1  |
| =<br>Managed Amages                                                | 0.00 kip (per foot abutment)                  |                                                |                   |
| Moment Arm, a <sub>BR</sub> =                                      | 21.16 ft - Breaking Force acts at Bridge Seat | Elevation                                      |                   |
| Breaking Force Moment, $M_{BR} = F_{BR}$                           | 2                                             |                                                |                   |
| =                                                                  | 0.00 kip-ft                                   |                                                |                   |
| _                                                                  | 0.00 KIP-II                                   |                                                |                   |
| $F_{BR,long} = F_{BR} * cos(skew) =$                               | 0.00 kips                                     |                                                |                   |
| $F_{BR,trans} = F_{BR} * sin(skew) =$                              | 0.00 kips                                     |                                                |                   |
| $M_{BR,long} = M_{BR}^* cos(skew) =$                               | 0.00 kips/ft                                  |                                                |                   |
| $M_{BR,trans} = M_{BR} * sin(skew) =$                              | 0.00 kips/ft                                  |                                                |                   |
| ····bix,italis ····bix officerent)                                 | port                                          |                                                |                   |



Comp By: **NPB 7/21**Chkd By: **GNM 12/22** 

Project: NATICK: Shared Use Path over MBTA

Subject: Design Calculations: Bridge No. N-03-007 (29N)

# NORTH ABUTMENT STABILITY CHECK & DESIGN

References

52680A41

# Earthquake/Seismic Loads, EQ:

- Per MassDOT Part I 3.4.4.3, conventional bridges, both single and multi-span, classified as SDC A, the abutments do not have to be designed for seismic forces.

| Total Superstructure Dead Load at North Abutment = ∑ = | 0.000 | kips |
|--------------------------------------------------------|-------|------|
| Total Superstructure Dead Load at South Abutment = ∑ = | 0.000 | kips |
| Total =                                                | 0.000 | kips |

#### 3.10.8—Combination of Seismic Force Effects

The elastic seismic force effects on each of the principal axes of a component resulting from analyses in the two perpendicular directions shall be combined to form two load cases as follows:

- 100 percent of the absolute value of the force effects in one of the perpendicular directions combined with 30 percent of the absolute value of the force effects in the second perpendicular direction, and
- 100 percent of the absolute value of the force effects in the second perpendicular direction combined with 30 percent of the absolute value of the force effects in the first perpendicular direction.

#### - Weak Direction Force (Normal to Abutment):

- Longitudinal Force used to check abutment stability.
- Longitudinal Moment used to check abutment stability.

| P <sub>EQ</sub> =                               | Total Structure | Weight * 25% |                          |
|-------------------------------------------------|-----------------|--------------|--------------------------|
| =                                               | 0.000           | kips         |                          |
| Mark Direction Force - 4000/ v.D                | 0.000           | Leter a      | (fatal an about a st     |
| Weak Direction Force = 100% x P <sub>EQ</sub> = | 0.000           | kips         | (total on abutment)      |
| =                                               | 0.000           | kips         | (Per foot of Abutment)   |
| Moment Arm =                                    | 21.160          | ft           | (Applied at bridge seat) |
| Weak Direction Moment =                         | 0.000           | kip-ft       |                          |
| $P_{EQ,long} = P_{EQ} cos(skew) =$              | 0.000           | kips         |                          |
| $P_{EQ,trans} = P_{EQ}*sin(skew) =$             | 0.000           | kips         |                          |
| $M_{EQ,long} = M_{EQ} * cos(skew) =$            | 0.000           | kips/ft      |                          |
| $M_{EQ,trans} = M_{EQ}^* sin(skew) =$           | 0.000           | kips/ft      |                          |

#### - Strong Direction Force (Parallel to Abutment):

- Longitudinal Force used to check abutment stability.
- Longitudinal Moment used to check abutment stability.

| P <sub>EQ</sub> =                         | Total Structure | Weight * 25% |                          |
|-------------------------------------------|-----------------|--------------|--------------------------|
| =                                         | 0.000           | kips         |                          |
|                                           |                 |              |                          |
| Strong Direction Force = 30% x $P_{EQ}$ = | 0.000           | kips         | (total on abutment)      |
| =                                         | 0.000           | kips         | (Per foot of Abutment)   |
| Moment Arm =                              | 21.160          | ft           | (Applied at bridge seat) |
| Strong Direction Moment =                 | 0.000           | kip-ft       |                          |
| $P_{EQ,long} = P_{EQ} * sin(skew) =$      | 0.000           | kips         |                          |
| $P_{EQ,trans} = P_{EQ}^* cos(skew) =$     | 0.000           | kips         |                          |
| $M_{EQ,long} = M_{EQ}*sin(skew) =$        | 0.000           | kips/ft      |                          |
| $M_{EQ,trans} = M_{EQ}^* cos(skew) =$     | 0.000           | kips/ft      |                          |

# Wind Load on Structure: WS

|                                     | Strength III | Service I | Strength V |         |
|-------------------------------------|--------------|-----------|------------|---------|
| Wind Load Normal to Abutment Face = | 10.87        | 10.87     | 10.87      | kips    |
| =                                   | 0.30         | 0.30      | 0.30       | kips/ft |
| Moment Arm =                        | 21.16        | 21.16     | 21.16      | ft      |
| Overturning Moment, $M_{Wind}$ =    | 6.43         | 6.43      | 6.43       | kip-ft  |

 conservatively uses Contechs value for all limit states
 per Foot of Abutment Length
 applied at bridge seat

From Contech

Job No :



Comp By: **NPB 7/21** Chkd By: GNM 12/22 Project: NATICK: Shared Use Path over MBTA

Subject: Design Calculations: Bridge No. N-03-007 (29N)

#### **NORTH ABUTMENT**

#### STABILITY CHECK & DESIGN

### Load Combinations for Retaining Wall Design:

NOTE: \* Resisting Forces = ALL Vertical Loads. Used to determine sliding capacity.

- \* Overturning Forces = ALL Horizontal Loads. Used for Sliding Load.
- \* Net Moment / Resisting Forces = Eccentricity from "Toe".
- \* Overturning check satisfied if eccentricity of bearing pressure is within middle 2/3rds of footing for footings on soil and middle 9/10ths for footings on rock AND bearing capacity check satisfied.
- \* For footings on soil, the vertical stress shall be calculated assuming a uniformly distributed pressure over an effective base area, which equals the total bearing area minus an area to account for the effects of the eccentric load and for rock a linearly distributed
- \* Loads and factors shall be combined to produce the maximum effect for bearing, sliding and eccentricity.
- \* For the bearing check the max load factors are applied to vertical loads and for the sliding/eccentricity check the min load factors are applied to the vertical loads (less vertical load = lower sliding capacity and greater eccentricity). See Figures C11.5.6-1 and C11.5.6-2

 $Strength \ I = (\gamma_{DC} \cdot DC) + (\gamma_{DW} \cdot DW) + (\gamma_{EH} \cdot EH) + (\gamma_{EV} \cdot EV) + 1.75(LL + LS + BR) + 0.50(TU) + 1.0(BRG)$ 

Strength III =  $(\gamma_{DC} \cdot DC) + (\gamma_{DW} \cdot DW) + (\gamma_{EH} \cdot EH) + (\gamma_{EV} \cdot EV) + 0.50(TU) + 1.0(BRG) + 1.0 (WS)$ 

 $\text{Extreme Event I} = (\gamma_{DC} \cdot DC) + (\gamma_{DW} \cdot DW) + 1.0(BRG) + (\gamma_{EV} \cdot EV) + \gamma_{EQ}(LL + BR) + 1.0(EQ) + (\gamma_{EH} * EH)$ 

 $Construction = (\gamma_{DC} * DC(Abutment)) + (\gamma_{DW} * DW) + (\gamma_{EH} * EH) + (\gamma_{EV} * EV) + 1.0(BRG) + 1.5(CS)$ 

1.00 NOT Critical / Essential Load Modifier, η<sub>i</sub>=

<sup>\*</sup> Construction Load Case checks abutment stability under a scenario where the bridge superstructure is not yet installed and the abutment is completely backfilled. An additional surcharge load is applied to simulate construction equipment sitting behind the abutment.

| Bearing:   |                            |               |           |               |            |        |              |            |  |  |
|------------|----------------------------|---------------|-----------|---------------|------------|--------|--------------|------------|--|--|
|            | Unfactor                   | red (Service) |           | Strength I    |            |        | Extreme Ever | nt I       |  |  |
|            | F (kip)                    | M (kip-ft)    | Factor    | F (kip)       | M (kip-ft) | Factor | F (kip)      | M (kip-ft) |  |  |
|            | RESISTING (Vertical Loads) |               |           |               |            |        |              |            |  |  |
| DC         | 23.02                      | 66.57         | 1.25      | 28.77         | 83.21      | 1.00   | 23.02        | 66.57      |  |  |
| DW         | 0.23                       | 0.23          | 1.50      | 0.34          | 0.34       | 1.00   | 0.23         | 0.23       |  |  |
| LL         | 0.82                       | 0.82          | 1.75      | 1.44          | 1.44       | 0.00   | 0.00         | 0.00       |  |  |
| App. Slab  | 0.60                       | 1.66          | 1.25      | 0.76          | 2.08       | 1.00   | 0.60         | 1.66       |  |  |
| EV1 (Heel) | 0.87                       | 4.02          | 1.35      | 1.18          | 5.43       | 1.00   | 0.87         | 4.02       |  |  |
| EV2 (Toe)  | 0.00                       | 0.00          | 1.35      | 0.00          | 0.00       | 1.00   | 0.00         | 0.00       |  |  |
| EH-v       | 0.36                       | 2.23          | 1.35      | 0.48          | 3.01       | 1.00   | 0.36         | 2.23       |  |  |
| LS-v       | 0.00                       | 0.00          | 1.75      | 0.00          | 0.00       | 0.00   | 0.00         | 0.00       |  |  |
| CS-v       | 0.28                       | 1.72          | 0.00      | 0.00          | 0.00       | 0.00   | 0.00         | 0.00       |  |  |
|            | 25.90                      | 75.54         |           | 32.97         | 95.52      |        | 25.08        | 74.71      |  |  |
|            |                            |               | OVERTURNI | NG (Horizonta | al Loads)  |        |              |            |  |  |
| EH-h       | 0.89                       | 14.83         | 1.35      | 1.20          | 20.02      | 1.00   | 0.89         | 14.83      |  |  |
| LS-h       | 0.00                       | 0.00          | 1.75      | 0.00          | 0.00       | 0.00   | 0.00         | 0.00       |  |  |
| TU         | 0.17                       | 3.55          | 0.50      | 0.08          | 1.77       | 0.00   | 0.00         | 0.00       |  |  |
| BRG        | 0.00                       | 0.00          | 1.00      | 0.00          | 0.00       | 1.00   | 0.00         | 0.00       |  |  |
| BR         | 0.00                       | 0.00          | 1.75      | 0.00          | 0.00       | 0.00   | 0.00         | 0.00       |  |  |
| EQ         | 0.00                       | 0.00          | 0.00      | 0.00          | 0.00       | 1.00   | 0.00         | 0.00       |  |  |
| CS-h       | 0.68                       | 12.35         | 0.00      | 0.00          | 0.00       | 0.00   | 0.00         | 0.00       |  |  |
| WS         | 0.30                       | 6.43          | 0.00      | 0.00          | 0.00       | 0.00   | 0.00         | 0.00       |  |  |
|            | 1.36                       | 24.80         |           | 1.28          | 21.79      |        | 0.89         | 14.83      |  |  |

(no EQ, CS)

References

52680A41

AASHTO LRFD C11.5.5

AASHTO LRFD Tbl. 3.4.1-1

AASHTO LRFD

C11.5.6

52680A41



DC

DW

LL

App. Slab

EV1 (Heel)

EV2 (Toe)

EH-v

LS-v

CS-v

EH-h

LS-h

TU

BRG

BR

EQ

CS-h

WS

Comp By: **NPB 7/21** Chkd By: **GNM 12/22**  Project: NATICK: Shared Use Path over MBTA

Subject: Design Calculations: Bridge No. N-03-007 (29N)

**NORTH ABUTMENT** References STABILITY CHECK & DESIGN Construction Strength III Factor F (kip) M (kip-ft) Factor F (kip) M (kip-ft) RESISTING (Vertical Loads) 1.25 1.25 28.77 83.21 26.61 81.04 0.00 0.00 0.00 1.50 0.34 0.34 0.00 0.00 0.00 0.00 0.00 0.00 1.25 0.00 0.00 0.00 0.76 2.08 1.35 1.35 5.43 1.18 1.18 5.43 1.35 0.00 0.00 1.35 0.00 0.00 1.35 0.48 3.01 1.35 0.48 3.01 0.00 0.00 0.00 0.00 0.00 0.00 1.50 0.42 2.59 0.00 0.00 0.00 28.68 92.08 31.53 94.07 **OVERTURNING (Horizontal Loads)** 1.35 1.20 20.02 1.35 1.20 20.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.50 0.08 1.77 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00

0.00

1.00

0.00

0.00

0.30

1.58

0.00

0.00

6.43

28.22

(no EQ, CS)

Unfactored (Service)

M (kip-ft)

66.57

0.23

0.82

1.66

4.02

0.00

2.23

0.00

1.72

75.54

14.83

0.00

3.55

0.00

0.00

0.00

12.35

6.43

24.80

0.00

1.50

0.00

0.00

1.03

0.00

2.22

0.00

18.53

0.00

38.54

F (kip)

23.02

0.23

0.82

0.60

0.87

0.00

0.36

0.00

0.28

25.90

0.89

0.00

0.17

0.00

0.00

0.00

0.68

0.30

1.36



Comp By: **NPB 7/21** Chkd By: **GNM 12/22**  Project: NATICK: Shared Use Path over MBTA

Subject: Design Calculations: Bridge No. N-03-007 (29N)

NORTH ABUTMENT STABILITY CHECK & DESIGN References

52680A41

|                | Unfacto | ored (Service) |           | Strength I      |            |        | Extreme Eve | nt I       |                 |
|----------------|---------|----------------|-----------|-----------------|------------|--------|-------------|------------|-----------------|
|                | F (kip) | M (kip-ft)     | Factor    | F (kip)         | M (kip-ft) | Factor | F (kip)     | M (kip-ft) |                 |
|                |         |                | RESISTIN  | IG (Vertical Lo | pads)      |        |             |            |                 |
| DC             | 23.02   | 66.57          | 0.90      | 20.72           | 59.91      | 1.00   | 23.02       | 66.57      |                 |
| DW             | 0.23    | 0.23           | 0.65      | 0.15            | 0.15       | 1.00   | 0.23        | 0.23       |                 |
| LL             | 0.82    | 0.82           | 0.00      | 0.00            | 0.00       | 0.00   | 0.00        | 0.00       |                 |
| App. Slab      | 0.60    | 1.66           | 0.90      | 0.54            | 1.50       | 1.00   | 0.60        | 1.66       |                 |
| EV1 (Heel)     | 0.87    | 4.02           | 1.00      | 0.87            | 4.02       | 1.00   | 0.87        | 4.02       |                 |
| EV2 (Toe)      | 0.00    | 0.00           | 0.00      | 0.00            | 0.00       | 0.00   | 0.00        | 0.00       | - (soil over to |
| EH-v           | 0.36    | 2.23           | 1.35      | 0.48            | 3.01       | 0.90   | 0.32        | 2.01       | only applicab   |
| LS-v (Sliding) | 0.00    | 0.00           | 1.75      | 0.00            | 0.00       | 0.00   | 0.00        | 0.00       | for bearing)    |
| CS-v           | 0.28    | 1.72           | 0.00      | 0.00            | 0.00       | 0.00   | 0.00        | 0.00       |                 |
|                | 25.90   | 75.54          |           | 22.76           | 68.59      |        | 25.04       | 74.49      |                 |
|                |         |                | OVERTURNI | NG (Horizonta   | al Loads)  |        |             |            |                 |
| EH-h           | 0.89    | 14.83          | 1.35      | 1.20            | 20.02      | 1.00   | 0.89        | 14.83      |                 |
| LS-h           | 0.00    | 0.00           | 1.75      | 0.00            | 0.00       | 0.00   | 0.00        | 0.00       |                 |
| TU             | 0.17    | 3.55           | 0.50      | 0.08            | 1.77       | 0.00   | 0.00        | 0.00       |                 |
| BRG            | 0.00    | 0.00           | 1.00      | 0.00            | 0.00       | 1.00   | 0.00        | 0.00       |                 |
| BR             | 0.00    | 0.00           | 1.75      | 0.00            | 0.00       | 0.00   | 0.00        | 0.00       |                 |
| EQ             | 0.00    | 0.00           | 0.00      | 0.00            | 0.00       | 1.00   | 0.00        | 0.00       |                 |
| CS-h           | 0.68    | 12.35          | 0.00      | 0.00            | 0.00       | 0.00   | 0.00        | 0.00       |                 |
| WS             | 0.30    | 6.43           | 0.00      | 0.00            | 0.00       | 0.00   | 0.00        | 0.00       |                 |
|                | 1.36    | 24.80          |           | 1.28            | 21.79      |        | 0.89        | 14.83      |                 |

|                | Unfacto | ored (Service) Construction |            | Construction  |            |        | Strength II |            |
|----------------|---------|-----------------------------|------------|---------------|------------|--------|-------------|------------|
|                | F (kip) | M (kip-ft)                  | Factor     | F (kip)       | M (kip-ft) | Factor | F (kip)     | M (kip-ft) |
|                |         |                             | RESISTIN   | G (Vertical L | oads)      |        |             |            |
| DC             | 23.02   | 66.57                       | 0.90       | 19.16         | 58.35      | 0.90   | 20.72       | 59.91      |
| DW             | 0.23    | 0.23                        | 0.90       | 0.21          | 0.21       | 0.65   | 0.15        | 0.15       |
| LL             | 0.82    | 0.82                        | 0.00       | 0.00          | 0.00       | 0.00   | 0.00        | 0.00       |
| App. Slab      | 0.60    | 1.66                        | 0.90       | 0.54          | 1.50       | 0.90   | 0.54        | 1.50       |
| EV1 (Heel)     | 0.87    | 4.02                        | 1.00       | 0.87          | 4.02       | 1.00   | 0.87        | 4.02       |
| EV2 (Toe)      | 0.00    | 0.00                        | 0.00       | 0.00          | 0.00       | 0.00   | 0.00        | 0.00       |
| EH-v           | 0.36    | 2.23                        | 1.35       | 0.48          | 3.01       | 1.35   | 0.48        | 3.01       |
| LS-v (Sliding) | 0.00    | 0.00                        | 0.00       | 0.00          | 0.00       | 0.00   | 0.00        | 0.00       |
| CS-v           | 0.28    | 1.72                        | 1.50       | 0.42          | 2.59       | 0.00   | 0.00        | 0.00       |
|                | 25.90   | 75.54                       |            | 21.68         | 69.67      |        | 22.76       | 68.59      |
|                |         |                             | OVERTURNII | NG (Horizont  | al Loads)  |        |             |            |
| EH-h           | 0.89    | 14.83                       | 1.35       | 1.20          | 20.02      | 1.35   | 1.20        | 20.02      |
| LS-h           | 0.00    | 0.00                        | 0.00       | 0.00          | 0.00       | 0.00   | 0.00        | 0.00       |
| TU             | 0.17    | 3.55                        | 0.00       | 0.00          | 0.00       | 0.50   | 0.08        | 1.77       |
| BRG            | 0.00    | 0.00                        | 0.00       | 0.00          | 0.00       | 1.00   | 0.00        | 0.00       |
| BR             | 0.00    | 0.00                        | 0.00       | 0.00          | 0.00       | 0.00   | 0.00        | 0.00       |
| EQ             | 0.00    | 0.00                        | 0.00       | 0.00          | 0.00       | 0.00   | 0.00        | 0.00       |
| CS-h           | 0.68    | 12.35                       | 1.50       | 1.03          | 18.53      | 0.00   | 0.00        | 0.00       |
| WS             | 0.30    | 6.43                        | 0.00       | 0.00          | 0.00       | 1.00   | 0.30        | 6.43       |
|                | 1.36    | 24.80                       |            | 2.22          | 38.54      |        | 1.58        | 28.22      |

(no EQ, CS)

52680A41



Comp By: **NPB 7/21**Chkd By: **GNM 12/22** 

Project: NATICK: Shared Use Path over MBTA

Subject: Design Calculations: Bridge No. N-03-007 (29N)

**NORTH ABUTMENT** References STABILITY CHECK & DESIGN **Abutment Stability Check** Resistance Factors: Bearing Resistance, φ<sub>b</sub> = 0.45 - Footings on Rock AASHTO LRFD Sliding Resistance,  $\phi_{\tau}$  = 0.80 - Cast-in-pace concrete on Sand Tbl. 10.5.5.2.2-1 Overall Stability for Service I Limit State,  $\phi_{os}$  = 0.65 - limited geotechnical info. & 11.6.3.6 Service I Limit State Check: AASHTO LRFD Overall Stability > 1 11.6.3.6 = (φ<sub>os \*</sub> Resisting Moments)/(Overturning Moments) 1.98 **OK** Strength and Extreme Event I Limit State Check: Extreme AASHTO LRFD Bearing Resistance (for footings on rock): Strength I Event I Construction Strength III Service I 11.6.3.2 Net Moment (Resist. - Overturn), M = 73.73 59.89 53.53 65.86 50.74 Vertical Forces for Bearing, V<sub>b</sub> = 32.97 28.68 31.53 25 90 kips (= sum of all vertical loads) 25.08 Resultant, R = M/V<sub>b</sub>= AASHTO LRFD 2 24 2 39 1 87 2 09 1.96 ft (from "toe") Eccentricity, e = (W/2) - R = 0.88 0.73 1.25 1.03 Fig. 11.6.3.2.1 1.16 ft (from cent, of base) For Resultant within middle one-third: YES YES N/A YES N/A Max Bear. Stress,  $\sigma_{vmax}$  =  $V_b$  / W \* [1 + 6 \* (e / W)] = 9.77 6.85 N/A 10.06 N/A kin/ft<sup>2</sup> Min Bearing Stress,  $\sigma_{vmin} = V_b / W * [1 - 6 * (e / W)] = V_b / W * [1 - 6 * (e / W)]$ 0.81 1.21 N/A 0.06 N/A kip/ft2 For Resultant outside middle one-third: YES YES N/A N/A N/A Max Bear. Stress,  $\sigma_{vmax} = (2 * V_b) / 3 * [(W / 2) - e)] =$ N/A N/A 10.24 N/A 8.82 kip/ft2 Min Bearing Stress,  $\sigma_{vmin} = 0$ 0.00 0.00 0.00 0.00 0.00 kip/ft<sup>2</sup> Factored Bearing Capacity/ Prop. Pressure = 2.42 3.46 2.31 2.35 2.69 11.6.3.2 OK OK OK OK ok Overturning: Net Moment (Resist. - Overturn), M = 59.66 AASHTO LRFD 46 80 31 13 40.37 Vertical Forces for Bearing, Ve 22.76 25.04 21.68 22.76 kips (= sum of all vertical loads) 11.6.3.3 Resultant, R = M/V<sub>e</sub>= 2.06 2.38 1.44 ft (from "toe") 1.77 Eccentricity, e = (W/2) - R = 1.06 0.73 1.68 1.34 ft (from center of base) Acceptable Eccentricity (middle 2/3 of base) for Soil = 2.08 2.08 2.08 2.08 ft (from center of base) Acceptable Eccentricity (middle 9/10 of base) for Rock = ft (from center of base) 2.80 2.80 2.80 2.80 Is Resultant within limits? oĸ oĸ ΟK ΟK (Foundation founded on rock) Sliding: **AASHTO LRFD** 10.6.3.4 22.76 25.04 Vertical Forces for Sliding, V = 21.68 22.76 kips Internal Friction Angle,  $\phi_f$  = 35.0 35.0 35.0 35.0 0.70 0.70 0.70 0.70 tano<sub>f</sub>: C = 1.00 1.00 1.00 1.00 Concrete cast against soil

 $R_t = C * V * tan \phi_f =$ 

Capacity/Load =

 $\phi_{\tau} \star R_{\tau} =$ 

15.94

12.75

9.96

oĸ

17.54

14.03

15.84

oĸ

15.18

12.14

5.46

ΟK

15.94

12.75

8.05

oĸ

AASHTO LRFD

Tbl. 3.11.6.4-1

AASHTO LRFD

Tbl. 10.5.5.2.2-1



**Design Properties:** 

Comp By: NPB 7/21 Chkd By: **GNM 12/22** 

Internal Friction Angle:

Project: NATICK: Shared Use Path over MBTA

Subject: Design Calculations: Bridge No. N-03-007 (29N) Job No.: 52680A41

#### **SOUTH ABUTMENT** References **STABILITY CHECK & DESIGN** - For determining $k_a$ , per C3.11.5.3, the friction angle between fill and concrete wall can be taken as $\delta = 0.67 * \phi_f$ or directly from Table C3.11.5.3-1. - For sliding, per C3.11.5.3, $tan(\delta) = 0.8 * tan(\phi_f)$ for p/c on soil OR $tan(\delta) = 1.0 * tan(\phi_f)$ for concrete cast on soil Concrete Unit Weight, $\gamma_c$ = 0.150 kip/ft3 Soil Unit Weight, $\gamma_s$ = 0.120 kip/ft3 Bituminous Unit Weight, $\gamma_b$ = 0.140 kip/ft3 Granite Unit Weight, $\gamma_g$ = 0.165 kip/ft3 Soil Below Footing, $\phi_f$ = 35.0 ° - See Geotech Report 33.0 ° (typical backfill) 0.5760 rad Backfill Soil, φ<sub>f</sub> = Slope Angle of Soil, $\beta$ = 0.00° 0.0000 rad Angle of Backface of Wall, $\theta$ = 90.0° 1.5708 rad Friction Angle Between Fill and Wall, $\delta$ = 22.0 ° - See Geotech Report 0.3840 rad 174.28 ft Top of Backwall Elevation = Bridge Seat Elevation = 171.53 ft 150.92 ft Bottom of Footing Elevation = **65.50** ft Proposed Truss Length, L = 0.000 ° (from vertical) Bridge Skew = Abutment Length, La = 44.00 ft Abutment Height, H<sub>a</sub> = 23.37 ft (Bottom of Abutment to Top of Backwall) Abutment Width, W = 6.23 ft

|                                                          | Wall Height<br>ft | Surcharge<br>ft |                                  |
|----------------------------------------------------------|-------------------|-----------------|----------------------------------|
| Surcharge Height for Abutments Perpendicular to Traffic: | 5                 | 4               |                                  |
|                                                          | 10                | 3               |                                  |
|                                                          | 20                | 2               |                                  |
| Height =                                                 | 13.854            | 2.615           | ft, based on H20, from Bridge Co |
|                                                          |                   | 1.307           | ft, based on H10                 |

**0.00** ft

0.00 ft

0.45

52.64 kips/ft<sup>2</sup>

23.69 kips/ft<sup>2</sup>

3.000 ft (estimated)

2520.00 kN/m<sup>2</sup> - See 2002 Geotech Report

Live Load Surcharge Height, h<sub>s</sub> =

Nominal Bearing Resistance, p<sub>n</sub> =

Height of Water Table, h<sub>w</sub> =

Resistance Factor,  $\Phi_b$  =

Construction Surcharge Height,  $h_{cs}$  =

Factored Bearing Resistance,  $p = p_n * \Phi_b =$ 



Comp By: **NPB 7/21** Chkd By: GNM 12/22 Project: NATICK: Shared Use Path over MBTA

Subject: Design Calculations: Bridge No. N-03-007 (29N)

SOUTH ABUTMENT STABILITY CHECK & DESIGN References

52680A41

#### Assumptions:

- 1. Analysis is done according to the methods outlined in AASHTO LRFD Manual.
- 2. Analysis performed checking per foot of footing length.
- 3. Per MassDOT, all cantilever and gravity walls founded on rock shall assume at-rest soil pressure. However, active earth pressure is assumed for this abutment analysis. Given the very slender assumed abutment shape and the likely more flexible nature of stacked granite blocks compared to a reinforced concrete abutment with the same dimensions, it is assumed that the abutment rotates/deflects enough to cause active earth pressure. Also it is likely that there is a leveling pad between the abutment and bedrock that could further allow for rotation.

 $\sin^2(\theta + \phi) =$ 

 $sin^2\theta =$ 

 $sin(\theta - \delta) =$ 

 $sin(\phi + \delta) =$ 

 $sin(\phi - \beta) =$ 

 $sin(\theta + \beta) =$ 

0.703

1.000

0.927

0.819

0.545

1.000

MassDOT LRFD Br. Manual

#### **Earth Pressure Coefficient:**

# Active Earth Pressure Coefficient:

Values for the coefficient of active lateral earth pressure may be taken as:

$$k_{\alpha} = \frac{\sin^2(\theta + \phi_f')}{\Gamma \left[\sin^2\theta \sin(\theta - \delta)\right]}$$
(3.11.5,3-1)

in which:

$$\Gamma = \left[1 + \sqrt{\frac{\sin(\phi_f' + \delta)\sin(\phi_f' - \beta)}{\sin(\theta - \delta)\sin(\theta + \beta)}}\right]^2$$
(3.11.5.3-2)

where:

δ = friction angle between fill and wall (degrees)

β angle of fill to the horizontal as shown in Figure 3.11.5.3-1 (degrees)

angle of back face of wall to the horizontal as shown in Figure 3.11.5.3-1 (degrees)

effective angle of internal friction (degrees)

# At-rest Earth Pressure Coefficient:

# Design Earth Pressure Coefficient:

$$K_d$$
 = 0.5 \*  $(K_o + K_a)$  = 0.360 Walls <5ft and founded on soil  $K_a$  = 0.264 Walls >5ft and founded on soil  $K_o$  = 0.455 Use when founded on rock

Use K<sub>a</sub> = 0.264 Pt. I - 3.1.5

MassDOT LRFD Br. Manual 3.1.6



Comp By: **NPB 7/21**Chkd By: **GNM 12/22** 

Project: NATICK: Shared Use Path over MBTA

Subject: Design Calculations: Bridge No. N-03-007 (29N)

Job No.:

52680A41

#### **SOUTH ABUTMENT** References STABILITY CHECK & DESIGN Calculate Loads on Abutment: Superstructure Dead Loads: - Approach Slab Load Calculation: - Live load, by inspection, is controlled by pedestrian load instead of the H10 truck. Length of Approach Slab, L = 15.000 ft Width of Approach Slab, W = 10.000 ft (along skew) Thickness of Approach Slab, $t_{slab}$ = 10.000 Thickness of Pavement Structure Above Slab, t<sub>pave</sub> = 14.000 in Weight of Approach Slab, w<sub>slab</sub> = (L \* W \* t \* $\gamma_c$ ) / 2 + (L \* W \* t \* $\gamma_b$ ) / 2 21.625 kips - Moment is taken about the toe of the footing Centerline of Bearing from Toe of Abutment = 1.000 ft (1 foot from face of cap) Centerline of Approach Slab from Toe of Abutment = 2.750 Pedestrian Load, $w_{ped}$ = 0.090 ksf Roadway Width, W = 10.000 ft Pedestrian Total Reaction, $w_{ped-tot} = L * w_{ped} * W / 2$ 29.475 kips Total Per Foot Moment Arm Moment $V = R/L_a$ V <sub>∗</sub> a R [kip] [kip] [ft] [kip\*ft] DC Reaction, R<sub>DC</sub> = 62.031 1.41 1.00 1.41 From Contech DW Reaction, R<sub>DW</sub> = 8.200 0.19 1.00 0.19 LL Reaction, R<sub>LL</sub> = 29.475 0.67 1.00 0.67 (Pedestrian Controls) Approach Slab Reaction, $R_{App}$ = 21.625 0.49 2.75 1.35 Abutment Dead Load, DC: Width of Abutment Cap = 3.000 ft Width of Backwall = 1.333 ft CL App. Top of Pavement EL = 174.284 (equals top of backwall) Width of Bridge Seat = 1.667 ft Slab Width of App. Slab Seat = 0.500 ft Top of Backwall EL = 174.284 (average) -Approach Slab & Fill Above Height of Backwall = 2.750 ft **CL Bearing** Bridge Seat EL = 171.534 (average) Cap Height = 1.500 ft Soil Height = 13.854 Bottom of Cap EL = 170.034 Bedrock Elevation = 158.430 Height of Bedrock H<sub>b</sub> = Height of Stem (3) = 19.115 Bearing Height = 20.615 EL = 150.919 Width of Abutment = 6.230



Comp By: **NPB 7/21**Chkd By: **GNM 12/22** 

Project: NATICK: Shared Use Path over MBTA

Subject: Design Calculations: Bridge No. N-03-007 (29N)

# SOUTH ABUTMENT

# STABILITY CHECK & DESIGN

- Moment is taken about the toe of the abutment

|            | Base | Height | Shape  | Material          | Weight, V | Mom. Arm          | Moment   |
|------------|------|--------|--------|-------------------|-----------|-------------------|----------|
| Section    | (ft) | (ft)   | Factor | Density           | (kip)     | (ft)              | (kip-ft) |
| 1-Backwall | 1.33 | 2.75   | 1.00   | 0.150             | 0.55      | 2.33              | 1.28     |
| 2-Backwall | 0.83 | 2.00   | 1.00   | 0.150             | 0.25      | 2.08              | 0.52     |
| 2-Cap      | 3.00 | 1.50   | 1.00   | 0.150             | 0.68      | 1.50              | 1.01     |
| 3A-Stem    | 6.23 | 19.12  | 1.00   | 0.165             | 19.65     | 3.12              | 61.21    |
| 3B-Stem    | 0.00 | 0.00   | 1.00   | 0.150             | 0.00      | 0.00              | 0.00     |
| 3C-Stem    | 0.00 | 0.00   | 1.00   | 0.150             | 0.00      | 0.00              | 0.00     |
| 4-Footing  | 0.00 | 0.00   | 1.00   | 0.150             | 0.00      | 0.00              | 0.00     |
|            |      | •      | •      | V <sub>DC</sub> = | 21.12     | M <sub>DC</sub> = | 64.02    |

# Vertical Earth Pressure, EV:

- Moment is taken about the toe of the footing

|              | Base | Height | Shape  | Material          | Weight, V | Mom. Arm          | Moment   |
|--------------|------|--------|--------|-------------------|-----------|-------------------|----------|
| Section      | (ft) | (ft)   | Factor | Density           | (kip)     | (ft)              | (kip-ft) |
| 5A-Heel Soil | 3.23 | 2.25   | 1.00   | 0.120             | 0.87      | 4.62              | 4.02     |
| 5B-Heel Soil | 0.00 | 0.00   | 1.00   | 0.120             | 0.00      | 0.00              | 0.00     |
| 5C-Heel Soil | 0.00 | 0.00   | 1.00   | 0.120             | 0.00      | 0.00              | 0.00     |
|              |      |        |        | V <sub>EV</sub> = | 0.87      | M <sub>EV</sub> = | 4.02     |

- Consider soil over Toe of Footing for Bearing Resistance Check Only

|             | Base | Height | Shape  | Material           | Weight, V | Mom. Arm | Moment   |
|-------------|------|--------|--------|--------------------|-----------|----------|----------|
| Section     | (ft) | (ft)   | Factor | Density            | (kip)     | (ft)     | (kip-ft) |
| 6A-Toe Soil | 0.00 | 0.00   | 1.00   | 0.120              | 0.00      | 0.00     | 0.00     |
| 6B-Toe Soil | 0.00 | 0.00   | 1.00   | 0.120              | 0.00      | 0.00     | 0.00     |
|             |      |        |        | V <sub>EV2</sub> = | 0.00      | Mrva =   | 0.00     |

A00804 - 86

References

52680A41



Comp By: **NPB 7/21**Chkd By: **GNM 12/22** 

Project: NATICK: Shared Use Path over MBTA

Subject: Design Calculations: Bridge No. N-03-007 (29N)

**SOUTH ABUTMENT** 

STABILITY CHECK & DESIGN

Horizontal Earth Pressure, EH:

Earth Pressure Force:

$$F_{EH} = 0.5 \cdot \gamma_s \cdot K_d \cdot (H - h_w)^2$$
  
= 3.05 kip

Components:

$$\begin{split} F_{EH\text{-}h} &= F_{EH} \cdot \cos(90 - \theta \ + \delta) \\ &= \frac{2.82}{\text{EH} \cdot \text{V}} \text{ kip} \\ F_{EH\text{-}v} &= F_{EH} \cdot \sin(90 - \theta \ + \delta) \\ &= \frac{1.14}{\text{E}} \text{ kip} \end{split}$$

Overturning Moment:

Moment Arm for Backfill, 
$$a_b = (H - h_w)/3 + H_b$$
 (triangular pressure on back of abutment, therefore H/3) = 12.13 ft

Resisting Moment:

Resisting Moment Arm, 
$$a_r =$$
 6.23 ft (abutment width) 
$$M_{EH-R} = F_{EH-v} \cdot a_r$$
 
$$=$$
 7.11 kip-ft

52680A41

References



Comp By: **NPB 7/21**Chkd By: **GNM 12/22** 

Project: NATICK: Shared Use Path over MBTA

Subject: Design Calculations: Bridge No. N-03-007 (29N)

#### SOUTH ABUTMENT

#### STABILITY CHECK & DESIGN

# Live Load Surcharge, LS:

Live Load Surcharge can be ignored since approach slabs are provided.

Surcharge Force:

$$\begin{array}{ll} F_{LS} = K_d \cdot \gamma_s \cdot h_s \cdot H & \textit{(Height is conservatively to top of backwall)} \\ = & 0.00 \text{ kip} \\ \\ \text{Components:} \\ F_{LS^-h} = F_{LS} \cdot \cos(90 - \theta \ + \delta) \end{array}$$

$$F_{LS-v} = \begin{cases} 0.00 & \text{kip} \\ F_{LS-v} = F_{LS-v} \sin(90 - \theta + \delta) \\ = 0.00 & \text{kip} \end{cases}$$

Overturning Moment:

Moment Arm for Surcharge, 
$$a_s = H / 2 + H_b$$
 (constant pressure on back of abutment, therefore H/2) 
$$= 14.44 \text{ ft}$$

$$M_{LS-O} = F_{LS-h} \cdot a_s$$

$$= 0.00 \text{ kip-ft}$$

Resisting Moment:

- for sliding and eccentricity:

Resisting Moment Arm, 
$$a_b = 6.23$$
 ft (applied at back face of stem)
$$M_{LS-R1} = F_{LS-v} \cdot a_b$$

$$= 0.00 \text{ kip-ft}$$

- for bearing:

Resisting Moment Arm, 
$$a_b = 6.23$$
 ft (applied at back face of stem) 
$$M_{LS-R2} = F_{LS-v} \cdot a_b$$
 = 0.00 kip-ft

# Construction Surcharge, CS:

Surcharge Force:

$$\begin{split} F_{\text{CS}} &= K_{\text{d}} \cdot \gamma_{\text{s}} \cdot h_{\text{cs}} \cdot H \\ &= 1.32 \text{ kip} \\ \text{Components:} \\ F_{\text{CS-h}} &= F_{\text{CS}} \cdot \cos(90 - \theta + \delta) \\ &= 1.22 \text{ kip} \\ F_{\text{CS-v}} &= F_{\text{CS}} \cdot \sin(90 - \theta + \delta) \\ &= 0.49 \text{ kip} \end{split}$$

Overturning Moment:

Moment Arm for Surcharge, 
$$a_s$$
 = H / 2 + H $_b$  (constant pressure on back of abutment, therefore H/2) = 14.44 ft  $M_{CS-O}$  =  $F_{CS-h} \cdot a_s$ 

= 17.66 kip-ft

Resisting Moment:

- for sliding and eccentricity:

Resisting Moment Arm, 
$$a_b = 6.23$$
 ft (applied at back face of stem)
$$M_{CS-R1} = F_{CS-v} \cdot a_b$$

$$= 3.08 \text{ kip-ft}$$

- for bearing:

Resisting Moment Arm, 
$$a_b = 6.23$$
 ft (applied at back face of stem)
$$M_{CS-R2} = F_{CS-v} \cdot a_b$$

$$= 3.08 \text{ kip-ft}$$

52680A41

References

AASHTO LRFD

3.11.6.4



Comp By: **NPB 7/21**Chkd By: **GNM 12/22** 

Project: NATICK: Shared Use Path over MBTA

Subject: Design Calculations: Bridge No. N-03-007 (29N)

# SOUTH ABUTMENT

# STABILITY CHECK & DESIGN

#### Thermal Uniform Load, TU:

\* Assume elastomeric bearings and assume point of zero movement is at midspan.

<sup>\*</sup> Load is transferred to the abutments via bearing deflection

| P <sub>TF(abut,)</sub> =             | 6.00  | kip     | (Per Abutment)           |
|--------------------------------------|-------|---------|--------------------------|
| =                                    | 0.14  | kip     | (Per foot of Abutment)   |
| Moment Arm =                         | 20.62 | ft      | (Applied at bridge seat) |
| Overturning Moment, $M_{TF} =$       | 2.8   | ft-k    |                          |
| $P_{TF,long} = P_{TF}^* cos(skew) =$ | 0.14  | kips    |                          |
| $P_{TF,trans} = P_{TF}*sin(skew) =$  | 0.00  | kips    |                          |
| $M_{TF,long} = M_{TF}*cos(skew) =$   | 2.81  | kips/ft |                          |
| $M_{TF,trans} = M_{TF}*sin(skew) =$  | 0.00  | kips/ft |                          |
|                                      |       |         |                          |

# Moment Transferred by Bearings, BRG:

- Neglect, assume negligible

 $M_{\rm u}$  = 1.60\*(0.5 \* E<sub>c</sub> \* I) \*  $\vartheta_{\rm s}$  / h<sub>rt</sub> where:

$$\vartheta_s$$
 = All Rotations  
= 0.0000 radians  
I =  $\mathcal{V}_4 * \pi * (D/2)^4 * N_p$   
where:

where:

Table 14.7.6,2-1—Correlated Material Properties

 $M_{u,abut trans} = M_{u,abut}*sin(skew) =$ 

|                                                           | Hardness (Shore A) |             |             |  |  |
|-----------------------------------------------------------|--------------------|-------------|-------------|--|--|
|                                                           | 50                 | 60          | 701         |  |  |
| Shear Modulus @ 73°F (ksi)                                | 0.095-0.130        | 0.130-0.200 | 0.200-0.300 |  |  |
| Creep deflection @ 25 yr<br>divided by initial deflection | 0,25               | 0.35        | 0,45        |  |  |

$$G_{max} = \begin{array}{c} \textbf{0.500} & ksi \\ & S = (L * W) \ / \ [2 * h_{rt} * (L + W)] \\ & h_{prov.} = & 1.000 \ in \\ & S = & 0.938 \\ & = & 2.1 \ ksi \\ & = & 0.000 \ ft-k & (per beam) \\ & where: \end{array}$$

 $\begin{aligned} N_{brg} &= & \mathbf{2} \\ M_{u(abut.)} &= M_{u} * (N_{brg} / L_{a}) \\ &= & 0.000 \text{ ft-k} \\ M_{u,abut long} &= M_{u,abut} * cos(skew) &= & 0.000 \text{ kips/ft} \end{aligned}$  (per ft of abutment)

0.000 kips/ft

References

52680A41

From Contech

AASHTO LRFD 14.6.3.2

52680A41



Comp By: **NPB 7/21**Chkd By: **GNM 12/22** 

Project: NATICK: Shared Use Path over MBTA

Subject: Design Calculations: Bridge No. N-03-007 (29N) Job No.:

#### SOUTH ABUTMENT References **STABILITY CHECK & DESIGN** Braking Force, BR: - Braking Force is ignored since bridge is intended for pedestrian use. - Breaking Force shall be the maximum of: 3.6.4 1 - 25% \* W<sub>truck</sub> 3 - 5% \* [W<sub>truck</sub> + (W<sub>lane</sub> \* L)] Weight of Truck, W<sub>truck</sub> = Lane Load, w<sub>lane</sub> = **0.000** kip/ft **0.0** kip 0.0 kip 2 - 25% \* W<sub>tandem</sub> 4 - 5% \* [W<sub>tandem</sub> + (W<sub>lane</sub> \* L)] Weight of Tandem, W<sub>tandem</sub> = 0.0 kip 0.0 kip Controlling, $F_{max} =$ 0.0 kip Max No. Lanes in same Direction, N<sub>1</sub> = 1 (assume only (1) truck breaking in same direction) Multiple Presence Factor, m = 1.20 Breaking Force, $F_{BR} = (N_L * m * F_{max})/L_a$ 0.00 kip (per abutment) Tbl. 3.6.1.1.2-1 0.00 kip (per foot abutment) 20.62 ft - Breaking Force acts at Bridge Seat Elevation Moment Arm, a<sub>BR</sub> = Breaking Force Moment, $M_{BR} = F_{BR} \cdot a_{BR}$ 0.00 kip-ft $F_{BR,long} = F_{BR}^* cos(skew) =$ 0.00 kips $F_{BR,trans} = F_{BR}*sin(skew) =$ 0.00 kips $M_{BR,long} = M_{BR} * cos(skew) =$ 0.00 kips/ft $M_{BR,trans} = M_{BR}^* sin(skew) =$ 0.00 kips/ft



Comp By: **NPB 7/21**Chkd By: **GNM 12/22** 

Project: NATICK: Shared Use Path over MBTA

Subject: Design Calculations: Bridge No. N-03-007 (29N)

#### **SOUTH ABUTMENT**

#### STABILITY CHECK & DESIGN

References

52680A41

#### Earthquake/Seismic Loads, EQ:

 Per MassDOT Part I 3.4.4.3, conventional bridges, both single and multi-span, classified as SDC A, the abutments do not have to be designed for seismic forces.

| Total Superstructure Dead Load at North Abutment = $\sum$ =   | 0.000 | kips |
|---------------------------------------------------------------|-------|------|
| Total Superstructure Dead Load at South Abutment = $\Sigma$ = | 0.000 | kips |
| Total =                                                       | 0.000 | kips |

# 3.10.8—Combination of Seismic Force Effects

The elastic seismic force effects on each of the principal axes of a component resulting from analyses in the two perpendicular directions shall be combined to form two load cases as follows:

- 100 percent of the absolute value of the force effects in one of the perpendicular directions combined with 30 percent of the absolute value of the force effects in the second perpendicular direction, and
- 100 percent of the absolute value of the force effects in the second perpendicular direction combined with 30 percent of the absolute value of the force effects in the first perpendicular direction.

# - Weak Direction Force (Normal to Abutment):

- Longitudinal Force used to check abutment stability.
- Longitudinal Moment used to check abutment stability.

| P <sub>EQ</sub> =                        | Total Structure | Weight * 25% |                          |
|------------------------------------------|-----------------|--------------|--------------------------|
| =                                        | 0.000           | kips         |                          |
|                                          |                 |              |                          |
| Weak Direction Force = 100% x $P_{EQ}$ = | 0.000           | kips         | (total on abutment)      |
| =                                        | 0.000           | kips         | (Per foot of Abutment)   |
| Moment Arm =                             | 20.615          | ft           | (Applied at bridge seat) |
| Weak Direction Moment =                  | 0.000           | kip-ft       |                          |
| $P_{EQ,long} = P_{EQ}^* cos(skew) =$     | 0.000           | kips         |                          |
| $P_{EQ,trans} = P_{EQ}*sin(skew) =$      | 0.000           | kips         |                          |
| $M_{EQ,long} = M_{EQ}^* cos(skew) =$     | 0.000           | kips/ft      |                          |
| $M_{EQ,trans} = M_{EQ}*sin(skew) =$      | 0.000           | kips/ft      |                          |

# - Strong Direction Force (Parallel to Abutment):

- Longitudinal Force used to check abutment stability.
- Longitudinal Moment used to check abutment stability.

| P <sub>EQ</sub> =                         | Total Structure | Weight * 25% |                          |
|-------------------------------------------|-----------------|--------------|--------------------------|
| =                                         | 0.000           | kips         |                          |
|                                           |                 |              |                          |
| Strong Direction Force = 30% x $P_{EQ}$ = | 0.000           | kips         | (total on abutment)      |
| =                                         | 0.000           | kips         | (Per foot of Abutment)   |
| Moment Arm =                              | 20.615          | ft           | (Applied at bridge seat) |
| Strong Direction Moment =                 | 0.000           | kip-ft       |                          |
| $P_{EQ,long} = P_{EQ}^* sin(skew) =$      | 0.000           | kips         |                          |
| $P_{EQ,trans} = P_{EQ}^* cos(skew) =$     | 0.000           | kips         |                          |
| $M_{EQ,long} = M_{EQ}*sin(skew) =$        | 0.000           | kips/ft      |                          |
| $M_{EQ,trans} = M_{EQ}^* cos(skew) =$     | 0.000           | kips/ft      |                          |
|                                           |                 |              |                          |

# Wind Load on Structure: WS

|                                         | Strength III | Service I | Strength V |         |
|-----------------------------------------|--------------|-----------|------------|---------|
| Wind Load Normal to Abutment Face =     | 10.87        | 10.87     | 10.87      | kips    |
| =                                       | 0.25         | 0.25      | 0.25       | kips/ft |
| Moment Arm =                            | 20.62        | 20.62     | 20.62      | ft      |
| Overturning Moment, M <sub>Wind</sub> = | 5.09         | 5.09      | 5.09       | kip-ft  |

- conservatively uses Contechs value for all limit states
- per Foot of Abutment Length
- applied at bridge seat

From Contech

52680A41

References

AASHTO LRFD

C11.5.5

AASHTO LRFD

Tbl. 3.4.1-1

AASHTO LRFD

C11.5.6



Comp By: **NPB 7/21** Chkd By: GNM 12/22 Project: NATICK: Shared Use Path over MBTA

Subject: Design Calculations: Bridge No. N-03-007 (29N)

#### SOUTH ABUTMENT

#### STABILITY CHECK & DESIGN

#### Load Combinations for Retaining Wall Design:

NOTE: \* Resisting Forces = ALL Vertical Loads. Used to determine sliding capacity.

- \* Overturning Forces = ALL Horizontal Loads. Used for Sliding Load.
- \* Net Moment / Resisting Forces = Eccentricity from "Toe".
- \* Overturning check satisfied if eccentricity of bearing pressure is within middle 2/3rds of footing (entire bearing area in compression) AND bearing capacity check satisfied.
- \* For footings on soil, the vertical stress shall be calculated assuming a uniformly distributed pressure over an effective base area, which equals the total bearing area minus an area to account for the effects of the eccentric load and for rock a linearly distributed pressure.
- \* Loads and factors shall be combined to produce the maximum effect for bearing, sliding and eccentricity.
- \* For the bearing check the max load factors are applied to vertical loads and for the sliding/eccentricity check the min load factors are applied to the vertical loads (less vertical load = lower sliding capacity and greater eccentricity). See Figures C11.5.6-1 and C11.5.6-2

Service I = DC + DW + EH + EV + LL + LS + BR + TU

 $Strength \; I = (\gamma_{DC} * DC) + (\gamma_{DW} * DW) + (\gamma_{EH} * EH) + (\gamma_{EV} * EV) + 1.75(LL + LS + BR) + 0.50(TU) + 1.0(BRG)$ 

 $Strength \; III = (\gamma_{DC} * DC) + (\gamma_{DW} * DW) + (\gamma_{EH} * EH) + (\gamma_{EV} * EV) + 0.50(TU) + 1.0(BRG) + 1.0 \; (WS)$ 

 $\text{Extreme Event I} = (\gamma_{DC} \cdot DC) + (\gamma_{DW} \cdot DW) + 1.0(BRG) + (\gamma_{EV} \cdot EV) + \gamma_{EQ}(LL + BR) + 1.0(EQ) + (\gamma_{EH} \cdot EH)$ 

Construction =  $(\gamma_{DC} \cdot DC(Abutment)) + (\gamma_{DW} \cdot DW) + (\gamma_{EH} \cdot EH) + (\gamma_{EV} \cdot EV) + 1.0(BRG) + 1.5(CS)$ 

Load Modifier,  $\eta_i$ = 1.00 NOT Critical / Essential

\* Construction Load Case checks abutment stability under a scenario where the bridge superstructure is not yet installed and the abutment is completely backfilled. An additional surcharge load is applied to simulate construction equipment sitting behind the abutment.

| earing:    |          |               |           |                 |            |        |              |            |
|------------|----------|---------------|-----------|-----------------|------------|--------|--------------|------------|
|            | Unfactor | red (Service) |           | Strength I      |            |        | Extreme Even | t I        |
|            | F (kip)  | M (kip-ft)    | Factor    | F (kip)         | M (kip-ft) | Factor | F (kip)      | M (kip-ft) |
|            |          |               | RESISTIN  | IG (Vertical Lo | ads)       |        |              |            |
| DC         | 22.53    | 65.43         | 1.25      | 28.17           | 81.79      | 1.00   | 22.53        | 65.43      |
| DW         | 0.19     | 0.19          | 1.50      | 0.28            | 0.28       | 1.00   | 0.19         | 0.19       |
| LL         | 0.67     | 0.67          | 1.75      | 1.17            | 1.17       | 0.00   | 0.00         | 0.00       |
| App. Slab  | 0.49     | 1.35          | 1.25      | 0.61            | 1.69       | 1.00   | 0.49         | 1.35       |
| EV1 (Heel) | 0.87     | 4.02          | 1.35      | 1.18            | 5.43       | 1.00   | 0.87         | 4.02       |
| EV2 (Toe)  | 0.00     | 0.00          | 1.35      | 0.00            | 0.00       | 1.00   | 0.00         | 0.00       |
| EH-v       | 1.14     | 7.11          | 1.35      | 1.54            | 9.60       | 1.00   | 1.14         | 7.11       |
| LS-v       | 0.00     | 0.00          | 1.75      | 0.00            | 0.00       | 0.00   | 0.00         | 0.00       |
| CS-v       | 0.49     | 3.08          | 0.00      | 0.00            | 0.00       | 0.00   | 0.00         | 0.00       |
|            | 25.89    | 78.77         |           | 32.95           | 99.96      |        | 25.22        | 78.10      |
|            |          |               | OVERTURNI | NG (Horizonta   | l Loads)   |        |              |            |
| EH-h       | 2.82     | 34.25         | 1.35      | 3.81            | 46.24      | 1.00   | 2.82         | 34.25      |
| LS-h       | 0.00     | 0.00          | 1.75      | 0.00            | 0.00       | 0.00   | 0.00         | 0.00       |
| TU         | 0.14     | 2.81          | 0.50      | 0.07            | 1.41       | 0.00   | 0.00         | 0.00       |
| BRG        | 0.00     | 0.00          | 1.00      | 0.00            | 0.00       | 1.00   | 0.00         | 0.00       |
| BR         | 0.00     | 0.00          | 1.75      | 0.00            | 0.00       | 0.00   | 0.00         | 0.00       |
| EQ         | 0.00     | 0.00          | 0.00      | 0.00            | 0.00       | 1.00   | 0.00         | 0.00       |
| CS-h       | 1.22     | 17.66         | 0.00      | 0.00            | 0.00       | 0.00   | 0.00         | 0.00       |
| WS         | 0.25     | 5.09          | 0.00      | 0.00            | 0.00       | 0.00   | 0.00         | 0.00       |
|            | 3.21     | 42.15         |           | 3.88            | 47.64      |        | 2.82         | 34.25      |

(no EQ, CS)



Comp By: **NPB 7/21**Chkd By: **GNM 12/22** 

Project: NATICK: Shared Use Path over MBTA

Subject: Design Calculations: Bridge No. N-03-007 (29N) Job No.: 52680A41

**SOUTH ABUTMENT** References STABILITY CHECK & DESIGN Strength III Unfactored (Service) Construction F (kip) M (kip-ft) Factor F (kip) M (kip-ft) Factor F (kip) M (kip-ft) RESISTING (Vertical Loads) DC 22.53 65.43 1.25 26.41 80.03 1.25 28.17 81.79 DW 0.19 0.19 0.00 0.00 0.00 1.50 0.28 0.28 LL 0.67 0.67 0.00 0.00 0.00 0.00 0.00 0.00 App. Slab 0.49 1.35 0.00 0.00 0.00 1.25 0.61 1.69 EV1 (Heel) 0.87 4.02 1.35 1.18 5.43 1.35 1.18 5.43 EV2 (Toe) 0.00 0.00 1.35 0.00 0.00 1.35 0.00 0.00 EH-v 1.14 7.11 1.35 1.54 9.60 1.35 1.54 9.60 LS-v 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 CS-v 0.49 3.08 1.50 0.74 4.62 0.00 0.00 0.00 25.89 78.77 29.86 99.68 31.78 98.79 **OVERTURNING (Horizontal Loads)** EH-h 2.82 34.25 1.35 3.81 46.24 1.35 3.81 46.24 LS-h 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 TU 0.14 2.81 0.00 0.00 0.00 0.50 0.07 1.41 BRG 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 BR 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 EQ 0.00 0.00 0.00 0.00 0.00 0.00 0.00 CS-h 17.66 1.50 26.49 0.00 0.00 0.00 1.22 1.83 WS 0.25 5.09 0.00 0.00 0.00 1.00 0.25 5.09

5.65

72.72

4.13

52.74

42.15

3.21



Comp By: **NPB 7/21**Chkd By: **GNM 12/22** 

Project: NATICK: Shared Use Path over MBTA

Subject: Design Calculations: Bridge No. N-03-007 (29N)

# SOUTH ABUTMENT STABILITY CHECK & DESIGN

52680A41 References

|                | Unfactor | red (Service) | Strength I |                |            | Extreme Event I |         |            |                |
|----------------|----------|---------------|------------|----------------|------------|-----------------|---------|------------|----------------|
|                | F (kip)  | M (kip-ft)    | Factor     | F (kip)        | M (kip-ft) | Factor          | F (kip) | M (kip-ft) |                |
|                |          |               | RESISTIN   | NG (Vertical L | .oads)     |                 |         |            |                |
| DC             | 22.53    | 65.43         | 0.90       | 20.28          | 58.89      | 1.00            | 22.53   | 65.43      |                |
| DW             | 0.19     | 0.19          | 0.65       | 0.12           | 0.12       | 1.00            | 0.19    | 0.19       |                |
| LL             | 0.67     | 0.67          | 0.00       | 0.00           | 0.00       | 0.00            | 0.00    | 0.00       |                |
| App. Slab      | 0.49     | 1.35          | 0.90       | 0.44           | 1.22       | 1.00            | 0.49    | 1.35       |                |
| EV1 (Heel)     | 0.87     | 4.02          | 1.00       | 0.87           | 4.02       | 1.00            | 0.87    | 4.02       |                |
| EV2 (Toe)      | 0.00     | 0.00          | 0.00       | 0.00           | 0.00       | 0.00            | 0.00    | 0.00       | - (soil over t |
| EH-v           | 1.14     | 7.11          | 1.35       | 1.54           | 9.60       | 0.90            | 1.03    | 6.40       | only applica   |
| LS-v (Sliding) | 0.00     | 0.00          | 1.75       | 0.00           | 0.00       | 0.00            | 0.00    | 0.00       | for bearing    |
| CS-v           | 0.49     | 3.08          | 0.00       | 0.00           | 0.00       | 0.00            | 0.00    | 0.00       |                |
|                | 25.89    | 78.77         |            | 23.26          | 73.85      |                 | 25.11   | 77.39      |                |
|                |          |               | OVERTURNI  | NG (Horizont   | al Loads)  |                 |         |            |                |
| EH-h           | 2.82     | 34.25         | 1.35       | 3.81           | 46.24      | 1.00            | 2.82    | 34.25      | 7              |
| LS-h           | 0.00     | 0.00          | 1.75       | 0.00           | 0.00       | 0.00            | 0.00    | 0.00       |                |
| TU             | 0.14     | 2.81          | 0.50       | 0.07           | 1.41       | 0.00            | 0.00    | 0.00       |                |
| BRG            | 0.00     | 0.00          | 1.00       | 0.00           | 0.00       | 1.00            | 0.00    | 0.00       |                |
| BR             | 0.00     | 0.00          | 1.75       | 0.00           | 0.00       | 0.00            | 0.00    | 0.00       |                |
| EQ             | 0.00     | 0.00          | 0.00       | 0.00           | 0.00       | 1.00            | 0.00    | 0.00       |                |
| CS-h           | 1.22     | 17.66         | 0.00       | 0.00           | 0.00       | 0.00            | 0.00    | 0.00       |                |
| WS             | 0.25     | 5.09          | 0.00       | 0.00           | 0.00       | 0.00            | 0.00    | 0.00       | 1              |
| VVS            |          |               |            |                |            |                 |         |            |                |

(no EQ, CS)

|                | Unfactored (Service) |            | Construction |                |            |        | Strength III |            |
|----------------|----------------------|------------|--------------|----------------|------------|--------|--------------|------------|
|                | F (kip)              | M (kip-ft) | Factor       | F (kip)        | M (kip-ft) | Factor | F (kip)      | M (kip-ft) |
|                |                      |            | RESISTII     | NG (Vertical L | oads)      |        |              |            |
| DC             | 22.53                | 65.43      | 0.90         | 19.01          | 57.62      | 0.90   | 20.28        | 58.89      |
| DW             | 0.19                 | 0.19       | 0.90         | 0.17           | 0.17       | 0.65   | 0.12         | 0.12       |
| LL             | 0.67                 | 0.67       | 0.00         | 0.00           | 0.00       | 0.00   | 0.00         | 0.00       |
| App. Slab      | 0.49                 | 1.35       | 0.90         | 0.44           | 1.22       | 0.90   | 0.44         | 1.22       |
| EV1 (Heel)     | 0.87                 | 4.02       | 1.00         | 0.87           | 4.02       | 1.00   | 0.87         | 4.02       |
| EV2 (Toe)      | 0.00                 | 0.00       | 0.00         | 0.00           | 0.00       | 0.00   | 0.00         | 0.00       |
| EH-v           | 1.14                 | 7.11       | 1.35         | 1.54           | 9.60       | 1.35   | 1.54         | 9.60       |
| LS-v (Sliding) | 0.00                 | 0.00       | 0.00         | 0.00           | 0.00       | 0.00   | 0.00         | 0.00       |
| CS-v           | 0.49                 | 3.08       | 1.50         | 0.74           | 4.62       | 0.00   | 0.00         | 0.00       |
|                | 25.89                | 78.77      |              | 22.78          | 77.24      |        | 23.26        | 73.85      |
|                |                      |            | OVERTURN     | NG (Horizont   | al Loads)  |        |              |            |
| EH-h           | 2.82                 | 34.25      | 1.35         | 3.81           | 46.24      | 1.35   | 3.81         | 46.24      |
| LS-h           | 0.00                 | 0.00       | 0.00         | 0.00           | 0.00       | 0.00   | 0.00         | 0.00       |
| TU             | 0.14                 | 2.81       | 0.00         | 0.00           | 0.00       | 0.50   | 0.07         | 1.41       |
| BRG            | 0.00                 | 0.00       | 0.00         | 0.00           | 0.00       | 1.00   | 0.00         | 0.00       |
| BR             | 0.00                 | 0.00       | 0.00         | 0.00           | 0.00       | 0.00   | 0.00         | 0.00       |
| EQ             | 0.00                 | 0.00       | 0.00         | 0.00           | 0.00       | 0.00   | 0.00         | 0.00       |
| CS-h           | 1.22                 | 17.66      | 1.50         | 1.83           | 26.49      | 0.00   | 0.00         | 0.00       |
| WS             | 0.25                 | 5.09       | 0.00         | 0.00           | 0.00       | 1.00   | 0.25         | 5.09       |
|                | 3.21                 | 42.15      |              | 5.65           | 72.72      |        | 4.13         | 52.74      |

(no EQ, CS)

AASHTO LRFD 10.6.3.4



Comp By: **NPB 7/21** 

Project: NATICK: Shared Use Path over MBTA

Chkd By: GNM 12/22 Subject: Design Calculations: Bridge No. N-03-007 (29N) 52680A41 Job No.: **SOUTH ABUTMENT** References STABILITY CHECK & DESIGN **Abutment Stability Check** Resistance Factors: Bearing Resistance,  $\phi_b$  = 0.45 - Footings on Rock AASHTO LRFD Sliding Resistance,  $\phi_{\tau}$  = 0.80 - Cast-in-pace concrete on Sand Tbl. 10.5.5.2.2-1 Overall Stability for Service I Limit State,  $\phi_{os}$  = 0.65 - limited geotechnical info. & 11.6.3.6 Service I Limit State Check: AASHTO LRFD Overall Stability > 1 11.6.3.6 = (φ<sub>os</sub> \* Resisting Moments)/(Overturning Moments) 1.21 **OK** Strength and Extreme Event I Limit State Check: Extreme AASHTO LRFD Bearing Resistance (for footings on rock): Strength III 11.6.3.2 Strength I Event I Construction Service I Net Moment (Resist. - Overturn), M = 52.32 43.85 26.95 46.05 36.62 k-ft Vertical Forces for Bearing, V<sub>b</sub> = 32.95 25.22 29.86 31.78 25.89 kips (= sum of all vertical loads) Resultant, R = M/V<sub>b</sub>= 1.59 1.74 0.90 1.45 1.41 ft (from "toe") AASHTO LRFD Eccentricity, e = (W/2) - R = 1.53 1.38 2.21 1.67 1.70 ft (from cent. of base) Fig. 11.6.3.2.1 For Resultant within middle one-third: N/A N/A N/A N/A N/A Max Bear. Stress,  $\sigma_{\text{vmax}} = V_b / W * [1 + 6 * (e / W)] =$ N/A N/A N/A N/A N/A kip/ft2 Min Bearing Stress,  $\sigma_{\text{vmin}} = V_b / W * [1 - 6 * (e / W)] =$ N/A N/A N/A N/A N/A kip/ft2 For Resultant outside middle one-third: YES YES YES YES YES Max Bear. Stress,  $\sigma_{vmax} = (2 * V_b) / 3 * [(W / 2) - e)] =$ 13.84 9.67 22.06 14.62 12.21 kip/ft2 Min Bearing Stress,  $\sigma_{vmin} = 0$ 0.00 0.00 0.00 0.00 0.00 kip/ft2 Factored Bearing Capacity/ Prop. Pressure = 1.71 2.45 1.07 1.62 1.94 11.6.3.2 oĸ oĸ oĸ OK oĸ Overturning: Net Moment (Resist. - Overturn), M = 26.21 43.14 4.52 21.11 AASHTO LRFD Vertical Forces for Bearing, V<sub>e</sub> = 25.11 23.26 22.78 23.26 kips (= sum of all vertical loads) 11.6.3.3 Resultant, R = M/V<sub>e</sub>= 1.13 1.72 0.20 0.91 ft (from "toe") Eccentricity, e = (W/2) - R = 1.99 1.40 2.92 2.21 ft (from center of base) 2.08 2.08 2.08 2.08 ft (from center of base)

Acceptable Eccentricity (middle 2/3 of base) for Soil = Acceptable Eccentricity (middle 9/10 of base) for Rock = 2.80 2.80 2.80 2.80 ft (from center of base) Is Resultant within limits? (Foundation founded on rock) OK OK NG OK Sliding:

> Vertical Forces for Sliding, V = 23.26 25 11 22 78 23 26 kips Internal Friction Angle, φ<sub>f</sub> = 35.0 35.0 35.0 35.0 tanφ<sub>f</sub> = 0.70 0.70 0.70 0.70 C = 1.00 1.00 1.00 1.00 Concrete cast against soil  $R_t = C * V * tan\phi_f =$ 16.28 17.58 15.95 16.28  $\varphi_{\tau} * R_{\tau} =$ 13.03 14.07 12.76 13.03 Capacity/Load = 3.36 4.98 2.26 3.16 ΟK ΟK oĸ OK

WSP USA, Inc. 100 North Parkway, Suite 110 Worcester, MA 01605 Tel: (508) 248-1970

115)